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Summary. - The equation to be considered is of the form (1) x(~a(t) + (;p(t)x(g(t) ) = 0 ( t> a), 
where a = •  > 0 for t ~ a and g(t) --~ c~ as t --~ c~. I t  is weU-k~wwn that a non- 
oscillatory solution x(t) of (t) satisfies (2) x(t)x(i)(t) > 0 (0 <= i ~ I), (--  1)i-%(t)x(~)(t) > 0 
(1 <= i ~ n) ]or some integer l, 0 ~_ l ~ n, (--  1)*-z-l~ = 1. I n  this paper, fo~" a given l such 
that 0 <  l <  n, (-- 1)~-z-la = 1, necessary conditions and suf f icient  conditions are found 
for (1) to have a solution x(t) which satisfies (2), and a necessary and suf f ic ient  condition 
is established in  order that for every 2~ > 0 the equation x(")(t) ~- 2ap(t)x(g(t) ) = 0 (t > a) 
has a solution x(t) which satisfies (2). ]~eIated results are also contained. 

1 .  - I n t r o d u c t i o n .  

In  this paper  we examine the oscillatory and nonoscil latory behavior  of solutions 
of l inear differential equations with deviating arguments  of the form 

(1) xc~)(t) + ~p(t)~(g(t)) = 0 ,  t > a ,  

where the following conditions are ~lways assumed: 

(i) n ~ 2 ,  a= + 1  or - - 1 ;  

(if) p(t) is continuous and positive on [a, c~); 

(iii) g(t) is contiauous on [a, oo) and ~im g ( t ) =  co. 

By a solution of Eq.  (1) we mean a function x( t )  which is define4 on some half-line 
ITs, c<)) and satisfies (1) for t ~ T~ and sup {Ix(t)[: t ~ T} > 0 for any  T ~ T~. Such 
a solution is called oscillatory if it has arbi t rar i ly  large zeros; otherwise it is called 
nonoscillatory. 

I f  x( t )  is a nonoscil latory solution of (1), then  ax(t)x(~)(t)  < 0 for all sufficiently 
large t, and so by  a lemma of KIGURADZE [5] there  exists an integer 1 e {0, 1, ..., ~}, 
( - - ! )~-~- la  = 1, and a to > T~ such that 

x ( t ) x ( ~ ) ( t ) > O  on [t0, c~) for 0 ~ i _ l  

(2) ( - -  1 )~- 'x ( t )x~) ( t )  > 0 on [to, c~) for l ~  i ~ ~ .  

(*) Entrata in Redazione il 2 m~rzo 1983. 
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A function satisfying (2) is said %o be a (nonoscillatory) function of degree 1. We 
use the symbol  Ae~ to denote the  to ta l i ty  of nonoscillutory solutions of degree 1 of (1). 
I f  we denote by  5 '  the  set of all nonoscfllatory solutions of (1), then  we h~ve 

(3) 
J~ : 2i% W J~. ~ ... U J~'._~ U J~.  

for n even, o" = I 

f o r ,  odd, a----1 

for n even, a : - - I  

for n odd, a - - - - - - 1 .  

In  the ease where g(t) ~ t, t ha t  is, (1) is sn  ordinary differential equation, it is 
known tha t  the classes 3~0 and ~ .  in (3) are always nonempty .  Tha t  A~0va 0 follows 
from a classical theorem of I - I~m~_~ ~nd WI~m~v,~ [4] (see also ~[~Rm~_~ [3, 

p. 508, Oor. 2.2]), while A~V= ~ is clear since the  solution x(t) of (1) with a = - - 1  
such tha t  xc~)(a) > O (i = 0, 1, ..., n - - l )  satisfies x(/'(t) > O for t > a (i = O, 1, ..., n). 

