Nonoscillatory Solutions of Linear Differential Equations with Deviating Arguments (*).

Manabu Naito (Hiroshima, Japan)

Abstract

Summary. - The equation to be considered is of the form (1) $x^{(n)}(t)+\sigma p(t) x(g(t))=0(t>a)$, where $\sigma= \pm 1, p(t)>0$ for $t \geqq a$ and $g(t) \rightarrow \infty$ as $t \rightarrow \infty$. It is well-known that a nonoscillatory solution $x(t)$ of (1) satisfies (2) $x(t) x^{(i)}(t)>0(0 \leqq i \leqq l)$, (-1) $)^{i-l} x(t) x^{(i)}(t)>0$ $(l \leqq i \leqq n)$ for some integer $l, 0 \leqq l \leqq n,(-1)^{n-l-1} \sigma=1$. In this paper, for a given l such that $0<l<n,(-1)^{n-l-1} \sigma=1$, necessary conditions and sufficient conditions are found for (1) to have a solution $x(t)$ which satisfies (2), and a necessary and sufficient condition is established in order that for every $\lambda>0$ the equation $x^{(n)}(t)+\lambda \sigma p(t) x(g(t))=0(t>a)$ has a solution $x(t)$ which satisfies (2). Related results are also contained.

1. - Introduction.

In this paper we examine the oscillatory and nonoscillatory behavior of solutions of linear differential equations with deviating arguments of the form

$$
\begin{equation*}
x^{(n)}(t)+\sigma p(t) x(g(t))=0, \quad t>a \tag{1}
\end{equation*}
$$

where the following conditions are always assumed:
(i) $n \geqq 2, \sigma=+1$ or -1 ;
(ii) $p(t)$ is continuous and positive on $[a, \infty)$;
(iii) $g(t)$ is continuous on $[a, \infty)$ and $\lim _{t \rightarrow \infty} g(t)=\infty$.

By a solution of Eq. (1) we mean a function $x(t)$ which is defined on some half-line $\left[T_{x}, \infty\right)$ and satisfies (1) for $t \geqq T_{x}$ and $\sup \{|x(t)|: t \geqq T\}>0$ for any $T \geqq T_{x}$. Such a solution is called oscillatory if it has arbitrarily large zeros; otherwise it is called nonoscillatory.

If $x(t)$ is a nonoscillatory solution of (1), then $\sigma x(t) x^{(n)}(t)<0$ for all sufficiently large t, and so by a lemma of Kiguradze [5] there exists an integer $l \in\{0,1, \ldots, n\}$, $(-1)^{n-l-1} \sigma=1$, and a $t_{0}>T_{x}$ such that

$$
\left\{\begin{array}{rll}
x(t) x^{(i)}(t)>0 & \text { on } & {\left[t_{0}, \infty\right)} \tag{2}\\
\text { for } 0 \leqq i \leqq l \\
(-1)^{i-l} x(t) x^{(i)}(t)>0 & \text { on } & {\left[t_{0}, \infty\right)}
\end{array} \text { for } l \leqq i \leqq n . ~ .\right.
$$

(*) Entrata in Redazione il 2 marzo 1983.

A function satisfying (2) is said to be a (nonoscillatory) function of degree l. We use the symbol \mathcal{N}_{l} to denote the totality of nonoscillatory solutions of degree l of (1). If we denote by \mathcal{N} the set of all nonoscillatory solutions of (1), then we have

$$
\begin{array}{ll}
\mathcal{N}=\mathcal{N}_{1} \cup \mathcal{N}_{3} \cup \ldots \cup \mathcal{N}_{n-1} & \text { for } n \text { even, } \sigma=1 \\
\mathcal{N}=\mathcal{N}_{0} \cup \mathcal{N}_{2} \cup \ldots \cup \mathcal{N}_{n-1} & \text { for } n \text { odd, } \sigma=1 \tag{3}\\
\mathcal{N}=\mathcal{N}_{0} \cup \mathcal{N}_{2} \cup \ldots \cup \mathcal{N}_{n-2} \cup \mathcal{N}_{n} & \text { for } n \text { even, } \sigma=-1 \\
\mathcal{N}=\mathcal{N}_{1} \cup \mathcal{N}_{3} \cup \ldots \cup \mathcal{N}_{n-2} \cup \mathcal{N}_{n} & \text { for } n \text { odd, } \sigma=-1 .
\end{array}
$$

In the case where $g(t) \equiv t$, that is, (1) is an ordinary differential equation, it is known that the classes \mathcal{N}_{0} and \mathcal{N}_{n} in (3) are always nonempty. That $\mathcal{N}_{0} \neq \emptyset$ follows from a classical theorem of Hartman and Wintner [4] (see also Hartman [3, p. 508, Cor. 2.2]), while $\mathcal{N}_{n} \neq \emptyset$ is clear since the solution $x(t)$ of (1) with $\sigma=-1$ such that $x^{(i)}(a)>0(i=0,1, \ldots, n-1)$ satisfies $x^{(i)}(t)>0$ for $t>a(i=0,1, \ldots, n)$.

