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Summary .  - Conditions are given Jot the nonlinear di]]erential equation (1) b~y  + / ( t ,  y . . . . .  
.... y(~-l)) = 0 to have solutions which exist on a given interval [t o, ~ )  and behave in some 
sense like speei]ied solutions o/ the linear equation (2) L~z = 0 as t -+  c~. The global 
nature o/these results is unusual as coq~pared to most theorems o / th i s  kind; which guarantee 
the existence o/ solutions o/ (1) only /or sufficiently large t. The main  theorem requires no 
assuq~ptions regarding oscillation or nonoseiIlation o/ solutions o/ (2). A second theorem is 
specifically applicable to the situation where (2) is disconjugate on [t 0, c<)), and a corollary 
o/ the latter applies to the case where Lz  = g~). 

1 .  - I n t r o d u c t i o n .  

W e  cons ider  t h e  non l inea r  d i f fe ren t ia l  e q u a t i o n  

(1) yC~) + a~(t)y(~-~) + ... + a~(t)y + ] ( t , y ,  . . . ,  y(~-~)) = 0 , t > t o  

as a p e r t u r b a t i o n  of t h e  l inea r  e q u a t i o n  

(2) zc+ + a~(t)zc~-, + ... + ~ ( t ) z  = o ,  t > to.  

I t  is a s s u m e d  t h r o u g h o u t  t h a t  a , e  C[t0, ~ ) ,  l < i < n .  W e  give  condi t ions  which  

i m p l y  t h a t  (1) has  a so lu t ion  ~) which  is def ined on [to, ~ )  a n d  b e h a v e s  as t -+ c~ 
in some  sense  l ike  c~, w h e r e  s is a g iven  so lu t ion  of (2) a n d  e is a c o n s t a n t .  A l t h o u g h  
m u c h  has  b e e n  w r i t t e n  on t h e  ex i s t ence  of so lu t ions  w i t h  p r e sc r ibed  a s y m p t o t i c  
b e h a v i o r  for  non l inea r  equa t ions ,  a l m o s t  al l  such  resu l t s  a re  (( local  )~ n e a r  inf in i ty ,  

in  t h a t  t h e  des i red  solut ions  a re  shown  to  ex i s t  on ly  for  t suff icient ly large.  Globa l  
condi t ions ,  i .e.,  cond i t ions  which  i m p l y  t h e  ex i s t ence  of solut ions  on the  g iven  

i n t e r v a l  [to, c~) a r e  r e l a t i v e l y  r a r e  (see, e.g.,  [3], [5], a n d  [6]), a n d - - a s  f a r  as we  
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know--conf ined  to equat ions of the  form 

y(,, + ](t, y) = o .  

Here  we give a global exis tence theorem for the  general  equat ion (1), which 
requires no assumptions concerning oscillation or nonoscillation of the  solutions 
of (2). We also obta in  from this theorem a resul t  which applies specifically to the  
ease where (2) is diseonjugate on [to, co). 

2.  - T h e  m a i n  r e s u l t s .  

We impose the  following standing assumpt ion  on the nonl inear  t e rm  in (1). 

ASSU~Tzo~ A. - The funct ion [: [to~ c o ) • 1 6 3  ~ is continuous and satisfies 
the  inequa l i ty  

(3) li(t, ~o, . . . ,  ~n_~)l <F( t ,  i ~ o I , . . . ,  I~n-~l), 

where F :  [to, ~ ) •  ~ - - ~  if{+ is continuous and F(t ,  Vo, ...~ vn_~) is nondecreasing in 
each v,, O < r < ~ n - - 1 ,  and satisfies one of the  following hypotheses :  

(HI) For  fixed (t, vo, . . . ,  vn_~), )~-IF(t ,  2%, ..., 2v,_~) is nondecreasing in 2 for 
> O, and 

(4) lim ).-l~(t ,  2%, ..., 2vn_l) = 0 ;  
2~--> + 0 

o r  

(Ha) For  fixed (t~ %, ..., v~_~), )~-12~(t, }~Vo~ ..., ~v~_~) is noninereasing in 2 for 
), > O, ~nd 

lira 2-1_~(t, 2%,  . . . ,  2vn_l) = 0 . 
$--> oo 

Hypotheses  (Hi) and (]=[2) were employed in [4] for the  s tudy  of second order  

semilinear elliptic equations.  
I t  will be convenient  below to abbrevia te  

(5) t(t, y(t), ..., y(n-1)(t)) = (]y)(t)  . 

