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p-Harmonic Obstacle Problems (*).
PArT IIL. - Boundary Regularity.

M. FucHs

Summary. - Let Q denote a bounded domain in some Riemannian manifold X with smeoth
boundary 02 and consider a submanifold ¥ of Buclidean space RE with or without bound-
ary. We show that if U: Q2 — ¥ minimizes the p-energy functional

B,(U, Q) :=f[lDU[]”dVol
0

for smooth boundary data g: 902 — Y, then U is continuous in a neighborhood of 8Q. This
completes the interior partial regularity resulis of Part I. As an application we obtain an
existence theorem concerning small solutions of the Dirichlet problem for p-harmonic maps.

0. ~ Introduction.

Given two Riemannian manifolds X (with boundary 9X) and Y (embedded in
some Euclidean space R”) of dimensions » and N respectively and a smooth bounded
domain M c Y such that dist (M, 0Y) > 0 we study the question of boundary regu-
larity for the associated p-harmonic obstacle problem: suppose that U: X - Y
minimizes the p-energy functional

(0.1) B,(U, 0):= f |DU[?d Vol
2

Q:=Int(X), for smooth boundary values g: 90X -~ M and under the additional
side condition Im (-)c M for the class of comparison functions. Here P>2 denotes
a given real number. In [F1, 2] we showed

H-dim (Sing U)<n— [p]—1, #n>p-+1;
Sing (U) is discrete if n—1<p <n
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for the set Sing (U) of interior singularities, here we want to prove that a minimizer
U is continuous in a neighborhood of 86X if the boundary map g:0X — M is suffi-
ciently regular by the way exfending earlier results of ScHOEN-UHLENBECK [SU]
and HARDT-LyN [HL] for unconstrained Riemannian problems.

As a corollary we obtain: if U: X — M minimizes (0.1) for prescribed smooth
boundary data g: 0X — M and if n —1<p < n, then the number of singular points
is finite and there are only interior singularities.

The proof of the boundary regularity theorem is carried out in two steps: we
start with a partial boundary result saying that U is of class C%* in a one-sided
neighborhood of ze0X iff

(0.2) liminfre—H,(U, 2 N B(x)) = 0
ry o0

for a sequence of «half-balls » B.(z) N Q. In a second step we analyze the behaviour
of boundary tangent maps by the way showing that the regularity criterion (0.2)
is satisfied at every boundary point .

1. — Notations and statement of the result.

In the Riemannion case let 2 denote a bounded open subset of a n-dimensional
Riemannian manifold X with boundary 002 of class 02 Y is a N-dimensional sub-
manifold of Fuclidean space R”* containing a bounded open region M with the fol-
lowing properties: 042 is of class O° and the closure of M is compactly contained
in Int(Y). For p>2 we introduce the restricted Sobolev class

Hu(Q, ) = {u e HW»(Q, R*): u(z) € M almost everywhere}
and. define the p-energy of e H.2({2, RY) as

1) By(u, ) = | Dulj»aH",
Q

H* being the n-dimensional Hausdorff-measure on X.

In the Buclidean case £ is a bounded subdomain of R with smooth boundary
082 and M denotes a smooth bounded subregion of Huclidean space RZ. The p-energy
funetional (1.1) is replaced by the splitting functional

By, 9) i=[(a,p B, 0) D, w Dyw)eirda

Q

with smooth elliptic and symmetric coefficients

a,:2—>R, B:0xR'—~R,
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and the definition of the restricted Sobolev space H-»(Q, M) is as above.
Now we state our

MAIN THEOREM. — Suppose that u e H-*(Q, M) has the property

EBy(u, 2)<B,(v, Q)

(or  Fy(u, Q)<Fm(’07 2))

for all v e H-»(Q, M) such that w— v eH L2(82, RE). Moreover, assume that the bound-
ary values of w are given-by & fumection g € C*(0Q, M). Then u is continuous in o neigh-
borhood of Q2 and the singular set of u is compactly contained in the interior of 0.

We wish to remark that our theorem is valid for unconstrained Riemannian prob-
lems, that is in the case of p-energy minimizing mappings 2 — Z with range in a
compact submanifold Z of R without boundary.

In order to avoid technical complications we concentrate on a special case of
the theorem from which it is not too hard to derive the general statement, the
interested reader is referred to the papers [DF] and [SU] where one finds some
comments concerning the general case.

