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Summary. — The extensions of the Barbashin-Krasovskij theorem to the partial asymplotic sta-
bility of the zero solution of a differential system require the boundedness of the uncontrolled
coordinates along the solutions. In this paper the Barbashin-Krasovskij method is gemeralized
without supposing « a priori» knowledges on the solutions. Al the same time, the results
extend one of 0. Risito’s theorem to nonautonomous differential equations. As an application,
stability properties of the equilibrium state of nonholonomic dissipative mechamical systems
are studied.

1. — Introduction.

One of the most important results both in the theory and the practice of Ljapu-
nov’s direct method is the BARBASHIN-KRASOVSKIJ theorem [1], which establishes
asymptotic stability for the zero solution of an autonomeous differential system
by a Ljapunov function V whose derivative V is not negative definite but only
negative semi-definite. It requires that the zero set of ¥ should contain no complete
trajactories of the system except the origin. J. P. LASALLE [2] called the key
argument of the proof of this theorem «invariance principle » and generalized it to
nonautonomous systems even to abstract dynamical systems. Using the invariance
principle L. SALVADORI [3] proved that an isolated equilibrium position of a holo-
nomic scleronomic mechanical system is asymptotically stable provided that the
potential energy has a minimum at the equilibrium position and the system is under
the action of dissipative forces with total dissipation.

In 1957 V. V. RumMsANcEV [4] introduced the concept of the partial asymptotic
stability. This means stability and attractivity with respect to a so called controlled
part y of the coordinates of the vector 2 = (y,2) of the phase variables. V. V.
Rumiancev {5], A. C. OzirANER [6] and C. Ristro [7] generalized the Barbashin-
Krasovskij method to the partial asymptotic stability. Rumjancev and Oziraner
supposed that the zero set of V contains no ecomplete trajectories of the system
except the origin. Risito weakened this assumption requiring that the zero set of V
should contain no trajectories except those that lie in the set {(y,2): y = 0}.

In the course of the extension of the Barbashin-Krasovskij method to the partial

(*) Entrata in Redazione 1’8 settembre 1983.
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asymptotic stability a new difficulty has appeared: every generalization requires
that the uncontrolled coordinates z should be bounded along the solutions.

In this paper we deal with the problem how to replace the condition of the
boundedness of the uncontrolled coordinates in Risito’s theorem not requiring «a
priori » knowledges of the solutions. At -the same time, we generalize Risito’s the-
orem to nonautonomous differential systems. Connecting with investigations of
V. V. RuMJANCEV [8] and €. RisiTo [7] we apply our results to study stability
properties of the equilibrium of dissipative nonholonomic mechanical systems.

2. — Notations and definitions.
Consider the system of differential equations
2.1) =Xz, t) (X(0,1)=0)

where t€ R, := [0, c0), and » = (a%, 2%, ..., #*) € B* with a norm [z|. Denote by
By(0) the open ball in R* with center at the origin and radius o > 0; By() is its
closure in R,

We distinguish two types of coordinates: controlled and uncontrolled ones. Ac-
cordingly, we consider a partition # = (y,2) (ye R, ze R; 1 =m =k, n:=k—m);
vector y consists of the controlled coordinates, = contains the wuncontrolled ones.
Agsume that the funetion X is defined on the set I,.(H):

FW(H) i= Gu(H)XR, (G:= Bu(H) xR 0 < H=00),

it is continuous in x, measurable in ¢, and satisfies the Carathéodory condition
locally (i.e. for every compact set K c R* there is a locally integrable fx: B, — R,
such that |X(w,?)|< fx(?) for all (w,1)e KXR,). We denote by (1) = x(¢; %o, %)
any non-continuable to the right solution of (2.1) with a(f,) = @,.

We always assume that the solutions are z-continuable [9]. This means that if
o(t) = (y(1), 2(t)) is a solution of (2.1) and |y(t)| < H'< H for te[ty, T), then x(?)
can be continued to the closed interval [¢,, T].

To avoid any ambiguity, we recall the definitions of the stability concepts used
in this paper. The zero solution of (2.1) is said to be y-stable [4] if for every ¢ > 0,
t,€ B, there exists a (e, 2,) > 0 such that || < (e, t,) implies |y(t; @, %) < & for
all £=1,. The zero solution is said to be asymptotically y-stable [4] if it is y-stable
and, in addition, for every #,& R, there exists a o(f,) > 0 such that o] < 0(f) imples
ly(t; 4o, 1) =0 as t —oo. Finally, we say that the solutions of (2.1) are z-bounded
if for every t,e R, there is a y(f,) > 0 such that |»,| < y(f,) implies that the func-
tion [2(¢; @, t,)| is bounded in [%,, co).
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A continuous function V: I, (H') — R (0 < H'<< H) is a Ljopunov function to
(2.1) if V(0,¢) =0, V is locally Lipschitzian, and its derivative V with respect to
(2.1) is non-positive:

Ve, t) = Viy(®, t) = lim sup Vet hX(@, 1), h) — Vi@, 1)

B0+ h

A

0

for all (x,%) e I,(H') .

