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A Classification of Almost Contact Metric Manifolds (*). 

D. CItlSIEA - C. GOSIZALEZ 

Summary. - It  is obtained a complete classi/ication /or almost contaet metric mani/olds through 
the study o/ the cavariant derivative o] the ]undamental 2-]orm on those mani/otds. 

O. - I n t r o d u c t i o n .  

A (2n + 1)-dimensional differentiable manifold M of class C ~ is said to have an 
almost contact structure (J. W. G~AY [6]) if the structural  group of its t angent  
bundle reduces to U(n))<1; equivalently (S. SASAKI and S. HA~rAKEYA~ [15], [17]), 
an almost contact structure is given by  a triple (~, $, 7) satisfying certain conditions 
(see section 1). Many different types  of almost contact structures are defined in the 
l i terature (cosymplectic, Sasakian, almost cosymplectic, quasi Sasakian, normal, 
a-Kenmotsu,  ~-Sasakian, trans-Sasakian, ..., [2], [3], [9], [14]). These types of struc- 
tures bear sufficient resemblance to cosymplectic and Sasakian structures so tha t  
i t  is possible to generalize a portion of cosymplectie and Sasakian geometry to 
each type. 

The main purpose of this paper is to fit all of these classes into a general system, 
which in a reasonable sense is complete. For it, we shall consider a real vector space V 
of dimension 2n + 1 with an almost contact metric structure and we shall s tudy 
the  representation of the group U(n)•  on a certain space C(V). Geometrically 
C(V) can be interpreted as the space of tensors of type (0, 3) over V which satisfy 
the same symmetries as the eovariant derivative of the fundamental  2-form of an 
almost contact metric manifold. We give a decomposition of C(V) into twelve irre- 
ducible invariant  components C~, i =  1 , . . . , 12 ,  under the action of the group 
U(n) •  I t  is possible to form 212 different invariant  subspaces from these twelve, 
corresponding to each invariant  subspace a class of almost contact metric manifolds. 
For  example, {0} corresponds to the class of eosymplectic manifolds, C5 to the class 
of ~-Kenmotsu manifolds, C~ to the class of a-Sasakian manifolds, C20  C9 to the 
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class of a lmost  cosympleet ic  manifolds,  ed@ e7 to the  class of quasi Sasakian 
manifolds,  e5@ e6 to the  class of t rans-Sasakian  manifolds,  and  e3@ e4@ Ca@ 

@ e6 @ e7 @ es to the  class of normal  manifolds.  
I n  section 1, we give some results  on a lmost  contac t  manifolds.  I n  order to ob- 

ta in  the  decomposi t ion of e ( v ) ,  we s tudy  in section 2 the  space of the  invar ian t  

tensors of t y p e  (0, p) under  the act ion of U(n) • 1 finding a basis for this space, and 
in section 3 we obta in  a set  of generators  for the  vector  space of the  quadrat ic  in- 

var iant~ of C(V). I n  section 4, we give the  decomposi t ion of e ( v )  and  the  linear 
relat ions among  the  quadrat ic  invar ian ts  for each of the  irreducible subspaces C,. 

I n  sectiou 5, we give the  character izat ion of the  twelve classes of a lmost  contact  
metr ic  s t ructures  on a manifold  and  we relate  these classes wi th  those studied in 
the  l i terature .  Final ly,  in section 6 we construct  examples  of different types  of a lmost  

contac t  met r ic  s t ructures  on the  p roduc t  of an a lmost  g e r m i t i a n  manifold  wi th  R,  
on the  hyperbol ic  space, on the  generalized Heisenberg  groups H(1) , 1) and  H(1,  r), 

and  on other  Lie groups of matr ices  included in the  Kowalski ' s  classification for 

generalized symmet r i c  R iemann ian  spaces of dimension n ~< 5 ([12]). These examples  
i l lus t ra te  m a n y  types  of the  classification obta ined  in this paper .  

V~'e wish to express our hea r t y  thanks  to O. KOWALSX~, L. A. CO~DE~0 and  J.  A. 
O~'sI~A for several  comments  useful in the  prepara t ion  of this paper .  

1 .  - Preliminaries.  

Le t  M be a real  (2n d-1) -d imens iona l  C ~ manifold  and  Z(M)  the  Lie algebra 

of C ~ vector  fields on M. An a lmost  contac t  s t ruc ture  on M is defined b y  a (1, 1)- 

tensor  field 9, a vector  field ~ and  a ! - f o rm  ~ on M such t h a t  for any  point  x ~ M 

we have  

~ = - i +  ~ |  v~(~) = 1, 

where J[ denotes the  iden t i ty  t r ans fo rmat ion  of the  t angen t  space T~M at x. 
~Ianifolds equipped with  an  a lmost  contac t  s t ructure  are called a lmost  contact  mani-  
folds. A t l . iemannian manifold  M wi th  met r ic  tensor  g and  with an a lmost  contact  

s t ruc ture  (9, ~, 7) such t h a t  

g@x,  ~ )  = g (x ,  ~) - v(x)v(]:), 

where X,  Y e 3C(M), is an a lmost  contact  metr ic  manifold.  Then g is called a com- 
pat ib le  metr ic  and  2a r is said to have  a (9, ~, ~, g)-strueture or an a lmost  contac t  
metr ic  s t ructure.  The existence of an  a lmost  contact  s t ructure  on M is equivalent  
to the  existence of a reduct ion  of the  s t ruc tura l  group to U(n)• i.e. all the  ma-  
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trices of O(2n + 1) of the form (.B 
- -B  A 

0 0 

being A and B real (n, n)-ma~rices. 
The fundamental 2-form q~ of an almost contact metric manifold (M~ ~, ~ ~, g) 

is defined by 

r  Y) = g(X, qDY) , 

for all X, Y e3~(M), and this form satisfies ~ A r  0. This means that  every 
almost contact metrie manifold is orientable. 