Each of the classes $\mathcal{N}_{l}(0<l<n)$ may further be minutely classified according to the possible asymptotic behavior of its members as $t \rightarrow \infty$. Let $x(t) \in \mathcal{N}_{t}(0<$ $<l<n)$. Since $\left|x^{(l)}(t)\right|$ is decreasing, $\left|w^{(l)}(t)\right|$ has a nonnegative limit as $t \rightarrow \infty$. It is clear that if $\lim _{t \rightarrow \infty}\left|x^{(l)}(t)\right|>0$, then $\lim _{i \rightarrow \infty}\left|x^{(l-1)}(t)\right|=\infty$. On the other hand, since $\left|x^{(t-1)}(t)\right|$ is increasing, either $\left|x^{(t-1)}(t)\right|$ has a finite limit as $t \rightarrow \infty$ or $\left|x^{(l-1)}(t)\right|$ tends to ∞ as $t \rightarrow \infty$. Consequently we have the following three possibilities:

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty}\left|x^{(l-1)}(t)\right|=\infty, & \lim _{t \rightarrow \infty}\left|x^{(l)}(t)\right|=\text { const } \neq 0 \\
\lim _{t \rightarrow \infty}\left|x^{(l-1)}(t)\right|=\infty, & \lim _{t \rightarrow \infty} x^{(l)}(t)=0 \\
\lim _{t \rightarrow \infty}\left|x^{(l-1)}(t)\right|=\text { const } \neq 0, & \lim _{t \rightarrow \infty} x^{(l)}(t)=0 \tag{6}
\end{array}
$$

A solution $x(t)$ satisfying (4) [resp. (6)] can be regarded as a "maximal" [resp. «minimal»] element in \mathcal{N}_{i}; a solution $x(t)$ satisfying (5) may be referred to as an "intermediate» element in \mathcal{N}_{l}. We use the notation $\mathcal{N}_{l}[\max], \mathcal{N}_{l}$ [int] and $\mathcal{N}_{i}[\min]$ to denote the set of all nonoscillatory solutions $x(t)$ in \mathcal{N}_{i} satisfying (4), (5) and (6), respectively. Thus we have

$$
\mathcal{N}_{l}=\mathcal{N}_{l}[\max] \cup \mathcal{N}_{l}[\mathrm{int}] \cup \mathcal{N}_{t}[\min]
$$

It is not difficult to give necessary and sufficient conditions for (1) to have solutions of classes $\mathcal{N}_{i}[\max]$ and \mathcal{N}_{i} [min] (Lemma 5 below). Of particular interest, therefore, is to find necessary and/or sufficient conditions for (1) to have solutions of classes \mathcal{N}_{l} and $\mathcal{N}_{l}[$ int $]$.

In this paper we obtain first necessary conditions and sufficient conditions for (1) to have a solution of class $\mathcal{N}_{l}(0<l<n)$, and then combine them to establish a
necessary and sufficient condition in order that the associated differential equation with a parameter λ

$$
x^{(n)}(t)+\lambda \sigma p(t) x(g(t))=0, \quad t>a
$$

has a solution of class $\mathcal{N}_{I}(0<l<n)$ for every $\lambda>0$. As a consequence we can find a characterization for the situation in which (72) has a solution of class $\mathcal{P}_{\text {l }}$ [int] $(0<l<n)$ for every $\lambda>0$. We can also give a characterization for the situation in which (7 i_{λ}) is almost oscillatory for every $\lambda>0$. Here and hereafter we say that Eq. (1) is almost oscillatory if the extreme case occurs for (1) in which all classes \mathcal{N}_{t} $(0<l<n)$ in (3) are empty. (Of course, the notion of almost oscillation makes sense only when either $n>3, \sigma= \pm 1$ or $n=2, \sigma=1$.)

This work is strongly motivated by the papers of Kusano [7] and Natto [17]. Related results are contained in Čanturija [1, 2], Kiguradze [5], Koplatadze and Øanturija [6], Lovflady [11-15] and Trench [18].

Throughout the paper we assume that l is an integer such that $0<l<n$, $(-1)^{n-l-1} \sigma=1$.

2. - Preparatory results.