We say that a function a: B, — R belongs to the class J if it is continuous,
strictly increasing and a(0) = 0. Class KL consists of the functions A: R} — R,
which are continuous, strictly increasing in its first variable and strictly decreasing
in its second variable, and for which

lim A4(d,y) = 0
>0+
p—>00

is satisfied. A function W: I',(H) — R is said to be positive y-definite if there is a
function @ € X such that a(|y|) < W(y, 2, 1) for all (y,2, 1) € [u(H).

As is well-known [1, 10], in the autonomous case (i.e. if X = X(z), V = V(%))
it was the key idea of the proof of the Barbashin-Krasovskij theorem that the
positive limit set of every solution lay in the so called « dangerous set» V-i{e) N
N V-1(0) for some ce R ., provided that V is a Ljapunov function to (2.1). Now
we define the successor in our theory of this set. Let us given a Ljapunov function
V:I'.(H') - R. For ccR denote by V¢, oo, the set of the points y € R= for.
which there exists a sequence {(y,, z;,¢,)} such that y,-—>y, |2;| =00, t,—>o00, V(y,,
iy t) —>c and V(y,, 2;,t) —0 as ¢ >oo. It is easy to see.that (1) V;'[e, col, is
closed relative to I,(H'); (2) if V and V is continuous in y uniformly with respect
to (2,) e B X R, then y € V,'[¢, oo, iff there exists a sequence {(2,, t,)} such that
[2:] =00, 1,00, V(y, 2;,t;) —¢ and V(y, 2,,t;) =0 a8 i —>co. Namely, if V= V(y),
V= TV(y), then V;[e, ooly= V-1(c) N VX0). '

We need some concepts and results from topological dynamics given in [11]-[13].
As is known, every initial value problem for an ordinary differential equation is
equivalent to an integral equation. In the method of limiting equation there occur
functional equations containing more general operator than the integral with a
kernel. An ordinary integral-like operator I is a mapping which associates with each
continuous function ¢: [«, f) — R* and a € [«, f) a continuous function I,p so that
(1) if @,: [«, B) — R are continuous and ¢,(t) — ¢(t) uniformly, then I,@.(t) — Ip(t)
uniformly in ¢ € [a, b] as ¢ —oo for all [a, b] C [, f); (2) Lp(t) = Io(s) + Lo(t) for
all @, s,t € [a, f). We shall denote by = Iu the functional equation » = u(a) + Lu
associated with the ordinary integral-like operator I.

For t€ R, the translate X+ of X is defined by

Xt(w,5):= X(x, ¢t +5) (seR,).
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We denote by tran (X) the collection of all transletes X of X (e R.). An ordinary
integral-like operator equation u = Iu is a limiting equation of (2.1) if there exists a
sequence {¢,} converging to infinity so that X% integrally converges to I as i — oo,
i.e. whenever ¢,: [a, b] — R* converges uniformly to ¢ then

b
fX(‘Pi(S), t,-+8)ds > Ipb) (i —>o0).

The set tran (X) is said to be precompact if every sequence in it has an infegrally
converging subsequence,

A point p € B* is a limit point of a solution ¢: [¢,, co) — R* if there exists a se-
quence {t;} such that t,—>co and ¢({,) = p as ¢ —~oo. The limit set Q(p) of the
solution ¢ consists of all the limit points of ¢. As is known [10], if (2.1) is autono-
mous then £(p) is invariant in the sense that for every p € 2(¢) there exists a trajec-
tory of (2.1) through p that lies in Q(g). In the nonautonomous case the set 2(g)
is said to be semiinvariant with respeet to the family of the limiting equations of
(2.1) if for every p € Q(p) there is a limiting equation « = I of (2.1) and a solu-
tion & of the equation u = p + I,u so that &(t) € 2(¢) for all ¢ in the domain D,
of &, i.e. the trajectory

y = (&)= U &)
1eD;
of the solution & lies in Q(p).

3. — The assumption on the right-hand side.

