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p- H a r m o n i c  Obs tac l e  P r o b l e m s  (*). 

PART III. - Boundary Regularity. 

~ .  FUCHS 

Summary.  - Let Y2 denote a bounded domain in some l~iemannian manifold X with smooth 
boundary ~Y2 and consider a submanifold Y o/ Euclidean space R ~ with or without bound- 
ary. We show that if U: ~ -+ Y minimizes the p-energy functional 

12 

for smooth boundary data g : ~ -> Y,  then U is continuous in a neighborhood of ~ .  This 
completes the interior partial regularity results of Part I. As an application we obtain an 
existence theorem concerning small solutions of the Dirichlet problem for p-harmonic maps. 

O. - Introduction. 

Given two Riemannian manifolds X (with boundary ~X) and Y (embedded in 
some Euclidean space R z) of dimensions n and • respectively and a smooth bounded 
domain M c I7 such that  dist (2~, ~ Y) > 0 we study the question of boundary regu- 
larity for the associated p-harmonic obstacle problem: suppose that  U:X--~Y 
minimizes the p-energy functional 

(0.1) o) :=fllD ll d Vol, 

: =  Int(X),  for smooth boundary values g: ~X-~PJ and under the additional 
side condition I m ( . ) c  M for the class of comparison functions. Hero p > 2  denotes 
a given real number. In [F1, 2] we showed 

H-dim(SingU)<n--[p]--l, n>p-~l ;  

Sing (U) is discrete if n -- 1 <p  < 
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for the  set Sing(U) of interior singtflarities, here we want  to prove tha t  a minimizer 
U is continuous in a neighborhood of 8X if the  boundary  map g: ~X-~ ;3I is suffi- 
ciently regular by  the  way extending earlier results of SC~OV,~-Um~E~BECK [SU] 
and HAI~DT-~Zq [ ] ~ ]  for unconstra ined l~iemannian problems. 

As a corollary we obta in:  if U: X - +  2~ minimizes (0.1) for prescribed smooth 
boundary  data  g: ~X--~ M and  if n -  1 < p  < n~ then  the  number  of singular points 
is finite and there  are only interior  singularities. 

The proof of the  boundary  regular i ty  theorem is carried out in two steps: we 
s tar t  with a par t ia l  boundary  result  saying tha t  U is of class C ~ in a one-sided 
neighborhood of x e ~X iff 

(0.2) l im in* r~-~E~( U, ~ r3 B,(m)) = 0 
r~o 

for a sequence of <( half-balls ~> B~(x) n s In  a second step we analyze the behaviour  
of boundary  t angen t  maps by  the  way showing t h a t  the  regular i ty  criterion (0.2) 
is satisfied at  eve ry  bounda ry  point  x. 

1. - N o t a t i o n s  and s t a t e m e n t  o f  t h e  result .  

In  the  Riemannian case let  ~2 denote a bounded open subset of a n-dimensional 
1%iemunnian manifold X with boundary  ~ of class C ~. IZ is a N-dimensional  sub- 
manifold of Eucl idean space R z containing a bounded open region M with the fol- 
lowing propert ies:  ~ is of class C 8 and the  closure of M is compact ly  contained 
in I n t ( Y ) .  :For p > 2  we introduce the  restr icted Sobolev class 

HI,~(S2, _M) = {u ~ H~,~(~2, RL): u(x) e M almost everywhere)  

and define the  p-energy  of u ~ HI,~(~, R ~) as 

(1.1) E~(~, .(2):=fHDuI['aB", 

H ~ being the  n-dimensional Hausdorff-measure on X. 
In  the  Euclidean ease ~(2 is a bounded subdomain of R ~ with smooth boundary  

2/2 and M denotes a smooth bounded subregion of Eucl idean space R L. The p-energy 
funct ional  (1.1) is replaced by  the  split t ing functional  

Q 

with smooth elliptic and symmetr ic  coefficients 

a ~ : ~ - - - > R ,  B i ~ : ~ •  
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and the  definition of the  resr Sobolev space H~,~(D, M)  is as above.  

~ o w  we s ta te  our 

MAI~ TJ~E0~E~. - Suppose that u e H~,~([2, .M) has the property 

(or _F~(u, YS) < ~ ( v ,  tP)) 

]or all v ~ HI,~(D, 2~) such that u -- v ~ tt~.~([2, R~'). Moreover, assume that the bound- 
ary values o] u are givenby a ]unction g ~ C~(~Q, M).  The~ u is continuous in a neigh- 
borhood o] ~ and the singular set o] u is compactly contained in the interior of ~ .  