I t  is to be unders tood  t h a t  all equat ions and inequali t ies involving t hold for t>~to 
unless otherwise specified, and tha t  <~ o }~ and <~ 0 ~> have thei r  s t andard  meanings 
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Le t  z~, ..., z.  fo rm a fundamentn l  sy s t em for (2), and denote 

W(zl~ ...~ Zi,l~ Zi+l, ..., Z,) 
w~ = W ( z ~ ,  . . . ,  z . )  ' 

where W(~x, ..., ~ )  is the  Wronski~n of ~ ,  ..., 9~.  The following well  known 

ident i t ies  will be  useful  belew:  

(6) ~ ( - -1 )  '~-~: z~)(t)w~(t) = (~,,~_~, O < r < n - - 1 .  
4 = 1  

TIIEORElVs 1. - -  Let ~ be a given solution o/ (2), and suppose that there are positive 

continuous ]unctions ~o, ..., 9~-~ on [to, oo) and an integer k, l < k < n ,  such that 

(7) 

(S) 

l~(r)(t)] < ~ ( t ) ,  O < r < n - - : t ,  
t 

Iz '(t)l f twi(s)i (s, ae.(s), ..., d s  = o(e,.(tD , 
to 

1<~i~</~--1, O-..<r-~<n-- 1 ~ 

and 
o o  

(9) (r" ,fl Z~oo(s), ]~0n_l(S)) as  : o(or( t ) )  , Iz, tt) w,(s)lF(s, ..., 
t 

]~<i<n, O < r < n - - 1 ,  

/or A > O. Let 0 be an arbitrary positive number, and suppose that c is a given constant. 

Then (1) has a solution ~ on [to, ~ )  such that 

(:to) I#<~,(t) -c~<,(t)l<01cLo~(t), o < r  < n -  1 ,  

provided that [c I is su]]iciently small i /  (It1) holds, or su/]iciently large i] (K~) holds. 
M o r e o v e r ,  

(ll_) ~(~)(t) = c~(r)(t) + o(~r(t)) , 0 < r < n -  1 . 

PI~oor. - I t  is convenient  to define 

(12) 

and  

t 

$o ~o 

~(t ,  ~) =flw,(s)[F(s,  ~Oo(S), ..., ~.e._~(s))ds, 
t 

(14) 

1 < i < k - - 1  , 

k<<.i<n, 

or(t, ).) = ~ ]#i')(t)l~dt, ~), o < r < n - 1 .  
i = 1  

25 - Annal~ di Materaatr 
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r,'~' 11 lne~ (g) and (9) imply  tha t  

(~) r z )  = o ( a ( t ) ) ,  o <,. <~ - I .  

Now let 7 be an arbi t rary  positi've number.  Then 

(16) g~(t, 2) <72@r(t), 0 < r < ~ - -  1 , 

for 2 sufficiently small if (H1) holds. To see this,  let 20 be an arbi t rary  positive 
number,  and choose T>to such tha t  

(17) qS.~(t, 2o)<72oo~(t), t > T ,  O < r - < n - - 1 .  

(This is possible because of (15).) Since (K1) implies tha t  2-1~( t ,  2) is nondecreas- 
ing in 2, (17) implies (]6) for t > T  and 0 < 2 <  20. If  t o < t < T ,  then  (12), (13), and 
(14) imp!y tha t  

k - - 1  

(18) r ,t)< ~ Iz~}(t)Iq~C r, A) § i [t~)(t)r~<(to, 20, o < r < ~ - - x .  
i = 1  4=1~ 

From (4) and Lebesg'ue% bounded convergence theorem, 

(19) lim 7 - ~ ( ~ ,  2) = 0 ,  1 < i < k,  
7 ~ + + 0  

-1 (~) ( O < r < n - - l , l < i < k )  are M1 for any  fixed "C>to. Since the functions O~ % 
bounded on [to, T], (18) and (19) now imply  tha t  if X is sufficiently small, then  (16) 
also holds on [to, T]. 

A similar argument  shows tha t  (H2) implies (16) for sufficiently large 2. 
We will now use the Sehauder-Tyehonoff theorem to obtain ~ as a fixed point 

(function) of the t ransformat ion ~ defined by 
t 

k - - I  t~ 

(~y)(t) = e2(t) -- ~ (-- 1)~-~z~(t)j w~(s)(/y)(s) ds 
i = 1  d 

to 
oo 

t 

(reea.tl (5)) on a. suitable subset of C(~-~)[to, ~ ) .  Le~ C("-~)[t., oo) be given the  topology 
of uniform convergence on finite intervals;  i.e.; y~ ~ y means tha t  ! i ra  g~ , j = y(~)(t), 

0 < r < n - -  I, where the convergence is uniform on [~0, T] for every T > t . .  _For a 
given constant  c, let V be the closed convex subset of C(~-l)[t0, co) defined by 
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Because of (3) and the  convergence of the  integrals in (9) for all k, ~y  is defined 
on [to, c~) if y e V; moreover, the identities (6) and the fact  t ha t  zl, ..., z~ are solu- 
tions of (2) imply  tha t  

k--1 f (21) (23y)("(t) = c~(')(t) -- :~ (-- 1)~-'z~')(t) w,(s)(]y)(s) ds § 
i = l  

to co  

t 
and that 

(22) (23y)(~)(t) ---- - -  ~ aj(t)y(~-J)(t) - -  ](t, y(t), ..., y(~-~)(t)). 

