On the Monodromy of Weierstrass Points (*).

GIiusErPE CANUTO (Pavia) (*¥)

Summary. — In this paper we consider the family of curves of genus g = 2m with o g; lying on a
particular rational normal seroll § in Po~YC). We define a covering of this family representing
the Weierstrass points and we study the monodromy. Applying the technigues of [3] we prove
that if ¢ = 4 the monodromy is the full symmetric group and for general g = 2m it is transitive.
We show also that the generic curve of the family has only normal Weierstrass points generaliz-
ing a classical result. We work always over the complex numbers.

1. — Monodromy groups and Weierstrass points.

Canonical curves and rational normal serolls

Let P* P' be complementary subspaces in P», w =k -1 -~ 1. The rational
normal scroll 8,;= 8 is the surface consisting of the straight lines joining cor-
responding points of the rational normal curves in P* and P'[1]. -

It’s a surface of degree &k -1 and Pic (8) = Z-H@ Z-L where H is the hyper-
plane section and L is a line of the ruling. The canonical bundle K, is equal to
—2H 4 (n—3)L. If Cc 8 is a canonical curve, it’s easy to see that ¢ = 3H -
+ (3 —n)L,

In particular C has g;.

On the other hand it’s well known [6] that if ¢ is a canonical curve of genus g
in Ps-* which is trigonal, then C lies on a rational normal scroll Sii-

If we fix g the possible values for % are given by

and among the canonical curves of genus g with a ¢ the generic one lies on the
scroll such that 1 — % is minimum (we can always suppose k<) [4].

(*) Entrata in Redazione il 2 maggio 1983.
(*¥) Partially supported by: Ministero della Pubblica Istruzione - Italia; Cousiglio Na-
zionale delle Ricerche - Italia.
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Weterstrass poinis.

Let € be a Riemann surface of genus g and p a point of C. According to Rie-
mann-Roch we have the following behaviour for the divisors k-p where k = 0, 1, 2y

k 0 1 .. 20—1 24

MEpy 1 1 . g g-+1
8o there are infegers 1 = a;< a,<C ... << @, such that

B a;p) = BO((a;— 1) p)

for all <.

These numbers are called gap values of p: notice that the first gap value is
always 1, [2].

A point p is called regular if the gap sequence is 1, 2, ..., g otherwise a Weierstrass
point.

The weight of such a point is defined to be

Wip) = 2ia;—1).

A Weierstrass point is hyperelliptic if the gap sequence is a,= 2¢—1 and C
is hyperelliptic if and only if it confains a hyperelliptic Weierstrass point.

If the gap sequence at p is 1,2,..,¢9—1,¢ -+ 1 then p is called a normal
Weierstrass point.

These are the only points with weight one. The total weight of C is the sum of
the weights of its points and this number is

W= (g—1)g(g +1).

In particular the number of Weierstrass points is finite and it’s equal to W ex-
actly when all the Weierstrass points are normal. We have the following classical

THEOREM. ~ The generic Riemann surface of genus g >3 has only normal Weierstrass
points,

(See [1], chapter 2 or [5].)

It’s elear that b is not a gap if and only if there exists a meromorphic function
on ¢ whose only singularity is a pole of order exactly & at p.

It follows that the set of non-gap values at p is elosed under addition. Using
Riemann-Roch we see that p is a Weierstrass point if and only if »(K,— g-p) is
different from zero, where K, is the canonical divisor of C.
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Galois groups and mownodromy groups.

We recall here some facts about Galois and monodromy groups. We refer to [3]
for complete proofs. Suppose X and Y are irreducible varieties of the same dimen-
sion over the complex numbers and #: ¥ — X a map of degree d. Let p be a generic
point of X and I'=z"Y(p) = {¢:, ¢s, ..., qa; the fiber of = at p.

We can consider two subgroups of the full symmetric group on d elements 2;:

(1) If we normalize the function fields extension K(Y)/K(X) we get a Galois ex-
tension L/K(X) and we can consider the Galois group Gal (L/K(X)) which
we denote also Gal ().

(2) The gecond group is the monodromy group Mon (n) defined as follows: if U
is a Zariski open of X over which m is unramified, there is a natural action
of (U, p) on I" defined as usual by lifting loops.

In other words we have a morphism

m{U, p) = 22

and the image is by definition Mon ().
We have ([3]).

THEOREM., — For Y -5 X as above, the monodromy group Mon () is isomorphic
to the Galois group Gal ().