The following lemmas will be needed in proving our results.
Lemma 1 (Kiguradze [5, the proof of Lemma 2]). - Let $x(t)$ be a positive function of degree l. Then $x(t)$ satisfies the inequalities

$$
x^{(l-j)}(t) \geqq \frac{1}{j}\left(t-t_{0}\right) x^{(l-j+1)}(t) \quad \text { for } t \geqq t_{0} \quad(1 \leqq j \leqq l)
$$

and in partioular

$$
x(t) \geqq \frac{1}{l!}\left(t-t_{0}\right)^{l-1} x^{(L-1)}(t) \quad \text { for } t \geqq t_{0}, \quad \frac{x(t)}{\left(t-t_{0}\right)^{i}} \text { is noninoreasing for } t>t_{0} .
$$

Lemina 2 (Kusano and Naito [10]). - If there is a positive function $v(t)$ of degree l satisfying the inequality

$$
\sigma\left\{v^{(n)}(t)+\sigma p(t) v(g(t))\right\} \leqq 0
$$

for all sufficiently large t, then the equation

$$
u^{(n)}(t)+\sigma p(t) u(g(t))=0
$$

has an eventually positive solution of degree l.

Lemma 3 (Mahfoud [16]). - Suppose that there is a function $G(t) \in C^{1}[a, \infty)$ such that

$$
\begin{equation*}
G(t) \leqq \min \{g(t), t\}, \quad G^{\prime}(t)>0, \quad G(t) \rightarrow \infty \quad(t \rightarrow \infty) \tag{8}
\end{equation*}
$$

and let $G^{-1}(t)$ be the inverse function of $G(t)$. If the ordinary differential equation

$$
v^{\prime \prime}(t)+\frac{p\left(G^{-1}(t)\right)}{G^{\prime}\left(G^{-1}(t)\right)} v(t)=0
$$

is oscillatory, then all solutions of the equation

$$
u^{\prime \prime}(t)+p(t) u(g(t))=0
$$

is oscillatory.
Lemina 4 (Kusano and Naito [10]). - Suppose that there is a funetion $H(t) \in$ $\in C^{1}[a, \infty)$ such that

$$
\begin{equation*}
H(t) \geqq \max \{g(t), t\}, \quad H^{\prime}(t)>0 \tag{9}
\end{equation*}
$$

and let $H^{-1}(t)$ be the inverse function of $H(t)$. If the ordinary differential equation

$$
v^{\prime \prime}(t)+\frac{p\left(H^{-1}(t)\right)}{H^{\prime}\left(H^{-1}(t)\right)} v(t)=0
$$

is nonoscillatory, then the equation

$$
u^{\prime \prime}(t)+p(t) u(g(t))=0
$$

has a nonoscillatory solution.
Lemma 5. - (i) Eq. (1) has a solution of class $\mathcal{N}_{t}[\max]$ if and only if

$$
\int^{t^{n-l-1}}(g(t))^{l} p(t) d t<\infty
$$

(ii) Eq. (1) has a solution of class $\mathcal{N}_{i}[\mathrm{~min}]$ if and only if

$$
\int^{\infty} t^{n-l}(g(t))^{t-1} p(t) d t<\infty
$$

In fact, it is easily verified that $x \in \mathcal{N}_{2}[\max]$ if and only if $x(t)$ satisfies $\lim _{t \rightarrow \infty} x(t) / t^{2}=$ $=\mathrm{const} \neq 0$, and $x \in \mathcal{N}_{l}[\mathrm{~min}]$ if and only if $x(t)$ satisfies $\lim _{t \rightarrow \infty} x(t) / t^{l-1}=\mathrm{const} \neq 0$. On the other hand, it is known that for an integer $k, 0 \leqq k \leqq n-1$, there exists a
solution $x(t)$ of (1) such that $\lim _{t \rightarrow \infty} x(t) / t^{k}=$ const $\neq 0$ if and only if

$$
\int^{\infty} t^{n-k-1}(g(t))^{k} p(t) d t<\infty
$$

Thus Lemma $\breve{3}$ is immediate.

3. - Main results.

Theorem 1. - If Eq. (1) has a nonoscillatory solution of class \mathcal{N}_{t}, then for all sufficiently large T the equation

$$
\begin{equation*}
u^{u}(t)+\frac{(t-T)^{n-l-1}(g(t)-T)^{l-1}}{(n-l)!l!} p(t) u(g(t))=0 \tag{10}
\end{equation*}
$$

has a nonoscillatory solution.
Proof. - Suppose that (1) has a nonoscillatory solution $x(t)$ of class \mathcal{N}_{l}. Without loss of generality we may assume that $x(t)$ is eventually positive, and from (2) it follows that

$$
\begin{equation*}
x^{(i)}(t)>0 \quad(0 \leqq i \leqq l) \quad \text { and } \quad(-1)^{i-l} x^{(i)}(t)>0 \quad(l \leqq i \leqq n) \tag{11}
\end{equation*}
$$

for $t \geqq T$, where $T>t_{0}$ is such that $x(g(t))>0$ for $t \geqq T$. By Taylor's formula with remainder, we have

