Multiplicity Results for Asymptotically
Homogeneous Semilinear Boundary Value Problems (*).

P. J. MCKENNA - REINHARD REDLINGER - WOLFGANG WALTER

Summary. — This paper treats nonlinear elliptic boundary value problems of the form
Aw + flw,u) = 0 in @, w=0 on 80

in the space L*(Q2) by degree theoretic methods. Emphasis is placed on existence of multiple
solutions in the case, where the nonlinearity f crosses several etgenvalues of the corresponding
eigenvalue problem A + A6 = 0 with zero boundary values. No differentiability conditions
(but Lipschitz type conditions) on f are assumed. A main fool is o new a priori bound for
solutions (Theorem 1). The method is not confined to the selfadjoint case. It applies also
to some Ume-pertodic parabolic and hyperbolic problems.

1. — Introduction.

This paper is concerned with proving existence and multiplicity results for the
equabtion

(1) Au + flw, u) = k(z) in Q, =0 on 08

in a boundedﬁregion £ of R», with various assumptions on the existence of the
limits '

alw) = lm f@,w)ju, ba)= lm jz ).

%>+ o0

Problems of this sort arose first in a clagsical paper by Dolph, where he showed
that if a, b satisfy 4, +e<a,b<<A,.,—e where A, are the eigenvalues of the
Laplacian with Dirichlet boundary conditions, then (1) has a solution for all .
There has been considerable work done on weakening this assumption on @ and b
in the case where n > 1. DANCER [5] treated the case f(x,u) = f(u), a = 4, and
b = A,.,. This wag later extended by BERESTYCKI and DE FIGUEIREDO [2], who
gave a certain sufficient condition that (1) should have a solution for all #. This
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Indirizzo degli AA.: P. J. McKex~Na: Mathematics Departement, University of Florida,
Gainesville, 32611 Florida, U.S.A.; R. ReprincEr: Mathematisches Institut I, Universitit
Karlsruhe, Kaiserstr. 12, D-7500 Karlsruhe, BRD; W. Warter: Mathematisches Institut I
Universitdt Karlsruhe, Kaiserstr. 12, D-7500 Karlsruhe, BRD.



248 P.J. MOCKENNA - R. REDLINGER - W. WALTER: Multiplicity results, ete.

condition allowed the possibility that A, + ¢ < a(w)<i., and A, <b@) < A, ,—e.
Further improvements have been given in this direction by MAwHIN [8] and by
MawmN and WARD [10], to situations where only lim sup’s and lim int’s exist and
to problems where the resolvant is non-compact.

It is obvious that if a=4,, b= 1,,, gives solutions for all h by degree theo-
retic methods, one could perturb to allow a = 4,—e¢ and b = 4, 4 ¢ for sufficiently
small ¢, thereby allowing the nonlinearity to cross at least two eigenvalues. Multi-
plicity results in this context have been the subject of [6], [7] and [12]. In section 2,
we give a constructive a priori estimate which for a wide range of functions a(x)
and b(x) allows us to decide whether (1) still has solufions for all k. We give some
applications of this a priori bound.

Another direction of research has been to take h(z) = 0 in (1) and to assume
that a(w) and b(z) are contained in the interval [, + ¢, A, ., —¢] and that (0f/ou)(z, 0)
is in the interval [A,,.z + & Aniri— €] and that f(z, 0) = 0. In this case CASTRO
and LAzER [3] for f(x, u) = f(u) and CHANG [4] showed that there exists a non-
trivial solution for any k>1. CHANG also considers the case of more general linear
operators, some with non-compaect resolvant. Using degree theory, in the case of
odd k, we show that with considerably weaker conditions on the behavior of f at
zero and infinity, we can obtain the existence of nontrivial solutions. In the case
that & = 1, we show the existence of at least two nontrivial solutions. This repre-
sents an improvement of existing theorems in [1] where stronger restrictions on the
nonlinear function f are imposed. These restrictions tend to require f to be, in some
sense, «odd-like ».

Since many of the previous methods used are variational, they do not apply
to problems where the linear operator is non-selfadjoint, as in the case of a parabolic
problem with periodic-Dirichlet boundary conditions. At the end of this paper,
we make some remarks showing how our methods apply to this problem.