In this paper we consider the scroll 8 = 8,,_; ., C P! where g = 2m >4 which
is isomorphic to P!X Pl= @.
If L,, L, are lines of the two rulings of ¢ we have

L =1,
say, and
H=1IL—+(m—1)L
and 8§ is the image of ¢ under the embedding given by the complete linear system

H]|.
The complete linear system

0] = 3Ly (m + 1) L]

of curves of type (3, m - 1) on ¢ has projective dimension 4m + 7 = 2¢ <~ 7 and
the generic element C iz a canonical curve of genus g = 2m in Ps1,

Let’s put X = |C|~= P,

If Po1* is the set of hyperplanes of P¢s—* let Z be the subvariety of §x Per1*
consisting of the couples (z, H) such that ze HN 8.
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The variety Z is smooth, irreducible, of dimension g since it’s fibered in Ps2
over S.
We define then I C X xZ as follows

I={(C,z2 H) st m(C-H)>g}

where m,(C-H) is the intersection multiplicity of € with H at 2.

If 7: I — X is the projection and C is a smooth curve of X, a couple (z, H)
belongs to n~1(0) exactly when 2 is a Welerstrass point of ¢ and H is a section of
(Koc—g-2).

In what follows a curve D on 8~ @ is said of type (a,b) if D is linearly equi-
valent to al, -+ bL, i.e. we refer to the basis L,, L, of Pic (S).

We recall also the following elementary fact: a curve of type (1, b) is smooth if
and only if it i irreducible,

2. — Transitivity.

In this section we want to look at the irreducible components of I by studying
the projection map

p: I - Z.
We have the following

ProrosITION 1. — I has only one component of maximal dimension 2g + 7 map-
ping over X.

More precisely if X, is the subvariety of X consisting of curves ¢ which are
singular and X, the subvariety consisting of curves having a point of total ramifica-
tion for the ¢} and if J = 7 (X,U X,), we want to prove that among the com-
ponents of I of dimension greater or equal to 2¢ -+ 7 only one is not contained in J.

Denoting by IL,(z) the line of the second ruling of @ ~ 8 through the point 2,
for any couple %, 1 such that %k -+ l<m —1, we can introduce the subvariety Z,c,‘Z
of Z consisting of couples (z, H) such that if B = H N S we can write

E=E -+ E,+ B,
where
E, i3 a curve of type (1, k%) containing z;

E, is equal to 1L,(2);
E, congists of (m —1)— (k -+ 1) lines L,.
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The variety parametrizing couples (z, B,), where H, is a curve of type (1,%)
containing #, is smooth of dimension 2 - 2k.

Since the complete linear system |H;| has dimension (m —1) — (k-4 1), we see
that Z,, is closed irreducible variety of dimension m -- & -+ 1 —1. When one of
the lines of E; coincides with L,(z) we get a point (2, H) in Z;;,, and when E; can
be written as F;+ I, where H, is a curve of type (1, k — 1) containing z we get a
point of Z;_, ;.

In other words we have the inclusions

Zy12 Znin

Zic,z:—) Z;;_u .

Forli=1,2,.., m—1 we introduce also the subvariety Z, of Z consisting of couples
(#, H) s.t. if = HnN § then

E=FE,+R

where R is any curve of type (1, m —1 —1) and FH,= [L,(2).
It’s easy to see that Z, is closed, irreducible of dimension 2m — 21 -+ 1 and

Zl:- ZZ+1

for all & s8.t. & 4+ I<<m —1.

The set Uy,C Z;, consisting of couples (2, H) such that the irreducible com-
ponents of F = H N 8 passing through 2z are exactly a curve of type (1, k) and the
line L,(s) with multiplicity ! is Zariski open in Lyt since its complement in Zk_l,lu
U (Zk,lm Zz+1)-

In the same way the set U,C Z,; consisting of couples (2, H) s.t. the only com-
ponent of & through z is L,(2) with multiplieity 1 is Zariski open in Z, since its com-
plement consists of the union of Z,.; and all the Zyys for k=0,..,m—1—1

Take now a point p = (2, H) in Z,,— U,,;. We have the following possibilities
for E=HnA8:

(1) E contains an irreducible component E, of type (1, %) through 2, and L,(z)
with multiplicity ' > 1.
Then p € Zy,111.