If V is the l~iemannian connection of g, it is easy to prove 

(i.1) (Vxq})(Y, Z) = g(Y, (Vz~0)Z), 

(i.2) (vx~)(zG z) + ( v ~ r  ~z) = ~ (z ) (v~)~]~-  ~( : ( ) (v~)~z ,  

(1.3) ( v ~ )  3~ = g(]G v ~ )  = (v~ r  ~3~). 

The exterior derivatives of U and q} are given by 

(i.4) 2a~(y, Y) = (vx~) ] ( -  ( v ~ ) x ,  

(i.5) 3a~b(x, y, z) = ~ ( v ~ ) ( y ,  z ) ,  

where ~ denotes the cyclic sum over X, Y, Z e~(M) .  I f  {X~, q~X,, ~}, i = 1 ... n, 
is a local orthonormal basis, defined on an open subse~ of M, the eoderivatives of q5 
and ~ are computed to be 

(1.6)  ar = -- ~ {(Vx ~)(X~, X) + (V~x,~)(~X~, X)} -- (V~)(~, X) ,  

(~.7) ~ = - ~ {(v~x)x ~ + (v~xm)~x }. 
"/=1 

An almost contact structure (% }, ~) is said to be normal if the almost complex 
structure J on M • R given by 

( (Ls) J X , a  = ~ x - - @ , ~ ( x ) ~  , 
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where a is a C ~ funct ion on M •  is integrable, which is equivalent  to the condi- 
t ion [q, ~] ~ 2dr/(~ ~ = 0~ where [~, ~o] denotes the  Nijenhuis torsion of ~. 

An almost contact  metr ic  s t ructure  (% ~, ~, g) in M is said to be: 

Almost eosympleetic if dO = O and dU ---- 0. 
Cosymplectie if i t  is almost  cosympleetie and normal.  

Quasi 8asakian if dO = 0 and (~o, ~, U) is normal.  
Almost  a -Kenmotsu  if dU = 0 and gO(X, Y, Z ) =  ~ a ~ { u ( X ) O ( Y ,  Z)}, being 

a differentiable funct ion on M. 
~-Kenmotsu if i t  is almost  ~-Kenmotsu and normal.  
Almost ~-Sasakian if ~O ~ du, being a differentiable function on M. 

a-Sasakian if i t  is almost  a-Sasakian and normal.  

For  ~ -~  constant  our definition of almost  a -Kenmotsu  and almost ~-Sasa.kian 

s tructures  coincides with the  structures in t roduced in [9]. 
moreover ,  (~o, ~, ~, g) is said to be Kenmotsu  if it  is 1-Kenmotsu,  contact  if it  

is almost 1-Sasakian, and Sasakian if it  is 1-Sasakian. For  an extensive s tudy of 

these structures we refer to  [2], [3], [9], [ l l ] ,  [16]. On the other  hand, J .  Oubifia 
defined other  classes of almost  contact  metr ic  s t ructure  through the  almost t ier-  
tuit ion s t ructure  (J, h) on M• where J is given b y  (1.8) and h is the  product  me- 
tr ic of g and the  Eucl idean metr ic  on R. Next ,  we recall some of these classes 

(see 03] ,  [1~])" 

~ear ly-K-eosympleet ic  if (Vx~) Y + (Vy~)X = 0 and Vx~ ---- 0. 
Quasi-K-eosymplectic if (Vx~) Y ~ (Vcx~0)~0:Y ~-- v(Y)V~x~. 
Semi eosymplectie if ~O = 0 and ~U = 0. 

Tr~ns-Sasakian if 

( v , o ) ( y ,  z )  = - -  {(g(x, y)v(z)  - g(x, z)v(y)) ~o(~) + 
2n 

+ (g(x, ~yl~(Z)- g(x, ~ Z l ~ ( y ) ) ~ } .  

Nearly- t rans-Sasakisn if 

snd 

! 
(VxO)(X, Y ) -  2-n (g(X, X)5~(Y)  --g(X, Y)60(X)  -[- g(q~X, Y)~(X)~7},  

(v~v)  Y - 
1 

Almost-K-contact  if V~o ~- O. 
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2. - Invariant tensors o f  U(n) •  

Let V be a n-dimensionM real vector space. We denote by GZ(V) the group of 
all nonsingular linear transformations. A tensor ] of type (0, 2) on V is invariant by 
a subgroup G of G.L(V) if and only if 

(2.1) /(~x,, . . . ,  (~x~) = / ( x l , . . . ,  x~) , 

for M1 ~EG and x ~ V .  We denote by ( ~ V  the space of the teI/sors of type 
(0, p) over V and by (G~ V)#(G) the subsp~ce of G~ V consisting of the tensors ] 
on V which satisfy (2.1). 

Now, let V be a real vector space of dimension 2n -b i with an Mmost contact 
structure (~, ~, U) and a real positive definite: inner product ( ,  }. We assume that  
( ,  } compatible with the (~, ~, U)-strueture in the sense that  

(q~x, ~ y )  = (x ,  y )  - v(x)~(x)  . 

We consider the group U(n)• which can be written as 

U(n) •  : ( a ~  GZ(V): a [ ~  U(n) and ~ = ~} .  

where V denotes the orthogonM complement of the suspace spanned by ~, i.e., 

V = {~ e V / ( x ,  ~> = 0}.  

I t  is well-known that  (f, { ,  }) defines on V an almost ttermitian structure and 

y (n)  x 11-~ ~- u(~) . 

Put, 

~ = dim(G~ and #~ = d im(Q~V)#(U(n)•  

Then we have, 

~ : 0 ,  i f p  is odd,  

and for the even ease N. Iwahori has proved in [8] that  

~ -- 2~(2p 3)... 3.1 p 2,~ -- --l)(2p-- for < n .  