$$
\begin{aligned}
& x^{(l)}(t)=\sum_{j=0}^{n-l-1} \frac{x^{(l+j)}(\tau)}{j!}(t-\tau)^{j}+\frac{1}{(n-l-1)!} \int_{\tau}^{t}(t-s)^{n-l-1} x^{(n)}(s) d s= \\
&=\sum_{j=0}^{n-l-1} \frac{(-1)^{j} x^{(l+j)}(\tau)}{j!}(\tau-t)^{j}+\frac{1}{(n-l-1)!} \int_{i}^{\tau}(s-t)^{n-l-1} p(s) x(g(s)) d s
\end{aligned}
$$

Now using (11), we obtain

$$
x^{(l)}(t) \geqq \frac{1}{(n-l-1)!} \int_{i}^{r}(s-t)^{n-l-1} p(s) x(g(s)) d s
$$

for $T \leqq t \leqq \tau$. Letting $\tau \rightarrow \infty$, we have

$$
\begin{equation*}
x^{(l)}(t) \geqq \frac{1}{(n-l-1)!} \int_{i}^{\infty}(s-t)^{n-l-1} p(s) x(g(s)) d s \tag{12}
\end{equation*}
$$

for $t \geqq T$. Integrating (12) yields
(13) $\quad x^{(l-1)}(t) \geqq x^{(l-1)}(T)+\frac{1}{(n-l-1)!} \int_{T}^{t} \int_{z}^{\infty}(r-s)^{n-l-1} p(r) x(g(r)) d r d s$

$$
\begin{aligned}
& =x^{(l-1)}(T)+\frac{1}{(n-l-1)!} \int_{T}^{i}\left(\int_{T}^{r}(r-s)^{n-l-1} d s\right) p(r) x(g(r)) d r+ \\
& +\frac{1}{(n-l-1)!} \int_{t}^{\infty}\left(\int_{T}^{t}(r-s)^{n-l-1} d s\right) p(r) x(g(r)) d r
\end{aligned}
$$

for $t \geqq T$. Using the inequality

$$
\int_{T}^{t}(r-s)^{n-l-1} d s \geqq \frac{1}{n-l}(t-T)(r-T)^{n-l-1} \quad(T \leqq t \leqq r)
$$

in (13), we get

$$
\begin{align*}
& x^{(l-1)}(t) \geqq x^{(l-1)}(T)+\frac{1}{(n-l)!} \int_{T}^{t}(r-T)^{n-l} p(r) x(g(r)) d r+ \tag{14}\\
&+\frac{t-T}{(n-l)!} \int_{i}^{\infty}(r-T)^{n-l-1} p(r) x(g(r)) d r
\end{align*}
$$

for $t \geqq T$. Denote the right hand side of (14) by $y(t)$. As easily verified, $y(t)$ is positive and satisfies the equality

$$
\begin{equation*}
y^{\prime \prime}(t)+\frac{1}{(n-l)!}(t-T)^{n-l-1} p(t) x(g(t))=0 \tag{15}
\end{equation*}
$$

for $t \geqq T$. From Lemma 1 it follows that

$$
\begin{equation*}
x(g(t)) \geqq \frac{1}{l!}(g(t)-T)^{l-1} x^{(l-1)}(g(t)) \geqq \frac{1}{l!}(g(t)-T)^{l-1} y(g(t)) \tag{16}
\end{equation*}
$$

for all large t. Combining (15) with (16) yields

$$
y^{\prime \prime}(t)+\frac{(t-T)^{n-l-1}(g(t)-T)^{l-1}}{(n-l)!l!} p(t) y(g(t)) \leqq 0
$$

for all large t. Applying now Lemma 2 with $n=2, \sigma=1$, we conclude that Eq. (10) has an eventually positive solution. The proof of Theorem 1 is complete.

Let $G(t) \in C^{1}$ be a function satisfying (8). Then, according to Lemma 3, all solutions of Eq. (10) are oscillatory if the ordinary differential equation

$$
\begin{equation*}
v^{\prime \prime}(t)+\frac{\left(G^{-1}(t)-T\right)^{n-l-1}\left(g\left(G^{-1}(t)\right)-T\right)^{l-1} p\left(G^{-1}(t)\right)}{(n-l)!l!G^{\prime}\left(G^{-1}(t)\right)} v(t)=0 \tag{17}
\end{equation*}
$$

is oscillatory. If we apply. the well-known oscillation criteria of Hille and Fite to (17), we have the following result.