From now on we fix the following notations: for z& R* and r, 4> 0 we let

Bi(@):= {ze R*: [p—2|<7, 2,>0} = B,(x) " R*,
I'={¢eR*: 2,=0}, I.:=InNB0),
Ba:= {ge C»(B,(0), R%): Im(g) c M, Lip(g)<A} .
The class Ba represents the admissible boundary functions g. We say that ue

€ H%?(B,(0), M) is & minimizer of p-energy with I“boundary values ge P iff
has trace g on I" and

B,(u, B (0)) := f \Dul do < B,(v, B£(0)

By (0)

for all v e H#(B}(0), M) such that v = g on I" and » = v on B}(0)\B(0), 0 < <1-
Let M4 denote the class of all p-energy minimizers with I-boundary values in $,.
If » is in A4 with boundary funetion ge B4 we define the odd extension

w(@) — g(x) if 2,>0
(@) :=

7'—997»)—9(99,7_“/'1»)) if 2, <0
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for points » = (&', #,) € B;(0) and abbreviate

Reg (@) := {# € By(0): 4 is Holder eontinuous in a neighborhood of x},

Sing (#) :== B {0\ Reg (i) .
Then we have the following

THEOREM 1. —~ Suppose that 4 € Ma for some A > 0. Then

Reg (i) = {w € B,(0): limintro—{ |Dajrdz = o},

r{ 0 Bria)
especially
H»?(Sing (#4)) = 0
and
Sing(#) =0 for p>n.
Tn order to prove Theorem 1 we can concentrate on minimizers u € M4 with A and
B,(u, B (0)) :JllDuPdw
BI(0)
sufficiently small, more precisely it suffices to verify
THEOREM 2. — There are constants o, ¢ € (0, 1), £ > p, ¢, ¢; > 0 depending only on

dimensions, on p and on geometric data of M with the following property: suppose thai
u e Mo satisfies

A+ B,(u, BE(0)) <e?.
Thew:
a) Di € LY(By(0)) and
1t 1p
( J[:}Dd]tdz) <cl( )E[l ~+ | D@|*] dz)
Brya() Bi(x)
for all @€ Byy(0), r<<%.
b) e 0% By(0)) und

[d]c"""(&/z(o)) <0, .
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Clearly, Theorem 1 is a simple consequence of Theorem 2: if x e[ is chosen to
satisfy

limint w~nf \Dijrde = 0,
o Bilx)

then the scaled function

u,(2) := w(w + A2), =zeBH0),

is in AG,, and satisfies the hypothesis of Theorem 2 for A1« 1 which gives con-
tinuity of # near .
The major part of our paper (section 3) is devoted to the proof of Theorem 2.
In order to obtain complete boundary regularity we first of all have to replace
the regularity criterion of Theorem 2 by a condition involving the smallness of
the mean oscillation of the minimizer (see Lemma 4.1). This new regularity cri-
terion is stable under blow ups and implies the existence of well-behaved tangent
maps. At this stage the proof of the Main Theorem can be completed along stan-
dard lines: regularity at the boundary follows from the fact that the constants are
the only tangent maps whieh was proved by HArDT-Lin [HL] who formulated their
result for unconstrained Riemannian problems but it is easy to check that the
presence of the obstacle does not change the argument. -

2. — Background material. -
Most of our results are based on the following
LEMMA 2.1 (extension theorem for half balls). — There are constants &, 4,

y€(0,1), q, §, €, > 0 depending on dimensions, on p and the geometry of M with
the following property:

Let @ ¢ H»»(0B} (%), M), € I', and ac R be givenv such that
B,(p, 0B} (%)) W,(p, aB:r(w))V<eaaw-%(””(”-”-”
for some 0 < e<e. Then we find @ e H'»(B](z), M) with boundary values ¢ and
E,(D, Bf(#))< O, {r e B,(¢p, 0Bi(x)) + et-r=2- W,(p, 0Bf (@)} .
Here and in the sequel we use the notation

B, 4):=[\Dfle,  Waif, 4):={lf — als
4 A4

for functions f: 4 — R=
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A detailed proof of this extension theorem can be found in the paper [F3]; in
order to get the above version for half balls B (x), # € I', one has to apply a suit-
able Bi-Lipschitz transformation.

LeMma 2.2 (monotonicity formula). — There are constants e e (0,1), 0;>0
depending on absolute data with the following property: suppose that w € (s with
A<e,. Then for all 2 B,,(0) and 0 <o<<p<i

o B,(#, B (#)) < 0, {QP*"E,,(QZ, Be(”)) -+ Ag} ,
provided » < n.

Proer. — For balls B (z) c B¥(0) Lemma 2.2 is a consequence of [F2], Theorem 2.4.
To obtain the general statement one may easily modify the proof of [SU], Lemma 1.3.