(2) E contains an irreducible component B, of type (1, %’) through z with F'< %
2z with k'<< k and L,(2) with multiplicity ' >1.
Then p € Z; 4 ;.
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(3) E can be written as
E=FE+E+ B

where
E; is irreducible of type (1, %) with k'<<k and it does not contain z;
B, is 1L,(2);

E, contains L,(2).
If 2>k -+ 2 we can write

E = H, -+ E,-+ E,
where

By = B+ Ly(2)

E,= E;— L,(2)

and p €2, 1,,C Zry ;.
If £ =k +1 and E; contains L,(z) at least twice we can write

B = B+ Ey+ B,

where
By = By+ Ly(2)
E,= E, + Ly(2)
Ey= Ey— 2L,(2)
and p€Z,,;.

Tinally if ¥ = k'--1 and E, contains L.(2) with multiplicity one then pe
€Zy N Uiy,

From the previous analysis it follows that if Z* is the closed subvariety of Z
consisting of the union of the Z, s and Z,’s of dimension smaller or equal than «
the set Z*— Z>'= V* is open in Z* and it consists of the union of the following
sets

Uy, for k,1 st
k;l—l<m-—1
c=m-+1-+k—1
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U, forn &t

o =2m—2n +1
Zp M U for all k,1 s.1b.
E4+1gm—1
w=m-+1+ kI
L dim Uy >«
ie. for all &, 1 s.t.

w=m+1+ k1

Et+l<m—1.

We can look now at the fibers of ¢ over V4.
If p = (2, H) belongs to U, (for some »n) a curve C of type (3, m -~ 1) has

m,(C-H) = n-m,(C-Ly(z)) .
If O is non-singular, it does not contain I,(z) and we can have

m,(C+Ly(z)) = 3 in which case Ce X,
or
m,(C- Ly(2)) <2
and then
m,(C-H)y<2n< g
because n<m — 1,
If follows that if p e U, then ¢~(p)CJ.
Take now a point p = (¢, H) in U, ; where « = m + 1 + k —1 and call E; the
component of type (1, %) through z of ¥ = HN 8.
The curve E, is smooth and rational and the linear system || of curves of type
(3, m + 1) cuts on K, the complete system of degree m - 1 -+ 3k Lebt’s consider

the curves C such that m,(H,-O)>g—1.
If

g—1l<3k+1+m ie if m<l-3k5-+1
they form a linear system of projeetive dimension
g+ —@g—D=g+1+4+7

and they satisfy also the condition m,(C-H) > g since they intersect L,(z) at z.
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In case g—171 >3k +1 4+ m a curve ¢ can have m,(C+E)>¢g —1 only when it
contains X, as a component.

On the other hand if m,(C-H)>g and m,(C-H,) < g —1 we must have m,(C-
- Ly(2)) > 2.
Now if

m,(C+Ly(2))>3 then CeX,U X,
and if C is non-singular and m,(C-L,(2)) = 2 then
m(C-H) =21 +1<2(m—1)+1<g.

In fact in the last case the intersection multiplicity at z of ¢ with E, is one
because F, is transverse to L,(z).

It follows that if p e Vo= U, _;, the fiber ¢=(p) is a Pr#7 and if p e V*, a < g,
M) J
or
e p) =PsU J,

where J,CJ and o+ < 2¢g 4 7.

In particular the only component of dimension 2¢ -~ 7 mapping over X is H =
= closure of ¢~V ,). Q.E.D.

As immediate corollary we get
THEOREM 1. — The monodromy group is transitive,

PRrOoOF (see [3]). — We can find a Zariski open set 4 C X such that B = a~4(4)
is contained in ¥ and n: B — A is unramified. Since Y is irreducible, B is connected
and for a generic C €4 we can join two points of #~1(C) with an arcy contained
in B, The action on n~Y(() associated to z(y) carries the initial point of y to the
end point. Q.E.D.

3. — Normal Weierstrass points.

A Weierstrass point 2z on a smooth curve ¢ of genus g is nof normal when one
of the following occurs

(1) WE,— (g —1)2) > 2
(2) W(Ee— (g +1)2) >0.

{Notice that each of them automatically implies that #z is a Weierstrass point.)
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The two possibilities are distinet: the gap sequence 1,2,..,9—2,9,9-1
satisfies (1) but not (2) and the sequence 1, 2, ..., g — 1, ¢ -~ 2 satisfies (2) but not (1).
It’s easy to see that the generic curve € € X doesn’t have points of type (2).