In the proofs of the theorems we will need the properties that the set of the
translates of (2.1) is precompact, and the limit sets of the solutions are semiinvariant
with respect to the limiting equations. Moreover, these properties will be needed
also for the equation

(3.1) ¥y = Y(’I_/, 2(1), t) ’ (he Bm)

where Y derives from the partition X = (Y, Z), and x: B, — R* is a given con-
tinuous funetion with |x(¢)] - oo as ¢t —oo.
In order to assure these properties we assume the following: for every H', K

(0 < H'<H, K c R*compact) there are functions pg: z€ X, uge XL, vy * B - R,
vt B — R, such that vy (6, 1), vz(6, y,t) are locally integrable in ¢, increasing
in §, decreasing in y.

s+1

[rasd 0 @< Fpp®)  (s.0€Ry)

ss-I—l

[y ) S Ng(d,9) (s, 8,y€ Ry

8
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with appropriate function Ny z€ K, Ng € 3£, and such that the following assump-
tions are satisfied.

{Ay) for every continuous function u: [a, b] — B,(H') XK we have

b
[E ), ) dt) < g (o — a]);

@

(A,) | X (2, t) — X (", 1)| < vgo g(J&'— 2"], 1) for all o', #"€ B(H)XE, teR,;

(A;) for every econtinuous function »: [a, b] — B, (H') and 2 ¢ B,(y) we have

b
fY(v(t), 2, 1) i) < pg(|b — al, );

a

(Ag) X'y 2, 1) = X(y", 2, 1)| S va(ly'— 9"}, 5 ) for all ¢/, y'c B.(H"),
#¢B,(y), teR,.

LEMMA 3.1. — a) Assumptions (A,)-(4A,) imply that the family of all translates of
(2.1) is precompact, and the limit set of every solution of (2.1) is semiinvariant with
respect to the family of the limiting equations.

b) Assumptions (A;)-(A,) imply the same properties with respect to equation (3.1)
in which the continuous function y: R, — R* is arbitrarily fized so that |y(1)| —oo
as t — oo,

Assertion a) was proved in [13] (see Theorems 7.3 and 8.1).
The proof of assertion b) can be obtained by a straightforward modification of
that of assertion a), thus it is omitted.

REMARK 3.1, — Assumptions (A,)-(A,) are obviously satisfied if (2.1) is autono-
mous and asymptotically z-indspendent, i.e. Y(y,z) — Y*(y) as [z] — oo uniformly
with respect to y on every compact set (see [14], Section 3).

Considering more general cases, in Section 5 of [14] we required the equicon-
tinuity condition (A,) with v,.(d, y, ) = x(¢)6. Besides it is linear in 4, it is also
uniform with respect to y € R,. The non-uniformity of (A,) can be essential, as
the following simple example shows. The function

sin (yt)
1422

Y(y, 2, 1) :=



70 L. HATVANI: On pariial asymptotic stability by the method, ete.

obviously satisfies assumption (A,). On the other hand,
a+1
{‘ sin 4,8 — sin y,t
1 4 22

At-0  (ly1— v - 0),

thus Y does not satisfy the uniform version of assumpiton (A,).

4, — The main theorems.

Consider a further partition of the vector of uncontrolled ecoordinates: z = (2, 2,)
(€ R™, 2,6 R™, 0 < n,= n, Ny + f,= n). In the first theorem we require V(y, 2,
2y, 1) — 0 uniformly in (2,,%) € R"X R, as |(¥, 2:)| = 0.

TrEOREM 4.1. ~ Let assumptions (A)-(A,) be satisfied for the system of differential
equations

(4.1) =Y, %1, &=2Zyz1).
Suppose, in addition, that there exists a positive y-definite Liapunov function V: I, (H') —
— R, having the following properties in I',(H'):

(i) there is a function be 3o such that
Vg, 21, 20, 1) = b(i?/[ + 121[)5

(i) for ¢ > 0 the set Vi'[e, ool, may contwin the trajectory v of a solution of some
limiting equation of (4.1) only if

yC {(?/7 81,2,y = 0,2,= 0, 2,€ R””};

(iii) for every o> 0 and y: R, — R suchthat |%(i)| —oo ast —oco the set V;'{e, ool
contains no trajectory of any limiting equation of

(4.2) g = Y(y, x(0), 1)

except the origin of R™.
Then the zero solution of (4.1) is asympiotically y-stable.

If (4.1) is autonomous, ¥V = V() and all of the coordinates are controlled; then
Theorem 4.1 coincides with the Barbashin-Krasovskij theorem. Indeed, in this
case y = x, assumptions (A,), (A,) and (i) are obviously satisfied; (A,), (A,) and (iii)
are redundant, and assumption (ii) requires of the set V-(0) N V-1{c) to contain
no complete trajectory of the system except the origin.
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To achieve assumption (i) to be satisfied is often very difficult (see the mechanical
applications later). The next theorem shows how it can be dropped by restricting
the function Z in (4.1).