Finally we need a Campanato type estimate for p-harmonic systems on half
balls with preseribed boundary data on I

LEMMA 2.3. — Suppose that ge $B,4. Moreover, let » € HL?(B}(0), R*) be a so-
lution of

2.1) D, (|Dvjp—2D,0) =0

on Bi(0) with » =g on I',. Then for all ¢ <1 and r< R the following estimate

is valid
levipdzgo'{[(%)“—l— e] f[D@]sz + e"l’/lf“R"} ,

B1(0) B%(0)
¢ denoting a constant depending on #, L and p.

PROOF. ~ Let we H>?(B}(0), R*) denote the solution of

fll)w]z’ dz — min

Bj(0)

in the space (v — g) - H L2(B1(0), RE). Clearly w satisfies (2.1) on B}(0) with w =0
on I’y and it is not hard to check that the odd extension @ of w is a weak so-
lution of (2.1) on the whole ball B,(0) which gives the estimate (compare [U] and
[F2], Section 3)

(2.2) ﬁDwil’dw<c-(%)n f{Dw

Bi(0) BE(0)

Pdax .
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On the other hand we have
f |Dv — Dw|?dz<c- f ({Dv=2Do — | Dw|>~2 Dw) - (Dv — D) dov =
BH(0) Bx(0)
= cJ‘( {Dv|r=2 Do — |Dw|?~* Dw) - Dy dw,

B0)

since v — w has boundary values g. Therefore:

f |Dv — Dwlrdw<o-A f (IDof~1 + [ Dw}r-t) do <
B(0) Bj0)
<c-{g-f(]m[p + |Dwl?) do -+ Amel—an}.

Bi(0)

Since w minimizes p-energy for boundary values v — g on 9B} (0) we obtain

f]l)fw]pdx<o-{ levP’dm —[—f[Dgl”dw} < 0-{ f[Dv[z’dm -+ APR"},

Bj;(0) B3(0) B4(0) B}(0)
hence
(2.3) fipo— Dwipdm<o-{e~ [1polpas + A?’el—f’R“} .

BRo) BH0)

Finally we combine (2.2), (2.3) to get

ﬁDv[de<o-{(%)n f}Dw[”d@" -+ e-f]Dv]”d:v + A”el—ﬁR"} <

BE(0) Bi(0) Bi(0)

<o-{[(%)n—|— s] ﬁDv]pdw + eH”APR"}. =

BLO)

3. - Partial higher integrability and partial regularity near the boundary.

In this section we give a proof of Theorem 2. We start with a partial higher
integrability result. So assume that u € M4 is given with boundary function g€ Ba
and that

(3.1) A+ B (u, Bf) <er
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holds for some 0 <& <e, (defined in Lemma 2). Moreover, we fix ze Bf,(0)U I’
and 0 < BE< %. In what follows we denote all constants depending on dimensions,
on p and on geometric data with the symbols ¢, ¢, ....

Case 1: 2,> 3R (i.e. Bgyp(e) cc B (0)).

Chooging a := 4+ udx we find a radius r € [R/2, 3R/4] such that
Bajor(z)
Ep(uy aBr(z))<01'R—1 Ep(u) B(3/4)R(z)) 9

Wo(t,y 0B,(2)) <6y B~ W, (1, Buuwzr(2)) -
This gives on account of Poincaré’s inequality
(3.2) B,(u, 0B,(2)) W, (, 0B,(2))? < ¢y rtnin-=2 { Ro=n ], (14, Biyyn(2))} 117 .
From Lemma 2.2 we infer

Rp—‘nEm(“; B(3/4)R(z)) <0 {Rp_nEm("L B(3/4)R(z)) + Rp/lp} <
<0 {B,{@, Bin(7)) + A} <es{B,(u, BF(0)) 4 4} < ¢5¢7

(3.1)
and (3.2) turns into

(3.3) 4vlpm NI (4 BB, (2)) Wo(u, 0B,(2))7 <0077V 1e” T = g0,

Since the extension-lemma 2.1 is also valid for functions defined on spheres (compare
[F1, 2, 3], Theorem E) we may apply it to the function

wu: 0B,(2) - M

provided we assume 7<e,. Then (3.3) is just the smallness condition required in
Lemma 2.1 and we find an extension %: B,(2) — M of the boundary function u
satisfying the energy estimate of Lemma 2.1. A trivial calculation gives:

+o/n
f[D-vZ{P dae <o, ['5 'JE|D@Z[1’ do 4 -2 Re- ( f]Dﬁ |""/("+1’)dm) + 77t -/11’]
Baja(®) Byl?) By

where we have made use of the Sobolev-Poinecaré inequality. We choose = to sat-
isfy e,- 1<, ie.