It we define in fact Tc T as

I=/{(C,z2H) st m(C-H)>g+1}

for any p = (2. HYe V%, ¢~ (3, H) N I is isomorphic to a projective space of dimen-
sion g -+ 6. It follows that ¥ N I is a proper subevariety of Y.
We want to see now that the generic € € X does not have points of fype (1),
For this define I'C X X Z as

I'= {(C,p, H) 8.t. m,(0-H)>g—1}

and call &/ and ¢’ the projection maps over X and Z.

If ¢, is 2 smooth curve of X and 2, a point of Cy, the set of H such that (Cy, 2,
H)el' is isomorphic to the projective space PH(Ky— (9 —1)%).

It particular it will have positive dimension exactly when z, is a point of type (1)
for C,. There is an obvious component of I’ defined as

T = closure of {(C,#, H)el' s.t. C is smooth and A(C — (g —1)-2) =1}.

If every curve € of X has a point of type (1), then in I’ we could find at least
two components of dimension greater or equal to 2¢ - 8 mapping over X: the
second one from the union of PHYK,— (g —1)-2), Ce X, zeC. ,

As in the previous Theorem it is enough to prove that in I’ there is only one
component of dimension greater or equal to 2¢ + 8 which is not contained in

J ="YX, U X,).
Repeating the arguments of the previous Theorem we get easily
Hifp=(HeU,n=1,..,m—1
¢ p) I
() if p=(2,H) e Upy, k +-l<m—1 and if I<m—1
¢Up) = PPUJ,

where J,CJ and f'=g + 1+ 8;

(iii) if p = (#, H) € Uy m_y then ¢'~%(p) consists of the union of a projective
space P37, representing the curves of type (3, m 1 1) with a contact
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of order greater or equal to m with E; == IL,(2) at z, a projective space
Pts representing curves of type (3, m --1) with a contact of order
greater or equal to 2 with I,(2) at 2z, and J,CJ.

We conclude, again by dimension count, that the only component of dimension
2¢ - 8 (or greater) mapping over X comes from the inverse image of Uy_1in the
map ¢'.

In particular

THEOREM 2. ~ The generic element C of X contains only normal Weierstrass points.

4. — Curves of genus four.

In this seetion we consider the case g = 4 and we prove that the monodromy
is the full symmetric group.

We conjecture in faet that this is frue for any ¢ = 2m but unfortunately we
are not able at this moment to give a proof for the general case.

In the case under consideration S = @ is the quadric in P2, H is the hyperplane
section and the curves C are the curves of type (3, 3) so that X ~ P,

We also have: ’

U = U,, i8 subset of Z consisting of couples (2, H) where 2e HNQ and HNQ
is smooth. It has dimension 4;

Uy, ={(&H)st. HNQ = L,+ L, and 2€ L,, 5¢ L,};

Uspo={(#,H) 8.6. HNQ = L+ L, and ze€ Ly, 2¢ L,}.
These two substes of Z have both dimension 3.

U= {(2, H) s8.t. HNQ = Ly(z) + Ly(2) i.e. H is the tangent plane to @ at z}.
It has dimension 2.

According to the results of the previous sections a generie € € X is smooth with
only normal Weierstrass points and doesn’t have points of total ramification for
either one of the two gi’s determined by the rulings of ¢. Let’s fix such a curve C,
and let (0, 2,, H,) be a point of n~(C,) where we can suppose (%, Ho) € U = Uy,.

Let’s also call J the subset of I consisting of triples (C,#, H) where ¢ doesn’t
satisfy one of the previous conditions. We observe that if p = (z, H) is a point of U,
(resp. Uy,) the set ¢g~(p) is contained in J because a curve C has m,(C-H)>4 only
when it contains L,(z) (resp. Li(2)).

On the other hand if p = (2, H) is a point of U,; a smooth curve C has
my(C-H)>4 only if 2z is a point of total ramification for one of the two g; so that
also in this case ¢~(p) cdJ.
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Fallowing the technique explained in {3] we prove

PRrOPOSITION 2. — The stabilizer of (Cy, 2y, Hy) t0 the monodromy group acts trans-
itively on the remaining points of I' = n~1(C,).

Proor. — Let’s define

X,={0eX s.t. m,(C-Hy)>4}:

it’s a subspace of X isomorphic to P

The inverse image of X,, n~%(X,) contains a component consisting of tfriples
(C, 2o, Hy) where C e X,

We call I,c X, X Z the closure in 7~1(X,) of the complement of that component.