We shall say that  a mapping ~ from the set of 2p integers {1, 2, ..., 2p} onto the 
set of p integers (1, 2, ...,p} is admissible if, for every integer i, l<<.i<~p, o~-1(i) ' 
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consists of two integers. IJet us identify two admissible muppings ~, z if 
{e-~(1), ..., ~-~(p)} and {~-~(1), ..., z-~(p)) coincide up to *heir orders. We denote 
by  A~ *he set of all admissible mappings. 

Le* us associated to ~ e A~ the tensors of type (0, 2p) ~ ..... ", a~ ~ 0, 1, on V 
as follows: 

(2.2) 

where {~,  kl. } = e-~(j), k;< ~' j (j = 1, . . . ,p),  ~Qo= ( , ) ,  and Qz-~ F.  
Then {F ....... ) forms a base of ( @ o  V)#(U(n)), [8]. 

TI~EOI~E)~ 2.1. - I[ p <2n, the~ we have 

#~ ~ ~ (P)2~ -~, where 2. 0 = 1 .  
q=O \ ~ [ /  

PI~OOl~. From V-~ V@{~}, where {~} is the subspace of V spanlled by ~, we 
obtain the following decomposition of @o V into direct sum of subspaees: 

| ~  = ~o ~. . .  e ~ , ,  
where~ 

Eo= | 
B~= (a|  (| ~))| (V| a |  (|176 V)) | O ((|176 ~)| 

~ =  (R|174174176 V))|174174174 o F))|174174174174 

Then, 

(| v)*(u(~) x 1) = ~ E~(u(~) x 1). 
q=O 

Now, since U ( n ) x l  leaves invariant every element of R, we have, 

Thus, 

dimE~(U(n) x ] ) : ( P ) 2 ~ - ~ .  

This proves the required result. 
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~i...~ ~ ~I...~ Consider the  tensors of t ype  (0, 2p )F ,  F~ , F ~  ....... ~ ,  

on V defined b y  

_~(x, . . . ,  x , )  = <x~, ~> ... < x , ,  ~>; 

~ .... ~ - ~ )  -~ ..... ~ x ~ )  F~ (x~ ,  , , F~ (x i, ..., . . . .  

with F~ .. . . . .  given in (2.2), x , =  Y:,+ fl~, ~ , e  V; 

~r162 ' ' -0 is  . . ,  X2~  ) r162 - -  Fq~ ....... i~v(xi~ ~ : -~q (xi~ , ... ~ x ~ )  , 

with 

where 

I<i~< ... < i ~ < 2 p  , 1 <i2~+1< ... < i~v<2p , 

a.nd in other  case: 

F~,+, . . i~(x~,  ..., x~) = 0 

0 < s < p ,  ~ i = 0 , 1 ,  

k = 1, ..., 2 ( p - -  s) , 

Then, 

COrOlLArY 2.1. {P, #~ ..... ~, ~~ ...... - F~ ....... ~} is a base of ((~)~ and 

{Fei~Z~... ~ .... } is one of ( o | v)#(u(~) x~). 

3 .  - Q u a d r a t i c  i n v a r i a n t s  o f  C ( V ) .  

The eovar iant  der ivat ive  Vq5 of the  fundamenta l  2-form q} of an a lmost  contac t  

metr ic  manifold M is a covar iant  tensor  of degree 3 which has various s y m m e t r y  
propert ies.  We shall define a finite dimensional vector  space C(V) t h a t  will consist 

of those tensors  t h a t  possess the  so, me  symmetr ies .  

Le t  V be a real  vector  space of dimension 2n + i with an almost  contact  struc- 

ture  (9, $, ~) and  a compat ib le  metr ic  <,  >. Let  C(V) be the subspace of G ~ V de- 
fined b y  

C(V) = {~e | 1 7 6  V / ~ ( x ,  y ,  z) = - ~(x ,  z,  y)  = - ~(x ,  9Y ,  9z )  -4- 

+ ~(y)a(x,  ~, z) + V(z)a(x, y, ~)}. 

The na tu ra l  representa t ion  of U(n) x I on V induces a representa t ion of U(n) • 1 
on G~ V defined by 

(3.1) ( ~ ) ( x l ,  . . . ,  x~) = ~ (a - lx~ ,  . . . ,  a - ~ x ~ ) ,  

for x ~  V, a e  U ( n ) •  a ~  <~~ 
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The quadratic invariants of (~o V may  be written as follows 

P(o~) = ~ (e~, ..., e~)u(e~, ..., e~)/W(eq, ..., e~, ej~, ..., %.) 

where {e~...,e2~+~} is an arb i t rary  orthonormal basis of V, ~ (~~ and 
~ e  (@~ Furthermore,  all the  quadratic invariants of a subspace 
of @o V are restrictions of quadrat ic  invarian% of @o V [1]. 

THEO~E~ 3.1. - The space of the quadratic invariants of ~(V) is generated by the 
following 18 invariants: 

il(~) = 

i,(~) = 

i~(~) = 

i~(~) = 

i~(~) = 

~1.(~) = 

~(~)  = 

~.(a) = 

o~(ei, e~, e~r ~ 
i ,J,k 

~ O@i , e~, e~)o~(~e,, q)e~, e~); 

2 ~(~, e~, e,o)~ 

~ C~(~, e;, e~)e(e~, ~, e~); 

7(ei, e,, ~)~(e~, q~ei, ~); 

~. ~(~, e~, e~) ~(~e~, ~, e~); 
~,~ 

~ (e i ,  c/)ei, ~) ~t(e~, e~, ~) 
%J 

2 ~(e,, e,, e~)~(~, ~:, e~); 
i,lz 

i~(~) = Z ~(e,, e~, e,,)~(e~, e,, e,:) 
i,~,k 

i4(~:) = ~ o~(ei, ei, e~)o~(e~, e~, e~) 
i,~,k 

io(~) = y.  ~(e~, ~, e~)~ 
i,k 

i~(~) = y_, ~(e~, c .  ~)~(e .  e,, ~) 
i,i 

ilo(~) = ~_, ~(e,, e,, ~)~(e~, e~, ~1 

i,i 

i,j 

~0(~) = 

k 

~(~)  = 

~(e~, e .  ~)~(~e~, ~e,, ~) 

~(e,, ~e~, ~)7(e~, q~ej, #) 

~(~, ~, e~)~ 

o~(ei, el, q~ek) a(~, ~, e~) 

where (e~ ...~ e~., ~) is an orthonormal basis of V and ~ ~ C(V). 

