
On Partial Asymptotic Stability by the Method 
of Limiting Equation (*). 

L. ttAmV~NI (Szeged, Hungary) 

S u m m a r y .  - The extensions of the Barbashiu-Kvasovsl~ij theorem to the partial asymptotic sta- 
bility o] the zero solutiou o] a di]]erential system require the bouudedness o] the uncontrolled 
coordiq~ates along the solutions. I ~  this paper the Barbashin-Krasovskij method is generalized 
without supposing (~ a priori  ~> knowledges on the solutions. A t  the same time, the results 
extend one o] C. l~isito's theorem to nonautonomous di]]ereq~tiat equations. As an application, 
stability properties o] the equilibrium state o] nonholouomie dissipative meehanical systems 
are studied. 

1 .  - I n t r o d u c t i o n .  

One of the most important results both in the theory and the practice of Ljapu- 
nov's direct method is the B~a~BAS~I~-X~ASOVSXIJ theorem [1], which establishes 
asymptotic stability for the zero solution of an autonomous differential system 
by a Ljapunov function V whose derivative ~? is not negative definite but only 
negative semi-definite. I t  requires that  the zero set of F should contain no complete 
trajactories of the system except the origin. J . P .  L A S s i E  [2] called the key 
argument of the proof of this theorem (( invariance principle ~) and generalized it to 
nonantonomous systems even to abstract dynamical systems. Using the in-variance 
principle L. SA~VADOgI [3] proved that  an isolated equilibrium position of a holo- 
nomic scleronomic mechanical system is asymptotically stable provided that  the 
potential energy has a minimum at the equilibrium position and the system is under 
the action of dissipative forces with total dissipation. 

In 1957 V. V. I~U~JA~CEV [4] introduced the concept of the partial  asymptotic 
stability. This means stability and gttractivity with respect to a so called controlled 
part  y of the coordinates of the vector x -~ (y, z) of  the phase variables. V.V. 
/ ~ z A ~ e w V  [5], A. C. OzmgA~,g [6] and C. /~isimo [7] generalized the Barbashin- 
Krasovskij method to the purtial asymptotic stability, l~nmjancev and Ozirgner 
supposed tha t  the zero set of 1 ~ contains no complete trajectories of the system 
except the origin, l~isito weakened this assumption requiring that  the zero set of l? 
should contain no trajectories except those that  lie in the set {(y, z): y -~ 0}. 

In the coarse of the extension of the Barbashin-Krasovskij method to the partial 

(*) Entra~ in Red~zione 1'8 settembre 1983. 
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asympto t i c  s tabi l i ty  a new difficulty has appeared:  every  generalizat ion requires 

t ha t  the uncontrol led  coordinates z should be bounded along the solutions. 
In  this  paper  we deal wi th  the  problem how to replace the condit ion of the  

boundedness of the  uncontrol led coordinates in l~isito's theorem not  requir ing <~ a 
priori  ~> knowledges of the  solutions. A ~ t h e  same t ime,  we generalize g is i to ' s  the- 
orem to nonautonomous  differential  systems.  Connecting with investigations of 
V. V. Rv~JA~c~V [8] and C. I%ISIT0 [7] we apply  our results  to s tudy  s tabi l i ty  
propert ies  of the  equil ibr ium of dissipative nonholonomic mechanical  systems. 

2 .  - N o t a t i o n s  a n d  d e f i n i t i o n s .  

Consider the sys tem of differentia] equat ions 

(2 .z )  s = X ( x ,  t) ( x ( o ,  t) - o) 

where t e R + : =  [0, co), and x = ( x  ~,x ~ , . . . , x  ~ ) e t t  ~ with  a norm lx[. Denote  by  
B~(~) the  open ball  in 1~ wi th  center  at  the  origin and radius ~o > 0;/~0(~) is its 
closure in R ~. 

We dist inguish two types  of coordinates:  control led and  uncontrol led ones. Ac- 
cordingly, we consider a pa r t i t i on  x = (y, z) (y e R "~, z e _~; 1 < m < k, n : =  k - -  m); 
vec tor  y consists of the  controlled coordinates, z contains the  uncontrolled ones. 

Assume tha t  the  funct ion X is defined on the set F~(H):  

F~(H):= ~(R)x2~+ (G~:= B~(R)x/~-; 0<H=<oo), 

it  is continuous in x, measurable  in t, and  satisfies the  Carath6odory condit ion 
locally (i.e. for eve ry  compact  set JY c R k there  is a locally integrable ]x:/~+--~ R+ 
such t h a t  iX(x, t)] < ]~(t) for all (x, t) e K X R + ) .  We denote by  x(t) -~ x(t; Xo, to) 

any  non-cont inuable  to the r ight  solution of (2.1) with X(to)~ Xo. 
We always assume tha t  the solutions are z-continuable [9]. This means t h a t  if 

x(t) = (y(t), z(t)) is a solution of (2.1) and  ]y(t)] ~ H ' <  H for t e  [to, T), then  x(t) 

can  be cont inued to the closed in terva l  [to, T]. 
To avoid any  ambigui ty ,  we recall  the  definitions of the s tabi l i ty  concepts used 