By the same argument we used to prove simple transitivity it will be enough
to prove that I, contains only one component of dimension 11 mapping over X,.
This will be done as usual by looking at the projeetion ¢q: I, — Z.

We notice that ¢*(z, H)cJ if g =2, H+#H, or 252, but H = H,.

In the first case in fact a smooth curve C e X, having m,(C-H)>4 has 2, as a
Weierstrass point of weight > 1 because h(K,— 4-z,) is at least 2.

In the second case any C € X, xith m,(C-Hy) >4 must contain E,= H,N Q.

It follows that it’s enough to look at the fibers of ¢, over points p = (¢, H)e U
where 254 2,, H % H,.

We claim that for any such p, ¢, (p) ~ P".

Suppose that z,¢ H and call F the intersection H N Q.

The curves of the form E 4+ R where R is any curve of type (2, 2) form a linear
system of dimension 8 and they certainly have a 4-fold intersection with H at z.

A curve of this type will have 4 intersections with H, at 2, when m, (E-H,)>4.
It follows easily that the requirement of having a 4-fold intersection with H, at z,
imposes 4 conditions on this linear system.

In other words the conditions we are imposing at (z,, H,) and at (2, H) are
independent so that ¢, (p) = P".

Obviously the same is true is 2 ¢ H,. If 2, 2, are the points of intersection of H
and H, on ¢ we choose two points v, and v, on Hy= H,N @ different from z, 2,
and two other points s, s, on E = H N @ different from z, z,.

In the gpace of curves of type (3, 3) having 4-fold intersection with H at z and
with H, at z,, those passing through r;, vy, 81, s, have codimension at most 4.

On the other hand they contain both E, and FE, because they have at least 7
intersections with each.

It follows that also in this case the conditions at (2, H,) and (2, H) are inde-
pendent and ¢ (p) = P. Q.E.D.

Since we know that for any even g>4 the monodromy group is transitive, from
the previous proposition we immediately get

COROLLARY. — If g = 4, the monodromy group is twice transitive.
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We come now 1o the last step which consists in proving that for g = 4 the
monodromy group contains a simple transposition.
We have the following

LeMMA (see [3], page 698). — Let w: ¥ — X be as before. Call d the degree of .
If there is a point C of X such that n—*(C) consists exactly of d — 1 distinct points—i.e.
d — 2 simple points gy, ..., §q_s and one double point q._,—and if Y is locally irreducible
at qq_y, then the monodromy group contains a simple transposition.

In our situation we have to prove that there is a curve € € X with one Weier-
strass point of weight two and all the others of weight one. There are two types of
Weierstrass points of weight two corresponding to the sequences 1236 and 1245.

Let’s consider first a curve € (smooth) having a point # with gap sequence 1245,

We denote by L the tangent line to C at # and L,, L, the two lines of @ through z.

The tangent plane to @ at #, say H, intersects @ in I,+ L,. Since (K —3:2) = 2,
all the planes containing L have three intersections with C at z.

In particular this is true for H and L, or L, must be the tangent line to C at 2,
since one of them has a double intersection with C at #z (at least). Suppose L = L.

Since a plane containing L and different from H cuts ¢ along a residual line not
containing z, we see that m,(C-L) = 3 and the only plane with a contact of order
four is H.

It’s also clear that there are no planes with contact af order five.

This obviously checks with Riemann-Roch. Viceversa if € is a smooth curve
of type (3, 8) s.t. m,(C-L,) = 3 then any plane containing L, has three intersections
with O at 2 so that A(K,—3-2) > 2. In fact since we can always find a plane
transversal to ¢ at ¢ we must have

ho(Kc—— Z) =3

W(Ky—2-2) = W(Ko—3+2) = 2.

The tangent plane to @ at z has then one more intersection with C at 2 and no
plane can have five intersections with C at 2. The gap sequence at z is 1245.

Suppose now we fix z and L, = I,(2) and consider the set of curves C of type
(3, 3) such that m,(C-L,)>3. It’s immediate to check that a generic curve of this
set is smooth, O-L,= 3-2z and m,(C-Ly(z)) = 1.

The curves 2L,(z) + 2L,(2) + Ly + L; where L;5= Iy(z), Ly Ly(z) intersect any
line of one of the two rulings different from L{, L,, I,(z), Ly(z) only in one point.

Moving L;, L, we conclude that the generic C of the set defined before does not
have points of total ramification for either g; outside 2.