We wish to  r e m a r k  t h a t  our theorem is valid for unconstrained Riemannian prob- 
lems, t h a t  is in the  case of p -ene rgy  minimizing mappings  ~9 -~ Z with  range in a 
compact  submanifold  Z of R L wi thout  boundary.  

I n  order to avoid  technical  complications we concentrate  on a special case of 
the  theorem f rom which i t  is not  too h~rd to derive the  general  statement~ the  

in teres ted  reader  is referred to the  papers  [DF] and  [SU] where one finds some 
comments  concerning the  general  case. 

F r o m  now on we fix ~he following nota t ions:  for x e R"  and  r , A  > 0 we let 

B~+(x) : =  {z e R- :  Ix-- z[ < r, z. > 0} = Bgx) r~ R~, 

F:=(zeR-:z.=O}, /;:=FnB,(O), 

gtA :=- {g e C~ RL): I m  (g) c 2~, Lip (g) < A } .  

The class ~ represents  the  admissible bounda ry  functions g. We say t h a t  u 

e HI.~(BI(O), M )  is a minimizer  of p -energy  with / ' - b o u n d a r y  values g e ~A iff u 
has  t race  g on F and  

~(u, B~+(o)):=fIDu?dx<~(v, B~+(o)) 
~+(o) 

for all v e HI,~(B+(O),/~) such t h a t  v = g on F and  u = v on B+(O)\B+(O), 0 < r <1" 
Let  3(~A denote the  class of all p -energy  minimizers w i t h / ' - b o u n d a r y  values in 33A. 

I f  u is in 3(~z with  boundary  function g e ~ we define the  odd extension 

[ u(x) - g(x) 
~t(x) 

l - -  ( u ( x ' ,  - -  x . )  - -  g ( x ' ,  - -  x ~ ) )  

if x . > O  

if x~<O 
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for points x = (x', x . )eBb(0)  and abbreviate  

l%eg (4) : =  {x e B~(0): 4 is HSlder continuous in a neighborhood of x},  

Sing (~) : =  B~(0 ) \Reg  (~). 

Then we have the  following 

T m ~ o ~ g  1. - Suppose that u e ~ A  /or some A > O. 

especially 

Then 

Reg'(e) = {x eBl(O): l i m i n f r ' - 4 l D g l ~ d z  -= 0},  
~$o J 

H ~-~ (Sing (~)) ----- 0 

The~ : 

a) Dfe e L~(B,/2(O)) and 

/or all x e B~j~(O), r < �89 

b) a e ~~ and 

B,.(~) 

[~7,]co,%zh#(o)) < e2 �9 

A § E~(u, B+(0)) < e~. 

and 

Sing (~) = ~ for p > n .  

In  order to prove Theorem 1 we can concentrate on minimizers u e ~La with A and 

E~(u, B~+(0)) = f l D u l ' d x  
~,+(o) 

sufficiently small, more precisely it suffices to verify 

TJ~EOr*E~ 2. - There are constants c~, s e (0 r 1), t > p, cl, c2 > 0 depending only on 
dimensions, on p and on geometric data o / M  with the Jollowing property: suppose that 

u e 3LA saris/lea 
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Clearly, Theorem i is a simple consequence of Theorem 2: if x E / '  is chosen to 

satisfy 

l im inf r~-~( tD(e]~ dz = 0 

then  the  scaled funct ion 

ua(z ) := u(x + 2z),  z e B+(0) , 

is in diL~A and satisfies the  hypothesis  of Th eo rem  2 for ~t <<1 which gives con- 
t inu i ty  of ~ near  x. . ,  

The major  pa r t  of our paper  (section 3) is devoted to the proof of Theorem 2: 
In  order  to obtain complete boundary  regular i ty  we first of all have to replace 
the regular i ty  criterion of Theorem 2 by  a condition involving the smallness of 
the mean  oscillation of the minimizer (see Lemma 4.1). This new regular i ty  cri- 
ter ion is stable under  blow ups and implies the existence of well-behaved tangent  
maps. At  this stage the proof of the Main Theorem can be completed along stan- 
dard  lines: regular i ty  at  the  boundary  follows from the fact  t ha t  the constants are 
the only tangent  maps which was proved by  HAI~DT-LIN [HL] who formulated their  
result  for unconstrained Riemannian problems bu t  it is easy to check t h a t  the 
presence of the  obstacle does not  change the argamlent. 

2 ' -  Background material. 