P~ooF. - F rom corollary 2.1, ~he quadratic invariants of r are of the fol- 
lowing type :  

(3.2) .P((~) = ~ o~(etl , eiz , e ta)~(eJl  , ej~, esa)2~(eia , eiz , ei~ , eJl , ej~, e j3 ) ,  

where ~ e C(V) ancl F is a linear combination of 

ct lCr162162 3 The invariants i1(~), i~(~), i3(~) and i4(~) are obtained by  taking P~ ,i16(~) 
b y  Fq~...~:. and using Fei.i ' we determine the remaining invariants ij(g). Thus, taking 
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into account the symmetries of a and (3.2), every quadratic invariant is a linear 
combination of i~(~), ..., i~s(~). 

If  dim V =  3, we have the following linear relations between the quadratic 
invariants:  

(3.3) 
i~(~) = i l o ( ~ ) -  i~(~) 

i~(~) = i~o(~)-  io(~) 

; i~(~) = i~(~) 

; i~,(~) = io(~) + i ~ ( ~ ) -  i ,0(~),  

being zero the invariants il(a), i~(a), i~(a), ida), is(a), i7(~), i13(a), i17(a) and i,s(a). 
For  dim V = 5, it follows that  

i1(~) = 2{i~(~) + i~(~)}, 

i2(~) = 2 { i d a ) -  i s (a)} .  

4. - The decomposition of  C(V). 

In  this paragraph, our aim is to give a complete decomposition of C(V) into 
orthogonal irreducible factors. 

The space C(V) has a natural  inner product  induced from that  on V: 

2 n + 1  

i , j ,k= l 
a~(ej, ej, e~)5(e,, e~., ek), 

where ~, 5 e  C(V) and {ei} is an arbi t rary  orthonormal basis of V. 
Since, 

<aa, ar a e  U ( n ) •  a, S e r  

the orthogonal complement of an invariant subspace of C(V) is also invariant. 
Further ,  it follows from this tha t  the s tandard representation of U ( n ) x 1  on C(V) 
is completely reducible. 

Now, we introduce three subspaces ~D~, i = 1, 2, 3, of C(V), as follows, 

~ 1 =  {~e C(V): ~(~, x, y) = ~(x, ~, y) = 0} 

ID2 = {a e C(V): ~(x, y, z) --~ ~(x)g(~, y, z) -[- ~(y)g(x, ~, z) ~- ~(z)~(x, y, ~)} 

~3 = {ae  C(V): ~(x, y, z) = ~(x)v(y)a(~ , ~, z) ~- ~(x)~(z)a($, y, ~)} . 

Then, we have, 
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P~oI'osI~IO~ 4.1. - I ]  dim V -~ 2n + t ,  n > 2 :  

I I  ~ = ~, then g l  = {o}. 

Moreover, these spaces are mutually orthogonal and invariant under the action o] 

U(n) x 1. 
l~ext we shsll give a decomposition of the subspaces ID~ and ID~ into orthogonal 

irreducible factors. 
Le t  V be the orthogonal complement of the subspsce spanned by $. The endo- 

morphism ~ induces on V ~ complex structure and <, > is a Hermit ian inner product.  
Gray and IIervell~ [5] decomposed the vector space 

W = {a e ~" o z) a(x, z, ~y, ?z), x, y, z s V} @3g/a(x,Y, = -  y ) = - - a ( x ,  

into four irreducible and invariant  subspaces under the action of U(n). Since ~ 
is naturul ly  isomorphic ~o W, we have, 

THEOI~E~ 4.1. - I] dim V : 2n -~ 1, n > 2, then: 

where 

C~= ( a s  C(V): a(x, x, y) ---- a(x, y, $) -~ 0} , 

C 2 :  { a s  (V): ~ a(x, y, z) : 0, a(x, y, $) : 0} , 

6 8 =  {as C(V): ~(x, y, z ) -  a(~x, ~y, z ) -  0, cl~a = 0} , 

e ~ =  a s  e(v)/a(x,  y, z) - ~ ( n - 1 )  [(<x, 5,> - ~ ( x ) ~ ( y ) ) c ~ j . ( z ) -  

and c~2a($) ---- 0} 

for any x , y ,  z s  V and e l~a(x)~ ~ a ( e i ,  ei, x), where {ei}, i ~ 1 , . . . , 2 n + 1 ,  is an 

arbitrary orthonormal basis of V. 
For n = l ,  f i b=  {0}; and ]or ~ =  2, ~ =  C~@ C~: 
These subspaces are mutually orthogonal and invariant under the action o] U(u) x 1. 
In  order to decompose the subspace g).. we introduce the endomorphism ~ given by  

] 
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for any x, y, z e  V, where cl, a(~) --~ ~ ~(ei, ~ei, x), and {e,} is an arbitrary ortho- 
normal basis of V. Then ~o commutes with the action of U(n) •  ~ 0  and 
~ ~ ker ~ G Im V3. We have, 

We shall denotes this subsloaee by es. 
In ker ~o = {ee ~2: g~2e(~)= O} we define the endomorphism 2 by 

1 

I t  is easy to check that  g commutes with the action of U(n) •  1 and g2= Z. 
Thus, 

ker~---- k e r g O I m  Z, 

and 

e6 = Im Z = e e e(V)/o~(x, y, z) = -~n [(x, y)rt(z)e~2o~(~ ) - -  (x ,  z )u (y )e~e(~)]  , 

Now, we consider the endomorphism 7 on ker ~ given by 

(~,~)(x, y, z) = ~(z)o~(fx, ~y, ~) + ~(y)~(q)x, ~, f z )  - ~(x)~(~,  y ,  z) . 