in this paper .  The zero solution of (2.1) is said to be y-stable [4] if for e~ery s > 0, 
toe_R+ there  exists a ~(s, to) > 0 such t h a t  ]Xol < ~(e, to) implies ly(t; no, to)] < s for 
all t ~ to. The zero solution is said to be asymptotically y-stable [4] if i t  is y-stable 
and,  in addit ion,  for eve ry  toe R+ there  exists a a(t0) > 0 such t h a t  Ix0] < a(to) imples 
r ly(t, no, to)I ~ 0 as t ---~oo. Final ly ,  we say t h a t  the solutions of (2.1) are z-bounded 
if for eve ry  toe-R+ there  is a 7(to) > 0 such t h a t  ]xo] < y(to) implies t h a t  the func- 
t ion  [z(t; x0, to)l is bounded  in [to, co). 
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A continuous funct ion V: F~,(H' ) -+R ( 0 <  H ' <  H) is a L~apunov /unction to 
(2.1) if V(0, t) ~ 0, V is locally Lipschitzian, and its derivative ~ with respect to 
(2.1) is non-positive: 

F(x, t) --= l?(~.~)(x, t) :=  lira sup V(x -~- hX(x,  t), t ~- h) - -  V(x, t) g 0 
h'-+O+ h 

for all (x, t) ~ _P,~(H'). 
We say tha t  a function a: I t+-+/?+ belongs to the class 35 if i t  is continuous, 

s t r ic t ly increasing and a (O)=  O. Class 35g consists of the functions A : / ? ~  -+/?+ 
which are continuous, s t r ic t ly increasing in its first variable and str ict ly decreasing 
in its second variable,  and for which 

lira A(d, ~) = 0 
d---~O + 

is satisfied. A funct ion W: ]'~(H) - + I t  is said to be positive y-de]inite if there is a 
funct ion a e 35 such t h a t  a(lYl) ~ W(y, z, t) for all (y, z, t) ~ / '~(H) .  

As is well-known [1, 10], in the autonomous case (i.e. if X -= X(x) ,  V = V(x)) 
i t  was the key idea of the proof of the Barbashin-Krasovskij  theorem tha t  the 
positive l imit  set of every solution lay in the so called (( dangerous set )) V-l(e)(3 
53 I?-1(0) for some c e f t+ ,  provided tha t  V is a Ljapunov funct ion to (2.1). Now 
we define the successor in our theory of this set. Le t  us given a Ljapunov funct ion 
V: F~(H') -+R.  For c e It  denote by V7~[c, cr the set of the points y e R ~ f o r  
which there exists a sequence {(y~, zi, tl)} such tha t  y~-+ y, ]zil-+c~, t i ---~CX~, V(yi, 
z~, t~) -+ c and V(yi, z~, t~) -+ 0 as i -+c~. I t  is easy to see. t ha t  (1) Vj, I[c, C~]o is 
closed relative to F . ( H ' ) ;  (2) if V and l? is continuous in y uniformly with respect 
to (z, t) e I t nXI t+ ,  then  y ~ Vj~[c, C~]o iff there exists a sequence {(z~, t~)} such tha t  
lz~I -+c,3, t~-+c<), V(y, zi, t~) -->c and l?(y, z~, t~) -+ 0 as i -+c~. Namely,  if V = V(y), 
I ~ = l?(y), then  V~[c, C~]o = V-~(c) 53 F-~(O). 

~u need some concepts and restdts from topo]ogicM dynamics given in [11]-[13]. 
As is known, every initial value problem for an ordinary differential equation is 
equivalent  to an integral equation. In  the method of l imit ing equation there occur 
functional  equations containing more general operator than  the integral with a 
kernel. An ordinary integral-like operator I is a mapping which associates with each 
continuous funct ion ~: [~, fl) -+ It~ and a e [~, fi) a continuous funct ion I ~  so tha t  
(1) if ~o~: [~, fi) -+/?~ are continuous and ~ ( t ) - +  ~(t) uniformly,  then  S~q~(t) -+ I~qJ(t) 
uniformly in t e [a, b] as i -+c~ for all [a, b] c [~,/7); (2) I~q~(t) = I~q~(s) ~ I~qJ(t) for 
all a, s, t ~ [~, fl). We shall denote by u = Iu  the funct ional  equation u -= u(a) + I~u 
associated with the ordinary integral-like operator I .  

For  t e It+ the translate X t  o] X is defined by 

X~(x, s) : =  X(x, t + s) (s ~ It+). 
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We denote  by  t r a n  (X) the  collection of al] t ransletes  X t of X (t e It+). A~ ord inary  
integral-like operator  equat ion u = I u  is a l imiting equation of (2.1) if there  exists a 
sequence {t~} converging to infinity so t h a t  X t~ integrally converges to I as i --> cx~, 
i.e. whenever  ~ :  [a, b ] -+  It~ converges un i formly  to ~ then  

b 

fx(q~(s) ,  t~-k s) I~q~(b) ds (i ---N C ~  ) . 

ct 

The set t r a n  (X) is said to be precompact if every  sequence in it  has  an integral ly  
converging subsequence. 

A poin t  p c It~ is a l imit point  of a solution ~v: [t0, c~) -+ It~ if there  exists a se- 
quence {t~} such t h a t  t~-+cx) and  F(t~) - + p  as i -+c~. The l imit set ~9(~) of the  
solution ~v consists of all the  l imi t  points of ~v. As is known [10], if (2.1) is autono- 
mous then  ~ (p )  is invar ian t  in the  sense t h a t  for every  p e zg(~v) there  exists a trajec-  
t o ry  of (2.1) th rough  p t h a t  lies in tg(~v). I n  the nonautonomous  case the  set s 
is said to be semiinvariant with  respect  to  the fami ly  of the l imit ing equations of 
(2.1) if for eve ry  p r s there  is ~ l imit ing equat ion u ~-- Iu  of (2.1) and a solu- 
t ion  ~ of the  equa t ion  u -= p -k Iou so t h a t  ~(t) e zg(~) for all t in the  domain  D~ 
of ~, i.e. the  trajectory 

r = ~ ( ~ ) : =  U $(t) 
t~JD~ 

of the  solution ~ lies in /2(~). 