From (14) wi th  k = lc](1 § O) and (21), 

(23) I(~y)(~(t)--cs [c](1 § 0)),  0 < r < n - - 1 ,  y e V .  

Therefore, to guarantee tha t  ~;y e V whenever y e V (see (20)), we have only to 
choose c so t ha t  

r tc l ( l+ o))<l~loe~(t), 0 < r < n - 1 ,  

which is possible for lel sufficiently small if (H1) holds, or for Ic] sufficiently large 
if (g~) holds. (See (16) with y ---- 0/(1 + 0) and ~ = ]c](1 § 0).) 

Having chosen c in this way,  we have 7~(V) c V. We now show t h a t ~  is con- 
t inuous on V. To this end, suppose tha t  {y~} is a sequence in V such tha t  y~-~ y. 
We must  show t h a t  

(24) ~y,, ~ ~y .  

From (21), if TDto,  then  

(25) 

t 
k-1 f I(~GY~)(~)(t)- (23Y)(')(t)]< ~ Iz~'(t)] ]w~(s)l[(/y~)(s) - (fy)(s)l ds + 
i=l 

co  to 

§ I~?'(t)rffwds)ll(]y~)(sj- (/y)(8)l de, to<t<~,  0 < r < ~ - 1 .  
to 

The integrands on the  right of (25) converge pointwise to zero as t -> c% and they  
are respectively dominated by 

2[w,(s)lF(8, lc](1 § O)~o(S),..., ]cl(1 + o)q~_ds)), l < i < n .  
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Our integrabi l i ty  conditions on /P and Lebesgne's dominated  con~cergence theorem 
imply t ha t  t h e  integrals in (25) converge to zero as n -+ ~ .  This implies (24). 

F r o m  (23), the  families 

(26) {(~3y)("): yeV}, 0 < t - < n - -  1 ,  

are all uniformly bounded on finite subintervals  of [to, co). Moreover, (3), (20), and 
(22) imply  t ha t  

I(~y)(~)(t)i < le](1 -+-o) ~ I ~ ( t ) l ~ _ j ( t ) - } - F ( t ,  [c](1 + O)o~o(t), . . . ,  lc](] -j-o)e,~_~(t)), 
i = l  

g ~ V ,  

which, together  with (23), implies that the  families (26) are also equicontinnous 
on finite sabintervals  of [to, co). This and the  Ascoli-Arzela theorem imply  t h a t  
~3(V) has compact  closure, which completes the  verification of the  hypotheses  of 
the  Schauder-Tyehonoff  theorem.  Therefore,  ~ = ~ for some ~) in V. Tha t  
satisfies (1), (]0), and (11) can be seen f rom (22) and (23) with y = 23y = Y, and 
(15). This completes the  proof. 

I~E)r 1. -- As will be seen in Example  1, (23) m a y  yield es t imates  of ?~(~)(t) - -  
--es as t ~ c~ which arc sharper  t h an  (11). 

Theorem 1 implies and extends  Theorem 1 of [3]. 
We now app ly  Theorem 1 to the  case where (2) is disconjugate;  i.e., none of its 

nontr iv ia l  solutions has more t h an  n -  1 zeros, counting multiplici t ies,  on [to, co). 
Then i t  is possible to choose a fundamenta l  sys tem z~, ..., z~ with the  propert ies  
assumed in the  following theorem.  (For ~ convenient  reference for this s ta tement ,  
see [7, Lemma  1] ; however,  i t  is clearly implici t  in the e~rlier papers  of t t A ~ A ~  [1] 

and  WI~L~TT [s].) 

T~EORE~ 2. -- Suppose that the ]undamental system Zl~ ..., z .  ]or (2) is such that 

(27) 

(28) 

and 

(29) 

( w~' > 0, l<i<]<<.n, 
w j] 

. w~(t )  ,. z , ( t )  
l m - - = n m - - - ~  0 l < i < ] < n  

~-~wi( t )  t ~ z j ( t )  ' 

Let k be an integer, l <k<n, de]ine 

(3o) v~ = w~ ~ ~ w~]4~) t , 
{=1 

O < ~ r < n - - 1 ,  
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and suppose that 

oo 

(31) fw~(s)~(s, ;.Vo~(S), . . . ,  Zv,_~,,~(s)) a s <  oo, 
to 

2 > 0 .  