(3.4) s<[06"16‘“12_“07_“]1"(“"(”1)).
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Then the last estimate reads
1 n/p
(3.5) J[]Dﬁ[f’dm <3 J[]Dﬁv’dm + ¢ {( JCIDﬁ{”/‘"ﬂ”dx) -+ /11’} .
Bpya(2) By(z) By(2)
Case 2: (0<)z,<3$R.
Let o := JC wdz and choose r € [§R, R] such that
Bp(2)

{ Ey(“, aBj(z)\F) <¢ B Ep('w, Bg(z)) ’
(3.6)

W,(u, 0B (2)\I') <, B-* W, (u, B (2)) .
We let ¢ :=u on 0Bf(z)\I, ¢:=g on 8B (z) N I". Then

E,(p, 8B} () W,(g, 9B} ()< (3.6)
60 {B-1B,(u, Bi(2)) + AR} (R W, (u, B(2)) + W,(g, 2Bi @) n I},

W, (4, B;<z>)<ou{f (u—g)-f(u—g) "do +flg*fg pdw}<

Bi(») Bi(2) Bi(z) B2

(by Poincaré’s inequality applied to the funetion w(z) = wu(x)— g(x), if #,>0,
w(w) = 0, if #,<0, e By(0)) '

clz{Rﬂ [ 1pw—g)pao + me}@m {RoB,(u, Bi(2)) + Rr+oAr} |

Bi(2)

Next we estimate W,(g, 0B} (z) N I'):

Wo{g 281 A D) <ef [ lg— (@) aB-t + R0~ ) <
OBHN T

<o {B2 A2 4 Rr-3(g) — (w)*|7}

where we have used the notation (f)*:= J[ fdez:
Bj(2)
9)* =" <arf Ig —uiodo =
Bj(2)
= (4 ]C |w|?dx < (Sobolev-Poincaré - Holder inequality)
Ba(z)
can’—"ﬁDw]pda&<cm {R”—”Ep(u, Bj(2)) -+ A?R?} .

Ba(z)



168 M. FucHS: p-harmonic obstacle problems, 111

Putting together our estimates we arrive at:

(38.7)  B,{p, 0B (2) W,(p, 0B (¢))" <0 BT B*~ V" [B(u, B3 (2)) + A"E"]'*" =
= 5_?_17““—")(“I)ME,,(()D, aB:(z)) W”((,D, aB:"(z))”<
<000 "R B, (u, Bf (2)) + AP R}

The monotonicity formula implies

Rp—nEp(uy B;(z)) <O {Rp—nEm(dy BR(Z)) -+ ApRp} < Cap {E,,(?Z, BI(O)) + A} < Cpsv 87
(8.1)

and (3.7) turns into the inequality:
(3.8) TV TATWUINITR (0 OB (2)) W, (@, 0B, (2))Y <y -8 HFI PN — ;42

B¥(2) is not exaetly a half-ball, but according to our choice of the radius » we may
apply the extension-lemma 2.1 after a suitable Bi-Lipschitz transformation. Since
the hypothesis of Lemma 2.1 is satisfied by (3.8) (provided 7<) we find @: B} (2) - M
with boundary values ¢ such that

B,(#, B} (2)) <o {77 By(g, 0B (2)) + t-7r-2 W,(p, 0B} (2))} .
Since # minimizes for I~boundary values g we get

By {1, Bue)) < (B (s BR)) + A7 B} <0y {By(7, BEE) + A B}
< Cay {T'RE;G(% an(z)) + iR Wp(?% aB:_(z)) + A*Rr <
<623{TE,,('U/, B;(Z)) -+ A+ R» + T4 R [R—l Wm(“y B;(z)) -+ Wp(g? aB;r(z) N F)]};

as before we estimate

Wy(u, Bi@) <eu{ [ lu—g)— u—g)pdw+ Brodr) <

BE()

<030{ f lu— glzdw -+ R"+PA1’} <
Bi(2)

{by the Sobolev-Poincare inequality)

1+o/n L
cal{( JID(% —‘g)l’””‘”*p’dx) + Rrtr Ap} < Csy {( fl Digjreitnto) dw) 4 Rer /11'} 7
By(2) Bte)
Wo(p, 0Bie) N I') < ey, {Rﬂ*lﬂm -+ R_lflwli’d%} <
Bar(z) |
<6z R {R”+1’/1P + ( f |Daivw/<n+mdw)w/”}_
Br(z)
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Let us remark that we have made use of the Sobolev-Poincaré inequality
“w”LF(BR(z))<035 | Dw ”LS(BR(z)) y  s=mnp[(n+p),

which is valid since

L({» € Ba(z)jw(w) = 0})>c5 R".

Putting together our results we have shown
. . 1+o/n
E, (@, Bg(2)) <05 {rE,,(u, Byz)) + A*Rr-v7 4 qu“”( f[Dﬁl‘@’"’)/(“+f’>dm) ' }<
- Br(z)

1+o/n .
<cgs{rEp(a, Bate) + rito( | i) " r—aApRn}

Br(2)

or equivalently

f]D@Z]Z’dm<039 {TJC D) dp ra( ][}D@Z}"P/("'Wdaz)lﬂin -+ /1?*5—5} .

