Generalized Solutions to Free Boundary Problems for Hyperbolic Systems
 of Functional Partial Differential Equations (*).

Ptero Bassanini - Jan Turo

Summary. - Local a.e. solutions to a free boundary (Stefan) problem for a quasilinear hyperbolic system of functional PDE's of first order in two independent variables and diagonal form are investigated. The formulation includes retarded arguments and hereditary Volterra terms.

1. - Introduction.

Let us denote by $I_{a_{0}}$ the curvilinear rectangle

$$
I_{a_{0}}=\left\{(x, y): x \in\left[0, a_{0}\right], S_{1}(x) \leqslant y \leqslant S_{2}(x)\right\},
$$

where $S_{k}(0)=\alpha_{k}$ and $a_{0}>0, \alpha_{k}$ are given constants $(k=1,2)$. Let the unknown line $y=\varphi(x)$ divide the set $I_{a_{0}}$ into two sets $I_{a_{0}}^{-}$, where $S_{1}(x) \leqslant y \leqslant \varphi(x)$, and $I_{a_{0}}^{+}$, where $\varphi(x) \leqslant y \leqslant S_{2}(x)$, with $S_{1}(x)<\varphi(x)<S_{2}(x)$ for $x \in\left[0, a_{0}\right]$. We will denote by "+" and "-» the value of the considered functions on I_{a}^{+}and I_{a}^{-}, respectively, and by $|z|_{n}=\max _{1 \leqslant i \leqslant n}\left|z_{i}\right|$ the norm of z in \boldsymbol{R}^{n}.

We consider quasilinear hyperbolic systems of functional partial differential equations in diagonal form

$$
\begin{equation*}
D_{x} z_{i}+\lambda_{i}(x, y, z, \nabla z) D_{y} z_{i}=f_{i}(x, y, z, V z), \quad i \in \mathfrak{J}=1, \ldots, n \tag{1}
\end{equation*}
$$

$(z=z(x, y), \quad V z=(V z)(x, y))$, with the initial conditions
(2)

$$
z(0, y)=\gamma(y), \quad y \in\left[\alpha_{1}, \alpha_{2}\right]
$$

(*) Enteata in Redazione il 4 giugno 1988.
Indirizzo degli AA.: P. Bassanini: Dip. di Matematica, Università di Roma I, Città Universitaria, 00185 Roma, Italy; J. Turo: Dept. of Mathematics, Technical University of Gdansk, 80-952 Gdansk, 11/12 Majakowski Str., Poland.
the boundary conditions on the lines $y=S_{k}(x), k=1,2$,

$$
\begin{equation*}
z_{i}\left(x, S_{k}(x)\right)=R_{k}^{i}\left(x, z^{k}\left(x, S_{k}(x)\right)\right), \quad i \in \mathfrak{J}^{k} \tag{3}
\end{equation*}
$$

$\left(\mathfrak{J}^{k}=\left\{i: \operatorname{sgn}\left[\lambda_{i}\left(0, \alpha_{k}, 0,0\right)-S_{k}^{\prime}(0)\right]=(-1)^{k+1}\right\}\right)$, and the boundary conditions on the free boundary $y=\varphi(x)$
(4) $\quad z_{i}^{\mp}(x, \varphi(x) \mp 0)=R_{i}^{\mp}\left(x, \varphi(x), \varphi^{(1)}(x), \ldots, \varphi^{(m-1)}(x), \hat{z}^{\mp}(x, \varphi(x))\right), \quad i \in J^{\mp}$,
which satisfies the equation

$$
\begin{equation*}
\left.\frac{d^{m} \varphi}{d x^{m}}=H x, \varphi(x), \varphi^{(1)}(x), \ldots, \varphi^{(m-1)}(x), z^{-}(x, \varphi(x)), z^{\dagger}(x, \varphi(x))\right) \tag{5}
\end{equation*}
$$

and the initial conditions

$$
\begin{equation*}
\varphi(0)=\beta_{0} \quad\left(\alpha_{1}<\beta_{0}<\alpha_{2}\right), \quad \varphi^{(k)}(0)=\beta_{k}, \quad k=1, \ldots, m-1 \tag{6}
\end{equation*}
$$

Here

$$
\hat{z}^{-}=\left\{z_{i}^{-}: i \in \mathfrak{J} \backslash \mathfrak{J}^{-}\right\}, \quad \hat{z}^{+}=\left\{z_{i}^{+}: i \in \mathfrak{J} \backslash \mathfrak{J}^{+}\right\}, \quad z^{k}=\left\{z_{i}: i \in \mathfrak{J} \backslash \mathfrak{J}^{k}\right\}, \quad k=1,2,
$$

and

$$
j^{\mp}=\left\{i: \operatorname{sgn}\left[\lambda_{i}\left(0, \beta_{0}, 0,0\right)-\beta_{1}\right]=\mp 1\right\}
$$

Let $C_{L}^{m-1}[0, a]$ be the set of real functions of class C^{m-1} on $[0, a]$ whose $(m-1)$-th derivatives are Lipschitzian.

In this paper we are interested in local generalized (a.e.) solutions of mixed (initial-boundary) problems (1)-(6) with the free (unknown) boundary $y=\varphi(x)$, whose initial values (6) are known. We seek the function z: $I_{a} \rightarrow \boldsymbol{R}^{n}$, whose restrictions to the sets I_{a}^{-}and I_{a}^{+}are Lipschitzian, and the function $\varphi:[0, a] \rightarrow \boldsymbol{R}$ of class $C_{L}^{m-1}[0, a]$, satisfying equations (1), (5) a.e., initial conditions (2), (6) and boundary conditions (3), (4), respectively.

Generalized solutions have been investigated in the past by various authors: for hyperbolic systems in bicharacteristic form with initial or boundary conditions by Z. Kamont, J. Turo [7], [8] and J. Turo [12], [13], for system (1) with mixed conditions by J. Turo [14], for pure differential systems with mixed conditions (with a different definition of generalized solution) by V. E. Abolivia, A. D. Myshkis [1] and A. D. Myshkis, A. M. Filimonov [11]. Of fundamental importance for our approach are the ideas and methods for pure differential systems with initial or boundary conditions developed by L. Cesari in a series of papers (see [3]-[6] and references therein). Cesari's method has been subsequently applied by P. BassaNINI (see [2] and references therein). Classical solutions of free boundary problems (1)-(6) (without functional argument) have been considered by K. Yu. Kasakov, S. F. Morozov [9].

Our work is aimed at hyperbolic free boundary and Stefan problems which arise from applications [15], [16]. This motivates the formulation of the problem, adopted here. In particular $z(x, y)$ has, in gencral, a jump discontinuity across the free boundary $y=\varphi(x)$ (cf. [15]). The functional operator V includes retarded arguments and Volterra hereditary operators [7], [13].

2. - Basic assumptions.

Assumption H_{1}. - Suppose that, for given $\Omega>0$,

1) there is a constant $s \geqslant 0$ such that for all $x, \bar{x} \in\left[0, a_{0}\right]$ we have

$$
\left|S_{k}(x)-S_{k}(\bar{x})\right| \leqslant s|x-\bar{x}|, \quad k=1,2 ;
$$

2) the functions
$\operatorname{sgn}\left[\lambda_{i}\left(\cdot, S_{k}(\cdot), \cdot, \cdot\right)-S_{k}^{\prime}(\cdot)\right], \quad \operatorname{sgn}\left[\lambda_{i}(\cdot, \varphi(\cdot), \cdot, \cdot)-\varphi^{\prime}(\cdot)\right]$

$$
\left(i \in J, \varphi \in C_{L}^{m-1}\left[0, a_{0}\right], k=1,2\right)
$$

are constant in $\left[0, a_{0}\right] \times E_{a_{0}}$; where

$$
\bar{\Omega}=[-\Omega, \Omega]^{n} \subset \boldsymbol{R}^{n}, \quad E_{a_{0}}=\left[0, a_{0}\right] \times \bar{\Omega} \times \bar{\Omega}
$$

3) the functions $\lambda_{i}(x, y, u, v)\left((x, y, u, v) \in \widetilde{E}_{a_{\mathrm{o}}}=I_{a_{\mathrm{B}}} \times \bar{\Omega} \times \bar{\Omega}, i \in J\right)$ are measurable with respect to x and continuous with respect to (y, u, v);
4) there are a constant $\Lambda>0$ and integrable functions

$$
l_{j}:\left[0, a_{0}\right] \rightarrow \boldsymbol{R}_{+} \quad\left(\boldsymbol{R}_{+}=[0,+\infty), j=1,2,3\right)
$$

such that for all $(x, y, u, v),(x, \bar{y}, \bar{u}, \bar{v}) \in \widetilde{E}_{u_{0}}$ we have

$$
\begin{gathered}
\left|\lambda_{i}(x, y, u, v)\right| \leqslant A, \quad i \in J \\
\left|\lambda_{i}(x, y, u, v)-\lambda_{i}(x, \bar{y}, \bar{u}, \bar{v})\right| \leqslant l_{1}(x)|y-\bar{y}|+l_{2}(x)|u-\bar{u}|_{n}+l_{3}(x)|v-\bar{v}|_{n}
\end{gathered}
$$

5) there are constants $\varepsilon_{0} \in\left(0, b_{0}\right)$ and $\Lambda_{0}>0$, such that

$$
\begin{array}{lll}
\lambda_{i}(x, y, u, v)-\mathbb{S}_{1}^{\prime}(x) \geqslant A_{0} & \text { for } i \in \mathfrak{J}^{1}, \quad y \in\left[S_{1}(x), S_{1}(x)+\varepsilon_{0}\right], & (x, u, v) \in E_{a_{0}} \\
\mathcal{S}_{2}^{\prime}(x)-\lambda_{i}(x, y, u, v) \geqslant A_{0} & \text { for } i \in \mathfrak{J}^{2}, \quad y \in\left[S_{2}(x)-\varepsilon_{0}, S_{2}(x)\right], & (x, u, v) \in E_{a_{0}} \\
\lambda_{i}(x, y, u, v)-\varphi^{\prime}(x) \geqslant A_{0} & \text { for } i \in \mathfrak{J}^{+}, y \in\left[\varphi(x), \varphi(x)+\varepsilon_{0}\right], & (x, u, v) \in E_{a_{0}} \\
\varphi^{\prime}(x)-\lambda_{i}(x, y, u, v) \geqslant A_{0} & \text { for } i \in \mathcal{J}^{-}, y \in\left[\varphi(x)-\varepsilon_{0}, \varphi(x)\right], & (x, u, v) \in E_{a_{0}}
\end{array}
$$

where

$$
b_{0}=\min \left\{\min _{\left[0, a_{0}\right]}\left[S_{2}(x)-\varphi(x)\right], \min _{\left[0, a_{0}\right]}\left[\varphi(x)-S_{1}(x)\right]\right\} .
$$

Assumption H_{2}.