Most of our results are based on the  following 

LEM~_s 2.1 (extension theorem for half  balls). - There are constants el, 8, 
y E (0, 1), q, ~, C1 > 0 depending on dimensions, on p and the geometry  of M with 
the following proper ty :  

Le t  ~o~Hl,,(~B+(x), ~ ) ,  x e I ' ,  and a~ R L be given such tha t  

E , ( ~ ,  ~B~+(~)) �9 W~ (% ~B~ + (x))~ < ~ 01 + ". r (1 + ')(~- " -  ~ 

for some 0 < e<e~. Then we find r e H~,*(B+(x), M) with boundary  values ~ and 

Here  and in the  sequel we use the nota t ion 

:= f I l -  al" 
A A 

for functions 1: A -+ R L. 
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A detai led proof of this extension theorem can be found in the paper  [F3]; in 
order to get the  above version for half balls B~(x), x ~ / ' ,  one has ~o apply  m suit- 
able Bi-Lipschitz t ransformat ion.  

LEPTA 2.2 (monotonici ty formula).  - There are constants e ~  (0, 1), C~> 0 
depending on absolute da ta  with the  following proper ty :  suppose tha t  u ~ ~(~A with 
A<e2.  Then  for a l l x e B z ~ ( 0  ) and 0 < a < @ < � 8 9  

< + Ae}, 

provided p < ~. 

PRoof .  - For  balls Be(x ) c B~(0) Lemma 2.2 is a consequence of [F2], Theorem 2.4. 
To obtain the  general s tu tement  one m a y  easily modify  the proof of [SU], Lemma L.3. 

Final ly  we need a Campanato type  est imate for p-harmonic  systems on half 

bulls with prescribed boundary  da ta  on / ' .  

IuE~JA 2.3. - Suppose t ha t  g e :5A. Moreover, let v e Hx,~(B+(0), R L) be a so- 

lut ion of 

(2.1) D~(IDv[~-~_D~v) : 0 

on B~(0j with v = g on P~. Then  for all e < 1  and r<.<R the  following est imate  

is valid 

B,+(o) ~(o) 

o denoting ~ constant  depending on n, Z and p. 

P~ooF. - Le t  w e HI,~(B+(O), R L) denote the  solution of 

f lDwl~ dz -* min 

B~(o) 

o + 
in the space (v -- g) + HI,v(BR(0), RL). Clearly w satisfies (2.1) on B+(0) with w = 0 
on F ,  and i t  is not  ha rd  to check t h a t  the odd extension @ of w is a weak so- 
lut ion of (2.1) on the  whole ball Be(0) which gives the est imate (compare [U] and 
[F2], Section 3) 

~,*(o) ~(o) 
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On the other  hand  we have 

/ *  P 

JIDv -- Dwl~dx< v.J(iDvl~-~JDv -- [Dwl~-~/)w) �9 (Dr -- Dw)&v = 
~(o) ~(o) 

~(o) 

since v -  w has boundary  values g. Therefore:  

f I-Dv -- D w l ~ < o ' A f ( i D v [  ~-~ + [Dw?, 0 ax< 
s~(o) ~:~(o) 

<e. 
~(o) 

Since w minimizes p-energy for boundary  values v -  g on ~B+(0) we obtain 

hence 

(2.3) f[Dv-- Dwt~gx<c.{s.f]Dv]~dx + A~el-*R~}. 
B~(o) s~(O) 

Final ly  we combine (2.2), (2.3) to get 

B~+(o) ~(o) 

dx + s.fIDv]~dx @ A~el-~R.}< 
~(o) 

s~(o) 

Ill 

3. - Part ial  higher integrabili ty and partial regulari ty neat. the boundary. 

In  this section we give a ])roof of Theorem 2. We star t  with a par t ia l  higher 
integrabil i ty result. So assume tha t  u ~ 2~A is given with boundary  function g ~ ~A 
and tha t  

(3.1) A + ~ ( u ,  B D < s~ 
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holds for some 0 < e < e~ (defined in L e m m a  2). 3[oreover, we fix z e B ~ ( 0 ) ~ ) 1 "  

and  0 < R < �89 I n  wh~t follows we denote all constants  depending on dimensions, 

on p and  on geometr ic  da ta  wi th  the  symbols  c~, c~, ... .  

Case ~: z. > ~ (i.e. s(,<,>,(~)cc~?(o)). 

Choosing a : ~  ~udx we find a radius re [R/2, 3R/4] such t ha t  
. 2  

This gives on account  of Poincar6~s inequal i ty  

(3.2) E,(u, ~B,(z)) W~(u, 3B~(z))v<c2.r(~+v)('-~)-~(R*-'~(u, B(,/~>~lz))$" "')~+v. 

From Lemraa  2,2 we infer 

(s.1) 
and  (3.2) turns  into 

(3.3) ~ - , - ' r  -('+',>("-') + ~ . ( u ,  ~Br(~)) w , ( , ,  ~B~(~))~<co~-'-'~ ~('+~) = :  7". 