Each of the classes oV~ (0 < 1 < n) m ay  fur ther  be minute ly  classified ~ceording 
to the possible asymptot ic  behavior  of its members as t --->co. Le t  x(t) e Ac', (0 < 
< / <  n). Since ]x(*~(t)] is decreasing, l~(~)(t)[ has ~ nonnegative limit as t - + c o .  I t  
is clear t ha t  if lim Ix(O(t)l > O, then  lim Ix(HI(t)] = c o .  On the other  hand,  since 

t--> co  t--~ co  

lx(*-~)(t)l is increasing, either Ix(*-~(t)l has ~ finite l imit  as t -+co  or ]x(*-~)(t)l tends 
to co as t -+ co. Consequently we have the following three possibilities: 

(4) l im Im{~-~)(t)l = c ~ ,  lira I~(~(t)l = const :~ O; 
t--*-zc t - + c o  

(5) l im lmu-~(t)[ = c o ,  l im wu~(t) = O; 
t - - > ~  t--+ co  

(6) l im Im(~-~l(t)] = eonst =/: 0 ,  lira m(zl(t) = 0 .  

A solution x(t) satisfying (4) [resp. (6)] can be regarded as a <~ maximal  ~> [resp. 
(~ minimM ~>] element in JV~; a solution x(t) satisfying (5) m~y be referred to as an 
<~ intermediate ~> element  in 0V~. We use the nota t ion ~'~[m~x], 0V~[int] and A~ 

to denote the set of all nonoscil latory solutions x(t) in JTi satisfying (4), (5) ~nd (6), 
respectively. Thus we have 

J~'~ = ~V~[max] w A~[int] w A~[min].  

I t  is not  difficult to give necessary and sufficient conditions for (1) to hgve solu- 
tions of classes 3/~[max] and 2~'~[min] (Lemma 5 below). Of p~rtieular interest,  
therefore,  is to find necessary and/or  sufficient conditions for (1) to have solutions 
of classes JV~ and Ac'~[int]. 

In  this paper  we obtain first necessary conditions ~nd sufficient conditions for 
(1) to have a solution of class A~ (0 < l <  , ) ,  and  then  combine them to establish a 
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~ecess~ry an([ sufficient condition in order t h ~  the  associated differential equat ion 

with  a p~rame te r  )~ 

x(~)(t) 4- ;~gp(t)x(g(t)) : 0 , t > a ,  

has ~ solution o f  ola.ss A~ (0 < 1 < n) for every  )~ > 0, As a consequence we can 

find a character izat ion for the  s i tuat ion in which (7;) has a solution of class A~ 

(0 < l < n) for every  ). > 0. We can also give n ehuracterizution for the  si tuat ion 

in which (7~) is ~lmost  oscil latory for every  2 S 0. Here  und hereaf ter  we s~y tha t  

Eq.  (1) is almost oscillatory if the  ex t reme case ocem's for (1) in which all classes 3/'~ 

(0 < 1 < n) in (3) ~re empty .  (Of course( the  not ion o f  a lmos t  oscillation makes  

sense only when either n > 3, a = ==1 or n = 2, a = 1.) 
This work  is s t rongly mo t iva t ed  by  the  papers  of KIzsA~o [7] and  NAZTO [17]. 

Re la ted  results are contained in ~A~TURIS~ [1, 2], KIGURADZE [5], KOPLATADZE and 

~A~TUI~IJA [6], LOVELADY [11-15] and  TI~ENCI~ [18]. 
Throughout  the  paper  we assume t h a t  1 is an  integer  such t h a t  0 < l <  n~ 

(-- i)~-~-~ : 1. 

2. - Preparatory  resu l t s .  

The following l emmas  will be needed in proving" our results. 

LEM)~A 1 (KIGUlCADZE [5, the  proof of L e m m a  2]). - Let  x(t) be a positive ]unc- 
tion o] degree I. Then  x(t)  satis]ies the inequalities 

1 
x(Z-~)(t) ~ ~ (t - -  to)x(~-J+~)(t) ]or t ~ to (1 ~ j ~ 1), 

and in  part icular 

> ! x(t) 
x(t) = l ! (t - -  to)~-lx(~-l)(t) ]or t ~= to, (t - -  to) ~ is noninereasing ]or t > to �9 