3. - The  assumpt ion  on  the  r lght-hand side. 

i n  the proofs of the theorems we will need the proper t ies  t h a t  the  set of the 
t rans la tes  of (2.1) is preeompaet ,  and the  l imit  sets of the solutions are semiinvar iant  
wi th  respect  to the  l imit ing equations.  Moreover,  these proper t ies  will be needed 
also for the  equa t ion  

(3.1) y = Y(y ,  ~/(t), t ) ,  (h e Its) 

where 3( derives f rom the pa r t i t i on  X -= (Y,  Z), and Z: R+ -+R~ is a given con- 
t inuous funct ion with lx(t)I---~oo as t---~c~. 

I n  order  to assure these propert ies  we assume the following: for every  H' ,  K 
(0 < H ' < E ,  K c R~-eompact) there  are funct ions l@,,Ee 3L, #n ,e  3L~, v~,,~: R 2 -->/~+, 
vn,: I t ~ - * i t +  such t h a t  v~, E(6 , t), V~,(8, y, t) are locally integrable in t, increasing 

in 8, decreasing in ?,. 
s + l  

fv~,,~:(6, dt < (s. 8 ~ It+) t) :%, ~(8) 
8 

S §  

f~rr,(6, t) dt < N~,(6, y) (s, 6, e It+) Y, 
8 
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with appropriate function 5r~,,K e J~, N~, e ~ s  and such tha t  the following assump- 
tions are sa t i s f ied  

for every continuous function u: [a, b]--->B,(H') •  we have 

b 

fx(u(t), t)) dt a[); 

[X(x', t)--X(x",t)j~=v~,,K([x'--x"i,t  ) for all x', x'~eB,~(H)• t e ]~+;  

for every continuous function v: [a, b]-->B,~(H') and z ~B,(7  ) we have 

b 

a 

(A,) IY(y', z, t) - -  Y(y",  z, t)l <= v~ , ( l y ' - - y"] ,  y, t) for all y', y"~ B~(H'), 
z t B .O,)  , t e R+ . 

LEiVL~A 3.1. -- a) Assumptions (A1)-(A2) imply that the family of all translates of 
(2.1) is preeompaet, and the limit set o] every solution of (2.1) is semiinvariant with 
respect to the family of the limiting equations. 

b) Assumptions (As)-(A~) imply the same properties with respect to equation (3.1) 
in which the continuous function Z: R+--~]~ ~ is arbitrarily fixed so that [%(t)[-~c~ 
as t->c<). 

Assertion a) was proved in [13] (see Theorems 7.3 and 8.1). 
The proof of assertion b) can be obtained by a s traightforward modification of 

tha t  of assertion a), thus it  is omitted.  

~E~A~K 3.1. -- Assumptions (A1)-(Aa) are obviously satisfied if (2.1) is autono- 
mous and asymptoti'cally z-independent, i.e. Y(y, z)-+ Y*(y) as Izl->co uniformly 
with respect to y on every compact  set (see [14], Section 3). 

Considering more general eases, in Section 5 of [14.] we required the equicon- 
t inu i ty  condition (A4) with vH,((~ , y, t ) :  z(t)~. Besides it  is linear in (~, it  is also 
uniform with  respect to y e ~+.  The non-uniformity of (A4) can be essential, as 
the following simple example shows. The lunction 

Y(y, z, t) .-- sin (yt) 
l + z  ~ 
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obviously satisfies assumption (Ad). On the other hand,  

~+~ 
f sin y l t - -  sin l+z  Y tdt- ~ ( !m--y,I-- ,O),  

thus Y does not sat isfy the uniform version of assumpiton (Ad). 

4 .  - T h e  m a i n  t h e o r e m s .  

Consider u further  par t i t ion of the vector  of uncontrolled coordinates : z = (z~, z~) 
(z~e/~ ~,, z ~ e / ~  ~, 0 < n~< n, n~ -f- n~-~ n). In  the first theorem we require V(y, zl, 
z~, t) -+ 0 uniformly in (z2, t) e / ~  x_R+ as I(Y, z~)[ -+ 0. 

T~O~E~[ 4.1. - Let assumptions (A~)-(Ad) be satis]ied for the system o] di]]erential 
equations 

(4.1) -= Y(y,  z, t ) ,  2 = Z(y, z, t ) .  

Suppose, in addition, that there exists apes]tire y-de]inite .5japunov ]unction V: F,~(H') --> 
-->1~+ having the ]ollowing properties in F~(H') :  

(i) there is a ]unction b e 35 such that 

v(y, t) b(iyl + Iz I); 

(ii) ]or c > 0 the set V~[c, OO]o may contain the trajectory y o] a solution o] some 
limiting equation o] (4.1) only i] 

7 c {(y, z~, z2): y --= 0, z~= 0, z2e/ t~};  

(iii) ]or every c > 0 and Z: 1~+ ---~ Rn suehthat [z(t)l -+co as t --*oo the set V~I[c, oo]o 
contains no trajectory o] any limiting equation o] 

(4.2) = y(y, x(t), t) 

except the origin o] t~ ~. 
Then the zero solution o/ (4.1) is asymptotically y-~table. 