Brjs(2) Br(2) : Br(2)

If we require ¢;-7<} which means by definition
(3.9) e< [05,} 0557297 +1/(v (4 1)

then we have inequality (3.5) also in Case 2.
From (3.4), (3.9), (3.5) and [G]; Prop. 1.1 (page 124), we finally deduce

LeMMA 3.1. — There are constants &€(0,1), #> p and ¢ > 0 depending on ab-
solute data with the following property: if # is in G4 and

(3.10) A+ B,(u, BH0)) < g2,

then Dii € LY(B,;(0)) and

(3.11) ( ]f;Dzz]tdx)W@- {( JC ]Dﬁ]pdx)1/p+ A}k
Bryy(z) Br(z) -

for all 2 € By,(0) and Re (0, §).
Next we show that a smallness condition of the form (3.10) is also sufficient to
prove regularity of & near the origin, more precisely we have
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Lrmma 3.2, ~ There are constants &, ae(0,1) and ¢> 0 with the following
property: suppose that % is in M4 and

A+ B (u, B{(0)) <&

Then # e 0%*(By,(0)) and
(3.12) (@) — ay)|<e: |z —y|

for all o, y € By,(0).

Proor. -~ We assume

(3.13) A+ B (u, BI(0)) <e

for some 0 < e<sg; being specified later. Fix ey, and 0 <r < R <<} and con-
sider the solution » of

f [Dv]? dz — min

B}(wo)

in the space H 1ﬂ’(B;,i’(az:o), R*) for boundary values w on ¢B; (). According to [F1, 2]
we know

— D,(|Duj-2 D, u) = F(-, u, Du)
on Bj(m,) for some function F satisfying the structure condition
(3.14) |F(+y uy, Du)| <0, Duf? .

Combining the equations satisfied by » and v we get an upper bound for the energy
of u—v:

[Du — Dvlrdr < e, -J‘(Du]l)ull’"2 — Dv|Do|?*-?) - (Dy — Dv) dx =

B;g(wn) B}‘;(“’o)

=fF( s Uy Du):(u —v)dw-e,<(3.14)

B};(wn)

o/t 1-p/¢
03-( J‘IDul‘dm) ( f[u——vi““‘?ﬂm) <
BE(%) B;g('x'o)
»/t 1-pft
<c4-{( f|Dﬁ}tdm) —I—AP-R"@/“}-( f[u——m"dm) .

B‘R(mu) B;e(mo)
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Since & <& we may apply estimate (3.11) of Lemma 3.1 to handle the integral
of Dii:

1-p/t
f |Du—Dv]”dm<os{A1’R"”’/“+R""’”‘l’f [D?Z]"dx}( f ]u—fu]f’dw) "

Blg) Bapl@p) Bl)
1-p/¢
= 05{/11’1%" +ffDd]”dw}( f{u—v[?dm) <
‘B2R(m0) B_;é(%o)

<(Poincaré’s inequality -+ minimality of v)<
1-p/t
<06-[R”—" ]Dulpdw] -{APR" +f{1)ﬁ{pdw}.
Bileg) Bzl
We combine this result with the estimate of Lemma 2.3: for arbitrary 6 € (0, 1)

f]Dﬁ[Pdw<c7{ f[Du[Pdw —|—f]Du ——Dv{pdm} <

B}e(mo) B}(mo) B;(mo)

<cs{ f}Du — Dvj?dx 4 [(%)n—i— 9] f|D?)|Pdm + Ol—pAﬁ’R"} <

Blo) Bilwg)

<09{ f]Du — Dol dx +- [(%)n+ 0] fll)u}”dm -+ 01—1'/11’1%“} <

By(ag) B (%)

<ou{vto, B (drme+ [ papas)+ (5 +o] [1Dapas+ el—an} <

BzR(OO) leg(wo)
<[ (5) 0+ v, Bayr] [1Da1ae 1 a0me [0 4 piu, By,
By plwg)

where we have abbreviated

y(u, Bi(@,) := B [ |Dulpdo .
B}(mn)

Thus we have shown

(3.15) J. |Da|? dw < 611 {[(%)Jr 0 + v(u, B;(wo))l“””] f |Dii|rde +

Br(zg) Bar(w,)

AR [0 + p(u, Bi) o).
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In a next step we use (3.15) with r = 7+ K for some small 7 being specified below:

1/’(770, B‘L’R(x()» <Oyt zp-{[l—l,— 0 -+ ’L'—"Q/)(u7 B;(wo))l—p/t] .