THEOREM 4.2. — Let all but assumptions (i) and (ii) in Theorem 4.1 are satisfied.
Suppose, in addition, that

(') for every continuous function (v, w): B — B, (H') X R* the function

s bounded in R_;

(ii') for ¢> 0 the set Vi'[e, ool, may contain the trajectory y of any solution of
some limiting equation of (4.1) only if

yc{(y,2):y=0,2eR}.

Then the zero solution of (4.1) is asymptotically y-stable.

Let us now consider the case when it is «a priori » known that the solutions are
2-bounded. Then assumptions (4,), (A,) are redundant, and (i’) has to be required
only with bounded functions w. But this medifieation of (i') is a consequence of
assumption (4,), thus we obtain the following

COoROLLARY 4.1. — Suppose that assumptions (A,), (A,) are satisfied, and the solu-
tions of (4.1) are z-bounded. Let there exist a positive definite Ljapunov function
V:I'W(H') — R, such that for every ¢ > 0 the set Vi'[e, co], may contain the trajec-
tory y of any solution of some limiting equation of (4.1) only if yc{(y,2):y =0,
ze R}

Then the zero solution of (4.1) is asympiotically y-stable.

If system (4.1) is autonomous, the set {(y,2): y = 0, z€ R} is invariant, and
the set V-1(0\{(y,2): y = 0, z€ R7} contains no complete trajectory of the system,
then the last condition of Corollary 4.1 is satisfied, so Corollary 4.1 is an extension
of RiSITO’s theorem ([7], Teorema 3.3) to nonautonomous systems.

REMARK 4.1. - In the course of the application of our results to the study of
nonholonomic mechanical system we will have a case in which only some of the
uncontrolled coordinates are bounded along the motions. In order to be able to
take into account this property we introduce a further partion 2 = (2, 2,) (2;€ R™,
2,€ B™, 0 < n,=< n, ny -+ n, = n), and assume that the solutions of (4.1) are z;-bound-
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ed. We can adapt Theorems 4.1 and 4.2 for this case by the following modifications
of the assumptions:

a) assumptions (A,), (A,) have to be required of (¥, Z,) with the partition
&= ((y; Z3)s 24)3

b) ingtead of assumption (ili) we assume that for every ¢ > 0 and y,: B~ E™
such that |y,(f)] —oco as ¢ oo the set V1, [6, co], may contain the trajectory v

mtns

of any solution of some limiting equation of

g == Y(yy 23y Xa(t), t) 5 &= Zs(.% sy ¥alt), t)

only if vC{(y, %): ¥ = 0, 2;€ R™};

¢) assumption (i) in Theorem 4.2 is required of Z,(v(s), ws(s), w,(s), s) for all
continuous functions (v, w,, w,): R +—>Bm(H’) X K3 x R™, where K,c R" is compact.
After these modifications the assertions remain true.

5. — The proofs of the main theorems.

The proofs of Theorems 4.1 and 4.2 alike need the following

LeMMA B.1. — Let assumptions (A,), (A,) be satisfied. Suppose in addition, that
there exists a positive y-definite Ljopunov function V: I'(H') — R, to (4.1) satisfying
condition (i1) in Theorem 4.1. Then

@) the zero solution of (4.1) ¢s y-stable;
b) for every solution g = (¥, y1, 3e): [foy 00) = I'n(H") (0 < H'<< H') of (4.1)
from
t;—>00, ("/"(iz‘)y Xl(ti)) — (g, 1) #= (0, 0), V(‘p(ti)’ ti) —> 0> 0
it follows that |y,(t;)| —oc0 as & —>oo.

ProOF. — a) The positive definiteness of V implies y-stability of the zero solu-
tion [91.

b) Suppose that the assertion is not true, i.e. |ys(f;)| o0 a8 4 —>co. Then
there exists a subsequence of {t,}, let it be denoted by {#;} again, and an r € B* such
that y(t;) —r. We shall prove that p:= (¢,7) € Vel[ve, 00l

Suppose the contrary. Because the set V;[v,, col, is closed, there is an &> 0
such that

Ek(p? 2e) N V;I[/ooa coly=190,
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where B;(p, 2¢) denotes the closed ball in R* with center p and radius 2e. We show
that

(5.1) o= lim sup {V(p(t), 8): t= T, 9(¢) € Bu(p, 2¢)} >0 .

T— o

Indeed, if o = 0 then there exist #,€ By(p, 2¢) and a sequence {7.}, for which 7, — oo,
V(p(r.), 7:) — 0, p(v:) € Bu(p, 2¢) and ¢(r,) — @, as i —oco. But the function V(gp(?), ?)
is decreasing, thus ,€ V3'[v,, coloN Bi(p, 2¢), which is a econtradietion.