I f  (4.1) is autonomous,  V ~ V(x) and all of the  coordinates are controlled~ then 
Theorem 4.1 coincides with the Barbashin-Krasovski j  theorem. Indeed, in this 
case y ~ x, assumptions (A1), (A2) and (i) are obviously satisfied; (A3), (Ad) and (iii) 
are redundant ,  and assumpt ion (ii) requires of the set 1~-1(0)(3 V-I(e) to contain 
no complete t r a jec to ry  of the sys tem except  the origin. 
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To achieve assumption (i) r be satisfied is often very  difficult (see the mechanical  
applications ]ater). The next  theorem shows how it  can be dropped by  restr ict ing 
the funct ion Z in (4.1). 

TKEOBE~ 4.2. -- Let all but assumptions (i) and (ii) in Theorem 4.1 are satisfied. 
Suppose, in addition, that 

(i') /or every continuous /unction (v, w): R+--->B~(H')• ~ the ]unotion 

g+l 

fz(~(s), w(s), s) as 
t 

is bounded in _~+; 

(ii') /or e > 0 the set V-#~[c, oo]o may contain the trajectory ? o /any  .solution of 
some limiting equation o/ (4.1) only i/ 

r c {(y, z): y = 0, z e 2~-}. 

Then the zero solution o/ (4.1) is asymptotically y-stable. 

Let  us now consider the  case when i t  is ~( a priori  ~> known th a t  the sohttions are 
z-bounded. Then assumptions (As), (Ad) are redundant ,  and (i') has to be required 
only with bounded functions w. Bu t  this modification of (i') is a consequence of 
assumption (A~), thus we obta in  the following 

CO~OT.LA~u 4.1. -- Suppose that assumptions (A~), (A~) are satisfied, and the solu- 
tions o/ (4.1) are z-bounded. Let there exist a positive definite Ljapunov /unction 
V: JN~(H') ~ R+ such that /or every c > 0 the set V:#~[c, c~]0 may contain the trajec- 
tory y o/ any solution o/ some limiting equation o/ (4.1) only i/ ~ C {(Y, z): y----0, 
z e/C-}. 

Then the zero solution o/ (4.1) is asymptotically y-stable. 

I f  sys tem (4.1) is autonomous,  the set {(y, z): y = 0, z e R n} is invar iant ,  and  
the  set l~-l(0)~{(y, z) : y = 0, z e R n} contains no complete t ra jec to ry  of the system, 
then  the las t  condit ion of Corollary 4.1 is satisfied, so Corollary 411 is an extension 
of t~ISimO'S theorem ([7], Teorema 3.3) to nonalt tonomous systems. 

I~E~A~K 4.1. -- I n  t h e  course of the applicat ion of our results to the s tudy of 
nonholonomic mechanical  sys tem we will have  a case in which only some of the 
uncontrol led coordinates are bounded along the motions.  In  order to  be able to 
take  into aceomxt this p rope r ty  we introduce a f l tr ther par t ion  z---- (z3, zd) ( z 3 e / ~ ,  

zde 1~', 0 ~ n s ~  n, n3 + n4 ~ n), and  assume th a t  the solutions of (4.1) are z3-bo~nd- 
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ed. We caa  adap t  Theorems 4.1 and 4.2 for this case by the following modifications 
of the assumptions:  

a) assumptions (A~), (A4) have to be required of (Y, Z3) with the par t i t ion 
= ( ( y ,  

b) instead of ~ssumption (iii) we assume tha t  for every c > 0 and Zt:/~+ - ~ / P '  
such tha t  [g4(t)l -~c<) ~s t -+co the set V~+~.[c, c~]0 m a y  contuin the t ra jec tory  
of any  so]ution of some l imit ing equation of 

= z , ( t ) ,  t )  , = Z (y, z , ( t ) ,  t )  

only if ~ c {(y, z~) : y =- O, z~ ~ R "~} ; 

c) assumption (i') in Theorem 4.2 is required of Z4(v(s), ws(s), w4(s), s) for all 
continuous fnnctions (v, ws, w~): R+ - ~ / ~ ( H ' )  • •  "', where K3c/~ ~ is compact. 

After  these modifications the assertions remain true. 

5. - The proofs o f  the  main  theorems,  

The proofs of Theorems 4.1 and 4.2 ~like need the following 

L~.~w~ 5.1. - Lei assumptions (A~), (A2) be satis]ied. Suppose in addition, that 
there exists a positive y-definite L]apunov ]unction V: IV~(H') -~ 171+ to (4.1) satis]ying 
condition (ii) in Theorem 4.1. Then 

a) the zero solution of (4.1) is y-stable; 

b) ]or every solution ~ = (~, X~, Z~.) : [to, co) -+/'.~(H") ( 0 <  Hit< H')  o] (4.1) 

fro~m 

~i--+(X3, (~)(ti) , Xl(ti)) ---~ (q, rl) ~7~ (0, 0), V(~(ti) , t i)  --~Vo> 0 

it ]ollows that lg~(ti)i - * ~  as i -~c~. 