1) Assumption $\left.\mathrm{H}_{1}, 3\right)$ is satisfled by the functions $f_{i}(x, y, u, v), i \in \mathcal{J}$;
2) There are $a^{\text {constant }} \boldsymbol{F}>0$ and integrable functions $k_{j}:\left[0, a_{0}\right] \rightarrow \boldsymbol{R}_{+}$ $(j=1,2,3)$ such that Assumption $\left.H_{1}, 4\right)$ is satisfied by $f_{i}(x, y, u, v)$ with Λ replaced by F and $l_{j}(x)$ by $k_{j}(x)$.

Assumption H_{3}.

1) There are constants $r_{j} \geqslant 0(j=1,2)$ such that for all $(x, u),(\bar{x}, \bar{u})$ in [$\left.0, a_{0}\right] \times \bar{\Omega}$, we have

$$
\left|R_{i}^{k}(x, u)-R_{i}^{k}(\bar{x}, \bar{u})\right| \leqslant r_{1}|x-\bar{x}|+r_{2}|u-\bar{u}|_{n}, \quad i \in J^{k}, k=1,2
$$

2) There are constants $r, \bar{r}_{j}, \vec{r} \geqslant 0(j=0,1, \ldots, m-1)$ such that for all

$$
\left(x, \varphi, \varphi_{1}, \ldots, \varphi_{m-1}, u\right),\left(\bar{x}, \bar{\varphi}, \bar{\varphi}_{1}, \ldots, \tilde{\varphi}_{m-1}, \bar{u}\right) \in \widetilde{G}_{a_{0}}
$$

we have
$\left|R_{i}^{\mp}\left(x, \varphi, \varphi_{1}, \ldots, \varphi_{m-1}, u\right)-R_{i}^{\mp}\left(\bar{x}, \stackrel{\rightharpoonup}{\varphi}, \vec{\varphi}_{1}, \ldots, \bar{\varphi}_{m-1}, \bar{u}\right)\right| \leqslant$

$$
\leqslant r|x-\bar{x}|+\sum_{j=0}^{m-1} \bar{r}_{j}\left|\varphi_{j}-\bar{\varphi}_{j}\right|+\bar{r}|u-\bar{u}|_{n}, \quad i \in J^{\mp}
$$

where $\widetilde{G}_{a_{0}}=\left[0, a_{0}\right] \times \boldsymbol{R}^{m} \times \bar{\Omega}$.
3) The compatibility conditions $R_{i}^{k}\left(0, \gamma\left(\alpha_{k}\right)\right)=\gamma_{i}\left(\alpha_{k}\right), i \in \mathfrak{J}^{k}, k=1,2$,

$$
R_{i}^{\mp}\left(0, \beta_{0}, \beta_{1}, \ldots, \beta_{m-1}, \hat{\gamma}\left(\beta_{0} \mp 0\right)\right)=\gamma_{i}\left(\beta_{0} \mp 0\right), \quad i \in \mathfrak{J}^{\mp},
$$

are satisfied.
4) There are constants $\omega, \Gamma \geqslant 0$ s.t. for all $y, \bar{y} \in\left[\alpha_{1}, \beta_{0}\right]$ or $y, \bar{y} \in\left[\beta_{0}, \alpha_{2}\right]$, we have

$$
\left|\gamma_{i}(y)-\gamma_{i}(\bar{y})\right| \leqslant \Gamma|y-\bar{y}|, \quad i \in \mathfrak{J} ; \quad \max _{\mathfrak{[\alpha _ { 1 } , \alpha _ { 2 }]}}|\gamma(y)|_{n}=\omega<\Omega
$$

Assumption H_{4}.

1) The function $H\left(x, \varphi, \varphi_{1}, \ldots, \varphi_{m-1}, u, v\right)$ is measurable with respect to the first variable and continuous with respect to the remaining $m+2$ variables in $G_{a_{0}}=\widetilde{G}_{a_{0}} \times \bar{\Omega}$.
2) There are a constant $\bar{h}>0$ and an integrable function $\bar{h}:\left[0, a_{0}\right] \rightarrow \boldsymbol{R}^{+}$ s.t. for all $\left(x, \varphi, \varphi_{1}, \ldots, \varphi_{m-1}, u, v\right),\left(x, \vec{\varphi}, \bar{\varphi}_{1}, \ldots, \bar{\varphi}_{n-1}, \bar{v}, \bar{v}\right) \in G_{a_{0}}$ we have

$$
\left|H\left(x, \varphi, \varphi_{1}, \ldots, \varphi_{m-1}, u, v\right)\right| \leqslant h
$$

$$
\left|H\left(x, \varphi, \varphi_{1}, \ldots, \varphi_{m-1}, u, v\right)-H\left(x, \vec{\varphi}, \bar{\varphi}_{1}, \ldots, \bar{\varphi}_{m-1}, \bar{u}, \bar{v}\right)\right| \leqslant
$$

$$
\leqslant \bar{h}(x)\left[\sum_{j=0}^{n-1}\left|\varphi_{j}-\bar{\varphi}_{j}\right|+|u-\bar{u}|_{n}+\mid v-\bar{v}_{n}\right]
$$

We denote by $\mathcal{D}(a)$ the set of all functions $z: I_{a} \rightarrow \boldsymbol{R}^{n}$, whose restrictions to the sets I_{a}^{-}and I_{a}^{+}are continuous and Lipschitzian with respect to both variables; by $B(a)$ the subset $\left\{z: z \in \mathbb{D}(a),|z(x, y)|_{n} \leqslant \Omega\right\}$; by $B(a, P, Q)$ the set of all functions in $B(a)$ s.t. $|z(x, y)-z(\bar{x}, \bar{y})|_{n} \leqslant P|x-\bar{x}|+Q|y-\bar{y}|$ for all $(x, y),(\bar{x}, \bar{y})$ in I_{a}^{-} or I_{a}^{+}. We assume $Q \geqslant \Gamma(P \geqslant 0)$, so that the closed set

$$
B(a, P, Q, \varrho)=\left\{z: z \in B(a, P, Q), \max _{I_{a}}|z(x, y)-\gamma(y)|_{n} \leqslant \varrho, z(0, y)=\gamma(y)\right\}
$$

$(0<\varrho \leqslant \Omega-\omega]$ is not empty.
Assumption H_{5}. - Suppose that, for every $a_{a} \in\left(0, a_{0}\right]$,

1) $V: B(a) \rightarrow B(a)$.
2) There are integrable functions $c, d:\left[0, a_{0}\right] \rightarrow \boldsymbol{R}_{+}$s.t. for overy $z \in B(a)$ we have

$$
\begin{gathered}
{[(V z(x, \cdot)] \leqslant c(x)[z(x, \cdot)]+d(x), \quad x \in[0, a],} \\
{[z(x, \cdot)]:=\sup \left\{|y-\bar{y}|^{-1}|z(x, y)-z(x, \bar{y})|_{n}: y, \bar{y} \in\left[S_{1}(x), S_{2}(x)\right]\right\} .}
\end{gathered}
$$

3) There is an integrable function $m:\left[0, a_{0}\right] \rightarrow \boldsymbol{R}_{+}$s.t. for all $z, \bar{z} \in B(a)$ and $x \in[0, a]$ we have

$$
\begin{gathered}
\|V \tilde{z}-V \bar{z}\|_{x} \leqslant m(x)\|z-\bar{z}\|_{x} \\
\|z\|_{x}:=\sup \left\{|z(t, y)|_{n}:(\dot{t}, y) \in I_{x}\right\}, \quad I_{x}=\left\{(t, y): S_{1}(t) \leqslant y \leqslant S_{2}(t), t \in[0, x]\right\} .
\end{gathered}
$$

3. - Preliminary lemmas.