Since the  extens ion- lemma 2.1 is also val id lor  functions defined on spheres (compare 

[F! ,  2, 3], Theorem E)  we m a y  app ly  it  to the  funct ion 

provided we assume ~ < e l .  Then (3.3) is just  the  smallness condition required in 

L e m m a  2.1 and  we find an extension ~:  Br(z)--->M of the  bounda ry  funct ion u 

sat isfying the  energy  es t imate  of L e m m a  2.1. A t r iv ia l  calculation gives: 

fIDftI'dx< [~:'flDftI~dx-~ T-~R-~-~'( g \~+~/~ 

where we have  made  use of the  Sobolev-Poincar~ inequali ty.  We choose ~ to sat- 

isfy c7.~<�89 i.e. 

(3.~) ~ < [C~61(~'I +12--q c7q] 1](~ (~-[- )J . 
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Then the last estimate reads 

(3.5) 1 ~lDup'/("+~)dx) § 

Case 2: (O<)z .<~R.  

Let 
d 

B~(,) 

(3.6) 

and choose r e [~R, R] such tha~ 

{ ~(u, ~B~+(~)\r) < e~ R -~ E~(u, B~+(~)), 

W~(u, ~B,+(z)\r) < e. R-~ w,(~, B~+(~)). 

We let qD := u on ~B+(z)\F~ q~ := g on ~B+(z) n F. Then 

E~(% ~B+,(z)) W~(V, ~B~+(z))~< (3.6) 
~o. {R-~(~ ,  B~(~)) + A~R.-~}. {~-~ W~(~, B~+(~)) + W,(g, ~B~(~) n r)}~, 

W~(u,B+(z))<e~ ( u - - g ) - -  (u - -  § g - -  g ax < 

(by PoinearS's inequality applied to the function w(x)-~ u(x)--g(x),  if x.>O, 
w(x) = O, if x~<O, xeB~(O)) 

lqext we estimate W~(g, ~B+(z) n/ ' ) :  

I "  
where we have used the notation (J)+ : =  31- lax: 

l ]  

f I(g) +-(u)+l'<e~G ]g--u l 'dx  : 

= e16 f Iw l ~ dx ~ (Sobolev-Poinearg § tt61der inequality) 
B•(z) 
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Putting together our estima.tes we arrive at: 

(3.7) ~ ( %  ~B~(z)) W~(% 8B+(z))V<ca~R-~R(~-~)'[E(u, B+(z)) + A~R"] ~+~ 
b-V-'r(1-")(v+')+~.E~(~, ~B+(z)) W~(~, ~B+(z))V < 

<C~o~-~-~[~-'~(~, ~+(~)) + A~n~]~*~. 
The monotonicity formul~ implies 

(3.1) 

~nd (3.7) turns into the inequMity: 

(3.8) ~-,-'r<*-~)(~+')+'~(% aB,+(z)) W~(% aB+(z))~<%.a-('+~e<~+'=: ~:~. 

B+(z) is not exuctly & h~lf-bull, but uccording to our choice of the r~dius r we m~y 
upply the extension-lemm~ 2.1 ~fter u suitable Bi-Lipschi~z tr&nsform~tion. Since 
the hypothesis of Lemm~ 2.1 is s~tisfied by (3.8) (provided ~<e~) we find ~: B+(z) - - ~  
with boundary vMues 9 such Ch~t 

E~(~u, B+(z)) <c~5 {~.rE~(% ~B+(z)) + z-'~r ~-, W~(% ~B+(z))}. 

Since u minimizes for F-boundary v~lues g we get 

- + A ~ / ~ , ~ }  <.4 E~(~, B~/~(z)) < c~o {~(u ,  B~+(z)) + A, .R } < c~o {E~(u, B~ (z)) + 

<c,,r B~+(~)) + A~.R- + ~-~R,=~[R-, W~(~, B~(~)) + W~(g, ~B~+(~) n r)]}; 

us before we estimate 

~s 
~e,o{ f [u--g[,dx+ tt'+'A,}<~ 

Bs 

(by the Sobolev-t)oincar6 inequulity) 

e31{( f tD(u--g)lnv/"-~)dx)l+~/~+ Rn+~A~} < c3~ {( f lD(('~/('~+~)dx)l+~/~+ R~+~A~} , 

{ f } W~(% OB+~(z) ~ I') <c~3 R~-I+~A ~ + R -~ wl~dx < 

.BR(~) 
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Le t  us remark  tha t  we have made use of the Sobolev-Poincar6 inequali ty 

which is valid since 

s = np/(~  + p ) ,  

~,~({x eB~(~)lw(~) = o } ) > c ~ o n . .  

Put t ing  together  our results we have shown 

l~R(z) 

or equivalent ly 

~1~(~) .BR(Z) 2a(z) 

I f  we require e39"v< �89 which means by  definition 

(3.9) e < [e~ 1 e J2 -q~7  + 1] 1/(v'(~+ 1)) 

then  we have inequal i ty  (3.5) also in Case 2. 