‘We proved the following

PROPOSITION 3. — (&) on & smooth curve C of type (3, 3) on the quadric ¢ the Weier-



GrusEPPE CANUTO: On the monodromy of Weierstrass points 61

strass points with gap sequence 1245 are exactly the poinis of total ramification for one
80f the two gl's given by the rulings of Q.

(b) If we fiz z€Q and one of the twe lines through 2z, say L, = L,(2), the generic
curve O of type (3, 3) s.t. m,(C- L) >3 is smooth and z is the unigue Weierstrass point
with gap sequence 1245 on C,

Consider now a smooth curve € of type (3, 3) with a point # having gap se-
quence 1236.
From Riemann-Roch

W(Eg—42) = BWH;~—52) =1,

Furthermore the points ¢ such that A*(H,— 5:¢) == 1 are exactly the points with
weight > 1 and a sequence different from 1245, If we take p,= (2, Hy) € U let’s
call By the intersection H,N @ and

W={CeX s.t. m,(C-H)>5}.

PROPOSITION 4. — W is isomorphic to P¥, the generic C € W is smooth and 2y, as a
point of C, has the gap sequence 1236,

ProoF. — The proof of the first statement is trivial. It’s easy to see that the
generic C is smooth at z,.

By Bertini’s Theorem we get that the generic € is smooth everywhere. Checking
all the possible sequences at z,, we have by Riemann-Roch A%K,—5:5,) =1 so
that H, is the only plane with a contact of order greater or equal to five at 2.

The point 2, could have a sequence different from 1236 only if A%(HKo— 6-2,) = 1.

Since the curves of type (3, 3) cut on E, the complete system of degree six, this
does not happen for the generic Ce W. Q.E.D.

The next proposition tells us that the generic € € W has only one Weierstrass
point of weight > 1.

-

ProposiTION 5. — The Weierstrass points different from z, of the generic Ce W
are normal. :

Proor. — We will show that for a generic Ce W

(@) there is no point z = 7, such that the weight of 2 is >3 or the weight is 2
and the gap sequence is 1236;

{b) O does not contain any point with gap sequence 1245,
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Like in Proposition 2, for (a) it’s enough to prove that the subset M of WxZ
given by

M = {(C,z H) st. m{C-H)>5, 2+ 2, H=#~ Hy}

cannot map onto W.

As usual we look at the map w: M — Z. Following the same arguments as in
Proposition 2 we see that it’s enough to look at the fibers of ¢ over points p = (2,
H)e U and that if z,¢ H (or z ¢ H;) the conditions of contact of order >3 at z
and z, are independent.

In case ze€ H, and z,€ H, if we take 7€ H, s € H, different from z, 7, among
the curves with the required contact at z, 2, those containing the points r and s
form a subspace of codimension <2.

On the other hand they form a P?® since they must contain E, and E = H N Q.
This implies that ¢~'(p)~ P> for any p = (2, H)e U, 25 %, H # H,, and by di-
mension count # cannot map onto W.

For the point (b) let’s consider a couple (2, L) where z s« 2, and L contains 2 and
belongs to a fixed ruling of Q.

Let ¢ be the point LN E,. If ¢ is different from #, the curves with 3 intersec-
tions with I at # have codimension 3 among the curves of type (3, 3) containing E,.

In fact they must contain (#, and) L. So they form a P3 and the requirement
of having a contact or order 3 with L at z imposes 3 conditions on W.

If t = E,n L =z let v (resp. s) be a point of L (resp. K,) different from # (resp.
2y %).

The curves of type (3, 3) having 5 intersections with H, at 2o, 3 intersections
with L at 2z and passing through r and s form a PS5 because they contain again E,
and L.

Since they have codimension <2 among those satisfying the first two require-
ments by dimension count we conclude that the gemeric 0 e W does not contain
points with sequence 1245. Q.E.D.

In order to conclude that the monodromy group contains the transposition we
check, according to the Lemma, that Y is irreducible at (C, 2., H,) where C is a
smooth curve of W,

Since (2o, H,) is in U, there is a neighborhood B of (2, H,) in Z such that
Y= BxPu

In particular Y is irreducible at (C, %, H,;) and we proved

THEOREM. — If g = 4 the monodromy group is the full symmetric group on 60 =
= (g —1)g(g + 1) elements. Q.E.D.

The author would like to thank Jor HARRis for suggesting the problem and
for many helpful conversations during the preparation of this paper.
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