LE)I~A 2 (KusA~o and  NAI~O [10]). - I] there is a positive ]unction v(t) o] degree 1 
satis]ying the inequali ty  

a(v(,~)(t) + ap(t)v(g(t))}  ~= 0 

]or all su]fieiently large t, then the equation 

~ , ( t )  + ~p(t)u(g(t)) = o 

has an eventually positive solution o] degree I. 
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L E ~ ) ~  3 (MA~FOUD [16]). -- Suppose that there is a ]unction G(t) e Cl[a~ (x)) such 
that 

(8) G(t) <= rain (g(t), t} , G'(t) > O ~ G(t) -.c<) (t -->oo) 

and let G-~(t) be the inverse ]unctio~ o] G(t). I] the ordinary di]]erential equation 

P(G-~(t)) v(t) =- 0 v"(t) + 

is oscillatory, then all solutions o] the equation 

u"(t) -~ p(t)u(g(t)) --~ 0 

is oscillatory. 

LE).~A 4 (KusA~o  and  NAITO [10]). - Suppose that there is a /unction H(t) 
e Cl[a, oo) such that 

(9) H(t)  ~ ma, x (g(t), t} ,  H'(t) > 0 

and let H-I(t) be the inverse ]unction o] H(t). I] the ordinary diMerential equatio~ 

+ v(t) = o H'(H-I(t)) 

is nonoscillatory, then the equation 

u"(t) ~- p(t)u(g(t)) = 0 

has a nonoscillatory solution. 

LE~I~A 5. - (i) Eq. (1) has a solution of class ~V~[m~x] i] and only i] 

o o  

jt~-~-~(g(t) ) ~p(t) dt < c~ . 

(ii) Eq. (1) has a solution o] class ~'z[min]  i] and only if 

o o  

jt~-~(g(t) ) t-~p(t) dt < c~z . 

I n  f~ct, it is e~sily verif ied t h a t  x ~ 2~~ if ~nd on ly  if x(t) satisfies limx(t)/t ~ = 

= const  V: 0, z~nd x ~ Aez[min] if ~nd only  if x(t) s~tisfies l im x(t)/V-~= const  :/: 0. t---> c ~  

On the  o ther  h~nd~ it  is known  t h a t  for  ~n in teger  k, 0 ~= lc ~= n --  1, t he re  exists 



MANABU NAITO: Nonoscillatory solutions o] linear di]]crential, etc. 

solution x(t) of (1) such tha t  tlim x(t)/t  k =  const :/= 0 if and only if 

c o  

ft~-k-~(g(t))7~p(t) dt < c~ .  

Thus Lemma  5 is immediate.  

3.  - M a i n  r e s u l t s .  

Tm~OlZE~ 1. - I] Eq. (1) has a nonoscillatory solution o] class ~\vz, then ]or all 

su]]iciently large T the equation 

(10) u"(t) + 
( t -  r ) ~ - , - ~ ( g ( t ) -  r),-~ 

( n - - l ) ! l !  p( t)u(g(t))  = 0 

has a nonoscillatory solution. 

P~ooF. - Suppose t ha t  (1) has a nonoseil latory solution x(t) of class zVz. Without  

loss of generali ty we may  assume tha t  x(t) is eventual ly  positive, and f rom (2) it 

follows tha t  

(11) xr > 0 (0 <-- i <_ l) and (-- 1)~-%(o(t) > 0 (l --< i --< n) 

for t > T, where T > to is such tha t  x(g(t)) > 0 for t > T. By  Taylor 's  formula with 

remainder ,  we have 

t 

,~-~-1 xI~+j)(~) 1 f x~')(t) = ~o ~ i  ( t -  7)' + i ~ -  l -  1)! ( t -  sl~-~-lxC~(s) ~s = 
T T 

,~-~-1 (_  1)Sx(~+J/(~) 1 f = J=0~ j!  (~:-- t)~ ~ ( n - -  l - -  1)! (s - -  t)~-~-ip(s)x(g(s)) d.s. 
t 

~ o w  using (11), we obtain 

x")(t) > (n-- l - -  1)! s - t)~-~-~p(s)x(g(s)) ds 
t 

for T<_t<~ z. 