PROOF. - a) The positive definiteness of V implies y-s tabi l i ty  of the zero solu- 

t ion [9]. 

b) Suppose t ha t  the assertion is not  true,  i.e. ]z~(t~)I ++c~ as i - > ~ .  Then 
there exists a subsequence of {t~}, let  i t  be denoted by {t~} again, and an  r e R" such 
t h a t  g(tJ  -* r. We shall prove tha t  p := (q~ r) e V~l[vo, c~]o. 

Suppose the contrary.  Because the set V[l[vo, c~]o is closed, there is an e > 0 

such t h a t  

~ ( p ,  2e) n V;~[Vo, oo]0= r  
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where B~(p, 2e) denotes the closed ball i u / ~  with center p and  radius 2e. We show 
t h a t  

(5.1) : =  l im sup {l)'(q~(t), t) : t >= T, q~(t) e / ~ ( p ,  2s)} > O. 
T---> r 

Indeed,  if ~ = 0 then there exist xoe B~(p, 2s) and a sequeuce {~}, for which ~--~c~, 
l)'(~(~), ~)  -> 0, V(~) e /~ (p ,2s )  and F(v~) -~ Xo as i -~c~. But  the function V(q~(t), t) 
is decreasing, thus Xoe V~[vo, C~]o(~B~(p,2s), which is a coutradiction. 

Since V ~ 0, (5.1) implies t ha t  V(t)eBb(p, 2s) cannot  besa t i s f ied  on a n y  whole 
t ~ interval  [T, oo). Hence from p e ~9(~) i t  follows tha t  there exist sequences { ~}, {t:~} 

with the properties 

(5.~) { t~< t " <  ' 

s<=lq~( t ) - -p l~2s  ( t~t<=t::;  i = 1,2,  . . . ) .  

Then [~(t:!) - -  ~(t~)[ ~ e; therefore, by  assumption (A,), t:[-- t i ~  fi > 0 for all i with 
some constant  ft. In  consequence of (5.1) we have the es t imate  

f io) 
i = i o  = 2 

which is a contradiction.  
So, we have proved thu t  ~he l imit  set f2(~) is not  empty  and ~9(~) c V[~[Vo, c<)]o. 

By Theorem 7.3 in [13] the set Y)(~) is semiinvariant  with respect to the l imiting 
equat ions  of (r Consequently, the set V#~[Vo, c<)]o contains a t ra jec tory  through 
(q, r) of a l imit ing equation of (4.1). By assumption (ii) in Theorem 4.1, this implies 
either q = 0 or vo ~ 0, whichever is a contradiction. 

The lemmu is proved. 

The P~ooF of TKEOI~E~ 4.1. - By Lemma 5.1 the zero solution of (4.1) is y-stable. 
Le t  g(to) : ~  6(H", to), where 0 < H " <  H' ,  and 6(H 'r, to) > 0 is associated with  H r', to 

in the sense of the definition of y-stabi l i ty  (see Section 2). We shall prove tha t  for 
every solution ~ ---- (% Z): [to, c~) --> R ~ with I~(to)I < g(t0) we have l im [~p(t) l : 0. 

~--> c~ 

Let  us introduce the notat ion v(t):~-- V(q~(t), t). Since v is nonincreasing and 
nonnegative, v( t ) -~ vo>= 0 as t-->c~. 

There are two possibilities: 

a) z(t) I - ~ ;  b) Ix(t)] + ' ~  ( t - ~ ) .  

ad a) Consider the function U(y, t) := V(y, %(t), t). I ts  derivative with respet to 
the equation 

(5.3) ~ ---- iY(y, %(t), t) 
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can be expressed by  

0(~.~)(y, t) = F(,.~)(y, z(t), t); 

consequently,  U is a L japunov  function to (5.3) and 

(5.4) U~[c, oo]0c V72[c, OO]o (c > 0) .  

Let  u(t):-= U(y(t),t). We shall prove tha t  ~(~)  c U~[Uo, oo]o, where 

uo :----- lira u(t) . 
t - ->  o o  

Suppose the contrary .  Then, because the set Uj~[Uo, c~]o is closed, there  exist  
q e/2(q~) and e > 0 such tha t  

~.~(q, 2~) n u72[Uo, oo]0 = O. 

Similarly to (5.1), (5.2) one can see tha t  

(5.5) : =  lim sup {lY(~(t), t): t ~ T, ~f(t) e ]~.(q, 2e)} < 0 
T - - >  o o  

and there  is a sequence {(t~, t~)} having the proper t ies  

( 5 . 6 )  e<= 1~2(t)--qI<=2e (t~t<=t::; i = 1 , 2 , . . . ) .  

Since the funct ion #H' in assumpt ion  (A3) belongs to class Y5s there are ~ ( e ) >  0 
and @(e) such tha t  I b - - a  I ~ U ( e ) , y ~ @ ( e )  imply / t ~ , ( [ b - - a ] , y ) < e .  Let  io be so 
large tha t  [ z(t)] > @(e) for all t_> ti. By  v i r tue  of (5.5) and assumpt ion  (A~) we have 

the es t ima te  
5 

' ~t~) I ~Y(~(s), Z(s),s) ds <=#r~.(t~--t,, q(e)) (i>=io). ( 5 . 7 )  s = < ] ~ ( t ~ ) - -  ' "  = " ' 

In  consequence of the  definition of U(e), o(e) we obtain  the  inequal i ty  t ~ - - t ~  ~(s) 
for all i ~ io. By  (5.5), (5.6) it follows tha t  