Since ¥ =0, (5.1) implies that p(t) € By(p, 2¢) cannot be satisfied on any whole
interval [T, co). Hence from p € Q(p) it follows that there exist sequences {t}, {¢}
with the properties

5.2 t£<tt,',< t£+1’ t;—>oo, ]tp(t§)~p] =&, !‘P(tg)_pl = 2e,
(5.2) eZ o) —p| <2 Bt i=1,2,..).

Then |p(t;) — @(t)| = ¢; therefore, by assumption (A,), ¢, —¢,= f > 0 for all ¢ with
some constant f. In consequence of (5.1) we have the estimate
5
o) — oty < 3 [ Vipw, ) at< (i—iy %ﬁ o

i =%,
d

4

which is a contradiction.

So, we have proved that the limit set Q2(g) is not empty and (g) c Vi'[v,, o).
By Theorem 7.3 in [13] the set 2(¢) is semiinvariant with respect to the limiting
equations of (4.1). Consequently, the set Vi[v,, co], contains a trajectory through
(g, 7) of a limiting equation of (4.1). By assumption (ii) in Theorem 4.1, this implies
either ¢ = 0 or v,= 0, whichever is a contradiction.

The lemma is proved.

The Proor of THEOREM 4.1. — By Lemma 5.1 the zero solution of (4.1) is y-stable.
Let o(ty) == 6(H", t,), where 0 < H'<< H', and 8(H",1,) > 0 is associated with H”",{,
in the sense of the definition of y-stability (see Section 2). We shall prove that for
every solution ¢ = (p, y): [t, o) — R* with |g(t,)| < o(t,) We have lim [p(t)] = o.

Let us introduce the notation wv(f):= V(gp(t),t). Since v is nonincreasing and
nonnegative, ¢(f) - v,= 0 as ¢ —co.

There are two possibilities:

a) | x(t)] —oo; b) |x(t)] o0 (t —o00).

ad a) Consider the function U(y,t):= V(y, x(1),?). Its derivative with respet to
the equation

(5.3) y= Y(y; 2(1), t)
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can be expressed by

U(s‘a)(yy 1) = V(Ll)(ya X(t)a t)i
consequently, U is s Ljapunov funetion to (5.3) and

(5.4) U,;l[()', ooy Ve, ool (¢=0).

Let w(t) := U(yp(),t). We shall prove that Q(p)C Ug'[u,, cols, Where
U 1= %l)rg u(t) .

Suppose the contrary. Then, because the set U,'[u,, col, is closed, there exist
q€Q(p) and &> 0 such that

B,.(q,2e) N\ U {uy, 00lo=0.

Similarly to (5.1), (5.2) one can see that

(5.5) £ :=lim sup {V(p(#),): t = T, p(t) € Bu(g, 26)} < 0

T—co

and there is a sequence {({,,1,)} having the properties
56 <<, tioo, [pl)—d =e, [pt)—ql =2
GO | sip—d s WEt=;i=1,2.).

Since the function uy in assumption (A,) belongs to class X, there are n(e) > 0
and g(¢) such that [b—a|=<yle), y = ole) imply pg(|b—al,y) <e. Let i, be so
large that | x(2)| > o(e) for all £ = ¢,. By virtue of (5.5) and assumption (A;) we have
the estimate

&
(5.7) 8§WMD~@%H=UYWGLM%stéuﬂﬁ—éw@» (4= 1) -
L

?

In consequence of the definition of #(e), o(¢) we obtain the inequality t;’— téz 7(e)
for all ¢ =14,. By (5.8), (5.6) it follows that
¥
(5.8)  w(i) —u(l,) < 3 |Ulp(), 1) dt = (1 —1,)
i=1y

v
b

én(e)
2

>—o0o (i —>00),

which is a contradiction.
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Thus, we have proved the inclusions
(6.9) Q(p) c Uy, 00l C Vitlthe, 00l

(see (5.4)). By Theorem 7.3 in [13] the limit set £2(yp) is semiinvariant with respect
to the limiting equations of (5.3). Hence condition (iil) and (5.9) imply either
Q(p) = {0} or u,= 0. But the Ljapunov function V, and consequently U, is posi-
tive y-definite, 5o we obtain Q(yp) = {0} also in the latter case, which concludes the
proof in case a).

ad b) We prove that in this case v,= 0, which implies our statement since V
is positive y-definite.

