
Multiplicity Results for Asymptotically 
Homogeneous Semilinear Boundary Value Problems (*). 

P.J. I~CKENNA - ~EINIIAI~D ~EDLINGEI~ - WOLFGANG WALTEl~ 

S u m m a r y .  - This paper treats nonlinear elliptic boundary value problems o] the ]orm 

Aq~ + ](x, u ) =  0 in ~ ,  u = 0 on ~D 

in the space LP(D) by degree theoretic methods. Emphasis is placed on existence o] multiple 
solutions in the case, where the nonlinearity ] crosses several eigenvalues o] the corresponding 
eigenvalue problem AO + 20 = 0 with zero boundary values. -~o diNereutiability conditions 
(but Lipsehitz type conditions) on ] are assumed. A main tool is a new a priori bound for 
solutions (Theorem 1). The method is not eon]ined to the sel]ad]oint case. It  applies also 
to some time-periodic parabolic and hyperbolic problems. 

1 .  - I n t r o d u c t i o n .  

This pape r  is concerned with proving existence and mult ip l ic i ty  results for the  

equat ion 

(1) d u  + ](x, u) = h(x) in ~ , u = O on ~9 

in ~ bounded  region f) of R ", with v~rious assumpt ions  on the  existence of the  
limits 

a(x) ~- lira / (x ,  u ) /u  , b(x) = lira ](x, u ) /u  . 
~t--->-- o o  ~t---> + ~ 

Problems of this sort  arose first in a classical pape r  b y  Dolph,  where he showed 
t h a t  if a, b satisfy )~, + e < a, b < 2,+~--e~ where 2~ are the  eigenvalues of the  

Laplae ian  with Dirichlet  boundary  conditions, then  (1) has a solution for all h. 

There has been consideruble work done on weakening this assumpt ion  on a ~nd b 

in the  case where n > 1. DANCER [5] t r ea ted  the case ](x, u ) =  ](u), a----2~ and 

b = A,+~. This was la ter  ex tended b y  BE~nSTYC~ and DE FmUE~EDO [2]~ who 

g~ve a cer tain sufficient condit ion t h a t  (1) should have  a solution for all h. This 
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condition allowed the possibility tha t  2~ T s < a(x) ~ 2~+~ and 4, ~< b(x) < 2.+~-- e. 
Fur ther  improvements have been given in this direction by MAWmN [8] and by 
?r and WA~D [10], to situations where only lim sup's and lira inf's exist and 
to problems where the resolvant is non-compact. 

I t  is obvious tha t  if a ~ 2~, b ~ ~+~ gives solutions for all h by degree theo- 
retic methods, one could perturb to allow a ~_ 2~-- s and b ~ 2~+~ + e for sufficiently 
small s, thereby allowing the nonlinearity to cross at least two eigenvalues. Multi- 
plicity results in this context have been the subject of [6], [7] and [12]. In section 2, 
we give a constructive a priori estimate which for a wide range of functions a(x) 
and b(x) allows us to decide whether (1) still has solutions for all h. We give some 
applications of this a priori bound. 

Another direction of research has been to take h(x) = 0 in (1) and to assume 
tha t  a(x) and b(x) are contained in the interval [2~ § e, 2,~+1--s] and tha t  (~]/~u)(x, O) 
is in the interval [2~.+~ § s, 2~+~+1~ e] and tha t  ](x, 0) -=- 0. In this case CASTRO 
and LAz]~rr [3] for ](x, u ) =  ](u) and CgA~G [~] showed tha t  there exists a non- 
trivial solution for any k >  1. CKA~a also considers the case of more general linear 
operators, some with non-compact resolvant. Using degree theory, in the case of 
odd k, we show tha t  with considerably weaker conditions on the behavior of ] at  
zero and infinity, we can obtain the existence oi nontrivial  solutions. In  the case 
tha t  k = 1, we show the existence of at least two nontrivial  solutions. This repre- 
sents aa  improvement of existing theorems in [1] where stronger restrictions on the 
nonlinear function f are imposed. These restrictions tend to require i to be, in some 

sense~ ~ odd-like ~>. 
Since many  of the previous methods used are variational, t hey  do not apply 

to problems where the linear operator is non-selfadjoint, as in the ease of a parabolic 
problem with periodic-Dirichlct boundary  conditions. At the end of this paper, 
we make some remarks showing how our methods apply to this problem. 