Corollary 1. - If Eq. (1) has a nonoscillatory solution of class \mathcal{N}_{b}, then

$$
\limsup _{t \rightarrow \infty} G(t) \int_{i}^{\infty} s^{n-l-1}(g(s))^{l-1} \cdot p(s) d s \leqq(n-l)!l!
$$

and

$$
\liminf _{t \rightarrow \infty} G(t) \int_{i}^{\infty} s^{n-l-1}(g(s))^{l-1} p(s) d s \leqq \frac{(n-l)!l!}{4}
$$

hold for every $G(t) \in C^{1}$ satisfying (8).
We now look for sufficient conditions under which (1) has a nonoscillatory solution of class \mathcal{N}_{i}.

Theorem 2. - If for some $T \geqq$ a the equation

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{(t-T)^{n-l-1}(g(t)-T)^{l-1}}{(n-l-1)!(l-1)!} p(t) u(g(t))=0 \tag{18}
\end{equation*}
$$

has a nonoscillatory solution, then Eq. (1) has a nonoscillatory solution of class \mathcal{N}_{1}.
Proof. - Let $u(t)$ be a positive nonoscillatory solution of (18). There is a number $T_{1} \geqq T$ such that $u(t)>0, u(g(t))>0$ and $g(t) \geqq T$ for $t \geqq T_{1}$. Noting that $u^{\prime}(t)>0$ for $t \geqq T_{1}$ and integrating (18) from t to ∞, we get

$$
u^{\prime}(t) \geqq \int_{t}^{\infty} \frac{(s-T)^{n-l-1}(g(s)-T)^{l-1}}{(n-l-1)!(l-1)!} p(s) u(g(s)) d s
$$

for $t \geqq T_{1}$, whence it follows that

$$
\begin{equation*}
u(t) \geqq \int_{T_{1}}^{t} \int_{s}^{\infty} \frac{(r-T)^{n-l-1}(g(r)-T)^{l-1}}{(n-l-1)!(l-1)!} p(r) u(g(r)) d r d s \tag{19}
\end{equation*}
$$

for $t \geqq T_{1}$. Define the function $v(t)$ by

$$
\begin{equation*}
v(t)=\int_{T_{1}}^{t} \frac{(t-s)^{l-1}}{(l-1)!} \int_{s}^{\infty} \frac{(r-s)^{n-l-1}(g(r)-T)^{l-1}}{(n-l-1)!(l-1)!} p(r) u(g(r)) d r d s \tag{20}
\end{equation*}
$$

for $t \geqq T_{1}$. From (19) and (20) we easily see that

$$
\begin{equation*}
v(t) \leqq \frac{\left(t-T_{1}\right)^{t-1}}{(l-1)!} u(t) \tag{21}
\end{equation*}
$$

for $t \geqq T_{1}$. It is also easy to see that $v(t)$ is of degree l and satisfies

$$
\begin{equation*}
-\sigma v^{(n)}(t)=\frac{(g(t)-T)^{l-1}}{(l-1)!} p(t) u(g(t)) \tag{22}
\end{equation*}
$$

for $t \geqq T_{1}$. From (21) and (22) it follows that

$$
\sigma\left\{v^{(n)}(t)+\sigma p(t) v(g(t))\right\} \leqq 0
$$

for all large t. Applying Lemma 2, we conclude that Eq. (1) has an eventuall \hat{A} positive solution of degree l. This completes the proof of Theorem 2.

Let $H(t) \in C^{1}$ be a function satisfying (9). Then Lemma 4 implies that (18) has at nonoscillatory solution if the ordinary differential equation

$$
\begin{equation*}
v^{\prime \prime}(t)+\frac{\left(H^{-1}(t)-T\right)^{n-l-1}\left(g\left(H^{-1}(t)\right)-T\right)^{l-1} p\left(H^{-1}(t)\right)}{(n-l-1)!(l-1)!H^{\prime}\left(H^{-1}(t)\right)} v(t)=0 \tag{23}
\end{equation*}
$$

is nonoscillatory. Applying Hille's nonoscillation criterion to (23), we have the following result.

Corollary 2. - If

$$
\limsup _{t \rightarrow \infty} H(t) \int_{i}^{\infty} s^{n-l-1}(g(s))^{l-1} p(s) d s<\frac{(n-l-1)!(l-1)!}{4}
$$

holds for some $H(t) \in C^{1}$ satisfying (9), then Eq. (1) has a nonoscillatory solution of class \mathcal{N}_{i}.

If the deviating argument $g(t)$ satisfies

$$
\begin{equation*}
0<\liminf _{t \rightarrow \infty} \frac{g(t)}{t} \leqq \limsup _{t \rightarrow \infty} \frac{g(t)}{t}<\infty \tag{24}
\end{equation*}
$$

then necessary and sufficient conditions can be given for (72) to have solutions of classes \mathcal{N}_{l} and $\mathcal{N}_{l}[$ int $]$ for all $\lambda>0$.