Suppose that v,> 0 and {t;} is a sequence for which #, oo, 9(t;) = ¢, 1u(t:) > 7,
and {y,(t;)} is also convergent as ¢ —-oco. By Lemma 5.1 (¢, r,) = (0,0). Then, as
condition (i) shows, v(¢;) — 0. Thus, being noninecreasing the function »(i) tends to
zero as t —>oo, i.e. vy== 0, which is a contradiction.

The theorem is proved.

Tae ProoF oF THEOREM 4.2. — Consider the solution ¢ = (y, ¥): [, co) —
— B, (H') X B", the function v(f) and the number v,= 0 defined at the beginning
of the proof of Theorem 4.1. If v,= 0, then the proof is complete. Suppose that
v, > 0. We prove that this assumption implies Q(yp) = {0}.

First we show the inelusion

(5.10) Q(p) ¢ N(vo) := V[0, o0ls -

Since now | y(t)] =oco (t >o0) is not supposed we have to modify the argument
given in case @) in the proof of Theorem 4.1.

The set N(v,) is closed, £2(y) is compact and connected, so it is sufficient to prove

that (Q2(p)\{0}) c N(v,). If it is not true then there exist g € Q(p) (¢ 0) and & > 0
such that

(5.11) B.(q,2¢) N (N(v) U {0}) = 0.
We show that inequality (5.5) holds. Indeed, otherwise there is a sequence {s;} for
which s; —> oo, 9(s:;) — ¢'# 0, V(p(s:), 8;) =0 as i ~co. By Lemma 5.1 these prop-
erties imply | y(s;)| —co; consequently ¢'€ N(v,), which contradicts (5.11).

Since V=0 and g€ Q(y), it follows from (5.5) the existence of a sequence
{(t:,t;, )} and a constant ¢ such that

1< t£<t:"<ti+17 ti—t<e¢ (i=1,2,..)

and conditions (5.6) are satisfied.
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By Lemma 5.1 we have | x(¢,)] oo as ¢ -oco. Using agsumption (i’) we show
that | x(¢, + #)] oo uniformly in ¢ e [0, T'] for every T > 0. Indeed the estimate
f+t

|yt + 1) — y(t)| = UZ(cp(s), 5) dsy <K (1=1,2,..)
|2

holds with some positive constant X, where j:= [T] + 1, and [T] denotes the integ-
ral part of 7.

Let n(¢), o(¢) be defined as in case a) in the proof of Theorem 4.1. From the last
property of i with T = ¢ it follows that there is an 4, such that

[0 > ole) (i=dy, ti<t<1]).

Therefore, (5.7) holds and, similarly to (5.8) we get the contradiction v(t;') —>—00
a8 ¢ —oc.

This completes the proof of inclusion {5.10).

Congider now the sequence of solution w.(t) of the initial value problems

= Yu(y, 28)1)
{ y(O) = W(t,,) (Z - O’ ly 2, ) .

By Lemma 3.1, the sequence of translates Y*(y, x(t),?) is precompact, so we can
assume that it integrally converges to an ordinary integral-like operator I asg 4 —oco.
Sinee y(t;) —> ¢, by Theorem 5.3 in [13] there exists a subsequence of {y,} converging
to a solution of the equation y == ¢ - I,y, which is a limiting equation of (4.2).
The trajectory y of this solution differs from {0} because of ¢~ 0. On the other
hand, obviously y ¢ 2(y) and, by (5.10), y ¢ V,'[v,, ooy, Which contradicts assump-
tion (iii).
The proof is complete.

6. — An application to nonholonomic mechanical systems.

Congider a scleronomic mechanical system with independent Lagrangian eoor-
dinates g = col (¢%, ¢% ..., ¢") and assume that the system is subjected to a non-
integrable kinematical constraint

g = B(q1, €:)91 (1€ B™ @€ R™ 11+ 1= 7)

where B is a given continuously differentiable r, X7, matrix-function. Denote by
U= U(q) the force function (i.e. — U is the potential energy; U(0) = 0); by
T =T(q,q) = % ¢"A(g)d the kinetic energy where ¢* is the transposed of the vec-
tor ¢ of the generalized velocities, 4(¢) is an 7 xr matrix-function; U and A4 are
continuously differentiable. Let us assume that the system is under the action of
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dissipative and non-energic forces. This means that if @ = @(g,d) denotes their
resultant then Q7(q, §)¢ = 0 for all ¢,ge R".
Congsider the partition of matrix A4 generated by the partition ¢ = col (¢;, ¢,):

A — (All Au)
A21 'A22

where Ay, Aip, Ay Ase 8Te 7y X7y, 1 X Ta, T2 X751, T2 X7y, Tespectively. Introduce the
notations

O(g, 42) == T(g, ¢1, B(9)ds) = 147 A(9)¢s
AT(Q) = A, + A,,B + B"A, 4+ B"A4,,B ’

Q(q’ ¢) = QI(Q7 g1 B(Q)‘jl) + Br(Q)Qz(q’ g1, B(Q)%) .