Throughout the paper, 52 is a bounded region in R ~, sufficiently smooth tha t  

the eigenvalue problem 

(2) Au + )~u = O in ~ , u = O on ~D 

has eigenvalues 21< 2~<... with eigenfuctions 01, 02, ... which are an orthogonal 
basis iu the It i lbert  space H = L2(D) and satisfy 01(x) > 0 in D. The function J(x, u) 
will always satisfy Carath6odory hypotheses (measurable in x e D, continuous in 

u~R). 

2.  - T h e  a pr ior i  e s t i m a t e .  

We consider problem (1) in the Hilbert space H == L~(.Q). Let A = {~.1, 42, ...} = 
= Alw A~, where A I ~  {2~, ..., z~} and A s =  A \ A 1 .  Let  H i =  span {0i: p<~i<~q} 
and H~ = H~. Let  P denote orthogoual projectiort on H~. 
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Le t  e ~ A  ua4 ) ~ < c ~ A ~ .  Then 

(3) 

1 
iI(~ + c)-~l].~ = - ,  @1 

1 
i](~ + e)-~ll~0= 0~' 

where @1 : dist (e, A~) , 

where @~ = dist (c, A~) > @1 �9 

Let  us assume tha t  ] satisfies the est imate 

(4) ~(x) tut < ](x,  u) - ~u < ~ ' (x) luI ,  

where 

(5) i = sup (1~(~)i, I~(~)l)  < oo, 
9 

:For u e l l ,  the  fuact ion g(x) = ](x, u(x))  - -  cu(x) is in H ,  and Hgll <MHuH. De- 
compose g as g = v -~ w, v - :  Pg~ w - :  ( I - - P ) g .  Then there  exists ~ 0 < ~ < 1 ,  such 

tha t  

and thus 

[]v]l~= ~ - ' i l u l i  = , 

I[ ~ H ~ : f gv dx 

I lw l l  ~ < (1  - ~2)_~2]1~1l  ~ ' 

- f gv+ d~ - - f  gv- d~ < 

< H~]I(I]Z~+II + H~v-II) �9 

Let  S : {v ~ Hi:  llvH : 1} be the  uni t  sphere in H1 and write  

1 1 
= m ~  II~-] l .  (6) 7+= _~ m~ [':~+i], r -  ~ ~ 

Note thut  y + ~  1, y - ~  1 and (y§ + (:y-)2<l if p > 2 ,  because all functions in H1 
must  change sign, and they  ~re all orthogonal  to 01. I t  follows tha t  ![vii2< IIuH ][v[IM7~ 

where y ---- 7 + -~ y - ,  which implies ~<7 .  
Summing up~ we get 

(1-- 

y2 1 -- ?2~ 

since @1< @2. Thus we h~ve proved 
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THEOI~E:K 1. - Under  the assumptions (4) the estimate 

(7) II(  

holds, where ~, M and y = y+ + Y- are defined by  (3), (5), (6), and p > 2 .  
Natura l ly  this theorem is of interest  mainly when leo< 1. 
Let  ] = J~-- b(x)u + -  a(x)u- and assume tha t  

(8) ~.- -s<a(x)<c<b(x)<) .~+~ + s ,  

where c = �89 (2~ q- ;t~+~). Let  A~-~ {).~ ..., ,~,~ A~+~ ..., ,~,}, where ;t~ = A,~ and )~ = 
--  2~+~; in o t h e r  words, H1 is the sp~n of all the  eigenfunctions corresponding to 
the eigenvalues 2~ or A~+~. Then Q~ = �89 (2~+~--2~), @2 = rain (2~+~--c, c -  A~_~) > ~1, 

~(x)---=0, M---- ~ §  7 = 7  + < 1 , 7 - = 0 ,  and 

2 Now assume tha t  So is the positive solution of k o ---- 1. 

T I t E O l C E M  2 .  - Let  ] satisfy 

(9) lira ] ( x ,  u)  _ a ( x )  , lira ] ( x ,  u)  _ b(x)  
u-->-- ~ U u--> + r U 

uniformly in x E t~,  

and assume tha t  (8) holds, where n > 2  and s < so. Then equation (1) has a solution 

for all h (x ) s  Ls(f2). 