(% Balw)) + 7 AR (677 y(uy B (o)1)}
Choose v to satisfy 6,77 = ¢ and let 6 := 7% Moreover we require
(3.18) T“”q’u(u’ B;(xo))l—p/t< 1.

In this case the last inequality implies:

(3.17) (&, Bra(®o)) < §9(i; Baa(@)) + 6 A7 R2.
‘We have

Rﬂ‘"f !Du[pdmgcm{liﬂ‘“ f IDﬁlpdao—}-Af’Rf’} <015{ f |Du|1’dm—|—/1} < 6e?

Bji(a) Bp(x,) B (0) (3.13)
so that (3.16) is satisfied if we impose the smallness condition
(8.18) T{(0y5 £7) P L

on the parameter ¢. Finally we iterate (3.17) to get

{3.19) W(&, Breg(®o)) <27 %4(fly Ban(wo)) + €16 A2 R?

for all ke N. Abbreviating ff:= — {log 2)/log v (3.19) implies the growth condition
A G

(3.20) (%, B,(5)) <6y {(E) Y (2, Ba(x)) + APRﬁ’}

for all mye Iy, 0 <r<R<%.
To complete the proof of Lemma 3.2 we recall the interior estimate of [F1, 2]:
there are congtants g, y € (0,1) and ¢, > 0 such that

(3.21) ';“(“7 Br(fﬁ)) < 01 (%)y'l/’(uy BR(%))

holds for @€ Bf,(0) and 0 <r < R<min (dist (#:, I'), 3} provided
p(u, Byw,) <]

By the monotonicity formula, (3.13) and our choice of ¢ we may assume that the
last condition is satisfied, moreover we assume that (3.21) holds with y = §.
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Now we choose z, € B;“,Z(O) U I' and fix @, € " with the property
d:= dist (w,, I") = |2, — ] .
Moreover suppose 0 <r<R<%.
Case 1: d>r.

Then
w("zy Br(wl)) <619 {’(/)(M, Br(wl)) + A:oTp <(3'21) H

Ca0 {(g)BTP(My By(w,)) + APQP} ’

for ¢o:= min(d, E). In case o= R we get
8
(3.22) Q/’("’L Br(ml)) <0y {(1%) 7/)(717 BR(wl)) + Az’Rp} .

Assume now ¢ = d, that is R>d. Then

"P(u, B@(wl)) = "P(uy Bd(ml)) <0y {W(ﬁy Bd(ml)) + ApRp} <
<023{‘l)(77'y B2d(w0)) + ArE7} <(3.20) 3

N {(%)ﬂflj(’lzy BzR(fL’o)) =+ AﬂRﬁ}< (Bm(wo) CBsR(wl)) ,

AN
Ca5 {(‘1‘3) "I)(u; BsR(ml)) + Ar R?
and (3.22) has to be replaced by

(3.23) (@, B,(12)) <04 {(%)ﬁ,p(a, Bua(y)) + AmRz»} .
Case 2: d<r

Then
"/)(71) Br(xl)) <Capt 2;L'('ﬁy Bzr(wo)) <(3.20),

r

Cog {('E)ﬁ"/)(?zy BzR(xo)) -+ APRI’} <K 0y {(1%)61/)(,&’ BaR(ml)) -+ A» _Rz»} ,

so that (3.23) remains valid in Case 2.
Clearly (3.23) implies

(’3-24) P(ily, B,(2,)) <o {(1%)67/’(% Bp(w,)) + A‘"R”}

for all #,€B,;(0), 0 <r<R<3i.



174 M. FucHS: p-harmonic obstacle problems, 111

Let us set o:= §f. If we apply [G], Lemma 2.1 (page 87), then (3.24) gives

(4, B,(m))<eur* [R-“W('ﬂ, By(m,)) 4 A7]

for all ,,7, B as in (3.24). Choosing R = 3 and recalling (3.13) (where ¢ now is

fixed) the proof of Lemma 3.2 is complete (with « replaced by ofp). ™

4. — Complete boundary regularity.

Following [F1, 2] we combine Lemma 3.2 and the extension-lemma of section 1
to get a regularity criterion relying on the smallness of the mean oscillation.

LEMMA 4.1. — Given B > 0 there exist constants 0, = 0,(B), ¢> 0 and « e (0,1)
with the following property: suppose that « € M, with boundary function ge HBa
is given such that

B (u, B{(0))<B, f lu~ glrdw + A<6 .
Bi(0)

Then @ e 0%%(B,,(0)) and for z,y e B,,(0)
(@) — d(y)l<elo —y[”.
Proor. ~ Clearly all the statements of Lemma 3.2 remain valid if we require

(4.1) A+ B,(u, B, (0)) <& .