~ f  i o ) ~  ~) ( i - + ~ )  (5.s) u(tD -u(t~o) __< J ~Y(~(t), t) at = (~ - -  ~ - -  ~ , 
o 

which is a contradict ion.  
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Thus, we have proved the inclusions 

(5.9) 

(see (5.4)). By Theorem 7.3 in [13] the l imit  set ~(~) is semiinvariant  with respect 
to the l imit ing equations of (5.3). Hence condition (iii) and (5.9) imply either 
~(~p) ---- (0} or Uo ~-- 0. But  the Ljapunov funct ion V, and consequently U, is posi- 
t ive y-definite, so we obtain ~(~p) ----- {0} also in the la t te r  case, which concludes the 
proof in ease a). 

ad b) We prove t h a t  in this ease Vo-~ O, which implies our s ta tement  since V 
is positive y-definite. 

Suppose t ha t  v0 > 0 and (t~} is a sequence for which t~ ~ ,  ~p(t~) ~ q, g~(t~) ~ r~ 
and  {z2(t~)} is also convergent as i -->co. By Lemma 5.1 (q, r~) = (0, 0). Then, as 
condition (i) shows, v(t~) - ,  O. Thus, being nonincreasing the funct ion v(t) tends to 
zero as t -->c~ i.e. v0 ~-- 0, which is a contradiction. 

The theorem is proved. 

Tm~ P~ooF o~ Tm~o~E~ 4.2. - Consider the solution ? = (% g): [to, co ) -~  
-->Bm(H') •  ~, the funct ion v(t) and the number  v0~ 0 defined at  the beginning 
of the proof of Theorem 4.1. I f  v0 ~-- 0, then  the proof is complete. Suppose t ha t  
Vo > 0. We prove tha t  this assumption implies f2(~o) ---- (0}. 

F i rs t  we show the inclusion 

(5.]0) ~(W) c H(Vo) :=  VZ~[Vo, C~]o. 

Since now 1z(t)l -*c~ (t -->c~) is not  supposed we have to modify  the a rgument  
given in case a) in the proof of Theorem 4.1. 

The set N(v0) is closed, Q(~) is compact  and  connected, so it is sufficient to prove 
tha t  (~0#)~.(0}) c H(v0). I f  it  is not  t rue  then  there exist q e S2(~p) (q ~= 0) and ~ > 0 
such t h a t  

(5.11) ~=(q, 28) n (N(~o) w {o}) = o .  

We show tha t  inequal i ty  (5.5) holds. Indeed, otherwise there is a sequence (s~} for 
which s~ -> c<), ~(s~) --> q'sa O, T/(~s(s~), s~) --> 0 as i -->co. By I~emma 5.1 these prop- 
erties imply ] g(s~) ] ->co; consequently q'E H(vo), which contradicts (5.11). 

Since V ~ 0 and  q e ~(~o), it  follows from (5.5) the existence of a sequence 
((t,, t~, t:~)} and  a constant  v such tha t  

f f !  . Y  . 

and conditions (5.6) are satisfied. 
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By L e m m a  5.1 we have g ( t J ] - + c o  as i -*co. Using assumpt ion (i') we show 
tha t  t g(t~ + t) 1 -+co uniformly in t e [0, T] for every T >  0. Indeed the es t imate  

t~+t 

I z ( t ~ - t ) - - g ( t ~ ) l =  fz( (s),s)ds <=iK ( i = 1 , 2 , . . . )  
Q 

holds wi th  some positive constant  K, where ] : =  [T] + 1, and  [T] denotes the integ- 
ral  pa r t  of T. 

Le t  U(s), ~(e) be defined as in case a) in the proof of Theorem 4.1. F rom the las t  
proper ty  of Z wi th  T = c it  follows t h a t  there is an io such t h a t  

! 

I z(t)l > e(~) (i > i0, t~< t < t") 

Therefore, (5.7) holds and,  similarly to (5.8) we get the contradict ion v(t~) - + - - c o  
as i -+co. 

This completes the proof of inclusion (5.10). 
Consider now the sequence of solution ~( t )  of the ini t ial  value problems 

{ 9  (i = o, 1, 2, . . . ) .  
~yt~(y, g(t), t) 

y(O) -= ~(t~) 

By L e m m a  3.1, the sequence of t ranslates  3~t'(y, z(t), t) is precompact,  so we can 
assume tha t  i t  integral ly converges to an  ordinary integral-like operator I as i -+co. 
Since ~(ti) -+ q, by  Theorem 5.3 in [13] there exists a subsequence of {~i} converging 
to a solution of the equat ion y = q + ioy, which is a l imit ing equation of (4.2). 
The t ra jec tory  ? of this solution differs f rom {0} because of q # 0. On the other 
hand,  obviously y c D(~) and,  by  (5.10), y c Vj~l[Vo, co]0, which contradicts  assump- 
t ion (iii). 

The proof is complete. 

6. - An  application to n o n h o l o n o m i c  mechanica l  systems.  