Theorem 3. - Suppose that (24) holds. Let l be fixed. Then, Eq. (7i) has a nonoscillatory solution of class \mathcal{N}_{2} for all $\lambda>0$ if and only if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t \int_{i}^{\infty} s^{n-2} p(s) d s=0 \tag{25}
\end{equation*}
$$

Theoren 4. - Suppose that (24) holds. Let l be fixed. Then, Eq. (7i) has a nonoscillatory solution of class \mathcal{N}_{l} [int] for all $\lambda>0$ if and only if

$$
\begin{equation*}
\lim _{t \rightarrow \infty} t \int_{t}^{\infty} s^{n-2} p(s) d s=0 \tag{2̆5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int^{\infty} s^{n-1} p(s) d s=\infty \tag{26}
\end{equation*}
$$

In fact, we have the following stronger results.
Theorem 5. - Suppose that (24) holds. Then the statements (i)-(iv) below are equivalent:
(i) for any l and for all $\lambda>0$ Eq. (7,) has a nonoscillatory solution of class \mathcal{N}_{l};
(ii) there is an l such that for all $\lambda>0$ Eq. (7 $)$ has a nonoscillatory solution of class \mathcal{N}_{l};
(iii) for all $\lambda>0$ there is an l such that $E q$. (7ג) has a nonoscillatory solution of elass \mathcal{N}_{i} (that is, for all $\lambda>0 \mathrm{Eq} .\left(\mathrm{7}_{\lambda}\right)$ is never almost oscillatory);
(iv) condition (25) is satisfied.

Theorem 6. - Suppose that (24) holds. Then the statements (i)-(iv) below are equivalent:
(i) for any l and for all $\lambda>0$ Eq. (7ג) has a nonoscillatory solution of class $\mathcal{N}_{t}[\mathrm{int}] ;$
(ii) there is an l such that for all $\lambda>0$ Eq. $\left(7_{\lambda}\right)$ has a nonoscillatory solution of class $\mathcal{N}_{t}[\mathrm{int}]$;
(iii) for all $\lambda>0$ there is an 1 such that Eq. (7.) has a nonoscillatory solution of class $\mathcal{N}_{l}[$ int $]$;
(iv) conditions (25) and (26) are satisfied.

Proof of Theorem 5. - Clearly (i) implies (ii), and (ii) implies (iii). It follows from (24) that there are positive constants $c_{1}<1$ and $c_{2}>1$ such that $c_{1} t<g(t)<$ $<e_{2} t$ for all large t. Suppose that (iii) holds, i.e., suppose that for all $\lambda>0$ there is an $l=l(\lambda)$ (in general, depending on λ) such that $\left(7_{2}\right)$ has a solution of class \mathcal{N}_{l}. By Corollary 1 we deduce that

$$
\limsup _{t \rightarrow \infty} G(t) \int_{t}^{\infty} s^{n-l-1}(g(s))^{l-1}[\lambda p(s)] d s \leqq(n-l)!l!
$$

for all $\lambda>0$, where $G(t)=c_{1} t$. But this can be satisfied only when (25) is satisfied. Thus (iii) implies (iv). Suppose that (iv) holds. Then

$$
\lim _{t \rightarrow \infty} \sup H(t) \int_{i}^{\infty} s^{n-l-1}(g(s))^{l-1}[\lambda p(s)] d s=0<\frac{(n-l-1)!(l-1)!}{4}
$$

for any l and for all $\lambda>0$, where $H(t)=c_{2} t$. By Corollary 2 Eq. (7 λ) possesses a solution of class \mathcal{N}_{l} for any l and for all $\lambda>0$. The proof of Theorem 5 is complete.

Proof of Theorem 6. - Clearly (i) implies (ii), and (ii) implies (iii). Suppose that (iii) holds and let $x_{\lambda}(t)$ be an eventually positive solution of class \mathcal{N}_{l} [int] of (7λ), where l may depend on λ. By Lemma $1, x_{\lambda}(t) /\left(t-t_{0}\right)^{l}$ is nonincreasing for all large t. Consider then the linear ordinary differential equation

$$
\begin{equation*}
y^{(n)}(t)+\sigma P_{\lambda}(t) y(t)=0 \tag{27}
\end{equation*}
$$

where $P_{\lambda}(t)=\lambda p(t) x_{\lambda}(g(t)) / x_{\lambda}(t)(>0)$. With the aid of (24) it can be shown that $P_{\lambda}(t) \leqq k_{\lambda} p(t)$ for all large t, where k_{2} is a positive constant (depending on λ). If (26) is not satisfied, then.

$$
\int^{\infty} s^{n-1} P_{\lambda}(s) d s<\infty
$$

and so that (27) has a fundamental system of solutions $\left\{y_{1}(t), \ldots, y_{n}(t)\right\}$ such that

$$
\lim _{t \rightarrow \infty} \frac{y_{j}(t)}{t^{j-1}}=\text { const } \neq 0 \ldots \quad(j=1, \ldots, n) .
$$

This, however, is a contradiction to the fact that $x_{l}(t)$ is a solution of class \mathcal{N}_{l} [int] of (27). Thus (26) is satisfied. That (25) is satisfied follows from Theorem 5.