Since 7~= I ,  7 admits the eigenvalues @ 1 , -  1 and the eigenspaees 

(ker X)+= {~ e IDa: ~(x, y, z) = ~(z)~(~x, f y ,  ~) + ~(y)~(q~x, ~, fz)} 

(ker g ) - ~ -  (~ ~ ~)~: o:(x, y, z) -~ --  V(z)a(q~x, ~y, ~) --  U(y)a(q~x, ~, c~z) ~- ~(x)a(~, y, z)} 

are invariant, mutually orthogonal and 

ker 2 ~- (ker 2)+ (~ (ker ~)_. 

In (ker g)_ the endomorghism v defined by 

(va)(x, y, z) = ~(x)~(~, y, z) 

commutes with the action of U ( n ) •  and satisfies ~ v. Thus, 

(ker Z)- = ker ~ ~ Im v,  
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where 

ker  z = {~ e ~D2: ~.(x, y, z) = - -  ~(z)~(~x, ~y, 2) -- ~(y)g(~x, 2, ~z)} 

I m  ~ ---- {~ e c(r ) /~(x ,  y, z) = -- ~(x)~(~, ~y, ~z)} . 

We denote  the  space I m  v b y  Cll. 
Final ly,  we introduce in the  subspaees (ker Z)+ and  ker  ~ the  same homomor-  

ph i sm ~ given b y  

<o~)(x, y, z) = �89 [~(z)(~(x, y, 2) + ~(y, x, ~)) - ~(y)(~(x, z, 2) + ~(z, x, ~))]; 

is an  endomorph i sm in each subspace which commutes  wi th  the  act ion of U(n) • 1 

and satisfies ~---- ~. Hence  (ker Z)+ and  ker  ~ can be decomposed into mutua l ly  

or thogonal  and  invar ian t  subspaces as follows: 

(ker g)+ = C7 @ C8, ker  ~ = C9 @ Cio, 

where 

C7 = {~ e C(V):  ~(x, y, z) = ~ ( z ) ~ ( y ,  x ,  ~) - -  V ( y ) ~ ( ~ x ,  ~z, ~), c~2~(~) = 0} 

Cs = { g e  C(V):  ~(x ,  y ,  z )  = - -  ~ ( z ) ~ ( y ,  x ,  2) - ~ ( y ) ~ ( ~ x ,  q0z, }), ~ ( ~ )  = 0} 

C~ = {~e C(V): ~(x, y, z) = ~(z)~(y, x, 2) + v(y)~(~x, ~z, ~)} 

C~o = ( ~  C(V): ~(x, y, z) = - -  ~(z)~(y, x, 2 ) +  ~(y)~(~ox, ~z, 2)} �9 

Thus,  we can conclude, 

Tm~o~E.~{ 4.2. - I ]  d im V = 2n @ i, n > 2 ,  then 

~D~ = Q @. . .  @ C~, 

and i] n = i, 

q)~ = C5 @ C6 @ C9 �9 

These subspaces are mutually orthogonal and invariant under the action o] U(n) • 1. 
F r o m  theorems 4.1, 4.2 and  proposi t ion 4.1, C(V) decomposes as a direct sum of 

twelve  subspaces ff~, i = 1, ..., 12, invar ian t  under  the  action of U ( n ) •  (where 

C1. = ~D3). 
I n  order to p rove  t h a t  the  decomposi t ion given before is irreducible, i t  is suf- 

fieient to check that the space of the quadratic invariants of each C~ has dimen- 

sion one [I]. 
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and 

U s i n g  t h e o r e m  3:1  i t  fo l lows that 

]l~II ~= i~(~) + i~(~) + ~io(~) + iio(~), 

I[~(~) ]I ~= i~(~) + i~o(~) + i~o(~) + 2i.(~) 

i n v a r i a n t s  fo r  e~eh of t h e  i r r educ ib l e  suspaees  

se t  {1, 2, 3, 4, 5, 7, 11, 13, 15, 16, 17, 18}).  

I I~ (a )  ][~ = i~(~) + i ~ ( ~ ) .  

~r we  h ~ v e :  

(a) I f  ~ e  ~ t h e n  i~(~) = 0 for  m~>5. 

(b) I f  a ~  ~ ,  t h e n  i~(g) = 0 for  m = 1, 2, 3, 4, 16, 17, 18. 

F r o m  t h e s e  r e su l t s  we  g ive  in  t a b l e  I t h e  l inea r  r e l a t ions  a m o n g  t h e  q u a d r a t i c  

C~ ( H e r e  we d e n o t e  b y  A to  t h e  

TABLE I 

Classes Linear relations among the quadratic invariants  (dim ]7 > 7) 

c l  i~(~) = - ~ ( ~ )  = - i ~ ( ~ ) =  []~I[~; i ~ ( a ) =  o ( ~ > ~ )  

~b 2n 

Ca i1(~) = i8(~) = ( n - -  1) - - - - - ~  i~(a) (n 1) 2 ~ c1~(~)(%); is(a ) = i~(a) = 0 (m > 4) 

1 
C5 i6(a) : - - i s (a  ) : i~(~) = --i12(~ ) = ~nil~(~); /lo(~) = i~(~) : 0 (m~A) 

1 
C8 i6(~) = is(a) = i~(~) = ilk(a) = ~ ilo(a); i1~(~) = i~(~) = 0 ( m e  A) 

Hail ~ C~ i s (~ )= i s ( a )  = i g ( a ) = - - i 1 2 ( a )  = 2 ; i l o ( a ) = i l d ( a ) = i m ( ~ )  = 0 (m~A)  

ilalt ~ 
Cs i 6 ( ~ ) = - - i s ( a ) - - - - i g ( ~ ) = - - i l ~ ( a ) =  2 ; i l o ( a ) = i l t ( a  ) = i ~ ( a ) =  0 ( m e A )  

Co i6(~) = i s ( a  ) = - - i g ( a  ) = - - i l ~ ( a  ) = ~ - ;  ilo(a ) = i l a ( a  ) - - i ~ ( ~ )  = 0 ( m ~ A )  

Clo i6(a ) = --  is(a ) = --  io(a ) = i1~(~ ) = - -~- ;  ilo(~) = ila(a ) = in(a ) = 0 (qn e A) 
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The  co r respond ing  resul ts  for  t he  genera to rs  of  the  quadra t i c  invar iun t s  wi th  
d im  V = 3 are  done  in t ab le  I I  (see (3.3)). 