We consider, for $z \in B(a)$, the characteristic problem

$$
\left\{\begin{array}{l}
D_{t} g(t ; x, y)=\lambda_{i}(t, g(t ; x, y), z(t, g(t ; x, y)),(V z)(t, g(t ; x, y))) \tag{7}\\
\\
\quad\left(i \in \mathfrak{J}, \text { for a.e. } t \in[0, a], \text { every }(x, y) \in I_{a}^{-} \text {or } I_{a}^{+}\right),
\end{array}\right.
$$

Because of Assumptions 3), 4) of $\mathrm{H}_{1}, 2$) of H_{5}, and $z \in B(a)$, we conclude that the functions $\lambda_{i}(\cdot, z(\cdot),(V z)(\cdot)): I_{a} \rightarrow \boldsymbol{R}, i \in \mathcal{J}$, satisfy the Carathéodory conditions. Thus for every $z \in B(a)$, there is a unique maximal solution $g_{i}=g_{i}^{z}(t ; x, y)$ of problem (7) (" a unique characteristic of the i-th family through every x, y) in I_{a}^{+}, I_{a}^{-}. We denote by $\tau_{i}(x, y, z)$ the smallest value of t for which the maximal solution $g_{i}=g_{i}^{z}(t ; x, y)$ exists, and we consider the following subsets of I_{a}^{\mp} (where $\left.\tau_{i}=\tau_{i}(x, y, z)\right):$

$$
\begin{aligned}
I_{\gamma_{i}}^{\mp z} & =\left\{(x, y):(x, y) \in I_{a}^{\mp}, \tau_{i}=0\right\}, \\
I_{S_{1} i}^{z} & =\left\{(x, y):(x, y) \in I_{a}^{-}, \tau_{i}>0, g_{i}^{z}\left(\tau_{i} ; x, y\right)=S_{1}\left(\tau_{i}\right)\right\}, \\
I_{S_{2} i}^{z} & =\left\{(x, y):(x, y) \in I_{a}^{+}, \tau_{i}>0, g_{i}^{z}\left(\tau_{i} ; x, y\right)=S_{2}\left(\tau_{i}\right)\right\}, \\
I_{\varphi_{i}}^{\mp} & =\left\{(x, y):(x, y) \in I_{a}^{\mp}, \tau_{i}>0, g_{i}^{z}\left(\tau_{i} ; x, y\right)=\varphi_{i}\left(\tau_{i}\right)\right\},
\end{aligned}
$$

defined according to the "starting points" of the characteristics. We will need the following constants, depending on a :

$$
\begin{aligned}
& L_{1}:=\exp \left\{\int_{0}^{a}\left[l_{1}(t)+l_{2}(t) Q+l_{3}(t)\{o(t) Q+d(t)\}\right] d t\right\} \\
& L_{2}:=\int_{0}^{a}\left[l_{2}(t)+l_{3}(t) m(t)\right] d t
\end{aligned}
$$

Lemma 1. - Let Assumptions 3), 4) of H_{1} and H_{5} hold, $u, v \in B(a, P, Q)$, and $(x, y),(\bar{x}, \bar{y}) \in I_{a}^{+}$or I_{a}^{-}. Then, if g_{i}^{n}, g_{i}^{v} are the (maximal) solutions of problem (7) in I_{a}^{+}or I_{a}^{-}, respectively, the following inequality (for every t in the maximal interval of existence)

$$
\left|g_{i}^{u}(t ; x, y)-g_{i}^{v}(t ; \bar{x}, \bar{y})\right| \leqslant L_{1}\left(\Lambda|x-\bar{x}|+|y-\bar{y}|+L_{2} \mid u-v \|\right)
$$

holds, where $\|z\|:=\max _{I_{a}}|z(x, y)|_{n}$.
The proof follows, as in [14], from the previous inequalities and Gronwall's Lemma.

Lemma 2. - Suppose Assumptions H_{1} and H_{5} are satisfied, and $a, 0<a \leqslant a_{0}$, is sufficiently small so that $\Lambda a \leqslant \varepsilon_{0}$, where ε_{0} is given in 5) of H_{1}. Then, for all (x, y), (x, \bar{y}) in $\bar{I}_{S_{1} i}^{z}$ or $\bar{I}_{S_{\imath} i}^{z}$ or $\bar{I}_{\varphi_{i}}^{\mp z}$ (the bar denotes closure) and $z \in B(a, P, Q)$, we have

$$
\begin{equation*}
\left|\tau_{i}(x, y, z)-\tau_{i}(x, \bar{y}, z)\right| \leqslant \Lambda_{0}^{-1} L_{1}|y-\bar{y}| . \tag{8}
\end{equation*}
$$

Moreover for (x, y) in $\bar{I}_{S_{1} i}^{u} \cap \bar{I}_{S_{1} i}^{v}$ or $\bar{I}_{S_{2} i}^{u} \cap \bar{I}_{S_{2} i}^{v}$ or $\overline{I_{\varphi_{i}}^{-u}} \cap \overline{I_{\varphi_{i}}^{-v}}$ or $\bar{I}_{\varphi_{i}}^{+u} \cap \bar{I}_{\varphi_{i}}^{+v}$, and $u, v \in$ $\in B(a, P, Q)$, we have

$$
\begin{equation*}
\left|\tau_{i}(x, y, u)-\tau_{i}(x, y, v)\right| \leqslant \Lambda_{0}^{-1} L_{1} L_{2}\|u-v\|, \quad i \in \mathfrak{J} \tag{9}
\end{equation*}
$$

Proof. - First we prove inequality (8). Let us suppose that $(x, y),(x, \bar{y})$ are in $\bar{I}_{S_{1} i}^{z}$ and $y>\bar{y}$. Then, since the characteristic lines of the same family corresponding to the function z cannot intersect, we have $\tau_{i}(x, y, z)<\tau_{i}(x, \bar{y}, z)$. From Lemma 1 it follows that

$$
\begin{equation*}
g_{i}^{z}\left(\tau_{i}(x, \bar{y}, z) ; x, y\right)-g_{i}^{z}\left(\tau_{i}(x, \bar{y}, z) ; x, \bar{y}\right) \leqslant L_{1}(y-\bar{y}) . \tag{10}
\end{equation*}
$$

Writing the characteristic equation in integral form yields

$$
g_{i}^{z}\left(\bar{\tau}_{i} ; x, y\right)=\Im_{1}\left(\tau_{i}\right)+\int_{\tau_{i}}^{\bar{z}_{i}} \lambda_{i}\left(t, \breve{g}_{i}, z\left(t, \breve{g}_{i}\right),(V z)\left(t, \breve{g}_{i}\right)\right) d t
$$

where

$$
\tau_{i}=\tau_{i}(x, y, z z), \quad \bar{\tau}_{i}=\tau_{i}(x, \bar{y}, z), \quad \breve{y}_{i}=g_{i}^{z}(t ; x, y)
$$

Hence

$$
\begin{align*}
& g_{i}^{z}\left(\bar{\tau}_{i} ; x, y\right)-g_{i}^{z}\left(\tilde{\tau}_{i} ; x, \bar{y}\right)=S_{1}\left(\tau_{i}\right)-S_{1}\left(\bar{\tau}_{i}\right)+\int_{\tau_{i}}^{\bar{\tau}_{i}} \lambda_{i}\left(t, \breve{g}_{i}, z\left(t, \breve{g}_{i}\right),(V z)\left(t, \breve{g}_{i}\right)\right) d t= \tag{11}\\
&=\int_{z_{i}^{\prime}}^{\bar{\tau}_{i}}\left[\lambda_{i}\left(t, \breve{g}_{i}, z\left(t, \breve{g}_{i}\right)(V z)\left(t, \breve{g}_{i}\right)\right)-S_{1}^{\prime}(t)\right] d t
\end{align*}
$$

From the estimate $\left|g_{i}^{z}(t ; x, y)-S_{1}(x)\right| \leqslant \Lambda a$ for any characteristic in $\bar{I}_{S_{1} i}^{z}$, it follows that $g_{i}(t ; x, y) \in\left[S_{1}(x), S_{1}(x)+\varepsilon_{6}\right]$, provided $(x, y) \in \bar{I}_{S_{1} i}^{z}$, so that $i \in \mathcal{J}^{1}$. Thus, by assumptions $\Lambda a \leqslant \varepsilon_{0}$ and 5) of H_{1}, we have

$$
\left[\lambda_{i}\left(t, \breve{g}_{i}, z\left(t, \breve{g}_{i}\right),\left(V_{z}\right)\left(t, \breve{g}_{i}\right)\right)-S_{1}^{\prime}(t)\right] \geqslant \Lambda_{0} .
$$

Hence, by (10), (11) we obtain

$$
\begin{equation*}
\bar{\tau}_{i}-\tau_{i} \leqslant \Lambda_{0}^{-1}\left[g_{i}^{z}\left(\bar{\tau}_{i} ; x, y\right)-g_{i}^{z}\left(\bar{\tau}_{i} ; x, \bar{y}\right)\right] \leqslant \Lambda_{0}^{-1} L_{i}|y-\bar{y}| . \tag{12}
\end{equation*}
$$

The remaining cases can be handled similarly. To prove (9), let us assume that $(x, y) \in \bar{I}_{S_{1} i}^{u} \cap \bar{I}_{S_{1} i}^{v}$ and $\tau_{i}(x, y, u)<\tau_{i}(x, y, v)$ (again, the remaining cases can be dealt with in a similar way). By Lemma 1, we have

$$
\begin{equation*}
\left|g_{i}^{u}\left(\tau_{i}(v) ; x, y\right)-g_{i}^{v}\left(\tau_{i}(v) ; x, y\right)\right| \leqslant L_{1} L_{2}\|u-v\| \tag{13}
\end{equation*}
$$

where $\tau_{i}(v)=\tau_{i}(x, y, v)$. From the characteristic equation,

$$
g_{i}^{u}\left(\tau_{i}(v) ; x, y\right)-g_{i}^{v}\left(\tau_{i}(v) ; x, y\right)=\int_{\tau_{i}(u)}^{\tau_{i}(v)}\left[\lambda_{i}\left(t, \breve{g}_{i}^{u}, u\left(t, \breve{g}_{i}^{u}\right),(V u)\left(t, \check{g}_{i}^{u}\right)\right)-S_{1}^{\prime}(t)\right] d t
$$

Thus the assertion follows from 5) or H_{1} and inequality (13). |/I

Integrating the differential system of first order, equivalent to problem (5), (6), we obtain

$$
\left\{\begin{array}{l}
\varphi_{k}(x)=\beta_{k}+\int_{0}^{x} \varphi_{k+1}(t) d t, \quad k=0,1, \ldots, m-2, \tag{14}\\
\varphi_{m-1}(x)=\beta_{m-1}+\int_{0}^{x} H\left(t, \varphi(t), \ldots, \varphi_{m-1}(t), z(t, \varphi(t)), z^{+}(t, \varphi(t))\right) d t
\end{array}\right.
$$

where $\varphi_{0}=\varphi$. Because of H_{4} we see that this system satisfies Carathéodory conditions. Thus, $\forall z \in B(a)$, there is a unique maximal solution $\varphi_{j}^{z}(x), j=0, \ldots, m-1$, in $[0, a]$, which is Lipschitzian with respect to x, say with the constant Φ.