Consider a scleronomic mechanical  sys tem with  independent  Lagrangian coor- 
dinates q = col (ql q~, ..., q~) and  assume t h a t  the system is subjected to a non- 
ilrtegrable kinemat ical  constra int  

~ - ~  B(ql,  q2)ql (ql~ 1~', q2e R ~, rl + r2 = r) 

where B is a given continuously differentiable r~ x rl matr ix-function.  Denote by 
U = U(q) the  force funct ion (i.e. - - U  is the potent ia l  energT; U(0)-~ 0); by  
T = T(q, ~) = �89 ~ 'A(q)~ the kinetic energy where ~T is the t ransposed of the vec- 
tor ~ of the generalized velocities, A(q) is an r x r  matr ix-funct ion;  U and A are 
continuously differentiable. Le t  us assume tha t  the sys tem is under the action of 
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dissipative ~a4 non-energic forces. This means t ha t  if Q ~-Q(q, q) denotes their  
resul tant  then Qr(q, ~)~ ~ 0 for all q, ~ ~ RL 

Consider the par t i t ion of matr ix  A generated by the par t i t ion  ~ ~ co1(~,  ~) :  

Aii Ai2~ 
A - ~ \ A ~  A2J 

where An,  AI~, A~,  A~ are ~'~ • r~, r~ • r~, r~ • r~, r~ • r~, respectively. Int roduce the 
notat ions 

O(q, ~) :~-- T(q, ~,  B(q)~) -~ �89 

~(q) :-~ An ~- A12B + B~'A~ + B~'A~2B , 

Q(q, qD : =  g~(q, ~,  B(q)4~) + B~(q)g~(q, ~,  B(q)~) . 

Denote by ~(q) the smallest eigenvalue of the symmetr ic  positive definite matr ix  
-~(q). 

The motions are described by  the Voronec equation ([15], p. 109, see also [7], 
[8], []6], [17]): 

{ d~O ~(0§ U) ~(0§ U) 

~/~ : B(q)~ h 

where 

M " : =  ~ M~q ~ ( i -~l , . . . , rz ;  i =  1,...,rD 

~ /~B~ ~B~B~ 

and M ~ denotes the element s taying in the i-th row and j- th column in mat r ix  M. 
Obviously, M *j~ ---- - -  M ~'~. for all i, j, s; consequently 

i.e. q~G can be considered as a ~( generalized gyroscopic (non-energic) force )~. 
•. V. RU~JANCEV [8] and C. ]:~ISITO [7] invest igated the nonholonomic mechanical 

system (6.1) in the case when Q1 = Ql(q, ql) (in Rumjancev 's  paper Q~(q, ~) ~ 1)~, 
/9 is an  r~• constant  matrix) ,  Q2= 0 and the dissipation is complete, i .e .Q[~l= o 
if and only if ~1 = 0. 



78 L. tt~TVA-~I: On partial asymptotic stability by the method, etc. 

V. V. I ~ 5 A ~ C E V  proved  the following 

T~_EOB]~ A [8]. - I /  /or every compact set K c I~ ~' 

(i) B(q~, q~) is bounded in KXR~ ' ;  

(ii) (~U/~q~) ~-(3U/3q~)B is negative q~-deiinite in K •  

(iii) U is negative q~-de]inite, and this /act can be checked considering only the 
second derivatives o/ U; 

then the equilibrium position q = ~ ~ 0 is asymptotically (q~ ~)-stable. 

C. I~S~TO succeeded in weakening conditions (ii) and (iii)~ bu t  in his paper  condi- 
t ion (i) became stronger.  He  proved the following 

T m ~ o g ~  B [7]. - I/ 

(i') the solutions o/ (6.1) starting from some neighbourhood o / q  = O, ~ = O are 
uni/ormly q2-bounded /or t ~ O; 

(ii') the equilibrium positions o/ (6.1) are expressed by q~ =- O~ q~ = e -~ const;  

(iii') U is negative q~-de/inite in every compact set K c 1~', then the equilibrium 
q ~ ~ ~ 0 is asymptotically (q~, ~)-stable. 

Condition (i') is ra ther  res t r ic t ive  because it requires (( a priori ~> knowledge of 
the  solutions. Our purpose is to complete  the  sys tem of conditions (i)~ (ii'), (iii') to 
be sufficient for a sympto t i c  (ql~ ~)-stability. In  order to do it we apply Theorem 4.2 
to sys t em (6.1). 

F i r s t  we have to rewri te  (6.1) into a normal  form consisting first order differen- 
t ial  equations.  In t roducing the vector  p i e / B  ~1 of the generalized momenta  and the 
t t ami l ton ian  funct ion H by  

1 - 
Pl �9 \ ~ j  ~ ( q ) ~ ,  H(p~, q~) :=-~p~A(q)p~--  U(q),  

equat ion (6.1) can be rewr i t ten  into the canonical form 

(6.2) 

/ OH\ ~ ~ / OH\ ~ 
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where 

= O(p~, q ) :=  Q(q, A-~(q, P~)); ~ = ~(P~, q ) : =  a(q,-~-~(q), P~) �9 

The systems in which functions A~ U~ B, Q are independent of q~ were inws~igated 
by A. S. C~A~LYG~. l#owadays these systems are called of Chaplygin type ([15], 
p. 110). We introduce the following 

DEF~rCYT~0~ 6.1. -- System (6.1) is said to be of asymptotically Chaplygin type 
with total dissipation if 

a) for every compact set K c R  ~ there are ~ >  O and c~eJL such that 

(6.3) ~(q~, q~) > ~ ;  O ~ - l p ~ _ <  _ c~(Ipl[) 

for all (q~, q~) e zK xI~ ~, pl~-~rl; 

b) system (6.2) permits a limiting process as [q~]-~ c~, i.e. ~(ql,q2)-+A.(q~), 
B(ql, q2)--->B.(q~) as lq21-+c~; and for every pair of compact sets K, Z c/~ ~ 

~U 
u(q~, q~) -~ U,(q~) , ~q~ 

(2(p~, q~, q~) -~ Q.(pl, ql) 

3U B - -  + T-~ ~ w,(~O 

uniformly in q~eK and p~eL as Iq21-+c~; moreover, functions ~/~q,  ~B/'~q con- 
verge uniformly in q~e/~ as lq~l-+cx3. 