(12) 

Letting w-.o% we have 

co 

x(~)(t) > (n - -  l - -  1)[ (s - -  t)~-~-~p(s)x(g(s)) ds 

t 
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for t >--T. Integrat ing (12) yields 
t oo 

1 f [(r--s)~-~-lp(r)x(g(r))dr ds (13) x(~-l)(t) > x{t-~)(T) -F (n ~ - -  1)! 
T s 

t r 

 f(f )....  = x~-,(T) + (,~_ z - 1)! ( r -8)~  -~• d8 p(r)x(g(r)) dr + 
T T 

oo t 
1 

t T 

for t => T. Using the inequaligy . . . .  
t 

f ( r - -  s) "-~-1 ds > 1 T)~_~_ ' _ = n - -  1 (t - -  's  - -  ( T  < t <_ r)  

T 

in (13), we get 

(14) x(~-~)(t) > x(~-~)(~s § - -  i f  ( n - - l ) !  ( r - -  T)~-Zp(r)x(g(r)) dr ~- 
r 

t - - T f  + ( - _  ~)~ ( r -  rp-~-Ip(r)x(g(r)) 
t 

dr 

for t ~ T. Denot;e the  right hand side of (14} by  y(t). As easily verified, y(t) is posi- 
t ive and s~isfies the  equali ty 

1 
(i5) y"(t) ~ ~ (t - -  r)~-t-~p(t)x(g(t)) = 0 (~ 

for t > T. 

(16) 

From Lemma 1 it follows that  

>1_ >s 
x(g( t ) )  = z ! (g(t) - r ) ~ - ~ . - ~ , ( g ( t ) )  = ~ ! (g(t) r ) ~ - ~ ( g ( t ) )  

for all large t. Combining (15) with (16) yields 

y"(t) § ( t -  T)~-~-~(g(t ) -  T) ~-1 
(n - -  l)! l! p(t)y(g(t)) g 0 

for all large t. Applying now Lemma 2 with n ---- 2, a = 1, we conclude that  Eq. (10) 
has an eventually positive solution. The proof of Theorem 1 is complete. 

Let  G(t) ~ C 1 be a function satisfying (8). Then, according to L e m m a  3, a l l  solu- 
lions of Eq. (10) are oscillatory if the ordinary differential equation 

( G - - l ( t ) -  T )  n - i - l ( g ( G - l ( t ) )  - -  r ) t - l ~ 0 ( ~ - l ( ~ ) )  V(~) 0 
(17) vr'(t) + - -  : 

(n - ~) ! ~! G ' ( r  
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is oscillatory. I f  we apply  the well-known oscillation criteria of tt i l le and Fire to 

(17), we have the following result. 

and 

COROLLAt%Y 1. -- I /  Eq. (1) has a ~w~wscillatory solutior~ o/ crass ~\'~ then 

co 

t 

c~ 
limt_~inf~ G(t)fs"-'-~(g(s))~-~p(s) ds <= 

t 

(n - -  I )  ! 1 ! 

hold for every G(t) e C 1 satis/ying (8). 

We now look for sufficient conditions under  which (1) has a nonoscil latory solu- 

t ion of class A'z. 

T]~_EOn,]~ 2. - I /  ]or some T ~= a the equation 

(18) uH(t) + 
( t -  Tp-~-~(g(t)- ~)~-~ 

(n--l--I)!(1--1)! p(t)u(g(t)) ---- O 

has a nonoscillatory solution~ the~ Eq. (1) has a nonoscilIatory solution o/ class .V~. 

PROOF. -- Let  u(t) be a positive nonoscil latory solution of (18). There is a number  
T~__> T such tha tU( t )  > O,~u(g(t)) > 0 and g(t) >__ T for t __> T~.. Noting tha t  u'(t) > 0 
for t >__ TI and integrating (18) from t to co, we get 

. [ . ( s  y _ . . . . . . .  