Lemma 3. - If Assumption H_{4} is satisfied, then, for all $u, v \in B(a, P, Q)$, and $x \in[0, a]$, we have

$$
\left|\varphi_{j}^{u}(x)-\varphi_{j}^{v}(x)\right| \leqslant M\|u-v\|, \quad j=0,1, \ldots, m-1
$$

Proof. - Put

$$
W(x)=(1+2 Q)\left|\varphi^{u}(x)-\varphi^{v}(x)\right|+\sum_{j=1}^{m-1}\left|\varphi_{j}^{u}(x)-\varphi_{j}^{v}(x)\right|
$$

By 2) of H_{4} we have, for $j=0, \ldots, m-1$:

$$
\begin{equation*}
\left|\varphi_{j}^{v}(x)-\varphi_{j}^{u}(x)\right| \leqslant\left[2 \int_{0}^{x} \bar{h}(t) d t \cdot\|u-v\|+\int_{0}^{x} \bar{h}(t) W(t) d t\right] a^{m-j-1} \tag{15}
\end{equation*}
$$

Combining inequalities (15) we obtain

$$
W(x) \leqslant 2 \int_{0}^{x} \overline{\bar{h}}(t) d t \cdot\|u-v\|+\int_{0}^{x} \overline{\bar{h}}(t) W(t) d t, \quad \overline{\bar{h}}(t)=\left[(1+2 Q) \sum_{k=0}^{m-1} a^{k}\right] h(t),
$$

whence, by Gronwall's Lemma, $W(x) \leqslant \tilde{M}(x)\|u-v\|$, with

$$
\tilde{M}(x)=2 \int_{0}^{x} \tilde{\bar{h}}(t) d t \cdot \exp \left[\int_{0}^{a} \overline{\bar{h}}(t) d t\right]
$$

Thus, by (15), the assertion follows, with

$$
M=\int_{0}^{a}[2+\tilde{M}(t)] \bar{h}(t) d t \cdot \max \left[1, a^{m}\right] .
$$

4. - An integral-functional operator and its properties.

Now we consider in $B(a)$ the operator S defined by

$$
S z=T z+U z,
$$

where

$$
(T z)_{i}(x, y)= \begin{cases}\gamma_{i}\left(g_{i}(0 ; x, y)\right), & (x, y) \in I_{\gamma_{i}}^{\mp z}, \tag{16}\\ R_{i}^{k}\left(\tau_{i}, z^{k}\left(\tau_{i}, S_{k}\left(\tau_{i}\right)\right)\right), & (x, y) \in I_{S_{k i}}^{z_{i}}, \\ R_{i}^{\mp}\left(\tau_{i}, \varphi\left(\tau_{i}\right), \ldots, \varphi^{(m-1)}\left(\tau_{i}\right), \hat{z}^{\mp}\left(\tau_{i}, \varphi\left(\tau_{i}\right)\right)\right), & (x, y) \in I_{\varphi_{i}}^{\mp z}\end{cases}
$$

(the «starting value» of $z(x, y)$),

$$
\begin{equation*}
(U z)_{i}(x, y)=\int_{z_{i}}^{x} f_{i}\left(t, \breve{g}_{i}, z\left(t, \breve{g}_{i}\right),(V z)\left(t, \breve{g}_{i}\right)\right) d t, \quad i \in \mathcal{J}, \tag{17}
\end{equation*}
$$

(the «evolution along characteristics"), where $\breve{g}_{i}=g_{i}(t ; x, y)$, and $\tau_{i}=\tau_{i}(x, y, z)$.
From now on we assume: $2 \Lambda a<b_{0}$, which yields $\bar{I}_{S_{1} i}^{u} \cap \bar{I}_{\varphi_{i}}^{-v}=\emptyset, \bar{I}_{S_{i} i}^{u} \cap \bar{I}_{p_{i}}^{+v}=\mathfrak{\emptyset}$, and $\Lambda a \leqslant \varepsilon_{0}$, which guarantees that 5) of H_{1} is satisfied in the sets $\bar{I}_{S k i}^{u}, \bar{I}_{p_{i}}^{\mp \psi}$.

Using the previous estimates and the compatibility conditions we can prove the following

Lemma 4. - Let Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ hold. Then, for every $z \in B(a, P, Q, \varrho)$ the function $S z$ restricted to I_{a}^{-}and I_{a}^{+}is continuous with respect to (x, y).

The proof is similar to that of Lemma 3 of [14].
Put

$$
K=\int_{0}^{a}\left[k_{1}(t)+k_{2}(t) Q+k_{3}(t)\{c(t) Q+d(t)\}\right] d t
$$

Lemma 5. - If Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ are satisfied, then, for every z in $B(a, P, Q, \varrho)$ the function $S z$ satisfies in $\bar{I}_{y_{t}}^{\mp z}$ a Lipsehitz condition in y with the constant

$$
Q_{\gamma}^{S}=(\Gamma+K) L_{1} .
$$

The proof of this lemma is similar to that of Lemma 4 of [14].
Lemma 6. - Let Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ hold. Then, for every $z \in B(a, P, Q, \varrho)$, the function $S z$ is Lipschitzian in $\bar{I}_{\gamma_{i}}^{F z}$ with respect to x with the constant $P_{\gamma}^{S}=Q_{\gamma}^{S} \Lambda+F$.

The proof can be carried out as in [14], Lemma 5.
Lemva 7. - If Assumptions $\mathbf{H}_{\mathbf{1}}-\mathrm{H}_{5}$ are satisfied, then in the sets $\bar{I}_{S_{k} i}^{z}, k=1,2$, the function $\$ z$ satisfies a Lipschitz condition in y with the constant

$$
Q_{0}^{S}=L_{1}\left\{\Lambda_{0}^{-1}\left[r_{1}+r_{2}(P+Q s)+F\right]+K\right\} .
$$

For the proof, see [14].
Lemma 8. - Let Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ hold. Then, for every $z \in B(a, P, Q, \varrho)$, the function $\mathcal{S z}$ satisfies in $\bar{I}_{\varphi_{i}}^{\mp z}$ a Lipschitz condition in y with the constant

$$
Q_{\varphi}^{S}=L_{1}\left[(R+F) \Lambda_{0}^{-1}+K\right]
$$

Proof. - Suppose $(x, y),(x, \bar{y}) \in \bar{I}_{\varphi_{i}}^{-z}$ (similarly for $\bar{I}_{\varphi_{t}}^{+z}$) and $y \leqslant \bar{y}$. Then Lemma 2 implies

$$
\left|(T z)_{i}(x, y)-(T z)_{i}(x, \bar{y})\right| \leqslant R \Lambda_{0}^{-1} L_{1}|y-\bar{y}|, \quad R:=r+\Phi \sum_{j=0}^{m-1} \bar{r}_{j}+\bar{r}(P+Q \Phi)
$$

Furthermore, since $\tau_{i}(x, y, z) \geqslant \tau_{i}(x, \bar{y}, z)$, by Lemma 2 , we find

$$
\left|(U z)_{i}(x, y)-(U z)_{i}(x, \bar{y})\right| \leqslant L_{1}\left(K+\Lambda_{0}^{-1} F\right)|y-\bar{y}| .
$$

Therefore $\left|(S z)_{i}(x, y)-(S z)_{i}(x, \bar{y})\right| \leqslant Q_{q}^{s}|y-\bar{y}|$, and the lemma is proved.
Remark 1. - From Lemmas 5, 7 and 8 it follows that the function $S z$ satisfies in I_{a}^{-}and I_{a}^{+}a Lipschitz condition in y with the constant $Q^{s}=\max \left[Q_{\gamma}^{s}, Q_{0}^{s}, Q_{p}^{s}\right]$. As $a \rightarrow 0^{+}$we have $Q_{\gamma}^{S} \sim \Gamma, Q_{\varphi}^{s} \sim A_{0}^{-1}(R+F), Q_{0}^{s} \sim A_{0}^{-1}\left[r_{1}+F+r_{2}(P+Q s)\right]$, so that $\hat{W}=\max \left[Q_{\gamma}^{s}, Q_{q}^{s}, Q_{0}^{s}\right]$ depends on P, Q.

If the points (x, y) and (x, \bar{y}) belong to different sets $\bar{I}_{. i}$, then, in view of Lemma 4 and by introducing an intermediate point, this case reduces to the one already considered.

Lemma 9. - If Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ are satisfied, the function Sz satisfies in I_{a}^{-} and I_{a}^{+}a Lipschitz condition in x with the constant $P^{s}=Q^{s} \Lambda+F$.

The proof of this lemma is similar to that of Lemma 7 in [14].
Remark 2. - In particular, without loss of generality, we may assume that $\Lambda \geqslant 1$. Then, by Lemmas 5, 7, 8 and 9 , we conclude that the function $S z$ satisfies in I_{a}^{-}and I_{p}^{+}a Lipschitz condition with respect to (x, y) with the constant P^{s}.