P~oo~. - One has merely to observe tha t  for any fixed h and for R sumciently 
large I[(A + c)-~(h(x)--j(x,  u))]l < / ~  for all []u][ <R .  This is a direct consequence 
of the est imate (7) for fdx, u) = b(x)u + - a ( x ) u -  (one uses a decomposition J = 

= f~-~/ ,  + ]~ with J~ bounded gnd ]f3(x, u)I<dIuI, where ko ~ 6/@~< 1). F rom this 
and the compactness of (A + c) -~, we can conclude tha t  the map 

u ->  (A + - -  ](x, u)) 

has a fixed point  in the ball of radius R in H.  This proves the theorem. [] 

]I~EiKARKS. - Notice tha t  theorem 2 allows tha t  a(x) = 2~ and b(x) = A~+I, but  
also allows a(w) and b(x) to take values in the intervMs [2~--e,  el, [e, An+l § s] 
respectively (e = �89 (2.~ § ~+1)), where e can be estimated. To make this clear, we 

consider 
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The one-dimensional  case. - Let  .(2 = [0, 
= 1, 2, 3, ...). Then the est imate 

0o) ~ =  max (I]0~IIL lio;]l ~) = 

holds. 
Under the assumptions of theorem 2, 

y ~ =  �89 + 1/2n, n odd, or y2=- �89 4- 1/(2n 4- 

+ 1 +  + 1  
k~ -2-g+1 / --2g-n + 

z ] c R  1, 2 ~ = n  2 , 0 ~ = v / 2 ~ s i n n x  ( n =  

1 
for k even ,  

@ for k odd 

we have @1 = n 4- �89 ~o~ = 3 n -  �89 and 
2), n even, and 

2n + 1 § 2 ~  ~ n - -  1 
6 n - -  1 ] 2n 

For n large and e = xn, this gives 

1 5 
/Co ~ (1 @ z ) 2 ~ @ ~ ( 1 @ x ) 2 = ~ ( l @ x )  2, 

and equating the right hand side to one gives x = -  1 + 3/~/g ~ 0.3416 > 1/3. 
Thus in the one-dimensional ease, the theorem states tha t  s = 1/3n is admissible 
for large n, or tha t  the values a(x) and b(x) need only lie in the intervals [2,~--e, c] 
and It, 2~+1 + s], where s is approximately 1/6 of the length of the adjoining inter- 
vals (2~_1, 2~) or (2,+1, 2~+2). I t  is worth noticing tha t  these results do not  depend 
on the distribution of a(x) and b(x) in their  respective intervals. 

Assume now tha t  p > 2 ,  

2~_1< 2 ~ < 2 . <  e < 2.+1<24< ).4+1 
and 

2~_1 4- s < a(x) <c<b(x)  <24+1-- e ,  

which implies @1= min (2.+1--c, c--2m), M < m a x  (c--e--2~_1,  2~+1--s--c) < @~. In  
this case, y = y + <  1, M/@2< 1, but  M/@I may  be large. 

If  f i ( x )=  max ( b ( x ) -  c, c -  a(x)) is for the most part  small and only allowed 
to be close to M = max r on a small set, then  Y would be small and k~< 1. Thus 
the nonlinearity may  asymptotically cross as many eigenvalues as we please, so long 
as it  only does so on small sets. (It would be easy to give explicit conditions in the 
one-dimensionM ease, using (10) and the fact tha t  ]O.(x)I<V'~/~.  ) 

3. - Multiplicity results. 

In  this section, we shall consider some improvements on theorems concerning 
the existence of non-trivial solutions of 

(11) A u  4- ](x, u) -= 0 ill Q ,  U --~ 0 on ~Q 
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under the assumptions tha t  ](x, 0 ) =  0 and tha t  l(x, u ) /u  behaves differently at 
zero and at  infinity. 

We first prove a degree theoretic lemma which is, in essence, a res ta tement  of 
the main a priori estimate. The Leray-Schauder degree is denoted by  d. 

L S ~ A  1. - Assume tha t  ] satisfies the hypotheses of theorem 1 with ko< 1, 
where ~ <  c < ~k+~. Then 

a(u --  (-- A)<l(x, u), nB, 0) -~ (-- 1) k for all n > 0 ,  

where B is the uni t  ball in H. 