- - - - j  t n - l - z ) ! ( ~ - z ) :  p ( s l ~ ( g ( s i )  d8 
t 

for t >__ T~, whence i~ follows tha t  

t co 

( 1 9 )  u(t) >--f f (r-- T)n-'-l(g(r) -- T) ~-1 ( n - - l - - 1 ) ! ( l - - 1 ) !  p(r)u(g(rl) drds 
T1 S 

for t => T~. 

(20) 

Define the function v(t) by 

co 

= ( ( t -  s)-i  ( ( ! . -  -_ r),_l 
J ( 1 - 1 ) !  J (n - l - 1 ) ! ( ~ -  11! p(r)u(g(r)) ~lr ds 

T 1 s 

for t => T1. F rom (19) and (20) we ea.sily see tha t  

(t -- TI)~-I 
(21) v(t) <= ~(t) 

(~-- 1)! 
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for t >= T 1. I t  is also easy to see tha t  v(t) is of degree 1 and satisfies 

(22 )  - ~v~,'~)(t) = (g(t)  - ~)~-~ ( 1 - - 1 ) !  p ( t ) u ( g ( t ) )  

for t ~ T~. From (21) and (22) it follows tha t  

~{~,(,~)(t) + ~,p(t)v(g(t))} < o 

for all large t. Applying Lemma 2, we conclude tha t  Eq. (1) has an eventualls 
positive solution of degree 1. This completes the proof of Theorem 2. 

Let  H(t) e C ~ be a function satisfying (9). Then Lemma 4 imp]ies t ha t  (18) has a 
nonoscillatory solution if the ordinary differential equation 

(23) ~"(t) + (n - 1 - 1 ) ! ( ~ -  1 ) !R' (~ -~ ( t ) )  ~(t) = o 

is nonoscillatory. Applying Itille's nonoscillation criterion to (23), we have the 
following result. 

C O R O L L A R Y  2 . -  I f  

o o  

lira sup H ( t ) [  s~-~-~(g(s ) )~-~p(s )  
t.-.> c~ . /  

t 

ds 
(n- ~ -- I) !(l -- 1) ! 

holds ]or some H(t) ~ C! satisfying (9), then Eq. (1) has a nonoseilIatory solution o] 
class 3g'~. 

If the deviating argument  g(t) satisfies 

(24) O < l im inf _< lira sup ~-~ < co ,  
t--->~ t - -  t--* c~ b 

then  necessary and sufficient conditions can be given for (7;.) to have solutions of 
classes Ao~ and A~[int] for all 2 > 0. 

THEORES[ 3. -- Suppose that (24) holds. Let 1 be /ixed. Then, Eq. (7z) has a non- 
oscillatory solution o/ class ~gz ]or all ~ > 0 i] and only i/ 

c ~  

(25) lira t I s'-~p(s) ds = 0 
! 

t 
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(25) 

and 

Tm~onE)~ 4. - Suppose that (24) holds. Let I be fixed. Then, Eq. (7z) has a non- 

oscillatory solution o] class Ao~[int] for al~ 2~ > 0 i] and only i] 

c o  

l im t fs~-2p(s) ds --= 0 

c o  

(26)  fs - p(s) ds = oo .  

I n  fact ,  we  have  the  following s t ronger  resuIts.  

T~EoRr,~ 5. -- Suppose that (24) holds. Then the statements (i)-(iv) below are 

equivalent: 

(i) ]or any I and ]or all A > 0 Eq. (Tz) has a nonoscillatory solution of class ~ '~  

(ii) there is an I such that ]or all A > 0 Eq. (7z) has a nonoscillatory solution 

of class A~; 

(iii) for all )~ > 0 there is an l such that Eq. (7~) has a nonoscillatory solution 
o] class Ar (that is, ]or all )~ > 0 Eq. (7~,) is never almost oscillatory); 

(iv) condition (25) is satisfied. 