Lemma 10. - Suppose $a \in\left(0, a_{0}\right]$ is sufficiently small, so that

$$
\begin{equation*}
a \leqslant \varrho\left[r_{1}+r_{2}(P+Q s)+R+\Gamma A+F\right]^{-1} \tag{18}
\end{equation*}
$$

Then, under Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$, the operator S maps $B(a, P, Q, \varrho)$ into $B\left(a, P^{s}, Q^{S}, \varrho\right)$.
Proof. - This will be proved by showing that, for $z \in B(a, P, Q, \varrho)$,

$$
\begin{equation*}
|(S z)(x, y)-\gamma(y)|_{n} \leqslant \varrho, \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
(S z)(0, y)=\gamma(y), \quad y \in\left[\alpha_{1}, \alpha_{2}\right] \tag{20}
\end{equation*}
$$

First, let $(x, y) \in \bar{I}_{\gamma_{i}}^{-z}$; then we have

$$
\left|(S z)_{i}(x, y)-\gamma_{i}(y)\right| \leqslant \Gamma\left|g_{i}(0 ; x, y)-y\right|+\int_{0}^{x} F d t \leqslant(\Gamma A+F) a
$$

Next, let $(x, y) \in \bar{I}_{S k i}^{z}$, then taking into consideration the compatibility condition 3) of H_{3} and the initial condition (2), we see that

$$
\begin{aligned}
\left|(T z)_{i}(x, y)-\gamma_{i}(y)\right| \leqslant \mid R_{i}^{k}\left(\tau_{i}, z^{k}\left(\tau_{i},\right.\right. & \left.\left.\mathcal{s}_{k}\left(\tau_{i}\right)\right)\right)-R_{i}^{k}\left(0, z^{k}\left(0, \mathcal{s}_{k}(0)\right)\right) \mid+ \\
& +\left|R_{i}^{k}\left(0, \gamma\left(\alpha_{k}\right)\right)-\gamma_{i}(y)\right| \leqslant\left[r_{1}+r_{2}\left(P+Q^{s}\right)+\Gamma \Lambda\right] a
\end{aligned}
$$

where $\tau_{i}=\tau_{i}(x, y, z)$. Finally, suppose that $(x, y) \in \bar{I}_{\varphi_{i}}^{\mp z}$, then by compatibility condition 3) of H_{3} we get

$$
\begin{aligned}
\left|(T z)_{i}(x, y)-\gamma_{i}(y)\right| \leqslant \mid R_{i}^{\mp}\left(\tau_{i}, \varphi\left(\tau_{i}\right)\right. & \left., \ldots, \varphi^{(m-1)}\left(\tau_{i}\right), \hat{z}^{\mp}\left(\tau_{i}, \varphi\left(\tau_{i}\right)\right)\right)- \\
& -R_{i}^{\mp}\left(0, \varphi(0), \ldots, \varphi^{(m-1)}(0), z^{\mp}(0, \varphi(0))\right) \mid+ \\
& +\left|R_{i}^{\mp}\left(0, \beta_{0}, \ldots, \beta_{m-1}, \hat{\gamma}\left(\beta_{0} \mp 0\right)\right)-\gamma_{i}(y)\right| \leqslant(R+\Gamma \Lambda) a
\end{aligned}
$$

where again $\tau_{i}=\tau_{i}(x, y, z)$. Since $\left|(U z)_{i}(x, y)\right| \leqslant F a$, combining the previous estimates yields

$$
\left|(S z)_{i}(x, y)-\gamma_{i}(y)\right| \leqslant\left[r_{1}+r_{2}(P+Q s)+R+\Gamma A+F\right] a
$$

Hence, by (18) we conclude that (19) holds, while (20) is obviously satisfied. Lemmas 5-9 imply that S_{z} satisfies in I_{a}^{\mp} a Lipschitz condition with respect to both variables, with the appropriate constants P^{s}, Q^{s}. Thus the proof is complete. ///

From now on we shall assume that (18) is satisfied.

Notice that, generally speaking, $P^{s} \geqslant P, Q^{s} \geqslant Q$, so that

$$
B(a, P, Q, \varrho) \subset B\left(a, P^{s}, Q^{s}, \varrho\right)
$$

The operator S is defined on all $B(a)$. We shall use the same symbol S to denote the restriction of S to the set $B(a, P, Q, \varrho)$. Put

$$
\tilde{K}=\int_{0}^{a}\left[k_{2}(t)+k_{3}(t) m(t)\right] d t, \quad \bar{P}=\min \left[P, P^{s}\right], \quad \bar{Q}=\min \left[Q, Q^{s}\right]
$$

Lemma 11. - Let Assumptions $\mathrm{H}_{\mathbf{1}}-\mathrm{H}_{5}$ hold. Then, for all $(x, y) \in \bar{I}_{\gamma_{i}}^{\mp u} \cap \bar{I}_{\gamma_{i}}^{\mp v}, u, v \in$ $\in B(a, P, Q, \varrho)$, we have

$$
|(S u)(x, y)-(S v)(x, y)|_{n} \leqslant q_{1}\|u-v\|
$$

where $q_{1}=L_{1} L_{2}(\Gamma+K)+\tilde{K}$, so that $q_{1} \rightarrow 0^{+}$as $a \rightarrow 0^{+}$.
The proof of this lemma can be carried out as in Lemma 10 of [14].
Similarly as in [14] we can also prove the following
Lemma 12. - If Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ are satisfied, then, for all (x, y) in $\bar{I}_{S_{1} i}^{u} \cap \bar{I}_{S_{1} i}^{v}$ or $\bar{I}_{S_{3} i}^{u} \cap \bar{I}_{S_{2} i}^{v}$, and $u, v \in B(a, P, Q, \varrho)$, we have

$$
|(S u)(x, y)-(S v)(x, y)|_{n \leqslant q_{2}\|u-v\|}
$$

where $q_{2}=L_{1} L_{2}\left[\Lambda_{0}^{-1}\left(r_{1}+r_{2}(P+Q s)+F\right)+K\right]+\tilde{K}+r_{2}$, so that $q_{2} \rightarrow r_{2}$ as $a \rightarrow 0$.
Levina 13. - Suppose Assumptions $\mathbf{H}_{1}-\mathbf{H}_{5}$ hold. Then, for all $(x, y) \in \bar{I}_{\varphi_{i}}^{\mp u} \cap \bar{I}_{\varphi_{i}}^{\mp v}$ and $u, v \in B(a, P, Q, \varrho)$, we have

$$
|(S u)(x, y)-(S v)(x, y)|_{n} \leqslant q_{3}\|u-v\|,
$$

where $q_{3}=L_{1} L_{2}\left[\Lambda_{0}^{-1}(R+F)+K\right]+M\left(\bar{r}+\sum_{j=0}^{m-1} \bar{r}_{j}\right)+\tilde{K}$, so that $q_{3} \rightarrow 0$ as $a \rightarrow 0$.
Proof. - Let $(x, y) \in \bar{I}_{\varphi_{i}}^{-u} \cap \bar{I}_{\varphi_{i}}^{-v}$, then by Lemmas 2 and 3 we have

$$
\left|(T u)_{i}(x, y)-(T v)_{i}(x, y)\right| \leqslant\left[R \Lambda_{0}^{-1} L_{1} L_{2}+M\left(\bar{r}+\sum_{j=0}^{m-1} \bar{r}_{j}\right)\right]\|u-v\|
$$

Assume, for definiteness, that $\tau_{i}(x, y, u) \leqslant \tau_{i}(x, y, v)$, then by Lemmas 1 and 2 we see that

$$
\begin{equation*}
\left|(U u)_{i}(x, y)-(U v)_{i}(x, y)\right| \leqslant\left[L_{1} L_{2}\left(K+F \Lambda_{0}^{-1}\right)+\widetilde{K}\right]\|u-v\|, \tag{21}
\end{equation*}
$$

whence the assertion follows.

Lemma 14. - If Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ are satisfied, then for all (x, y) in $\vec{I}_{\gamma_{i}}^{+u} \cap \bar{I}_{p_{i}}^{+v}$ or $\bar{I}_{\gamma_{i}}^{-u} \cap \bar{I}_{\varphi_{i}}^{-v}$ or $\bar{I}_{\varphi_{i}}^{-u} \cap \bar{I}_{\gamma_{i}}^{-v}$ or $\bar{I}_{\varphi_{i}}^{+u} \cap \bar{I}_{\gamma_{i}}^{+v}$, and u, v in $B(\alpha, P, Q, \varrho)$, we have

$$
|(\$ u)(x, y)-(S v)(x, y)|_{n} \leqslant q_{4}\|u-v\|
$$

where $q_{4}=L_{1} L_{2}\left[T+\Lambda_{0}^{-1}(R+\tilde{K})+K\right]+\tilde{K}$, so that $q_{4} \rightarrow 0$ as $a \rightarrow 0$.
Proof. - We consider only the case when $(x, y) \in \bar{I}_{\gamma_{i}}^{+\nu} \cap \bar{I}_{\varphi_{i}}^{+v}$; the remaining cases can be handled similarly.

Since $\tau_{i}(x, y, u)=0$ for $(x, y) \in \tilde{I}_{\gamma_{i}}^{+u}$, by Lemma 2, we have

$$
\left|\tau_{i}\right| \leqslant A_{0}^{-1} L_{1} L_{2}\|u-v\|
$$

where, here and in the rest of the proof, $\tau_{i}=\tau_{i}(x, y, v)$. Moreover $\lambda_{i}(x, y, u, v)-$ $-\varphi^{\prime}(x) \geqslant \Lambda_{0}$, since $i \in J^{\dagger}, 0 \leqslant y-\varphi(x) \leqslant \Lambda a \leqslant \varepsilon_{0}$ and because of 5) of H_{1}. Therefore the function $g_{i}^{u}(t ; x, y)-\varphi(t)$ is increasing in t on the interval $[0, x]$, whence

$$
g_{i}^{u}(0 ; x, y)-\beta_{0} \leqslant g_{i}^{u}\left(\tau_{i} ; x, y\right)-\varphi\left(\tau_{i}\right)
$$

In view of Lemma 1, we get

$$
\left|g_{i}^{u}\left(\tau_{i} ; x, y\right)-\varphi\left(\tau_{i}\right)\right|=\left|g_{i}^{u}\left(\tau_{i} ; x, y\right)-g_{i}^{v}\left(\tau_{i} ; x, y\right)\right| \leqslant L_{1} L_{2}\|u-v\|
$$