Finally suppose that (iv) holds. Since (25) is satisfied, it follows from Theorem 5 that Eq. (7 $)$ has a solution $x_{l \lambda}(t)$ of class \mathcal{N}_{l} for any l and for all $\lambda>0$. Since (24) and (26) are satisfied, this solution $x_{l \lambda}(t)$ is neither of class $\mathcal{N}_{l}[\mathrm{max}]$ nor of class $\mathcal{N}_{l}[\mathrm{~min}]$, so that $x_{l A}(t)$ must be of class $\mathcal{N}_{l}[\mathrm{int}]$. Thus (iv) implies (i). The proof of Theorem 6 is complete.

We can also obtain the following result.
Theorem 7. - Suppose that (24) holds. Then the statements (i)-(iv) below are equivalent:
(i) for any l and for all $\lambda>0 \mathrm{Eq}$. (72) has no nonoscillatory solution of class \mathcal{N}_{i} (that is, for all $\lambda>0$ Eq. (7 λ_{λ} is almost oscillatory);
(ii) there is an l such that for all $\lambda>0$ Eq. (7,) has no nonoscillatory solution of class \mathcal{N}_{i};
(iii) for all $\lambda>0$ there is an l such that $E q$. (7i) has no nonoscillatory solution of class \mathcal{N}_{i};
(iv) the condition

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} t \int_{i}^{\infty} s^{n-2} p(s) d s=\infty \tag{28}
\end{equation*}
$$

is satisfied.
Proof. - Clearly (i) implies (ii), and (ii) implies (iii). It follows from (24) that there are positive constants $c_{1}<1$ and $c_{2}>1$ such that $c_{1} t<g(t)<c_{2} t$ for all large t. Suppose that (iii) holds, i.e., suppose that for all $\lambda>0$ there is an $l=l(\lambda)$ (depending on λ) such that $\left(7_{\lambda}\right)$ does not have a nonoscillatory solution of class \mathcal{N}_{i}. By Corollary 2 we must have

$$
\limsup _{t \rightarrow \infty} H(t) \int_{t}^{\infty} s^{n-l-1}(g(s))^{l-1}[\lambda p(s)] d s \geqq \frac{(n-l-1)!(l-1)!}{4}
$$

for all $\lambda>0$, where $H(t)=c_{2} t$. But this is possible only if (28) is satisfied. Thus (iii) implies (iv). If (28) is satisfied, then clearly

$$
\limsup _{t \rightarrow \infty} G(t) \int_{t}^{\infty} s^{n-l-1}(g(s))^{l-1}[\lambda p(s)] d s=\infty>(n-l)!l!
$$

for any l and for all $\lambda>0$, where $G(t)=c_{1} t$, so that by Corollary 1 Eq. (7 $)$ has no nonoscillatory solution of class \mathcal{N}_{l} for any l and for all $\lambda>0$. This completes the proof of Theorem 7 .

It should be noted that in the equations

$$
\left(7_{\lambda}^{-}\right)
$$

$$
\begin{align*}
& x^{(n)}(t)+\lambda p(t) x(g(t))=0 \tag{+}\\
& x^{(n)}(t)-\lambda p(t) x(g(t))=0
\end{align*}
$$

if $g(t)$ satisfies (24), then
(i) for all $\lambda>0\left(7_{\lambda}^{+}\right)$is never almost oscillatory if and only if for all $\lambda>0$ (7-) is never almost oscillatory;
(ii) for all $\lambda>0\left(7_{\lambda}^{+}\right)$has a nonoscillatory solution of an "intermediate» class if and only if for all $\lambda>0\left(\tau_{\lambda}^{-}\right)$has a nonoscillatory solution of an «intermediate" class, and
(iii) for all $\lambda>0\left(7_{\lambda}^{+}\right)$is almost oscillatory if and only if for all $\lambda>0\left(7_{\lambda}^{-}\right)$is almost oscillatory.