Choose r € {2,1] such that
w2 { E,(u, 0BT (ONT) < ¢, E,(u, B (0)),

W, 0BFOINT) <61 Wi (u, BE(0)) ,

where W, is caleulated with respect to a:= g(0) € M. Then the function

w on 0BT(ONI,
7= g onl,,

satisfies

Ey(p, 0B%(0)) W,(p, 0B;(0))7 < (4.2)

aB a0 [ w—gopa - gopane)s

SBH{ONT T,

=eli ‘49)'( fiu—g<0>lﬂdw +A")y< (it 6,<B) <o,B- (62 + A7)y <es BOYY.

B (0)
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We assume

(4.3) 5 B-077 <207

for some small ¢ > 0 being specified later. Then by Lemma 2.1 we find an extension
®@: BI(0) — M of the boundary mapping ¢ such that

Ep(¢7 B:.(O)) <6 {S'Ew((p7 aB:-(O)) + g7 Wp(% aB;F(O))} ’
hence by the minimality of «
B (u, Bf,(0))<E,(®, B},(0)) <0, {e-B + 6%} .

We choose ¢ = ¢(B) to satisfy ¢, e B<1-s]. With ¢ fixed we calculate 0, with (4.3)
and in addition ¢,e??<}e?. This gives E, (u, B,(0))<}e? so that (4.1) is sat-
isfied. m

LuvMa 4.2. — Suppose that {u;} e Ma is weakly convergent to some function
uo € H-?(B(0), R%). Let {g;} € B4 01(B,(0)) denote the corresponding sequence of
boundary functions and suppose g, — g, in CI(EI(O)). Then @, — 4, strongly in
Hv#(B,;(0)), 4, denoting the odd extension of w,— g,, and H"(Sing (%)) = 0.
Moreover ii; — i, uniformly on compact subsets of B,;,(0)\Sing (,).

Proor. — Exactly the same arguments as in [F1], Lemma 6.2, and [F2], Lem-
ma 4.2, give using Lemma 4.1

Sing (i) C {m € By(0): liminf ]C [Tho — (o), |* d& > 0}
r}0
Br(z)

and. %; — i, on compact subsets of B;,(0)\Sing (#%,). In order to prove strong con-
vergence i; — #, in H%?(B,,(0)) we cover Sing (@) N By,(0) with balls B, = B, (#;)
such that

oo
> <e

i=1

(==}

for a prescribed small e. Let U:=J B,. As in the interior case we get
=1

f]D@”LjIP dr<const-¢.
143

Consider a cut-off function #e C3(B,(0),[0,1]) such that 5 =1 on B,,(0N\U
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and spbyn N Sing (¥4,) = 0. We know

f(Lui—Lu,-)-Dquw: f (F,— F)-¢dw

B (0) B1(0)
for all ¢ cHwN L*(B}(0), R%) where we have abbreviated
L :== |Du|—2Du .
Moreover, we have the growth estimate
| < K- | Dul?

for some finite K independent of . Let ¢ := n?(@l, — 4,) which is admissible in the
above equation since ¢ vanishes on the boundary of B(0). We get

f (Lw; — L) - D(w; — w;)nrda =

B(0)
| Te— L) - DGy — wi) do+ (@)
B (0)
[ (wi— u) - Digrlg—gNao+ @)
Bi(0)
[ @=F) @ —a)do. (©
Bi(0)

The left-hand-side is bounded below by a constant times

f n?|Du; — Du,|*dx ,
BH(0)

the terms (), (¢) clearly vanish sinee u, — %,=X 0 on spt#. The remaining integral
(b) vanishes on account of our assumption g;— g, in C(By(0)). m

Levva 4.3. — Consider « € M4 with boundary function of class 01(31(0)) and a
sequence 4,/0. Then we have for a subsequence

wy(2) 1= ul{d;2) =
weakly in Hu7(B¥(0)), u; — u, strongly in H%7(B}(0)) for all » <1 and the con-

vergence is uniform away from the singular set of u,. Moreover, the limit u, is
radially independent and constant on I
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PROOF. — Let g € B4 denote the boundary values of . By Lemma 2.2 H,(u;, Bi(0))
is bounded independent of ¢ so that we may extract a weakly convergent subse-
quence. Clearly g, — g(0) in CI(E(O)). Thus all statements of Lemma 4.3 follow
from Lemma 4.2, it only remains to show D,u, =0 (radial independence). To this
purpose we observe the following stronger version of Lemma 2.2:

There are constants &, ¢ depending on absolute data with the following prop-
erty: if v ey and p<e,, then

@a) [ D el do<e- [t B (7, BEO) — s Ey(%, BIO)) + wlt— 5)]
BHOYNB(0)
for 0 <s<t<i.