Hence we obtain

$$
\left|g_{i}^{u}(0 ; x, y)-\beta_{0}\right| \leqslant L_{1} L_{2}\|u-v\|
$$

On account of compatibility condition 3) of H_{3} and initial condition (2), we find

$$
\begin{aligned}
&\left.\mid(T u)_{i}(x, y)-T v\right)_{i}(x, y) \mid \leqslant \\
& \leqslant\left|\gamma_{i}\left(g_{i}^{u}(0 ; x, y)\right)-R_{i}^{+}\left(\tau_{i}, \varphi\left(\tau_{i}\right), \ldots, \varphi^{(m-1)}\left(\tau_{i}\right), \hat{z}^{+}\left(\tau_{i}, \varphi\left(\tau_{i}\right)\right)\right)\right| \leqslant \\
& \leqslant \mid R_{i}^{+}\left(\tau_{i}, \varphi\left(\tau_{i}\right), \ldots, \varphi^{(m-1)}\left(\tau_{i}\right), \hat{z}^{\mp}\left(\tau_{i}, \varphi\left(\tau_{i}\right)\right)\right)- \\
&-R_{i}^{+}\left(0, \varphi(0), \ldots, \varphi^{(m-1)}(0), \hat{z}^{\mp}(0, \varphi(0))\right)\left|+\left|\gamma_{i}\left(g_{i}^{u}(0 ; x, y)\right)-\gamma_{i}\left(\beta_{0}+0\right)\right| \leqslant\right. \\
& \leqslant \Gamma\left|g_{i}^{u}(0 ; x, y)-\beta_{0}\right|+R\left|\tau_{i}\right|
\end{aligned}
$$

Combining the estimates above with (21) yields the assertion.
Lemma 15. - Let Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ hold. Then for all (x, y) in $\bar{I}_{y_{1}}^{-u} \cap \bar{I}_{S_{1} i}^{v}$ or $\bar{I}_{\gamma_{i}}^{+u} \cap \bar{I}_{S_{2} i}^{v}$ or $\bar{I}_{S_{1} i}^{u} \cap \bar{I}_{\gamma_{\xi}}^{-v}$ or $\bar{I}_{S_{2} i}^{u} \cap \bar{I}_{\gamma_{i}}^{+v}$, and $u, v \in B(a, P, Q, \varrho)$, we have

$$
|(\delta u)(x, y)-(\delta v)(x, y)|_{n} \leqslant q_{5}\|u-v\|
$$

where $q_{5}=L_{1} L_{2}\left[\Gamma+\left(r_{1}+r_{2}(P+Q s)+F\right) A_{0}^{-1}+K\right]+\widetilde{K}$, so that $q_{5} \rightarrow 0$ as $a \rightarrow 0$.

The proof of this lemma is similar to that of Lemma 14 (cf. also Lemma 12 of [14]).

Remark 3. - From the assumption $2 \Lambda a<b_{0}$ it follows that

$$
\bar{I}_{S_{1} i}^{u} \cap \bar{I}_{\varphi_{t}}^{-v}=\bar{I}_{\varphi_{t}}^{-u} \cap \bar{I}_{S_{1} i}^{v}=\bar{I}_{\varphi_{i}}^{+u} \cap \bar{I}_{S_{2} i}^{v}=\bar{I}_{S_{2} i}^{u} \cap \bar{I}_{\varphi_{i}}^{+v}=\emptyset
$$

("the characteristics issuing from $\left(0, \alpha_{1}\right),\left(0, \beta_{0}\right)$ and ($0, \alpha_{2}$) do not intersect"). Thus, the cases considered above cover all sets I_{a}^{-}and I_{a}^{+}. Lemmas 11-15 show that in I_{a}^{-}and I_{a}^{+}we have

$$
\begin{equation*}
\|S u-S v\| \leqslant q_{6}\|u-v\|, \tag{22}
\end{equation*}
$$

where $q_{6}=q_{5}+L_{1} L_{2}\left(r_{1}+r_{2}(P+Q s)\right) \Lambda_{0}^{-1}+M\left(\bar{r}+\sum_{j=0}^{m-1} \bar{r}_{j}\right)+r_{2}$, so that

$$
q_{6} \rightarrow r_{2} \quad \text { as } \quad a \rightarrow 0^{+}
$$

Now to impose $r_{2}<1$ is too restrictive (for instance, in [16] one has $r_{2}=1$). Thus, in general, the operator S is not a contraction. However, under suitable assumptions, the operator S^{2} is, as will be shown in the next Section.

5. - Properties of the operator $\2.

We begin with the following
Lemma 16. - Let Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ hold. Then, for $a \in\left(0, a_{0}\right.$] sufficiently small and P, Q sufficiently large, the operator S^{2} maps $B(a, P, Q, \varrho)$ into itself, and likewise $B\left(a, P^{S}, Q^{S}, \varrho\right)$ into itself.

Proof. - Applying Lemma 10 to the function $S z \in B\left(a, P^{s}, Q^{s}, \varrho\right)$ we get

$$
\left|\left(S^{2} z\right)(x, y)-\gamma(y)\right|_{n} \leqslant \varrho, \quad\left|\left(S^{2} z\right)(x, y)\right|_{n} \leqslant \Omega, \quad\left(S^{2} z\right)(0, y)=\gamma(y)
$$

provided $a \leqslant \varrho\left[r_{1}+r_{2}\left(P^{s}+Q^{s} s\right)+R^{s}+\Gamma \Lambda+F\right]^{-1}$, where R^{s} is defined by R with P and Q replaced by P^{S} and Q^{S}, respectively.

From Lemmas 5-9 it follows that the function $S^{2} z$ satisfies in I_{a}^{-}and I_{a}^{+}a Lipschitz condition with respect to both variables with constants $P^{s s}$ and $Q^{s s}$, respectively. But now the arguments of the operator S are not arbitrary functions of $B\left(a, P^{s}, Q^{s}, \varrho\right)$, but functions in the range of \mathcal{S}. Therefore, and by exploiting the postulated form of equations (3), (4), the Lipschitz constants of the function $S^{2} z$ can be made more precise.

Indeed, for any two points $(x, y)(x, \bar{y}) \in \bar{I}_{\gamma_{i}}^{-z}$ (or $\left.\bar{I}_{\gamma_{i}}^{+z}\right)$, by Lemma 5 we have

$$
\left|\left(S^{2} z\right)_{i}(x, y)-\left(S^{2} z\right)_{i}(x, \bar{y})\right| \leqslant L_{1}^{S}\left(\Gamma+K^{s}\right)|y-\bar{y}|,
$$

where L_{1}^{s} and K^{s} are defined by L_{1} and K, with P and Q replaced by P^{s} and Q^{s} respectively.

Let now $(x, y),(x, \bar{y}) \in \bar{I}_{S_{1} i}^{z}$ (and similarly for $\bar{I}_{S_{2} i}^{z}$, then $i \in \mathcal{J}^{1}$, therefore for $j \in J \backslash \mathfrak{J}^{1}$ the point $\left(x, S_{1}(x)\right)$ belongs to the set $\bar{I}_{\gamma_{j}}^{-z}$ (《any point on boundary lines can be reached by a characteristic starting from the initial line»). Hence, by Lemmas 5 and 6, we obtain

$$
\left|(S z)_{j}\left(x, S_{1}(x)\right)-\left(S_{z}\right)_{s}\left(\bar{x}, S_{1}(\bar{x})\right)\right| \leqslant\left(P_{\gamma}^{s}+Q_{\gamma}^{S} s\right)|x-\bar{x}|, \quad j \in \mathcal{J} \backslash \mathfrak{J}^{1}
$$

Hence, for $(x, y),(x, \bar{y}) \in \overrightarrow{\mathscr{I}}_{\mathrm{S}_{i}}^{z z}, \tau_{i}=\tau_{i}(x, y, S z), \bar{\tau}_{i}=\tau_{i}(x, \bar{y}, S z)$, by Lemmas $2,5,6$ we have:

$$
\begin{aligned}
\left|(T S z)_{i}(x, y)-(T S z)_{i}(x, \bar{y})\right| \leqslant r_{1}\left|\tau_{i}-\bar{\tau}_{i}\right| & +r_{2} \max _{i}\left|(S z)_{j}\left(\tau_{i}, S_{1}\left(\tau_{i}\right)\right)-(S z)_{j}\left(\bar{\tau}_{i}, S_{1}\left(\bar{\tau}_{i}\right)\right)\right| \leqslant \\
& \leqslant A_{0}^{-1} L_{1}^{s}\left[r_{1}+r_{2}\left(P_{\gamma}^{s}+Q_{\gamma}^{s} s\right]|y-\bar{y}| \quad\left(j \in J \backslash J^{1}\right)\right.
\end{aligned}
$$

Let now $(x, y),(x, \bar{y}) \in \bar{I}_{\varphi_{i}}^{-z}$ (or $_{\varphi_{i}}^{+z}$), then $i \in \mathcal{J}^{-}$, therefore for $j \in J^{J^{-}}$the point $(x, \varphi(x))$ belongs to the set $\bar{I}_{\gamma_{j}}^{-z}$ (" any point on the free boundary can be reached by a characteristic starting from the initial line 川. Then, similarly as above, we find

$$
\left|(T S z)_{i}(x, y)-(T S z)_{i}(x, \bar{y})\right| \leqslant \Lambda_{0}^{-1} L_{1}^{S} \bar{R}|y-\bar{y}|
$$

where $\tilde{R}=r+\Phi \sum_{i=0}^{m-1} \bar{r}_{j}+\left[L_{1}(\Gamma+K)(A+\Phi)+\tilde{j}\right] \bar{r}$. Furthermore, by Lemma 8, we
get

$$
\mid U S z)_{i}(x, y)-(U S \bar{z})_{i}(x, \bar{y})\left|\leqslant L_{1}^{S}\left(K^{S}+F \Lambda_{0}^{-1}\right)\right| y-\bar{y} \mid
$$

Combining the estimates above, we find

$$
\left|\left(S^{2} z\right)_{i}(x, y)-\left(S^{2} z\right)_{i}(x, \bar{y})\right| \leqslant Q^{s s}|y-\bar{y}|,
$$

where

$$
Q^{s s}=L_{1}^{s}\left\{\max \left[\Gamma, \Lambda_{0}^{-1}\left\{\max \left[r_{1}+r_{2}\left(P_{\gamma}^{s}+s Q_{\gamma}^{s}\right), \tilde{R}\right]+F\right\}\right]+K^{s}\right\}
$$

Consequently, in virtue of Lemma 9, we conclude that the function $S^{2} z$ satisfies in I_{a}^{-}and I_{a}^{+}a Lipschita condition in x with the constant

$$
P^{s s}=A Q^{s s}+F
$$

so that (assuming, without loss of generality, $\Lambda \geqslant 1$) we can take $P^{s s}$ as a Lipschitz constant of $S^{2} z$ with respect to both variables.