Denote by A(g) the smallest eigenvalue of the symmetric positive definite matrix

A(g).
The motions are described by the Voronec equation ([15], p. 109, see also [7],

[8], [16], [17]):

d 20 6 -+U 6+ U ~ .
(6.1) dt o4, o4y * 0g, +t@+d
d.= B(q)q, ‘
where

G = G(q’ %) = (A12+ BTAzz)My

UE} iivs . .
M= EIM;’Q (t=1,.,7; j=1,..,7)
$=

" rs (OB OB
M= B2 p
vgl( oqs g3 ) ’

and M¥ denotes the eleinent staying in the ¢-th row and j-th column in matrix M.
Obviously, M¥= — M for all i, j, s; consequently

QfG(Qy él)él =0 (ge RT, Qie R™) ’
i.e. G can be considered as a «generalized gyroscopic (non-energic) force ».

V. V. Rumsanceyv [8] and C. Ristro [7] investigated the nonholonomic mechanical
system (6.1) in the case when @, = Q,(q, ¢,) (in Rumjancev’s paper Q,(q, ¢,) = Dg,,
D is an » X7, constant matrix), Q,= 0 and the dissipation is complete, i.e. 9]¢, =9
if and only if ¢, = 0.
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V. V. RUMJANCEV proved the following

THEOREM A [8]. — If for every compact set K c B™
(i) Blqy, q;) 48 bounded in K X E™;
(ii) (0U[0q.) + (0U]ogs)B is megative q,-definite in K X R';

(iif) T 4s negative gi-definite, and this fact can be checked considering only the
second derivatives of U,

then the equilibrium position ¢ = ¢ = 0 is asymptotically (g, ¢)-stable.

C. Risrro succeeded in weakening conditions (ii) and (iii), but in his paper condi-
tion (i) became stronger. He proved the following

TEEOREM B [7]. - If

(i") the solutions of (6.1) starting from some netghbourhood of ¢ = 0,4 = 0 are
uniformly q,-bounded for t = 0;

(ii") the equilibrium positions of (6.1) are ewpressed by ¢, = 0, ¢, = ¢ = const;

(iii"y U is negative q-definite in every compact set K C R, then the equilibrium
g = ¢ = 0 is asympiotically (g, ¢)-stable.

Condition (i') is rather restrictive because it requires «a priori» knowledge of
the solutions. Our purpose is to complete the system of conditions (i), (ii'), (iii") to
be sufficient for asymptotic (g,, §)-stability. In order to do it we apply Theorem 4.2
to system (6.1).

First we have to rewrite (6.1) into a normal form consisting first order differen-
tial equations. Introducing the vector p,& B™ of the generalized momenta and the
Hamiltonian function H by

0O\ o 1 .-
Dy = ol A@)g,  H(py, ¢a) = éplA(q)pl'_”‘ Ulg),
q:
equation (6.1) can be rewritten into the canonical form

), =— ,a_H_T_ T _@_H_T A Ar -1
= —(5) -2 (Ga) + 0 oTm

(6.2) . (@I_I)T
4 ops

g, = Bﬁ-—lpl ’
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where

G=0w,, 0):=0(g, A 4g,p)); G = Q(ps, 9 := G(g, A ), ) .

The systems in which functions 4, U, B, @ are independent of ¢, were investigated
by A. 8. CmarLYGIN. Nowadays these systems are called of Chaplygin type ([15],
p. 110). We introduce the following

DEFINITION 6.1. — System (6.1) is said to be of asymptotically Chaplygin type
with total dissipation if

a) for every compact set K c R™ there are A,> 0 and ¢ € J such that

(6.3) N, ) =2y Q74791 < — cx(|p4])

for all (q., ¢,) € K XR™, p,e B™;

b) system (6.2) permits a limiting process as |g,] — oo, i.e. A(qy, ¢s) = Au(q),
B(q,, ¢:) > By(g) a8 |g,| —co; and for every pair of compact sets K, L c R™

oU | oU

U(QM Q2) - U*(Ql) ’ a + aq B — W*(Qﬂ
2

Q(pu G1y G2) — Qu(Prs @)

uniformly in g€ K and p,€ L as || —o0; moreover, functions 94/dg, 9B/dq con-
verge uniformly in ¢,€ K as |g,| —oo.