Now we can apply Theorem 4.2 to system (6.2) in order to get sufficient condi- 
tions for asymptotic (p~, q0-stability. The role of the Ljapunov function will be 
taken by the total  mechanical energy 

g(p~, q~, q~):= ~p~ A (ql, q~)p~-- U(~ ,  q~) . 

If  the force function U is negative q~-definite, and (6.1) is an asymptotically 
Chaplygin system then by the first property in a) of Definition 6.1 H is positive 
(p~ ql)-definite. 

By (6.3) the derivative of H with respect to (6.2) can be estimated as follows: 

(6.4) 

for all p!~t~1~ q~e~_, q2eIt~ provided that  K is compact. Consequently, 

6 - A n n a l i  d i  M a t e m a t i e a  
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and  the trajectories of (6.2) contained by -~ qO H~+~[c~ c~]o are the equilibria q ~ such 
t h a t  U(q ~ = c. To give the set H ~ [ c ,  co] 0 we need the following notat ion.  For  
e ~_~ denote by U~[c, co] the set of the points q~ for which there is a sequence 
((q~), q~))} ~ c h  ~hat  q~)-~ q~, Iq~)l ~ ,  ~nd U(q~), q~')) - c ~s i - ~ .  The~ by 
(6A) we obta in  

~ [ e ,  ~ ] 0  = {(p~, q~): p~ = 0, q~e ~ ; ~ [ ~ , - o ] }  (c e n ) .  

But  U(q~, q~) --> U,(q~) uniformly in ~ ~s Iq~t ->c~, consequently U~[c, c~] = U,~(c), 
and 

(6.5) ~;~[c,  ~ ]o  = ((p~, q~): pl = o, ~, (q l )  = c } .  

I f  (6.1) is an asymptot ica l ly  Chaplygin system, then  the l imit ing sys tem of (6.2) 
as ]q~l-~co reads as follows: 

(6.6) 
~ = A,~(q~)p~ , 

-~ W . ( q S  ~- Q,(p~, q~) ~- G~A.~p~ 

where G,(p~ ql) denotes the uniform limit  of ~(p~, q~, q2) as ]qz] -§ Accordingly 
to (6.5) the set of the complete trajectories of (6.6) lying in the set H~[c,  c~]o is 

(6.7) {(p~, q~): p ~ =  0, U,(q,) = --c ,  W,(q~) = 0}. 

The l imit  f tmction U.(ql) of the negative q~-definite funct ion U(q~, 22) is also negative 
definite, so for c ~ 0 set (6.7) consists of the single point (0, 0) if and only if W.(q~) ~ 0 
implies q~ ~ 0. 

I t  is easy to see t ha t  assumptions (A~)-(Ad) are satisfied if we assume tha t  B(q~, 22) 
is bounded while q~ belongs to a compact  set. Therefore, applying Theorem 4.2 (see 
also l~emark 4.1) we obtain the following 

T ~ o ~ E ~  6.1. - Suppose that 

(i) ]or every compact set K c R  r~ the ]unction B(ql~ q2) is bounded in K• 

(if) She ]oree ]unction U is negative ql-de]inite; 

(iii) system (6.1) is o] Chaplying type asymptotically with totat dissipation. 

Then the equilibrium state q ~ q = 0 o] (6.1) is (ql~ q)-stable and asymptotically q-stable. 
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I ~  in addition, we suppose that 

(iv) in case (ql, q2) is an equilibrium position of (6.1) then q~ = O, i.e. the equality 

~U ~U 
~q~ (q~, q2) -~ ~ (q~, q2)B(q~, q~) = O 

implies ql = 0; 

(v) in ease q~ is an asymptotic equilibrium position of (6.1) then q~ ~ O, i.e. 
the relation 

�9 / ~ U  ~ U  \ 
l~m I~-(q~, q~) + x-:-_. (q~, q~)B(q~, q~)) = o 

Iq2 I--->co \ O q l  (7q2 

implies q~ = O, 

then the equilibrium state q = ~ = 0 o] (6.1) is asymptotically (ql, ~)-stable. 

Up to now we have  studied s ta t ionary  mechanical  sys tems like V. V. ~ U ~ g A ~ C E V  

and  C. RISITO. Bu t  our me thod  is applicable also to nons ta t iona ry  systems.  To 
i l lustrate t h i s  we give a generalization of t~isito's theorem to the  ease of t ime- 
dependent  friction. 

Tm~o~E~ 6.2. - Assume that the dissipative ]orces Q in system (6.1) may depend 
also the time, but ]or every pair o] compact sets K,  Z c R% Q(q, ~, t) -+ Q.(~, ~) uniformly 
in (q, ~ )c  K •  as t--> 0% and there exists a % , ~  J~ such that 

I], in addition, assumptions (i')-(iii r) of Theorem B are satis/ied, then the equilibrium 
q = q----0 of (6.1) is asymptotically (ql, ~)-stable. 

The proof  is ve ry  similar to t h a t  of Theorem 6.1, so it  is omit ted.  
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