For the proof one has to modify the arguments of [SU], Lemma 1.3, in an obvious
way. We apply (4.4) to the maps %, € My 4. Since %; — 4, strongly (4.4) gives

(4.5) f |D, ol ol dw< ¢~ {t=" By (il BF(0)) — 87~ B(l, BE(0))} .
BHO)\B}(0)

Thus ¢(3) = t#— f | Diéio|?do is an increasing function and L := Lim ¢(¢) exists. On
B (0) 140
the other hand we have for positive ¢ by the strong convergence

i) = tr-alim || DA dw =lim §(t2,) = L

B{(0)
so that ¢ is constant and (4.5) implies D, %, = 0. ®

In order to prove the Main Theorem we have to show that the tangent map
defined in Lemma 4.3 is trivial. This would give

i~>00

0 = lim )»["f}Du]l’dx

B3,(0)

and hence regularity of » at 0 €' (and by a trivial modification we obtain regu-
larity at every boundary point). Now w,= const is a consequence of [HL], Theo-
rem 5.7 and proof of Corollary 5.8: exactly as in [HL], Theorem 5.7, we can show
#, = const if we assume that #, is minimizing. By reduection it is sufficient to con-
sider tangent maps u, which are smooth except 0 €. (Compare the comments
in [HL], proof of Corollary 5.8.) But for this class of tangent maps minimality fol-
lows by direct caleulation or along the lines of the proof of Lemma 10 in [DF]. =
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5. — Application: existence of small solutions of the Dirichlet-problem for p-har-
monic maps,

Suppose that 2c X and Y are as in Section 1 (« Riemannian case ») and that
g: 08 — Y is a prescribed smooth boundary map with range contained in a regular
geodesic ball B,(Q) of the target manifold Y (compare [H] for the definition of
regular balls). In a famous paper Hildebrandt-Kaul-Widman [HKW] proved the
existence of a continuous map V: 2 —7Y which is harmonic (and by continuity

smooth) on £ and satisfies V|,, = ¢ as well ag V(£2) c B,(¢). In this section we
want to prove the analogous result for p-harmonic mappings with exponent p>2.

DErFINITION. — Uc Hu2(£,Y) is a weakly p-harmonic mapping Q—Y iff U is
a weak solution of the Huler-Lagrange equation associated to the p-energy fune-
tional E,(-, £2) introduced in Section 1, formula (1.1).

TaEorREM 5.1, — Suppose that we are in the Riemannian case described in Sec-
tion 1 and suppose that p>2 is & fized real wumber. Assume that g: 02 — Y is a
smoth function with range in o regular geodesic ball B.(Q)c Y. Then there is a
map Uc Hu2(Q, X) with the following properties:

(i) Ue0%(2,Y) for some 0 <a<1,
({ly Te0%*(R,Y) and U is weakly p-harmonic,
(i) Ul,p=¢ and Im(U)c B,(Q).
Proor. — For R > r sufficiently close to r the ball Bx(Q) is also regular and we
congider the obstacle problem

(5.1) B, (-, £) - min

in Hu»(Q, Bx(Q)) for boundary values g. The direct method gives the existence of
& minimizer U which aeccording to the Main Theorem is Holder continuous in a
neighborhood of 0£2. On the other hand Theorem F of [F1] (compare also [F4],
Theorem) shows that there are no interior singularities so that (i), Ul,, = ¢ and
in addition

Ue CV*(Q,Y)
are clearly satisfied. It remains to show

(5.2) Im (U) c B,(Q)
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which immediately implies p-harmonicity of U. In order to prove (5.2) we intro-
duce normal coordinates (u!,..., ") on Bx(Q) with center  and assume for tech-
nieal simplicity that £ is just a domain in R equipped with the flat metric. Then
the minimum property (5.1) implies after a simple caleulation ([F1], Section 7,
proof of Theorem F, and [F4])

(5.3) f A(u, Du)[Du- D(u) — I (u)n D, w D, u¥] dos < 0
0

for all neff Loy N L2, n>0. Here we have abbreviated:

g,; = metric tensor on ¥, I'}, = Christoffel symbols on ¥,

A(u, Du) = (g,,(w) Duuipa’”/j)p/z‘l .

We use (5.3) with

n:=max(v—r40), v:=u?,
which is admissible since |u|<r on 22. By [H], inequality (6.11), the quantity
|Du|*— I} (u) D, u’D_ w*u’
is nonnegative and we find

A(u, Du) [Dv|*ds<0

2o [|ulzr

so that A(u, Du):[Dy[2=0 on L. Since
[Dv|<2R|Du|, A(u, Du)>c-|Du|r-?

for some ¢>0 we deduce Dy ==0 on (2, hence |u|<r. ®W
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