Throughout the paper, £ is a bounded region in R*, sufficiently smooth that
the eigenvalue problem

(2) Au +duw =0 in 2, =10 on 20

has eigenvalues 4, < 4,<... with eigenfuctions 0;,0,, ... Which are an orthogonal
basis in the Hilbert space H = L*(£2) and satisfy 0,(z) > 0 in £. The function f(z, w)
will always satisfy Carathéodory hypotheses (measurable in z e £, continuous in
# € R).

2. — The a priori estimate,
We consider problem (1) in the Hilbert space H = L2(Q). Let A = {4, 4, ...} =

= A, U Ay, where A= {4,, .., 4} and A,= AN\4,. Let H,= span {0;: p<i<qy)
and H,= H}. Let P denote orthogonal projection on H,.
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Let e¢ A and A,<c¢<<A,. Then
A4 - e) g, = where g, = dist (¢, 4,) ,

,  where g,= dist (¢, 4,) > ¢, .

D D
2]

[

(4 + ¢)7 e, =

Let us assume that f satisfies the estimate

(4) (@) u| < f(w, u) — eu<B@)|ul ,
where
(5) M = sup (Je()], |B@)]) < oo

For u e H, the function g¢(x) = f(z, u(x)) — cu(x) is in H, and |g| < M|u|. De-
compose g a8 g = v - w, v = Pg, w = (I — P)g. Then there exists §, 0 <d <1, such
that

[ol? = o2 M*ul*,  Jw|*<(@ — &) Mu]?,

and thus
[®]2 :fgv dx :ngUJr dx —fgv— de <
<f,9|u|@+ dx—fa[m— do <

<l (1got] + ov]) -

Let § = {ve H,: |v]| =1} be the unit sphere in H, and write

-1 . 1
(6 +— — max [fot == — maxX [ev| .
) yr=gpmax [for] , = g7 max ||

Note that py+<C 1, y—<<1 and (y*)* 4 (y7)2<1 if p>2, because all functions in H,
must change sign, and they are all orthogonal to 6,. It follows that |v]2< [u||v| My,
where y = y+ -y, which implies §<y.

Summing up, we get

I+ orgtee< ju (5 + 0

since ¢,<C g,. Thus we have proved
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THeEoREM 1. — Under the assumptions (4) the estimate

SV ANV Sk )

™) 4 + (i@, ) — o) <haful , K== @2

holds, where g, M and y = 9+ + p~ are defined by (3), (5), (6), and p>2.
Naturally this theorem is of interest mainly when k,<C 1.
Let f = f,= b(x)u"— a(r)u~ and assume that

(8) Z'n'—8<a(w)<c<b(a})<)~n+1+ Ey

where ¢ = § (A, + A,.1). Let Ay= {4, ..., du, dusry ooy Ao}y Where A,= 4, and 4, =
== Ay1; in other words, H, is the span of ell the eigenfunctions corresponding to
the eigenvalues A, or A,.y. Then o= £ (A, ,.— 4,), ¢o= min (A, ;— ¢, ¢ — A,_;) > o4,
@) =0, M =9, + ¢ y=y"<1l,y =0, and

Now assume that &, is the positive solution of kj= 1.

THEOREM 2. — Let f satisfy

9) tim (9% _aw, tim D% by uniformly in we @,

UY—>— 00 w Y—>+ co w

and assume that (8) holds, where #n>2 and ¢ < ¢. Then equation (1) has a solution
for all h(z) e L3(Q). '

ProOF. — One has merely to observe that for any fixed b and for B sufficiently
large [(A + ¢)~*(h(z) — f(=, )| < R for all |u|<R. This is a direct consequence
of the estimate (7) for f,(#, ) = b(x)u*— a(x)u~ (one uses a decomposition f=
= f, + f, + f; with f, bounded and |f;(», w)| <d5|u|, where k, + 8/0;,<<1). From this
and the compactness of (4 + ¢)-', we can conclude that the map

u = (4 + o) (h{w) — (@, u))

has a fixed point in the ball of radius R in H. This proves the theorem. [I

REMARES. — Notice that theorem 2 allows that a(x) = 4, and b(x) = 4., but
also allows a(zx) and b(w) to take values in the intervals [A,—e, ¢l, [6, Ans + £]
respectively (¢ = % (4, + 4..1)), Where ¢ can be estimated. To make this clear, we
consider
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The one-dimensional case. — Let Q = [0, m]c R, 1, =02 0,= V2[nsinns (n =
=1, 2, 3, ..). Then the estimate

for & even,
(10) 7= max (|67]% |0x]") =

N N

1
= for k
-+ 5% or k¥ odd

holds.
Under the assumptions of theorem 2, we have g,=n + }, g,= 8n— } and
y*= % +1/2n, » odd, or y2=} -+ 1/(2n + 2), n even, and