F rom (3.4), (3.9)~ (3.5) and [G], Prop.  1.1 (page 124), we finally deduce 

LEM~A 3.1. -- There are constants e3 r (0, 1), t > p and c > 0 depending on ab- 
solute data  with the following proper ty :  if u is in ~ A  and 

(3.10) A § ~(~, B~+(O)) < ~ ,  

then  D~ e L~(BI/2(0)) and 

(3.1~) 
f "~l/t - ~l/v 

BR/~(z) JBR(z) 

for all z ~ Bm(O ) and R e (0, 1). 

Next  we show tha t  a smallness condition of the form (3.10) is also sufficient to 
prove regular i ty  of ~ near the origin, more precisely we have 
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LEPTA 3.2. - There  are constants  e~ ~ (0~ 1) and  c >  0 wi th  the  following 
p rope r ty :  suppose t h a t  u is in ~ A  and 

A + Z~(~, B~+(O)) < ~ .  

Then  ~ e r176 and  

(3.12) 

for all x, y ~ B~Id(O ). 

i~(x) - a(y)l < c. i x -  yl ~ 

P1~001~. - We  assume 

(3.13) A + E ( u ,  B+(0)) < ~, 

for some 0 < s < es being specified later.  F ix  xo ~/'x/2 and  0 < r < R < ~ and  con- 
sider the  solution v of 

f [DvI~ dx --> rain 

in the  space H~,~(B+s(xo), R L) for bounda ry  values u on ~B+(xo). According to [F1, 2] 
we know 

-- D~(IDuI~-2 D ~ )  -~ ~ ( ' ,  u, Dg) 

on B+(xo) for some funct ion /7 s a t i s f ~ n g  the  s t ruc ture  condition 

(3.1~) IF ( ' ,  u, Du)[< c~[Du]~ . 

Combining the  equat ions satisfied b y  u and  v we get an upper  bound for the  energy 
of qz - -v :  

f [Du - -  

[, 
Dv f ~ dx < e2 .~(Du]Du ]~-2 _ Y)v tDvl~-2) �9 (.Du - -  De) dz = 

- - -=~( . ,  u, D u ) . ( u  

 <o4 {( 
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Since s < s8 we m a y  apply  est imate (3.11) of Lemma 3.1 to handle the integral 
of D~:  

~(~o) ~(~o) ~(zo) 

~ (%)  ~(~o) 

~< (Poincar6's inequa l i ty  § min imal i ty  of v) .<< 

~(%) ~2~(~o) 

We combine this result  with the  estimate of Lemma 2.3: for a rb i t ra ry  0 e (0, 1) 

f lD(e[~ dx < eT{ f lDul~ dx § f lDu -- Dvt~ dx} <~ 

<,{ f,o  
~(~o) ~(~o) 

~(~o) B~(~o) 

<<. ClO {~,(u, B+(xo))~-'/~'(A~ R ~ § f lDal~dx) § [(~)n§ 0] f lDai~dx § O~-~ArR.} 
/~2R(Oo ) ~2R(~o) 

-B~e(%) 

where we have  abbrevia ted  

~< 

~(~, B~+(~o) ) := R,-- f IDul,d~. 

Thus we have shown 

(3.15) 

+ A , ~  [01-, § ~(~, B~+(xo))l-,l,3/" 
J 
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In  a next  step we use (3,15) with r-~ v.R for some small ~ being specified below: 

~(~, B~,(xo)) <c1~. ~ . { [ 1 +  ~-~0 + ~-"V(u, B~+(Xo))l-~#] �9 

Choose �9 to satisfy e~. 3, = ~ and let 0 : ~  ~ .  ~oreover  we require 

1 .  

In  this ease the last inequali ty implies: 

(3.17) ~(~, n~(Xo))< �89 B~,(Xo)) + c~a~R ~ . 

We have 

so tha t  (3.16) is satisfied if we impose the smallness condition 

(3.18) *-'(v~5 s~) ~-:~/* 4 1 

on the parameter  s. Final ly  we i terate (3.17) to get 

(3.19) ~(4, B,~(Xo) ) <2-~(~, B~R(Xo) ) -~ c,~ 

for all k ~ N. Abbreviating fi : ~ -  (log 2)/log ~ (3.19) implies the growth condition 

I~ ~(u,  -t- A ~R~} (3.20) ~p(~, B~(Xo)) ~ c17 [\~l 

for all xoe)'~/~, 0 < r < R < ~ .  
To complete the proof of Lemma 3.2 we recall the interior est imate oi [F1, 2]: 

there are constants s~, y ~  (0, !) ~nd c~ ~ 0 such tha~ 

(3.21) ~(u, B~(x~)) ~ c~(~)~Y~(u, B~(xO) 

holds lor x~ e B~),(0) and 0 < r < R ~<min (dist (x~, F) ,  �89 provided 

B ) < . 