PROOF. - According to (7), 

i f ( -  a - e ) - ' z ( t ( x ,  u)  - cu)II < llult 

for all u v a 0 and all ~ e [0, 1]. Thus the problem 

- -Au- -cu=; t ( l (x ,u ) - - cu )  in 9 ,  u = 0  on ~D 

has only the zero solution for 0 < A < I .  This shows tha t  

d(u - -  (--  A)- l] (x ,  u), ~B, 0) = d(u - -  (--  A) - Icu ,  ~B, O) 

by the homotopy invarianee of degree. But  by  a familiar computat ion (see, for 
example, [11]) this last degree is (--1) ~. [] 

Now assume tha t  ] is globally Lipsehitz continuous in u, uniformly for x e t~, 
and that 

(12) bo(x) Jim /(x, u) ---- - - ,  ~o(X) lim /(x, u) ---- - - ,  uniformly in x .  
u-*O + ~ u-->O- 

We write ] ~ ]o + g with ]0(% u) -~ bo(x)u + -  ao(x)u-. Assume tha t  ]o satisfies the 
hypotheses of theorem 1 with ko< 1, where 2~< c < 2k+1. I t  follows tha t  there 
exists Z > 0 such tha t  

[/o(x, u ) -  cu I Jr Ig(x, u)[ <Z[u] for all x and u .  

Let  R = ( - - A - - e )  -1 and K = R ( B ) .  I f  u i s  a solution of (11) with llu]l<s, then 
u ~- 12(] - -  cu), and we get u e s L K .  

Choose y > 0 with 2ylf1211 + ko< 1. T h e n  there is a @ > 0 such tha t  

]g (x ,u ) l<y lu  I for all x e ~ ,  [u[< ~. 
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L e t  

u ~ = m a x  ( - -  Q, m i n  (u, ~o)) . 

Then 

Ig(x, u)I < Ig(x, u ) -  g(x, u~)i + tg(x, u~)J < 

<Ll(u - .o)+I + LI(~ + ~o)-I + 7lull �9 

Since K is c o m p a c t ,  t he r e  exis ts  a modu lus  of c o n t i n u i t y  (~(s) (6(s) -~ 0 as s -> 0 -7) 

such  that 

II(u - -  ~o)+11 and  II(u ~- o)-I[ <e.L6(s.L); 

of. [11; L e m m a  1]. This  impl ies  

Hg(x, u)i I <2L2s(~(sZ) -~ ye <2ye  , 

if s > 0 is chosen sufficiently smal l .  Hence ,  i i  u = R(] - -  eu), Ilu]l <e,  then ,  b y  the  
choice of y, 

lluli < i!Rgil + I IR( I0-  cu)ll < 

<2r!IR]l~ + koS < ~ .  

Since the above reasoning remains valid if g is replaced by Jtg with 0~Jl~1, it 
follows t h a t  

d(u  - -  (--  A)- l] (x ,  u), sB,  O) - -  d(u - -  (--  A)-lIo(X, u), sB, 0) ---- ( - -  1) ~ 

b y  l e m m a  1. Thus  we h a v e  p r o v e d  

T~EOBE~ 3. - L e t  ] be  g loba l ly  h ip sch i t z  in u (un i fo rmly  in x) w i th  ](x, O) = O. 
A s s u m e  t h a t  (12) holds a n d  t h a t  t he  func t i on  ]o(X~ u ) - =  bo(x)u+--ao(X)U T M  satisfies 

t h e  a p r io r i  e s t i m a t e  (7) w i th  k o < l  and  e e ( 2 k , 2 k + l ) .  T h e n  the re  exis ts  S o > 0  
such that 

d(u - -  (--  A)-~](x, u), sB,  0) = ( - -  1) ~ for  0 < e < so.  

Now we m a k e  some  a s s u m p t i o n s  on the  b e h a v i o r  of ] a t  inf ini ty.  W e  assume  
t h a t  a($) a n d  b(x) exis t  such t h a t  

(13) a(x) =- lira ](x, u) b(x) -~ l ira f(x,  u) , - - ,  u n i f o r m l y  in x ,  
u - ~  - -  r  U u - ~  + oo U 

where  a and  b are  such t h a t  the  func t i on  ]~(x, u ) ~  b(x)u  + -  a (x )u -  satisfies t h e  
e s t i m a t e  of t h e o r e m  1 w i th  k o ~  1 ~n4 ~ . ~  c ~ 2~+1. 



25/~ P . J .  MCKE~:NA - l:~. REDLII~@ER - W .  WALTER:  Multiplicity results, etc. 

TttEOI~E1Vf 4. -- Wi th  the  above assumptions on ](x, u), there exists 2Vo so t h a t  

d(u - -  (-- A)-~](x, u), NB,  0) = (--  1) ~ for all N > ~  o . 