1< 2n+1~}—282n+1+ 2n 4+ 14+ 2:\2n—1
0 2n + 1 2n 6m — 1 2n "

For » large and & = on, this gives

L1
9.9

=
(=%
X
=
_|_
&

o

RO =

5
A+ o= 0 +ap,

and equating the right hand side to one gives & = —1 + 3/v/5 = 0.3416 > 1/3.
Thus in the one-dimensional case, the theorem states that ¢ = 1/3n is admissible
for large n, or that the values a(z) and b(x) need only lie in the intervals [4,— &, ¢]
and [e, A, + €], where & is approximately 1/6 of the length of the adjoining inter-
vals (Ay_1y An) OF (Zni1y Anss). It is worth noticing that these results do not depend
on the distribution of a(x) and b(x) in their respective intervals.

Assume now that p>2,

lp_1< lﬂ<ﬂ'n< c < A7L-|—1<2‘41< ;"Q-H.
and .
Aoyt e<a@) <o<b@)<Apa—e,

which implies g,= min (A,.,—6, ¢ —2,), M <max (¢—e— Ay, yy;—e—0)<g,. In
this case, y = y*<<1, M[o,< 1, but M/g, may be large.

If () = max (b(x) — ¢, ¢ — a(x)) is for the most part small and only allowed
to be close to M = max () on a small set, then y would be small and %< 1. Thus
the nonlinearity may asymptotically cross as many eigenvalues as we please, so long
as 1t only does so on small sets. (It would be easy to give explicit conditions in the
one-dimensional case, using (10) and the fact that |6,(z)] <V 2/m.)

3. — Mulsiplicity results.

In this section, we shall consider some improvements on theorems concerning
the existence of non-trivial solutions of

(11) Au + fw,u) =0 in Q, =10 on 22
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under the assumptions that f(z, 0) = 0 and that f(x, u)/u behaves differently at
zero and at infinity.

We first prove a degree theoretic lemma which is, in essence, a restatement of
the main a priori estimate. The Leray-Schauder degree is denoted by d.

LemmA 1. - Assume that f satisfies the hypotheses of theorem 1 with k,< 1,
where ;<< ¢ << Az Then

d(u — (— A)y*f(x, ), nB, 0) = (—1)* for all >0,
where B is the unit ball in H.
PROOF. — According to (7),
(=4 — oy A(f(w, w) — eow) | < |u]
for all ws=0 and all A€[0,1]. Thus the problem
— Aw — ouw = A(f(w, w) —ou) in 2, w=1~0 on 0802
has only the zero solution for 0 <<A<1. This shows that
d(u — (— A)-*f(x, u), 4B, 0) = d(u — (— A)cu, nB, 0)

by the homotopy invariance of degree. But by a familiar computation (see, for
example, [11]) this last degree is (—1):. O

Now assume that f is globally Lipschitz continuous in w, uniformly for x €0,
and that

(12) bh@) = Iim 12Y e = 1im 1% % mitormly in s
u—>0+ U u0— U

We write f = f, + ¢ with fy(#, 4) = by(@)ut— ap(w)u~. Assume that f, satisfles the
hypotheses of theorem 1 with %,<C1, where 4,<< ¢ << 4;,,. It follows that there
exists L > 0 such that

Ifol®, u) — cu} + |g(zx, u)|<Lju] for all # and .