By the monotonici ty Iormala, (3.13) ~nd our choice of e we m a y  assume tha t  the 
l~st condition is satisfied, moreover we assume tha t  (3.21) holds with y : ft. 
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Now we choose x~ e B~2(0 ) U / '  and fix Xo e -P with the property 

d : =  dist (x~, F )  = [ x l -  xo[. 

Moreover suppose 0 < r < R < ~. 

Case 1: d > r .  

Then 

173 

d ~ ~ 
A~ I~ 

and (3.22) has to be replace4 by  

(3.23) 

Case 2: d < r 

Then 

~o(~, B,(xx)) <o27"~o((e, B2~(Xo)) < (3.20), 

so tha t  (3.23) remains valid in Case 2. 
Clearly (3.23) implies 

r a ~ 

for all xl e B~/2(0), 0 < r < R < ~ .  

~o(~, B,(xl)) < c19 (~(u, B,(xD) + A~r ~} < (3.21), 

c~o{(~)a~( u, Be(xD) + A~e'} , 

for ~ : =  min (d, R). In  case ~ = R  we get 

Assume now ~ = d, tha t  is /~ > d. Then 

y~(u, Be(xD) -~ ~(u, B~(xl)) <0~2{~(~, B,(x,)) + A 'R ' }  < 

+ <(3.20), 
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Let  us set a : =  ~fl. I f  we apply [G], I~emma 2.1 (page 87), then  (3.24) gives 

~(~, B,(x,)) < ~ r ~ [ R - ~ ( ~ ,  B~(x~)) + A~] 

for all x~ r , /~  as in (3.24). Choosing R = ~ and recalling (3.13) (where e now is 
fixed) the  ]proof of Lemmu 3.2 is complete (with ~ replaced b y  ~//o). i 

4. - Complete boundary regularity. 

Following [Fi ,  2] we combine Lem m a  3.2 an4 the  extension-lemma of section 1 
to get a regular i ty  criterion relying on the  smallness of the mean oscillation. 

LE~L~A 4.1. - Given B > 0 there  exist  constants 01 ~ 01(B), e > 0 and g e (0,1) 
with the  following proper ty :  suppose tha t  u e Jt~A with boundary  funct ion g e ~A 

is given such t ha t  

E (~, B : ( 0 ) ) < B ,  f I~--gl~dx+A<O~. 
~:(o) 

Then 4 ~ C~ and for x, y ~ BI/a(0 ) 

f~(x) -  ~(y)[ < e. [~ - yF. 

P~ooF. - Clearty all %he s ta tements  of Lemm~ 3.2 remain valid if we require 

(4.1) A § E,(u, B~(0) )  <e~.  

Choose r ~ [~, 1] such t ha t  

{ E~(u, ~ B + ( 0 ) \ / ' ) < e l  �9 ~ ( u ,  B+(0)) ,  

(4.~) %(u, aB~+(0)\r) < e~. %(~, B~+(0)), 

where W~ is calculated with respect to a : =  g(0) ~ M. Then the  function 

[ ~ on ~B+(O)\/~, 

/ g on / ' , ,  
satisfies 

E~(% ~B~+(O)) %(% ~B,+(O))~ < (~.2) 

( ; ) "  <ca(B ~- A'). [u--g(O)[,dx + A~ < (if 01<B) 
B~+(o) 

<e~B. (0~ + A~)~'<c~BO~':'. 
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W e  a s s u m e  

(4.3) .~" " l : ~ ' t ~ ' 7 " J  e q ' ~ ' §  ~ 1  " ~ "  ~" 

for some small e > 0 being specified later. Then by  Lemma 2.1 we find an extension 
q~: B+(0)-->~]I of the boundary mapping 90 such tha t  

~(r  B,+(0))<~o(~'~(V, ~B~+(0)) + ~-~ w~(v, ~+(o))}, 

hence by the minimali ty  of u 

~o(~, B~,(o))<~(r B~,(0)) <~ {~.B + ~-~0~}. 