P~OOI~. - Wri t ing  ] = ]:-7 ]2 -7 L wi th  [fz(x, u)[<~]u[ for all u and  ]~ bounded,  
the  assert ion follows by  homotopy .  Note  tha t  8 can be chosen arb i t rar i ly  small.  [] 

We are now able to prove  the  existence of non-tr ivial  solutions, when n -  k 
is odd. 

TItEOI~E~ 5. - Assume tha t  the hypotheses  of theorems 3 and r are satisfied 
wi th  n ~ k odd. Then the  equat ion 

Au -7 ](x, u) -~ 0 in f2,  u = 0 on 3Y2 

has at  least  one non-tr ivial  solution. 

P~oo~. - The proof  is by  excision. If ,  for example ,  k < n and k is even, n odd, 
we have  for large 2V and small  s t h a t  

and thus 

a(u - ( -  ~) -V(x ,  u), ~B, O) = + 1 ,  

a(u - -  (--  ~) -V(x ,  u), Y B ,  O) = - -  1 

d(u - -  (-- A)-l i (x  , u), N B \ s B ,  O) = - -  2 .  

Therefore there  exists a t  least one solution in N'.B~eB. [] 

I~E~A~KS. - We observe t ha t  these hypotheses  allow / + =  (~]/3u)(x, 0 + )  and 

]-~ (8]/Su)(x, 0--) to take values outside the interval (2n, 2~+i); see the remark 
at  the  end of section 2. 

I n  par t icular ,  in the  one-dimensional  case, for large n, a(x) could lie ent i rely in 

the  upper  s ixth of (n 2, (n § 1)2), b(x) ent i rely in the lower s ixth of ((n § 2) ~, 

(n -k 3)~), and do(X) and be(x) have  values in the  in te rva l  (n 2, (n -7 1)2). 

4. - The  ex i s tence  o f  three  so lut ions .  

One can obtain addi t ional  informat ion in the  case where one eigenvalue is 
crossed, and  more  s tr ingent  restrict ions are imposed on ]. We assume:  

(A) n>~2, 2~ is a simple eigenvalue. 

(B) ](z, O) = 0 and 

2~_: + e ' < / ( x ,  u) - / ( z ,  v) < 2~+1- e' (u # v) 
U - - V  

f o r  s o m e  e ~ >  O. 
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(C) The limits in (9) and (12) exist (uniformly in x), and the functions no(X), 

bo(x), a(x)~ b(x) satisfy the hypotheses of theorems 3 ~nd 4, with k ---- n --  1. 

(For exampl% assumption (C) is satisfied if there exist CoS (~_~, ~.), c~s (~.~ 2~§ 
such tha t  ~_~ -t- s'~ao(x) ~ co ~ bo(x) < ~ -~ so, ) ~ - -  s~ ~ a(x) ~ c~ ~ b(x) ~ ,~+~-- s', where 
s0, ~ are positive constants depending on Co, c1.) 

Let  P be the orthogonal projection onto the space spanned by 0~, the eigen- 
function associated with 2~, and let c = �89 ()~_, + X.+~). We assume for the moment  
tha t  c =~ Jt~. In  view of the remarks of section 2, the operator (I - -  P)(--  A --  c) -~ 
has norm 1/9~ , where 0~----s(.+1--2._~). By (B), the function ](x, u ) - - c u  is 
Lipschitz continuous in u with Lipschitz constant  ~ - - s ' .  Hence, the nonlinear 
operator 

u ~ ( I  - ~ ) ( -  A - -  c ) - ~ ( / ( x ,  u)  - -  cu) 

is Lipschitz continuous, with Lipschitz constgnt ko~ 1. In the case where 2~---- 
= �89 (~+1 ~- ~,_1) we choose c close to ~ and arrive at  the same conclusion ko < 1. 
Define T: H -> H by  T u  = (--  A - -  c)- l ( / (x ,  u) - -  cu). Then for fixed v s PH~ there 
is g unique w - ~  w(v) which solves 

w=(I - -P)T(v  + w). 

I f  v ~-- tO., we write w(t) = w(tO.). (This is, of course, the usual Ljapunov-Schmidt  
method.) The function w(t) is Lipschitz continuous with Lipschitz constant ko/(1 --  ko). 