T A B L E  I I  

Classes Linear relations among the quadratic invariants (dim V =  3) 

r i~(~) = i~(~) = ~ ( ~ ) ( ~ ) ;  i~o(~,) = i~(a) = i~6(~) = 0 

s i~(~) = i6(~) = ~i~o(~) = ~-c~(~)(~) ;  i~6(~) = i~6(~) = o 

C9 ie(~r = - -  i g (a )  : 2 ; i10(0r : /15(~) : i16(Cr ) = 0 

c ~  i ,~(~)  = l [~l[~ i6(~)  = ~ ( ~ )  = i~o(~) = i ~ ( ~ )  = o 

Fina l ly ,  for  d im V = 5, t he  co r respond ing  l inear  re la t ions  are  t he  same as in 
t ab le  I .  

So, we conclude  

TIrEOlCE~.r ~.3. - The decomposition of C(V) given be]ore is irreducible under the 
action o] U(n) • 1. 

RE~_AI~Ic. - I f  d i m  V = 2n + i, 

dim r = �89  1)(n- 2); 

d im C~ = d im C~2 ~ 2h i  

d im e9 = n(n  + ! ) ;  

dim r = .~n(n-- 1)(n + 1); d im  e3 -~ n(n  + 1 ) ( n - -  2); 

d im C5 - -  d im  C6 = 1;  d im e7 ---- d im Cs = n 2 - -  1 ;  

d i m  r ---- d im t n  = n(n--  1) . 

5 .  - C l a s s i f i c a t i o n  o f  a l m o s t  c o n t a c t  m e t r i c  s t r u c t u r e s .  

L e t  M be a man i fo ld  of d imens ion  2n  + 1 wi th  an  a lmos t  con tac t  me t r i c  s t ruc-  

t u re  (~, ~ ~, g). F o r  eve ry  x E M, (T~ M, qJ~, ~ ,  ~ )  is an  a lmos t  con t ac t  vec to r  

space wi th  compa t ib l e  me t r i c  g~. Hence  it  is possible to  decompose  the  vec to r  space 

C(T~M) as iu t he  p rev ious  section.  L e t  U be  one of t he  i n v a r i a n t  subspaces  of  

C(T~M).  W e  say  t h a t  M is of class U if (Vq~)~ belongs to  U, for all x ~ M, where  

Vq~ is t he  cova r i an t  de r iva t ive  of t he  f u n d a m e n t a l  2 - form ~ of t he  a lmos t  con t ac t  

me t r i c  s t r uc tu r e  (% ~, ~/~ g). F r o m  equa t ions  (1.6) a n d  (1.7) we h a v e  
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for all x e M and X~ e T~M. Then, using the  defining conditions of each subsloace C~ 
and formulas  (].3), (1.4) and  (1.5), we deduce the  following. 

Tn~ om ~ z  5.1. - The defining relations ]or each o/ the twelve classes (being n > 3 )  

are give~ i~ Table I I I .  I] n =  2, C ~  C ~ :  ]C[; and i/ q~-~ l ,  C~= ICI /or 
i = 1, 2, 3, 4, 7, 8, 10, 11, where [C I denotes the class of eosympleetie mani]olds. 

TABLE I I I  

Classes Defining conditions 

e~ ( v ~ ) ( x ,  y ) =  o, vv = o 

(~ d~ = v~ = o 

e~ (vx~)(Y, z) - (vcxr z) = o, ~o = o 

1 
e~ (vx r z) - 

~ ( ~ - ~ )  
- -  [g(~X,  ~:~) ~ ) ( z )  - g (~X,  ~ z )  ~ o ( y )  - 

- r  Y)~r + ~(X,  Z)~r ~r = o 

e5 (V~ ~)(Y, Z) = ~ [r  Z)~(]z) _ ~ (X,  ~)v(Z)]  ~ 

C~ (V~) (Y,  Z) = ~ [g(X, Z)v(Y) - g(Y, ~)v(Z)] ~ ( ~ )  

e~ (V~ ~)(Y, Z = v(Z)(V~V) ~X + v(Y)(V~xv) Z, ~O -- o 

e~ (V~) (Y,  Z) = - ~(Z)(V'~v)~X + v ( ~ ) ( V ~ v ) Z ,  ~ = 0 

e5 (V~ ~ ) ( r ,  Z) = v(Z)(VrV)~X-  v (~ ) (V~v)Z  

elo (vx +)(Y, z) = - v(z)(v~,v) ~ x  - v(~)(v~, v) z 

e,~ (v~ ~)(Y, z) = - v(x)(v~ ~)(~y, ~z) 

e~  ( v ~ ) ( z ,  z) = ~ ( x ) ~ ( z ) ( v ~ ) ~ y -  ~ ( x ) ~ ( y ) ( v ~ ) ~ z  

Now, we explain how some classes just  in t roduced coincide wi th  classes studied 
b y  various authors  (see section 1): 

ICI = the  class of eosymplectic  manifolds.  

C1= [nKC I = the  class of nearly-K-cosym91ectic manifolds.  