Let R=(—A—¢)* and K = R(B). If « is a solution of (11) with |u|<e, then
% = R(f — cu), and we get u csLK.
Choose y > 0 with 2y||R| + k<< 1. Then there is a ¢ > 0 such that

lg(x, w)|<y|u] for all xe 2, |u|<p.
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Let

u* = max (— o, min (uy 0)) -
Then
l9(@, w)| <|g(@, w) — glw, u*)| + lg(@, u*)| <
<Zj(w—o)*| + Li(w + o)7| + ylu?].
Since K is compact, there exists a modulus of continuity d(s) (6(s) — 0 as s — 0 )
such that
lw—o)*] and (v 4 o) <eLd(el);

¢f. [11; Lemma 1]. This implies
lg(z, w)|| <2L*ed(eL) + ye<2ye,
if ¢ > 0 is chosen sufficiently small. Hence, if v = R(f — eu), |u] <e, then, by the
choice of v,
lui < Bg| + | B(fo— ow)| <
<2|Re + ke < s .

Since the above reasoning remains valid if g is replaced by Ag with 0<A<1, it
follows that

d(u — (— 4)"*f(z, u), B, O) = d(u — (=~ A)-lfo(x7 u), eB, 0) = (—1)*

by lemma 1. Thus we have proved

THEOREM 3. — Let f be globally Lipschitz in # (uniformly in #) with f(z, 0) = 0.
Assume that (12) holds and that the funection fo(x, #) = bo(®)ut — a(x)u— satisfies
the a priori estimate (7) with k,<1 and c¢e (4, A,,4). Then there exists g > 0
such that

du— (— Ay (@, u), 6B, 0) = (— 1) for 0<c<e.

Now we make some assumptions on the behavior of f at infinity. We assume
that a(x) and b(x) exist such that

(13) a(xr) = lim M, b(x) = Hm f@, u), uniformly in z,

U~>— 00 K %—>+ o0 U

where @ and b are such that the function f,(», 4) = b(z)u"— a(w)u— satisfies the
estimate of theorem 1 with k,<<1 and l,<e<< 1

nile
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THEOREM 4. — With the above assumptions on f(», u), there exists N, so that
d(u — (— A)*f(w, w), NB, 0) = (—1)» for all N>XN,.

PrOO¥. — Writing f = f; + fo -+ fa With |fu(®, u)| <d]u| for all » and f; bounded,

the assertion follows by homotopy. Note that ¢ can be chosen arbitrarily small. [

We are now able to prove the existence of non-trivial solutions, when n — k
is odd.

ToeorEM 5. — Assume that the hypotheses of theorems 3 and 4 are satisfied
with n — &k odd. Then the equation

Aw + f(e, u) = 0 in Q, =10 on 08
has at least one non-trivial solution.

ProOF. — The proof is by excision. If, for example, k < n and k is even, #» odd,
we have for large N and small ¢ that

d(u — (— Ay f(x, u), eB, 0) = +1,
d(u — (— A)*f(wy u), NB, 0) = —1

and thus
d(u — (— A)*f(», u), NB\eB, 0) = — 2.

Therefore there exists at least one solution in NB\¢gB. O

REMARKS. — We observe that these hypotheses allow f+= (of/ou)(@, 0 +) and
= (of/ou)(w, 0 —) to take values outside the interval (A, Ax..); see the remark
at the end of section 2.

In particular, in the one-dimensional case, for large =, a(x) could lie entirely in
the upper sixth of (n?, (v - 1)), b(«x) entirely in the lower sixth of ((n + 2)?,
(n + 3)2), and a,(x) and by(x) have values in the interval (n?, (n + 1)3).

4. — The existence of three solutions.

One can obtain additional information in the case where one eigenvalue is
crossed, and more stringent restrictions are imposed on f. We assume:

(4) n=2, 4, is a simple eigenvalue.

(B) f(x,0) =0 and

(@, ) — {2, v)

Zn—-l + 8’< W — v

<}ln+1_ 6, (u 7& /U)

for some &> 0.
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(0) The limits in (9) and (12) exist (uniformly in ), and the functions a,(z),
by(x), a(x), b(z) satisfy the hypotheses of theorems 3 and 4, with k = n — 1.

(For example, assumption (C) is satisfied if there exist ¢y € (A1, An)y €€ (Any Anya)
such that A,y + &'<a(2) <o <bo(®) <Ay + &9y An—&y <) <0, <b(®) <Apy1—¢', Where
€0, & are positive constants depending on ¢, ¢;.)