The equation u -~ T u  is equivalent to 

v = P T ( v §  w = ( I - - P ) T ( v + w ) ,  

and thus, the problem of solving u ~-- T u  is reduced to tha t  of finding zeros of the 
one-dimensionM function ~(t) =-- t - -  (On, PT( tO .  Jr w(t))}. The following is a prism 
lemma which occurs in [6], [7]. 

LE~WA 2. -- Let  t l ~  t2, with ~(tl).~(t~)~= O. Choose R ~ 0 so large tha t  for all 
t e It1, t2] 

I[w(t) H < R and (1 - -  ko) -~]r ( I  - -  P)  T(tO~)]E < I t ,  

and define 

D = D(t~, t~, R)  = { u e H :  [l(I-- .P)uH < R,  P u  = tO~, t~< t <  t~}. 

Then d ( I -  T, D, 0) is defined, and 

d ( I  - -  T ,  D ,  O) = 1 r  ~( t , )  < 0 < ~(t~) , 

d ( I  - -  T ,  D ,  O) = - -  1 r  ~(t~) > 0 > ~(t2) . 

17 - Annal i  di Matematiea 



256 P . J .  ~ C K E ~ A  - R. I~EDLINGEIr - W. ~rALTEI%: Multiplicity results, etc. 

We are now in a position to prove the following 

TttE0tCEM 6. - Assume tha t  / satisfies the hypotheses (A), (B), (C). 
equation 

A u §  i n . Q ,  u = 0  on ~f2 

Then the 

possesses at least three solutions. 

P~ooF. - By  the  reasoning of theorems 3 and 4, it is easy to show tha t  there  

exist No > ~o > 0 such tha t  for all 0 < 7 < 7o and iV > No the degrees d~ = d(�92 - -  T, 
iVB, O) and d, ~ d ( I -  T, 7B, 0) are defined, and d~d~.-~ - -1 .  

Using the nota t ion of the prism lemma, define 

D1 = D(--  iV, iV, R ) ,  D~ = D(--  ~, 7, R ) .  

II  R is chosen sufficiently large, the lemma is applicable. Bu t  since there  are no 
solutions in D I \ I V B  and in D2\TB,  

and 

d(I - T, D1, 0) = d(I - -  T, lVB, 0) 

d(f - T, D~, 0) = d ( / - -  T, 7B, 0) .  

This means tha t  the products  must  satisfy 

~(-- iv)~(-- 7) < o ,  v(~)v(iv) < o ,  

and therefore the funct ion u(t) must  possess an addit ional  zero in each of the inter- 
vals ( - - i v , -  7) and (7, iV). This proves the theorem. [] 

RE~Z_Amr 1. -- The first proof of at least three solutions to this type  of problem 
was by  A~__BR0SETTI and 1V[ANCINI, in [1]. They  have severe restrictions on the non- 
l inearity,  including the requirement  tha t  / has to satisfy s f ' ( s )>  O. We know of 

no proof which allows such a lack of smoothness in /, requiring only the  global 
Lipschitz conditions and the  l imiting behavior  at zero and infinity. 

t~EMA~K 2. - Unlike the var ia t ional  methods of [3] and [4], our methods apply  
to the case where the linear operator  is nonselfadjoint,  as in the problem 

u, -=- Au + / ( x ,  t, u) in R • ~-2, 

u = 0 on ~t2, u (x , t  + T) = u ( x , t ) ,  

with ](x, t, u) T-periodic in t. One can apply the me thod  of this section by making 
the  period sufficiently small tha t  the calculation of norms is not  affected b y  the 
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im~ginury eigenv~lues, i.e., by  taking 2z /T  > ! ] ( - - A -  c)-~ll. Alternatively,  us in 

section 2, one could decompose H = H~ ~ H~ into the sp~ce spunned by  ull eigen- 

~unctions corresponding to eigenvalues inside the circle centered on the reul line 

~nd encompassing ~,, ..., ),,. 

I~E~A~K 3. -- The methods of this paper can be ~pplied to the hyperbolic problem 

% - -  u~--  ](x, t, u) = 0 in  [0, :r] • [0, 2 z ] ,  

u (o ,  t) = u ( m  t) = 0 ,  

u(x, t + 2z~) = u (x ,  t) 

if one ussumes in ~ddition tha t  ](x, t, u) is monotone in u. One then reduces the 

problem to one on ~ subsp~ce, on which the linear operator h~s a compact  inverse, 

and where the usual method of degree theory would ~pply. This method bus been 

used in [11]. 
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