As examples consider the equations

$$
\begin{align*}
& x^{(n)}(t) \pm \lambda t^{\alpha}(\log t)^{\beta} x(t+\tau)=0 \tag{29}\\
& x^{(n)}(t) \pm \lambda t^{\alpha}(\log t)^{\beta} x(\gamma t)=0 \tag{30}\\
& x^{(n)}(t) \pm \lambda t^{\alpha}(\log t)^{\beta} x(t+c \sin t)=0 \tag{31}
\end{align*}
$$

where $\lambda, \alpha, \beta, \tau, \gamma$ and c are constants with $\lambda>0, \gamma>0$. Eq. (29) is retarded or advanced according as $\tau<0$ or $\tau>0$; (30) is retarded or advanced according as $\gamma<1$ or $\gamma>1 ;(31)$ is an equation with deviating argument of mixed type if $c \neq 0$. All the deviating arguments in these equations satisfy (24). By Theorems 5-7, in particular, they have nonoscillatory solutions of every class \mathcal{N}_{l} for all $\lambda>0$ if and only if either $\alpha<-n$ or $\alpha=-n, \beta<0$; they have nonoscillatory solutions of every class $\mathcal{N}_{[}$[int] for all $\lambda>0$ if and only if $\alpha=-n,-1 \leqq \beta<0$; they are almost oscillatory for all $\lambda>0$ if and only if either $\alpha>-n$ or $\alpha=-n, \beta>0$.

As mentioned in the introduction, if $g(t) \equiv t$, then $\mathcal{N}_{0} \neq \emptyset$ and $\mathcal{N}_{n} \neq \emptyset$ in (3). Several authors have observed that it may happen that \mathcal{N}_{0} or \mathcal{N}_{n} or both are empty, and more strongly that all \mathcal{N}_{\imath} disappear if $g(t) \not \equiv t$ and the deviation $|t-g(t)|$ is sufficiently large. For example, Kusano [9] has shown that every solution of the equation

$$
x^{(n)}(t)-p x(t+\sin t)=0
$$

is oscillatory provided $p>0$ is sufficiently large. For related results the reader is referred to Koplatadze and Canturija [6] and Kusano [8].

Acknowledgment. - The author would like to thank Professor Takaŝ Kusavo for his helpful suggestions concerning this work.

REFERENCES

[1] T. A. Canturija, On some asymptotic properties of solutions of linear ordinary differential equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys., 25 (1977), pp. 757-762, in Russian.
[2] T. A. Canturija, Integral criteria for the oscillation of solutions of high-order differential equations, Differential Equations, 16 (1980), pp. 297-306 and 392-400. Translated from Differencial'nye Uravnenija, 16 (1980), pp. 470-482 and 635-644, in Russian.
[3] P. Hartman, Ordinary Differential Equations, Hartman, Baltimore, 1973.
[4] P. Hartman - A. Wintner, Linear differential and difference equations with monotone solutions, Amer. J. Math., 75 (1953), pp. 731-743.
[5] I. T. Kiguradze, On the oscillation of solutions of the equation $d^{m} u / d t^{m}+a(t)|u|^{n} \operatorname{sign} u=0$, Mat. Sb., 65 (1964), pp. 172-187, in Russian.
[6] R. G. Koplatadze - T. A. C̆anturija, On Oscillatory Properties of Differential Equations with Deviating Arguments, Tbilisi Univ. Press, Tbilisi, 1977, in Russian.
[7] T. Kusano, On strong osoillation of even order differential equations with advanced arguments, Hiroshima Math. J., 11 (1981), pp. 617-620.
[8] T. Kusano, On even-order functional differential equations with advanced and retarded arguments, J. Differential Equations, 45 (1982), pp. 75-84.
[9] T. Kusano, Oscillation of even order linear functional differential equations with deviating arguments of mixed type, to appear in J. Math. Anal. Appl. .
[10] T. Kusano - M. Naito, Oomparison theorems for functional differential equations with deviating arguments, J. Math. Soc. Japan, 33 (1981), pp. 509-532.
[11] D. L. Lovelady, Oscillation and a class of odd order linear differential equations, Hiroshima Math. J., 5 (1975), pp. 371-383.
[12] D. L. Lovelady, An asymptotic analysis of an odd order linear differential equation, Pacific J. Math., 57 (1975), pp. 475-480.
[13] D. L. Lovelady, An asymptotio analysis of an even order linear differential equation, Funkcial. Ekvac., 19 (1976), pp. 133-138.
[14] D. L. Lovelady, Oscillation and even order linear differential equations, Rocky Mountain J. Math., 6 (1976), pp. 299-304.
[15] D. L. Lovelady, Oscillation and a class of linear delay differential equations, Trans. Amer. Math. Soc., 226 (1977), pp. 345-364.
[16] W. E. Mahfoud, Comparison theorems for delay differential equations, Pacifie J. Math., 83 (1979), pp. 187-197.
[17] M. Natro, On strong oscillation of retarded differential equations, Hiroshima Math. J., 11 (1981), pp. 553-560.
[18] W. F. Trencir, An oseillation condition for differential equations of arbitrary order, Proc. Amer. Math. Soc., 82 (1981), pp. 548-552.