Let P be the orthogonal projection onfo the space spanned by 6,, the eigen-
function associated with 4,, and let ¢ = & (4, + A.,1). We assume for the moment
that ¢=% 1,. In view of the remarks of section 2, the operator ({ — P)(— 4 — o)
has norm 1/p,, where g,= %(Any;— 4.y). By (B), the function f(z, u)—cu is
Lipschitz continuous in « with Lipschitz constant g,— &’. Hence, the nonlinear
operator

w — (I — P)(— 4 — ¢)~*(f(w, u) — cu)

is Lipschitz continuous, with Lipschitz constant k,<< 1. In the case where A, =
= $ (441 + An_y) We choose ¢ close to A, and arrive at the same conclusion k,<C 1.
Define T: H — H by Tu = (— A4 — ¢)*(f(w, ) — cu). Then for fixed v € PH, there
is a unique w = w(v) which solves

w=(I—-P)T(wv + w).

If v =1t0,, we write w(?) = w(#0,). (This is, of course, the usual Ljapunov-Schmidt
method.) The funection w(?) is Lipschitz continuous with Lipschitz constant k,/(1 — &,).
The equation # = T'w is equivalent to .

v=PIlw +w), w={I—P)Tv+w,
and thus, the problem of solving # = T is reduced to that of finding zeros of the
one-dimensional function #(t) =t — <6,, PT(t6, + w(?))>. The following is a prism

lemma which oecurs in [6], [7].

LeMMA 2. — Let ,<t,, with %(#)-5(%.) % 0. Choose R > 0 so large that for all
1E [ty 6]

lw@)] <B  and (1 — k)L —P)T(t0.)| < R,

and define
D =D, t, B)={uecH: |(I—Pu| <R, Pu=10,,1t,<t<t)}.
Then d(I — T, D, 0) is defined, and

AI—T,D,0) =1 < 5()<0<n),

I —T,D,0) = —1 < 5(t;) > 0> (L) .

17 ~ Annali di Matematica
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We are now in a position to prove the following

THEOREM 6. — Assume that f satisfies the hypotheses (4), (B), (C). Then the
equation
Aw + flx, ) = 0 in O, =0 on 2f

possesses at leagt three solutions.

ProoF. — By the reasoning of theorems 3 and 4, it is easy to show that there
exist N,> 7,> 0 such that for all 0 < 7 < 7, and N > N, the degrees d, = d(I — T,
NB,0) and d,= d(I —T, B, 0) are defined, and d,d,= —1.

Using the notation of the prism lemma, define

D= D(— N, N, k), D,= D(— 7,7, R).

If R is chosen sufficiently large, the lemma is applicable. But since there are no
solutions in DN\NB and in D,\1B,

dI—7,D,0)=d(I—T,NB,0)
and

AdI—T,D,,0) =d(I—T,7B,0).
This means that the products must satisfy

N—Nnp(—7) <0, n(T)nN)<o0,

and therefore the function #(f) must possess an additional zero in each of the inter-
vals (— N, —7) and (7, N). This proves the theorem. [

REMARX 1. — The first proof of at least three solutions to this type of problem
was by AMBROSETITI and MANCINI, in [1]. They have severe restrictions on the non-
linearity, including the requirement that f has to satisfy sf (s) > 0. We know of
no proof which allows such a lack of smoothness in f, requiring only the global
Lipschitz conditions and the limiting behavior at zero and infinity.

ReMARK 2. — Unlike the variational methods of [3] and [4], our methods apply
to the case where the linear operator is nonselfadjoint, as in the problem

wy= Au + flz,t,w) in Rx £,
=10 on 22, wz, t + T) = ulx, t),

with f(w, ¢, u) T-periodic in ¢, One can apply the method of this section by making
the period sufficiently small that the calculation of norms is not affected by the
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imaginary eigenvalues, i.e., by taking 2m/T > l(— A —¢)-t|. Alternatively, as in
section 2, one could decompose H = H, P H, into the space spanned by all eigen-
functions corresponding to eigenvalues inside the circle centered on the real line
and encompassing A,, ..., 4,.

REMARK 3. ~ The methods of this paper can be applied to the hyperbolic problem

Wyy— Uy — f(@y 4 u) = 0 in [0, 7] [0, 27],
w0, 1) = u(m, 1) = 0,

w(®, § + 27) = u(z, 1)

if one assumes in addition that f(x, f, ) is monotone in #. One then reduces the
problem to one on a subspace, on which the linear operator has a compact inverse,
and where the usual method of degree theory would apply. This method has been
used in [11].
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