C~@ C9= laCI = the  class of a lmost-cosymplect ic  manilolds.  

C5 ~ the  class of ~ -Kenmotsu  manifolds,  for all differentiable funct ion ~. 
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C6 : the class of ~-Sasakiaa manifolds, for all differentiablc function ~. 

C~Q C6 = ItS[ : the class of trans-Sasakian manifolds. 

C6Q C7 : [qS[ = the class of quasi-Sasakian manifolds. 

r CTQ Ca= [sCN] : the class of semi-cosymplectic and normal manifolds. 

r  r C6 : ]ntS[ : the class of nearly-trans-Sasakian manifolds. 

r Q r r r G r = IqKCI = the class of quasi-K-cosymplectic manifolds. 

r r r r C7(~ Ca= I-Y[ = the class of normal manifolds. 

~ i  @ e~ | eo | e7 @ e8 | e,  | r = laKcl = the class of almost-K-contact manifolds. 

C1Q r r C70 Cs(~ ~ ( ~  ~o(~ ~ n ~  r  [sC[ : the class of semi-cosymplectic 
manifolds. 

6.  - E x a m p l e s .  

A) .Examples of almost contact metric manifolds of type ~1. 

Let (M, J,  h) be an almost Hermitian manifold, dim M = 2n. 
consider the almost contact metric structure (% ~, ~, g) given by 

In M x R  we 

( ( X, a = (JX,  O) , ~ = O, , ~ X,  a 

g X , a  ~ Y ,b  = h ( X ,  Y ) @ a b ,  

where a and b are C ~ functions on M •  X,  Y e ~ ( M ) .  Then, we have 

PROPOSITION 6.1. 

(i) M •  is of class r i// M is nearly-Kaehlerian. 

(if) M •  is of class C3 i/] M is almost-Kaehlerian. 

(iii) M •  is o i class Ca ii/ M is W~-mani/old. 

(iv) M •  is of crass C4 if/ M is Wd-manifold. 

In order to construct examples of class if)l, through the previous proposition, 
let us consider the following manifolds: 

1) /r endowed with the standard Kaehler structure. 

2) iF(M), the total space of tangent bundle of a nonflat Riemannian mani- 
fold M, endowed with the standard almost Kaehler structure [18]. 
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3) S ~, %~ x R ~, ~x x R ~ (2~1 being a nonplanar minimal surface ii1 R ~) endowed 
with the almost complex structure induced from the Cayley numbers [4]. 

4) 3 / 1 =  S~x(~xxR~) ,  M a = / ' ( M ) x ( N ~ x R ~ ) ,  M ~ =  S ' x T ( M ) x ( ~ x •  en- 
dowed with the product almost t termit ian  structures. 

Then, taking into account proposition 6.1, we have 

5) R ~ - ' e  ICI; S ~ x R e  C~--Ie l ;  T ( M ) x R 6  Ca--[el ;  ~V=xR~e C~ - ]el; 

%a~+~ x S ~+~ x R ~ 6~ �9 6~- -  (C~ w C,); 

M~ x R 6 ~ @ Cs @ C~ -- ( C~ w Cs k) C~); 

MaxRe C~@ C~-- (C~U C~); 

M ~ xR e c~| c~o c~-  (ca ~ c~ ~ c,), 

where we denote M ~ and M ~ the manifolds which are obtained from the manifolds 
M~ and Ma by  making a (non trivial) conformal change of the metric. 

B) Almost contact metric stxuetures on the hyperbolic space. 

Le t  (H ~"+~, ds a) be the (2n + 1)-dimensional hyperbolic space, i.e., 

~ " + '  = {(x,, . . . ,  x~.+l) e R~"+Vx~ > o} 

and ds ~ is the l~iemannian metric given by 

2 n + l  

i = 1  

The vector fields E~---- ex~(~/3x~), i = 1, ..., 2n + 1, form an orthonormal basis 
for this space. Le t  (9, ~, ~, ds:) be an almost contact metric structure on H ~+1, 
and ~ the  components of 9 with respect to the basis {El , . . . ,  Ea.+l}. I f  9~ = con- 
s tant  and n > 2 ,  we have tha t  (~, ~, ~, ds ~) is 

(i) e5 iff ~ = ex~(O[Oxl). 

In  particular, if e = -  1 (~, ~, ~, ds ~) is Kenmotsu.  

2 n + l  

i = 2  

2 n + 1  

[iii) C~@ChQCI~-- (Cdu Chu C~a) iff ~ =  ~ x~k,(~/~x~), where k~#O and 
k~# 0 for some i >  1. ~=x 
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Finally,  in (H 3, ds ~) the almost contact metric structures (% ~, ~], ds ~) given by 

~ = constant ~ = x~]~ ~ -~- x~l~a ~-~, k~, k, = ere, 

are of class ~ .  

O) Almost contact metric structures on the generalized Heisenberg group H(p, 1), p > l .  
Le t  H(p, 1) be the group of matrices of real numbers of the form 

0 

where I~ denotes the ident i ty  p •  matrix,  A = (a~, ..., %), B : (b~, ..., b~)ER ~ 
and e e R. H(p, 1) is a connected simply connected nilpotent Lie group of dimen- 
sion 2/)-k 1 which is called a generalized Heisenberg group (see [7]). ~oreover,  
H(p, 1) is a Heisenberg group ([10]). 

A global system of coordinates (x~,x~+~, z), l < i < p ,  on H(p, l )  is defined by  

x { ( a )  = a{ , x~+{(a)  = b{ , z ( a )  : e, ( l < i < p ) .  

A basis for the left invariant  1-forms on H(p, 1) is given by  

5 = I  

and its dual basis of left invariant  vector fields on H(p~ 1) is given by 

Define a left invariant  metric on H(p, 1) by 

g ---- ~ ,~@czk + 7 @ 7 .  