We choose s = e(B) to satisfy e~.s .B<~.Q.  ~ With e fixed we calculate 0~ with (4.3) 
and in addition -~ ~ ~ ~ c~e O~<~e~. This gives E~(u,B~(O)) ~ ~ <~e~ so tha t  (4.1) is sat- 
isfied. �9 

L E ~  ~.2. - Suppose tha t  {u~} E ~{~A is weakly convergent to some function 
uo e H~.~(B+(0), RL). Let  {g~} e 3~A (~ C~(BI(O)) denote the corresponding sequence of 
boundary  functions and suppose g~-+ go in CI(B~(0)). Then ~ - ~ U o  strongly in 
H~'~(Bm(O)), go denoting the odd extension of no--go,  and H~-~(Sing(~o))= 0. 
Moreover ~ - ~  ~o uniformly on compact subsets of B~/~(0)\Sing(~o). 

PR00F. -- Exact ly  the same arguments as in IF1], Lemma 6.2, und [F2], Lem- 
ma 4.2, give using Lemma 4.1 

Sing (~o) c Ix e B~(0) : liminf~4o f l~~176 

and ~ - - ~  go on compact subsets of B1/~(0)\Sing(~o). In order to prove strong con- 
vergence ~ - ~  ~o in H~,~(B~/~(O)) we cover Sing (go) r~ B~/~(0) with balls B~ : B~,(x~) 
such tha t  

co 

i = l  

for a prescribed small s. Le t  U : =  U B~. As in the interior ease we get 
4 = 1  

f ]D~,[~dx< cons t . s .  
U 

Consider u cut-off function ~ e  C~(BI(O), [0,1]) such tha t  ~ ~ 1 on ~I/~(O)\U 
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and Sl~t ~ (3 Sing (~2o) = 0. We know 

B~+(o) B~+(o) 

for all r ~ H I , ~  L~(B+(O), R L) where we have abbreviated 

Lu := IDu[~-~.Du . 

Moreover, we have the growth estima%e 

EF~I < K .  [Du~l ~ 

for some finite K independent  of i. Let  r : =  ~ ( ~ -  ~ )  which is admissible in the 
above equation since r vanishes on the boundary  of B+(0). We get 

f ( L u i -  L u j ) " D ( u i -  = 
~(o) 

f (Lu~ - LuD - u~) dx § (a) 
~+(o) 

f (zu~ [g~ -- gj]) + (b) Zuj)" D ( ~  dx 
~(o) 

f (.F~- ~'~) ~ ) d x  . (c) 
~(o) 

The leit-hsnd-side is bounded below by a constant times 

f ~ l D u ~ -  1)ujl~dx 
~+,(o) 

the terms (a), (c) clearly vanish since uj -- u,_~ 0 on spt ~. The remaining integral 
(b) vanishes on account of our assumption g,-~ go in C~(BI(0")). [] 

L n ~  4.3. - Consider u ~ 3(~ with boundary  function of class C~(/~(0)) and a 
sequence ).~0. Then we have for a subsequencc 

u~(z) :-~ u(Lz) ~ Uo 

weakly in H~,~(B+(0)), u~-> uo strongly in //~,~(B+(0)) for all r < 1  and the con- 
vergence is uniform away from the singular set of Uo. ~oreover~ the limit Uo is 
radial ly independent and constant  on F. 
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Pl~ooF. - Le t  g e :gA denote the boundary  values of u. By  Lemma 2.2 E~(u~, B+(0)) 
is bounded independent  of i so tha t  we m ay  ext rac t  a weakly convergent subse- 
quence. Clearly g~-~ g(0) in C~(Bd0)). Thus all s ta tements  of Lemma 4.3 follow 
from Lemma 4.2, it  only remains to show D, uo ~ 0 (radial independence). To this 
purpose we observe the following stronger version of Lemma 2.2: 

There are constants e2, c depending on absolute data  with the following prop- 

e r ty :  if v ~ v~LA and /, < s~, then  

(4.4) / tD~I �9 lxl~-.ax<c.[t~-.E~(G B~+(0)) -- s~--/%(~, B~+(0)) + It(t-- s)] 
B**(o)\~.+(o) 

for O < s < t < � 8 9  

For  the proof one has to modify  the arguments of [SU], Lemma 1.3, in an obvious 
way. We apply  (4.4) to the maps u~ ~ ~ a  Since ~ - +  G strongly (4A) gives 

(~.5) f ID.eol ~. I~I*-"a~<c �9 { t * - ~ ( ~ o ,  B,+(o)) - s ~ - ~  B,+(0))} �9 
B + ( 0 ) ~ B + ( 0 )  

Thus r  t ~-~ ~ ID~toI~dx is an increasing function and Z : =  Hmr exists. On 
B~+(o) t ~ o 

the other  hand  we have for positive t by  the strong convergence 

r  ---- t ~ - ~ l i m  IID(t,l~dx = l i r a  r = L 
i--> co ~ i - + c o  

~:(o) 

so t ha t  ~ is constant  and (4.5) implies D,z/o = 0. [] 