THEORE~ 6. - Suppose that (24) holds. Then the statements (i)-(iv) below are equi: 
valent : 

(i) ]or any l and for all ~ > 0 Eq. (7~) has a nonoscillatory solutio~v o] class 

A'z[int] ; 

(ii) there is an, I such that ]or all ~ > 0 Eq. (7~) has a nonoscillatory solution 

o] class ~Xe~[int] ; 

(iii) for all A > 0 there is an l such that Eq. (7z) has a nonoscillatory solution 
of class 2~z[int]; 

(iv) conditions (25) and (26) are satisfied. 

PROOF OF THEOREm[ 5.  -- Clearly (i) implies (ii), and  (ii) implies (iii). I t  follows 
f rom (24) t h a t  the re  are posi t ive  cons tan ts  c1< 1 and  c2 > 1 such t h a t  c~t < g(t) < 

< e2t for all  large t. Suppose  t h a t  (iii) holds,  i.e., suppose  t ha t  for all  A > 0 ~here 
is an  I = l()0 (in general ,  depending  on 2.) such t h a t  (7~.) h~s a solut ion of class A'~. 
B y  Corol lary  1 we  deduce  tha.t 

c o  �9 
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for all ~ > 0, where G(t) ~ c~t. But this c~n be satisfied only when (25) is satisfied. 
Thus (iii) implies (iv). Suppose tha t  (iv) holds. Then 

co 

lira sup H(t "-~-~(g(s))~-~[~p(s)] ds ---- 0 < 

t 

for ~ny 1 and for all ~l > 0, where H(t) = c~t. By Corollary 2 Eq. (74) possesses a 
solution of class A'~ for any  1 ~nd for M1 ). > 0. T h e  proof of Theorem 5 is complete. 

PROOF OF TI-IEORE)I 6. -- Clearly (i) implies (ii), and (ii) implies (iii). Suppose 
tha t  (iii) holds and let x~(t) be a.n eventually positive solution of class A~ of 
(7~), where 1 m~y depend on ~. By Lemm~ 1, x~(t)/(t--to) ~ is nonincre~sing for all 
l~rge t. Consider then the linear ordinary differential equation 

(27) ya~)(t) + (~P~(t)y(t) -~ 0 ,  

where P~(t) = .~p(t)x~(g(t))/x;.(t) (> 0). With  the aid of (24) it can be shown tha t  
P;.(t) <= k;.p(t) for ~11 large t, where k;. is a positive constant  (depending on A). I f  
(26) is not  satisfied, then  

co  

fs~-~_P~(s) < co ,  ds 

a n d  so t h a t  (27) h~s ~ fundamental  system of solutions {y,(t), ..., y,(t)} such tha t  

lira yj(t_~) = c o n s t  r 0 (] -= 1,  , .n) 
t - > c o  t $ - ' 1  . . . . .  

This, however, is a contradiction to the fact t h a t  x~(t) is a solution of class A~[int] 
of (27). Thus (26) is satisfied. That  (25) is satisfied follows from Theorem 5. 

Final ly suppose tha t  (iv) holds. Since (25) is satisfied, it follows from Theorem 5 
tha t  Eq. (7;.) has ~ solution xu(t ) of class J~'~ for any  1 and for all )~ > 0. Since (24) 
and (26) are s~tisfied, this soh t ion  xu(t ) is neither of class A'z[max] nor of class 
~ [ m i n ] ,  so t ha t  xa(t ) must  be of class ~V~[int]. Thus (iv) implies (i). The proof 
of Theorem 6 is complete. 

We c~n ~lso obtain the following result. 

THEOREm[ 7. -- SUppOSe that (24) holds. Then the statements (i)-(iv) below are 
equivalent: 

(i) ]or any 1 and for all A > 0 Eq. (7;.) has no nonoscillatory solutio~ o] class 
3~'~ (that is, ]or all ~ > 0 Eq. (74) is almost oscillatory); 

(ii) there is as  I such that 1or all ). > 0 Eg. (7;.) has no nonoscillatory solution 
o] class A~ 
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(iii) /or all ~ > 0 there is an I such that Eq. (7~) has no nonoscillatory solution 
o] class A'~; 

(iv) the condition 

(2s) 

is satisfied. 