With  respect to this metric the basis {Xk, Z}, k = 1, ..., 2p, is orthonormal. 
Now let (~0, $, ~/, g) be an almost contact metric structure on H(p, 1) and ~ the 

components of ~ with respect to basis {X~, Z}. Then, using the l~iemannian con- 
nection of the  metric g, we obtain:  

If Z : ~, ~ : constant  and 

�9 = -- ~+~, ~+~ ~j, 



D. C ~ E A  - C. GONZALEZ: A elassi]ieation~ etc. 33 

then  (q, ~,~, g) is of class C ~  C~--[C I. ~oreover,  i t  is C, iff ~ + ~ 0 ,  and it 

is e~ iff ~ + ~ =  ~ + ~ =  2, (~ = constant  # 0), and the other components of q are 
z e r o .  

D) A lmos t  contact metric structures on the generalized Heisenberg group H(I~ r)~ r > 1. 

The generalized Heisenberg group H(I~ r), r > 17 is the Lie group of real ma- 

a 

trices of the form 

l! !10 
where L denotes the ident i ty  r x r  matrix,  A = (a~ ...~ a~)~ B ----- (b~, ...~ b~)~ R ~ and 
e e R. This group is a connected and simply connected nilpotent group of dimension 
2r -~ 1. T h e  dimension of its center is r > 1 and so H(1,  r) is not  a Heisenberg group. 

A global system of coordinates (x o x~+~ z) l < i < ~ r ,  on H(1 ,  r) is defined by  

x,(a) : a t ,  x~+,(a) = b~ , z(a) = v . 

A basis for the left  invariant  l -forms on H(I~ r) is given by  

and  its dual basis by  

x , =  = z = 

This basis is orthonormal with respect to the left  invariant  metric defined by  

2r 

g = 

k = l  

mow, let  (~, $, ~], g) be an almost contact metric structure on H(1, r) and ~o~ the 
components of ~ with respect to basis {X,c~ Z}~ k = 1~ . . .~2r. Then~ using the 
Riemannian connection of the  metric g, we obtain: 

1) I f  Z --  $, ~ = constant  and 

then  (r ~, ~], g) is of class Cs. 
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2) I f  Z = ~, 9~ = constant  and 

then  (W, ~, ~, g) is of class C~. 

I~E~I~K. -- Le t  I ' (p,  1) and /~(1, r) be the subgroups of matrices of H(p, 1) and  
H(I, r), respectively, with integer entries and define N(p, i) =/~(p, l)\H(p, i) and 
N(I~ r)----T(I, r)\H(l, r) be the spaces of right eosets. Then ~V(p, I) and ~V(l, r) 
are compact nilmanifolds [7]. Denote by ((~, ~, ~, ~) the pro~eetions on ~ (p ,  1) and 
iV(l, r) of the almost contact metric structures defined in C and D, respectively. 
I t ' s  easy to check t h a t  (~, ~, ~, ~) belong to the same class tha t  the corresponding 
structure (% ~, U, g) on H(p,  1) and  H(l~ r). 

E) Other examples. 

Let  G be the Lie group of real matrices of the form 

i:~ 
e-z 

a ~ e z 

0 

with the left invari~nt metric 

g = e ~ dx 2 + e - ~  dy ~- + ~ dz ~ , 2 > O. 

(G, g) is a 4-symmetric space, which is isomorphic to the semi-direct product  
of R and  R ~, both  with the  additive group structure, and where the action of R 
and  R 3 is given by  the  mat r ix  

[o :] 
i.e., the group E(1, 1) of rigid motions of the !Viinkowski 2-space. 

Wi th  respect to the  metric g, the basis of invariant  vector fields {XI,  X~, Xs} 

given by  

X z :  e - z -  X ~  e ~ -  X~ 
~x'  ~y'  = i 

if orthonormal. 
I t  is easy to see t ha t  an almost contact metric structure (~, ~, ~, g) on G is el 

class C12 if ~ ---- 2:1 or ~ = X~; and it  is of class C9 if ~ ---- Xp. 
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Finally,  we obtain an example of manifold belong to Cn. For it~ we consider 
the complex matr ix  group G of the form 

65 

O0 
e-r 

0 

Here z, w denote complex variables and t a real variable. This Lie group is dif- 
feomorphic to C ~ ( z ~ w ) x R ( t ) .  A left invariant metric on G is 

(6.1) g = dz d5 + dw d ~  + dt ~ . 

The vector fields {Z1, Z~, Z, ,  23, W} given by 

Z1 = e" ~ ,  Z~ = e-"  - -  W = -- 
~w ' ~t ' 

are invariant  under the action of G and they  form an orthonormal basis of the Lie 
algebra of G. P u t  

Ident i fying C ~ •  with the real cartesian space R 5 with invariant  l~iemannian 
metric obtained from (6.1), i t  follows tha t  {X1, X2, X3, X~, W} is an orthonormal 
basis on this space. 

:Now, let (% $, ~, g) be an almost contact metric structure on G and ~ the compo- 
nents of q wi th  respect to basis {X1, X~, Xs, X~, W}. Then we obtain: 

1) If  ~----W, ~ = constant  and 

= v i  a n d  = Vl 

then  (% ~, ~, g) is eosymplectic. 

2) I f  ~---- W, ~ = constant  and 

then  (% ~, ~], g) is of class Cn. 
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An example  of a lmost  contac t  metr ic  s t ruc ture  sat isfying the  last  condition, ~nd 

so of class ~ ,  is the  following: 

Note. - We learned la ter  (by a p r iva te  communica t ion  of L. VA~mCKE) on t h a t  

the  decomposi t ion given in this pape r  has  also been obta ined  b y  F. B0vTv, N during 
the  p repara t ion  of hers doctoral  dissertat ion (unpublished bu t  announced in the  

abs t rac ts  of the  I X  Osterreichischer Ma themat ike r  KongTess, Salsburg 1977, 13. 83). 
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