In  order to prove the  Main Theorem we have to show tha t  the tangent  map 
defined in Lemma  4.3 is trivial. This would give 

0 = ~-~lim" ~ 2~-"flDul~dx 

and hence regular i ty  of u at  0 E / '  (and by  a tr ivial  modification we obtain regu- 
lar i ty  at  every  boundary  point).  Now uo ~ r is a consequence of [HL], Theo- 
rem 5.7 and proof of Corollary 5.8: exact ly  as in [HL], Theorem 5.7, we can show 
so ~ eonst if we assume tha t  Uo is minimizing. By  reduction it  is sufficient to con- 
sider t angent  maps so which are smooth except  0 e F. (Compare the comments 
in [t tL],  proof of Corollary 5.8.) But  for this class of tangent  maps minimMity fol- 
lows by  direct eMeulation or Mong the  lines of the proof of Lemma 10 in [DF]. [] 
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5. - Application: existence of small solutions of the Dirichlet-problem for /)-har- 
monic maps. 

Suppose tha t  D c X and IZ are as in Section 1 (~ l~iemannian case ~>) and tha t  
g: ~s -~ I z is a prescribed smooth boundary  map with range contained in a regular 
geodesic bM1 B~(@) of the  ta rge t  manifold Y (compare [H] for the  definition of 
regular bMls). In  a famous paper  Hi ldebrandt -Kaul -Widman [ t tKW]  proved the 
existence of a continuous map V: ~ - +  I( which is harmonic (and b y  cont inui ty  
smooth) on D and satisfies gl0~ = g as well as V(s~)c B,.(@). In  this section we 
want  to prove  the  analogous result  for p-harmonic  mappings with exponent  p ~>2. 

DEFIn i t ion .  - UeH~,'(D, Y) is a weakly p-harmonic  mapping D - . I T  iff W is 
a weak solution of the  Euler-Lagrange equat ion associated to the  p-energy func- 

t ional  E~(., D) in t roduced in Section 1, formula (1.1). 

Tm~o~Ex 5.1. - S~ppose that we are in the Riemannian ease described in Sec- 
tion 1 and suppose that p > 2  is a fixed real number. Assume that g: ~ -+ Y is a 
smoth ]unction with range in a regular geodesic ball B, (O)c  Y. Then there is a 
map W e Hl,r(~2, Y) with the ]ollowing properties: 

(i) Ue C~ Y) ]or some 0 < ~ < 1, 

(if) We C1'~(~2, Y) and W is weakly p-harmonic, 

(iii) W]s~-=- g and Im(W)eBb(Q) .  

Pl~ooF. - For  R > r sufficiently close to r the  bM1 B~(Q) is also regular and we 

consider the  obstacle problem 

(5.1) E~(., ~)  -+ rain 

in H1,~(~2, B~(Q)) for boundary  values g. The direct method  gives the existence of 
a minimizer U which according to the  Main Theorem is HSlder continuous in a 
neighborhood of 0g2. On the  other  hand  Theorem F of IF1] (compare also [Fd], 
Theorem) shows tha t  there  are no interior singularities so t h a t  (i), UIe ~ = g and 
in addit ion 

We ~1'~(t2, :Y) 

are clearly satisfied. I t  remains to show 

(5.2) In(W) c B,(Q) 
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which immediately implies p-harmonic i ty  of U.  In  order to prove (5.2) we intro- 
duce normal coordinates (u~ ..., u ~) on B~(Q) with center Q and assume for tech- 
nical simplicity tha t  ~9 is just  a domain in R ~ equipped with the flat metric. Then 
the  min imum proper ty  (5.1) implies af ter  a simple calculation ([F1], Section 7, 
proof of Theorem ~v, and [F4]) 

(5.3) f A (u, Du) [Du. D(~u) -- I~k (u) ~ D~ u ~ D~ u ~ u ~] dx < 0 
s 

for all ~r  ~, ~]>O. Here  we have abbreviated:  

{ g~j = metr ic  tensor on Y~ Ffk = Christoffel symbols on Y~ 

A(u, Du) = (g~j(u) D ~u~ D~u~) ~/~-~ . 

We use (5.3) with 

: =  m a x  (v - r~, O ) ,  

which is admissible since [u[<~r on ~Q. B y  [H]~ inequal i ty  (6.11), the quant i ty  

[Du[ ~ -- F~k(U ) D~ u~D uku ~ 

is nonnegative and we find 

f A(u, Du) lDvpdx<O 
9~[[ul>~r] 

SO tha t  A(u, Du)'[D~[ ~ ~ 0 on D. Since 

[Dvl<~2RIDul, A(u, Du)>~c" IDu[ "-~ 

for some c > 0  we deduce D ~ - ~  0 on zg, hence [ul<~r. [] 
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