Now we can apply Theorem 4.2 to system (6.2) in order to get sufficient condi-
tions for asymptotic (p,, 44)-stability. The role of the Ljapunov funetion will be
taken by the total mechanical energy

H(p,, q1, €)= 321 4701, ©2)p1— U1, @) -
If the foree function U is mnegative g¢,-definite, and (6.1) is an asymptotically
Chaplygin gsystem then by the first property in @) of Definition 6.1 H is positive

{(p:1, q,)-definite.
By (6.3) the derivative of H with respeet to (6.2) can be estimated as follows:

(6.4) H = H(pl, Qiy42) =D Q< — cx(|pi]) =0
for all p,e R, ;€ K, ¢,€ R™, provided that K is compact. Consequently,

H;;},.,[cy o], = H—l( )N H Y (e) = {(I’u G5 %): P1=0, U(q1, 42) = — 0} (ce R),

6 - Annali di Malematica
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and the trajectories of (6.2) contained by H X [e, ool are the equilibria ¢ = ¢° such

that U(¢*) = ¢. To give the set H;i[o, oo]ol we need the following notation. For
¢ € R denote by U, '[¢, co] the set of the points ¢, for which there is a sequence
(@9, ¢} such that ¢ q,, |¢] —oco, and U(¢®, ¢) — ¢ as i —>co. Then by
(6.4) we obtain )

H;ff[cy ooly= {(pyy ¢): p, =0, ¢, € U;:l[oo, —cl} (ceR).

But U(g:, 4.) = U.{¢,) nuiformly in g, as |g.| —o0, consequently U '{e,c0] = U (e),
and

(6.5) H;fl[c, o0lo= {(P1; ¢1): D=0, Uy(qs) = ¢} .

If (6.1) is an asymptotically Chaplygin system, then the limiting system of (6.2)
a8 |gy] — oo reads as follows:

rofi 4
== [é_q;(i p{A;l(QI)pl)] + Walg)" + Qu(p1, ¢1) + GL A Dy

G = A;l(q1)p1 ’

(6.6)

where G,.(p., ¢:) denotes the wniform limit of G(py, g1, ¢,) as |gz] —>00. Accordingly
to (6.5) the set of the complete trajectories of (6.6) lying in the set Hz‘rll[c, At

(6.7) {(P1y ) p1=0, Uu(q)) = — ¢, Wy(q)) = 0} .

The limit function U,{q,) of the negative ¢,-definite function U(q,, ¢.) is also negative
definite, so for ¢ > 0 set (6.7) consists of the single point (0, 0) if and only if W,(g,) = 0
implies ¢, = 0.

It is easy to see that assumptions (A;)-(A,) are satisfied if we assume that B(g, ¢.)
is bounded while ¢, belongs to a compact set. Therefore, applying Theorem 4.2 (see
also Remark 4.1) we obtain the following

THEOREM 6.1. — Suppose that
(1) for every compact set K C R™ the function B(q., ¢.) s bounded in K X R™;
(i1) the force function U is mnegative g.-definite;
(iii) sysiem (6.1) is of Chaplying type asymplotically with total dissipation.

Then the equilibrium state ¢ = ¢ = 0 of (6.1) s (qy, ¢)-stable and asympiotically ¢-stable.
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If, in addition, we suppose thai
(iv) in case (41, gz) is an equilibrium position of (6.1) then ¢, = 0, i.e. the equality

oU

oU
a—ql (15 42) + 3_92 (91 4)B(¢1, 4) = 0

implies ¢, = 0;

(v) in case ¢, is an asymplotic equilibrium position of (6.1) then ¢, = 0, i.c.
the relation

. U oU
lim (O—“ (915 ¢=) -+ a—q; (Qly 92) B(¢1, Qz)) =0

Iy l->00 \ 01

implies g, = 0,
then the equilibrium state q = ¢ = 0 of (6.1) is asymptotically (q,, ¢,)-stable.

Up to now we have studied stationary mechanical gystems like V. V. RUMJANCEY
and C. Ristro. But our method is applicable also to nonstationary systems. To
illustrate this we give a generalization of Risito’s theorem to the case of time-
dependent friction.

THEOREM 6.2. ~ Assume that the dissipative forces Q in system (6.1) may depend
also the time, but for every pair of compact sets K, L c R, Q(q, ¢, 1) = Q«(q, §) uniformly
n (¢, §) c K XL as t — oo, and there exists a ¢, ,€ X such that

Qe DI=— ez, (ld]) (geK,del).

If, in addition, assumptions (i')-(iii’) of Theorem B are satisfied, then the equilibrium
g=¢=0 of (6.1) is asymptotically (¢, )-stable.

The proof is very similar to that of Theorem 6.1, so it is omitted.
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