limtosup~ t f s~-~p(s ) ds = z~ 
t 

Pl~ooL - Clearly (i) implies (ii), and (ii) implies (iii). I t  follows from (24) tha t  
there are positive constants c~< 1 ~nd c2 > 1 such tha t  c~t < g(t) < c2t for all large t. 
Suppose tha t  (iii) holds, i.e., suppose tha t  for all ). > 0 there is an 1 = 1(i) (depend- 
ing on )~) such tha t  (7~) does not  have a nonoscillatory solution of class ~'~. By  
Corollary 2 we must  have 

oo 

lira sup H ( t) fs~-*-~(g(s) )~-~[ ~p(s) ] ds >_ (n - -  1 - -  1)l(1 --  1)! 

t 

for all ~ > 0, where H(t)  ~ c2t. But  this is possible only if (28) is satisfied. 
(iii) implies (iv). I f  (28) is satisfied, then clearly 

c o  

limt_. ~sup a(t) f as = > (n - 1) ! l! 
t 

Thus 

for any  l and for all ~ > 0, where G ( t ) =  clt, so tha t  by  Corollary 1 Eq. (74) has 
no nonoscillatory solution of class 5~ for any  I and for all ~ > 0. This completes 
the proof of Theorem 7. 

I t  should be noted tha t  in the equations 

(TD 

(7;) 

x(n)(t) ~- )~p(t)x(g(t)) = O, 

x(~)(t) - -  ,~p(t)x(g(t)) = O, 

if g(t) satisfies (24), then  

(i) for all )~ > 0 (7 +) is never almost oscillatory if and only if for all ~ > 0 
(Ty) is never almost  oscillatory; 

(ii) for all ~ > 0 (7 +) has a nonoscillatory solution of an (( intermediate )) 
class if and only if for all 2 > 0 (7y) has a nonoscillatory solution of an (( inter- 
mediate ~) class, and 

(iii) for all ~ > 0 (7 +) is almost oscillatory if and only if for all 2 > 0 (7~) is 
almost  oscillatory. 
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As examples  consider the  equat ions 

(29) 

(30) 

(31) 

x(')(t)• t)~x(t + ~) = 0 ,  

x(')(t) •  t)~x(yt) -~ 0 ,  

x(~)(t) •  t)~x(t + c sin t) ---- 0 ,  

where )~, ~, 13, ~, y and  o are constants  wi th  ), > 0, y > 0. Eq.  (29) is r e t a rded  or 
advanced  according as z <  0 or z > 0; (30) is r e t a rded  or advanced  according as 

y < 1 or y > 1 ; (31) is an  equat ion  with deviat ing a rgumen t  of mixed  type  if e =# 0. 

All the  deviat ing ~rguments  in these equat ions sat isfy (24). By  Theorems 5-7, in 
par t icular ,  t hey  have  nonosci l latory solutions of every  class JV~ for all  ~ > 0 if and  

only if ei ther  g < - - n  or ~ = -  q~, f i <  0; they  have  nonosci l la tory solutions of 
every  class A~ for all ~ > 0  if and  only if g = - - n , - - a g f i < 0 ;  t hey  are 

a lmost  oscil latory for all  ~ > 0 if and  only if ei ther ~ > - -  n or ~ = - -  n, fi > 0. 

As ment ioned  in the  introduct ion,  if g(t) ~ t, t h e n  JN)0~ 0 and  A ~  0 in (3). 

Sever~l authors  have  observed t h a t  i t  m a y  happen  t h a t  A~0 or A~. or bo th  are 

empty ,  ~n4 more  s t rongly t h a t  all 2V~ disappear  if g(t) ~ t and  the  deviat ion It - -  g(t) l 
is sufficiently large. Fo r  example ,  K~sA~o [9] has shown tha t  every  solution of 
the  equat ion 

x(~)(t) - -  px( t  + sin t) ----- 0 

is oscil latory provide4  p > 0 is sufficiently large. For  re la ted  results the  reader  is 
referred to KOPLATAI)Z~ and  ~A~U~IJA  [6] and  KusA~o [8]. 
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for his helpful  suggestions concerning this work.  
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