Thus, in order to show that the operator S maps $B(a, P, Q, \varrho)$ into $B\left(a, P^{s}, Q^{s}, \varrho\right)$, and S^{2} maps $B(a, P, Q, \varrho)$ into itself, we need the following restrictions on the constants $\varrho \in(0, \Omega-\omega], P \geqslant 0, Q \geqslant \Gamma, a \in\left(0, a_{0}\right]$:

$$
\begin{cases}{\left[r_{1}+r_{2}(P+Q s)+R+\Gamma \Lambda+F\right] a \leqslant \varrho,} & \Lambda a \leqslant \varepsilon_{0}, 2 \Lambda a<b_{0} \tag{23}\\ {\left[r_{1}+r_{2}\left(P^{s}+Q^{s} s\right)+R^{s}+\Gamma \Lambda+F\right] a \leqslant \varrho,} & P^{s s} \leqslant P, Q^{s s} \leqslant Q\end{cases}
$$

Now if ϱ, P, Q are fixed, and $a \rightarrow 0^{+}$, we have

$$
P^{s} \rightarrow \Lambda \hat{W}(P, Q)+F, \quad Q^{s} \rightarrow \hat{W}(P, Q), \quad P^{s s} \rightarrow \Lambda Z+F, \quad Q^{s s} \rightarrow Z
$$

where $\hat{W}(P, Q)$ is the greatest of $Q_{\gamma}^{s}, Q_{\varphi}^{s}, Q_{0}^{s}$ for $a=0$ (Remark 1), and

$$
\begin{aligned}
Z=\max \left[\Gamma, \Lambda_{0}^{-1}\left\{\operatorname { m a x } \left[r_{1}+r_{2}(\Gamma(\Lambda+s)+F)\right.\right.\right. & +F \\
& \\
r & \left.\left.\left.+\Phi \sum_{j=0}^{m-1} \bar{r}_{j}+\{\Gamma(\Lambda+\Phi)+F\} \bar{r}\right]+F\right\}\right]
\end{aligned}
$$

does not depend on P, Q. Therefore, for arbitrary $\varrho \in(0, \Omega-\omega]$, if

$$
P>A Z+F, \quad Q>Z
$$

then, for sufficiently small a in ($0, a_{0}$], all inequalities (23) are satisfied. Thus

$$
\begin{equation*}
S^{2}: B(a, P, Q, \varrho) \rightarrow B(a, P, Q, \varrho) \tag{24}
\end{equation*}
$$

But, since $Z \leqslant \hat{W}\left(P^{s}, Q^{S}\right)$, and $\hat{W}(P, Q) \geqslant \hat{W}\left(P^{s s}, Q^{s s}\right)$ (as can easily be verified, using (23)), we see that $P^{s s s} \leqslant P^{s}, Q^{s s s} \leqslant Q^{s}$, so that also

$$
S^{2}: B\left(a, P^{s}, Q^{s}, \varrho\right) \rightarrow B\left(a, P^{s}, Q^{s}, \varrho\right)
$$

and the lemma is proved.
Lemma 17. - If Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ and (23) are satisfied, then, for all u and v in $B(a, P, Q, \varrho)$ or in $B\left(a, P^{s}, Q^{s}, \varrho\right)$, we have

$$
\left|\left(S^{2} u\right)(x, y)-\left(S^{2} v\right)(x, y)\right|_{n} \leqslant q^{S}\|u-v\|
$$

where the coefficient $q^{s} \rightarrow 0^{+}$as $a \rightarrow 0^{+}$.

Proof. - Let $(x, y) \in \bar{I}_{\gamma_{i}}^{-S u} \cap \bar{I}_{\gamma_{i}}^{-S v}$ (similarly for $\bar{I}_{\gamma_{i}}^{+S u} \cap \bar{I}_{\gamma_{i}}^{+S v}$), then by using Lemma 11 we obtain, for $u, v \in B(a, P, Q, \varrho)$:

$$
\begin{equation*}
\left|\left(S^{2} u\right)(x, y)-\left(S^{2} v\right)(x, y)\right|_{n} \leqslant \hat{q}^{S}\|S u-S v\|, \tag{25}
\end{equation*}
$$

with $\hat{q}^{S}=L_{1}^{s} L_{2}\left(\Gamma+K^{s}\right)+\widetilde{K}=: q_{1}^{s}$.
Next, let $(x, y) \in \bar{I}_{\gamma_{i}}^{-S u} \cap \bar{I}_{S_{1} i}^{-S v}$ (similarly for $\bar{I}_{\gamma_{i}}^{+S u} \cap \bar{I}_{S_{2} i}^{S v}, \bar{I}_{S_{2} i}^{S u} \cap \bar{I}_{\gamma_{i}}^{+S v}, \bar{I}_{S_{1} i}^{-S u} \cap \bar{I}_{\gamma_{i}}^{-S v}$), then the assumptions of Lemma 15 are satisfied, and we have that inequality (25) is satisfied, with $\hat{q}^{s}=q_{5}^{s}$, where

$$
q_{5}^{s}=L_{1}^{s} L_{2}\left[\Gamma+\left(r_{1}+r_{2}\left(P^{s}+Q^{s} s\right)+\bar{F}\right) \Lambda_{0}^{-1}+K^{s}\right]+\tilde{K}
$$

Let now $(x, y) \in \bar{I}_{\gamma_{i}}^{+S u} \cap \bar{I}_{\varphi_{i}}^{+S v}$ (similarly for $\bar{I}_{\gamma_{i}}^{-S u} \cap \bar{I}_{\varphi_{i}}^{-S v}, \bar{I}_{\varphi_{i}}^{-S u} \cap \bar{I}_{\gamma_{i}}^{-S v}, \bar{I}_{\varphi_{i}}^{+S u} \cap \bar{I}_{\gamma_{i}}^{+S v}$, then the assumptions of Lemma 14 are satisfied, and (25) follows, with

$$
\hat{q}^{s}=q_{1}^{s}:=L_{1}^{s} L_{2}\left[T+\left(R^{s}+F\right) \Lambda_{0}^{-1}+K^{s}\right]+\widetilde{K} .
$$

Further, let $(x, y) \in \bar{I}_{\varphi_{i}}^{-S u} \cap \bar{I}_{\varphi_{s}}^{-S v}$ (similarly for $\bar{I}_{\varphi_{i}}^{+S u} \cap \bar{I}_{\varphi_{i}}^{+S v}$), then $i \in \mathcal{J}$. Thus, the point $(x, \varphi(x))$ belongs to the set $\bar{I}_{\gamma_{j}}^{u} \cap \bar{I}_{\gamma_{j}}^{v}$ for $j \in \mathcal{J} \backslash \mathcal{J}^{-}$. Consequently, by Lemma 11, we obtain

$$
\left|(S u)_{j}(x, \varphi(x))-(S v)_{j}(x, \varphi(x))\right| \leqslant q_{i}\|u-v\|
$$

Hence

$$
\begin{aligned}
& \left|(T S u)_{i}(x, y)-(T S v)_{i}(x, y)\right| \leqslant r\left|\tau_{S u}-\tau_{S v}\right|+ \\
& +\sum_{k=0}^{m-1} \bar{r}_{k}\left|\varphi_{S u}^{(k)}\left(\tau_{S u}\right)-\varphi_{s v}^{(k)}\left(\tau_{S v}\right)\right|+\bar{r} \max _{j}\left|(S u)_{j}\left(\tau_{S u}, \varphi_{S u}\left(\tau_{S u}\right)\right)-(S v)_{j}\left(\tau_{S v}, \varphi_{S v v}\left\{\tau_{S v}\right)\right)\right| \leqslant \\
& \leqslant\left[\Lambda_{0}^{-1} L_{1}^{S} L_{2} R^{s}+M\left\{\sum_{k=0}^{m-1} \bar{r}_{k}+L_{1}(\Gamma+K) \bar{r}\right\}\right]\|S u-S v\|+\bar{r} \underline{q}_{1}\|u-v\|,
\end{aligned}
$$

where $\tau_{S u}=\tau_{i}(x, y, S u), \tau_{S v}=\tau_{i}(x, y, S v)$, and $j \in \mathcal{J}^{-}$.
In a similar way we can show that for $(x, y) \in \bar{I}_{S_{1} i}^{S u} \cap \bar{I}_{S_{1} i}^{s v}$ (and analogously for $\bar{I}_{S_{2} i}^{S u} \cap \bar{I}_{S_{i} i}^{S v}$, we have
$\left|(T S u)_{i}(x, y)-(T S v)_{i}(x, y)\right| \leqslant$

$$
\leqslant \Lambda_{0}^{-1} L_{1}^{s} L_{2}\left\{r_{1}+r_{2}\left[(\Gamma+K) L_{1}(\Lambda+s)+F\right]\right\}\|S u-S v\|+r_{2} q_{1}\|u-v\|
$$

Assuming, for definiteness, $\tau_{i}(x, y, S u) \leqslant \tau_{i}(x, y, S v)$, we obtain (cf. (21)):

$$
\left|(U S u)_{i}(x, y)-(U S v)_{i}(x, y)\right| \leqslant\left[L_{1}^{S} L_{2}\left(K^{s}+F A_{0}^{-1}\right)+\tilde{K}\right]\|S u-S v\|
$$

Combining the above estimates we find in I_{a}^{-}and I_{a}^{+}(since $\bar{I}_{S_{1} i}^{S u} \cap \bar{I}_{\phi_{i}}^{-S v}=\bar{I}_{\bar{p}_{\mathrm{t}}}^{-S u} \cap$ $\left.\cap \bar{I}_{S_{1} i}^{S v}=\emptyset\right)$:

$$
\left|\left(S^{2} u\right)(x, y)-\left(S^{2} v\right)(x, y)\right|_{n} \leqslant q_{7}^{S}\|S u-S v\|+\left(\bar{r}+r_{2}\right) q_{1}\|u-v\|
$$

where

$$
\begin{array}{r}
q_{7}^{s}=L_{1}^{s} L_{2}\left\{\Gamma+\left[r_{1}+r_{2}\left(P^{s}+Q^{s} s+(\Gamma+K) L_{1}(\Lambda+s)+F\right)+F+R^{s}\right] \Lambda_{0}^{-1}+K^{s}\right\}+ \\
+M\left[\sum_{k=0}^{m-1} \bar{r}_{k}+L_{1}(\Gamma+K) \vec{r}\right]+\tilde{K}
\end{array}
$$

Finally, by (22), we obtain

$$
\left|\left(S^{2} u\right)(x, y)-\left(S^{2} v\right)(x, y)\right|_{n} \leqslant q^{S}\|u-v\|
$$

where $q^{s}=q_{7}^{S} q_{6}+\left(\bar{r}+r_{2}\right) q_{1}$, so that $q^{s} \rightarrow 0^{+}$as $a \rightarrow 0^{+}$.
A similar reasoning shows that for $u, v \in B\left(a, P^{s}, Q^{s}, \varrho\right)$ the same conclusion holds, with constant q^{s} obtained from the previous expression by replacing P^{s}, Q^{s} with $P^{S S}, Q^{S S}$, so that again $q^{S} \rightarrow 0$ as $a \rightarrow 0$. Thus S^{2} is a contraction in both $B(a, \tilde{P}, \tilde{Q}, \varrho)$ and its subspace $B(a, \bar{P}, \bar{Q}, \varrho)$, with

$$
\bar{P}=\min \left[P, P^{s}\right], \quad \bar{Q}=\min \left[Q, Q^{s}\right], \quad \tilde{P}=\max \left[P, P^{s}\right], \quad \tilde{Q}=\max \left[Q, Q^{s}\right]
$$

6. - The existence theorem.

Theorem. - Let Assumptions $\mathrm{H}_{1}-\mathrm{H}_{5}$ hold. Then, for given $\Omega>0$, any $\varrho \in(0, \Omega-\omega]$ and any sufficiently large constants P, Q, there are a number $a\left(0<a \leqslant a_{0}\right)$ and functions $\bar{z}: I_{a} \rightarrow \boldsymbol{R}^{n}, \bar{z} \in B(a, \bar{P}, \bar{Q}, \varrho)$, and $\bar{\varphi}, \vec{\varphi} \in C_{L}^{m-1}[0, a]$, which satisfy (1), (5), a.e. in I_{a}^{+} and I_{a}^{-}, and $[0, a]$, respectively, as well as conditions (2)-(4), (6). Furthermore, \vec{z} is unique in $B(a, P, Q, \varrho)$.

Proof. - Let us choose P, Q and a such that inequalities (23) are satisfied. Then, by Lemma 16, we see that

$$
\begin{array}{ll}
S: B(a, \bar{P}, \bar{Q}, \varrho) \rightarrow B(a, \tilde{P}, \tilde{Q}, \varrho), & S^{2}: B(a, \tilde{P}, \tilde{Q}, \varrho) \rightarrow B(a, \tilde{P}, \tilde{Q}, \varrho), \\
S: B(a, P, Q, \varrho) \rightarrow B(a, \tilde{P}, \tilde{Q}, \varrho), & S^{2}: B(a, \bar{P}, \bar{Q}, \varrho) \rightarrow B(a, \bar{P}, \bar{Q}, \varrho),
\end{array}
$$

where $\tilde{P}, \widetilde{Q}, \bar{P}, \bar{Q}$ are defined at the end of previous Section. Let us take $a \in\left(0, a_{0}\right]$ such that $q^{S}<1$. Then, by Lemma $17, S^{2}$ is a contraction in $B(a, \widetilde{P}, \widetilde{Q}, \varrho)$ and in its subspace $B(a, \bar{P}, \bar{Q}, \varrho)$. Since both are complete, there exists a function \bar{z} in
$B(a, \bar{P}, \bar{Q}, \varrho)$ s.t.

$$
S^{2} \bar{z}=\bar{z}, \quad \bar{z} \in B(a, \bar{P}, \bar{Q}, \varrho) \subset B(a, \tilde{P}, \tilde{Q}, \varrho)
$$

and this is the unique fixed point of S^{2} in $B(a, \tilde{P}, \tilde{Q}, \varrho)$. Then, from $S^{2} S \bar{z}=S \bar{z}$, $S \bar{z} \in B(a, \tilde{P}, \tilde{Q}, \varrho)$, we conclude that

$$
\$ \bar{z}=\bar{z}, \quad \vec{z} \in B(a, \bar{P}, \bar{Q}, \varrho) \subseteq B(a, P, Q, \varrho)
$$

and \vec{z} is the unique fixed point of S in $B(a, P, Q, \varrho)$ (cf. [10], p. 83). Proceeding as in [14] we can prove, using the groupal property of characteristic lines and the Chain Rule Differentiation Lemma of [4], that \bar{z} satisfies (1) a.e. in I_{a}^{+}and I_{a}^{-}, and (2)-(4) everywhere in $\left[\alpha_{1}, \alpha_{2}\right]$ and $[0, a]$, respectively. Finally if $\left(\bar{\varphi}_{0}, \ldots, \vec{\varphi}_{m-1}\right)$ is the solution of (14) with $z=\vec{z}$, then $\vec{\varphi}=\vec{\varphi}_{0}$ yields the desired free boundary. This concludes the proof.

Remark 4. - The case when the initial condition (2) is given on an interval (as it happens when V involves retarded arguments):

$$
z(x, y)=\gamma(x, y), \quad(x, y) \in[-\delta, 0] \times\left[\alpha_{1}, \alpha_{2}\right], \quad \delta>0
$$

can also be studied analogously.
Remark 5. - The solution and the free boundary depend continuously on the initial data. In fact, keeping for simplicity the β_{k} 's fixed ($k=0, \ldots, m-1$), we find

$$
\|\bar{z}[\gamma]-\bar{z}[\tilde{\gamma}]\| \leqslant\left(1-q^{S}\right)^{-1}\|\tilde{\gamma}-\gamma\|,
$$

and continuous dependence for the free boundary follows from Lemma 3.
Acknowledgement. This research was partially supported by Ministero Pubblica Istruzione (Fondi 40%, Italian National Project «Equazioni di evoluzione e applicazioni fisico-matematiche », and by G.N.F.M. of C.N.R. J. TURo gratefully acknowledges the support of C.N.R. for a visiting professorship at the University of Rome in March 1988.

REFERENCES

[1] V.E. Abolinia - A. D. Myshiis, Mixed problem for semilinear hyperbolic system on the plane (Russian), Mat. Sb., 50, 4 (1960), pp. 423-442.
[2] P. Bassanini, A nonlinear hyperbolic boundary value problem arising from wave propagation in a stratified medium, Atti Sem. Mat. Fis. Univ. Modena, 35 (1987), pp. 335-356.
[3] P. Bassanint - L. Cesari, La duplicazione di frequenza nella radiazione laser, Rend. Accad. Naz. Lincei, 69, 3-4 (1980), pp. 166-173.
[4] L. Cesari, A boundary value problem for quasilinear hyperbolic systems, Riv. Mat. Univ. Parma, 3 (1974), pp. 107-131.
[5] L. Cesari, A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, Ann. Sc. Norm. Sup. Pisa, (4) 1 (1974), pp. 311-358.
[6] L. Cessari, Nonlinear boundary value problems for hyperbolie systems, in: Dynamical Systems II, Intern. Symposium at the Univ. of Gainesville, Florida, pp. 31-58, New York, Academic Press, 1982.
[7] Z. Kamont - J. Turo, On the Cauchy problem for quasilinear hyperbolic systems with a retarded argument, Ann. Mat. Pura Appl., 143 (1986), pp. 235-246.
[8] Z. Kamont - J. Turo, On the Cauchy problem for quasilinear hyperbolic systems of partial differential equations with a retarded argument, Boll. Un. Mat. Ital., (6) 4-B (1985), pp. 901-916.
[9] K. Yu. Kazakov - S. F. Morozov, On definiteness of an unknown discontinuity line of a solution of mixed problems for a quasilinear hyperbolic system (Russian), Ukr. Mat. Zurn., 37, 4 (1985), pp. 443-450.
[10] A. N. Kolmogorov - S. V. Fomin, Elementi di Teoria delle Funzioni e di Analisi Funzionale, Ed. MIR, Mosca, 1980.
[11] A. D. Mrshkis - A. M. Filimonov, Continuous solutions of quasilinear hyperbolic systems with two independent variables, Differ. Urav., 17 (1981), pp. 488-500.
[12] J. Turo, On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order, Czech. Math. J., 36 (111) 2 (1986), pp. 185-197.
[13] J. Turo, A boundary value problem for quasilinear hyperbolic systems of hereditary partial differential equations, Atti Sem. Mat. Fis. Univ. Modena, 34 (1985-86), pp. 15-34.
[14] J. Turo, Local generalized solutions of mixed problems for quasi-linear hyperbolic systems of functional partial differential equations in two independent variables, Ann. Polon. Math. (to appear).
[15] C. Denson Hill, A hyperbolic free boundary problem, J. Math. Anal. Applications, 31 (1970), pp. 117-129.
[16] M. Brokate, A hyperbolic free boundary problem: existence, uniqueness and discretizalion, Numer. Funct. Anal. Optimiz., 5 (2) (1982), pp. 217-248.