Let 0 be an arbitrary positive number. Then (1) has a solution Yk on [to, co) such that 

and 

~(~)'t' ez(f)(t) + o(v,~(t)) , t J =- 0 < r < n - - 1 ,  

provided that [c] is su]jieiengy small if  (It1) holds, or suJ]iciently large i] (1:I2) holds. 

P~ooP. - We app ly  Theorem I wi th  ~ = z~ and ~, = v~7~. Then (30) obviously 

implies (7). Because of (27), (28), and  (29), i t  is easily inferred f rom (31) t h a t  

t 

j w~(s)F(s ,  ZVo~(s), .... , Zv~_,,~0(s)) ds = o(wdt)/w~(t)), 1_ < i < k - 1 ,  
t. 

and 

f W i ( S ) - ~ ( S ,  ~VOlc(S), . . . ,  ~Vn_I ,b(S) )  ~S : O ( ~ ) i ( t ) / w k ( t ) )  , ~ < i  < n .  
t 

The las t  two equat ions imp ly  (8) and  (9) wi th  ~ = v~o; hence,  Theorem 1 implies  

the  conclusion. 

COROLLAI~Y 1. - -  Suppose that k is an integer, l < k < n ,  such that 

co 

tt~-~Y(t, Mt ~-~, I/It ~-~, ..., M,  Mt-~, ..., Mt  -~+k) d t <  ~ ,  M > 0 (32) 0 

to 

Let # be a n  arbitrary positive number.  Then the equation 

y(~) ~- / ( t ,  y, ..., yC~-~)) = 0 ,  t > t 0 > 0 ,  

has a solution y~ on [to, oo) such thi~t" 

(33) ~o '~)(t'j - ct~-~-~/ (k  - r - 1) !1 < f f ie[  t~-~-~ , O:<r<k - i ,  

(34) (') k <~ r <~ n - -  1 lY~ (t ) l<ff ie[  t'~ , 
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a n d  

[ - (3~) ~> (c + o ( 1 ) ) t ~ - , - ~ / ( k - r - 1 ) '  o <.r<k 1 ,  

Y~ (~) = o( t*- ' -~)  , k < r < n - - 1 ,  

p r o v i d e d  t ha t  lel i s  s u / f i c i e n t l y  s m a l l  i /  ( ~ )  ho lds ,  or  s u / / i c i e n t l y  l a rge  i /  (I:I~) ho lds .  

P~ooF. - In  this ease we e~n t ake  z , ( t )  = t*-~/( i  - -  1) ! ~nd walt )  = t~ -* / (n  - -  i)  !. 

Then v ~ k ( t ) =  c,7~t ~-~-~, where 

e~0= ( n - -  k)! i 
1 

~=~+1 ( n - -  i ) ! ( i - -  r - -  1)! " 

Novr choose 0 so t ha t  c,.~O < # (0 < r < n  - -  1), and apply  Theorem 2. 
Corollary 1 extends  Theorem 1 of [3]. 

RE~AnX 2. - Trivial  modifications of the  proofs show th a t  Theorems 1 and 2 
and Corollary 1 still hold under  (K~) if the in tegrabi l i ty  conditions on F (i.e., (8) 
~nd (9) for Theorem 1, (31) for Theorem 2, and (32) for  Corollary 1) are ~ssumed 
only for sufficiently small  Z (or M in (32)). 

3 .  - E x a m p l e s .  

In  this  section we apply  our results  to equat ions of the  form (1) wi th  

n--1 
(36) i(t, Uo, . . . ,  u~_~) = y ,  p~( t ) (u~V' ,  

where Po~ . . . ,  P ~ _ I ~  C[to, co) and Yo, ..., y~-i are posi t ive rat ionals  with odd denomi- 
nators ,  so t ha t  ] is real-valud for all (t, u0, ..., u~_~) with t > t o .  (We depar t  slightly 
f rom these conventions in Example  2.) Clearly (36) implies (3) with 

n--1 
•(t, Vo, ..., v~_l) = ~ Ip,(t)lv~" , 

~*=0 

and (It1) holds if y,. > 1 (0 < r < n  - -  1), while (Ks) holds if 0 < y , <  1 (0 < r < n  - -  1). 

EXAMPLE i. - The equation 

has the  fundamental sys tem 

(37) z l ( t )  = cos t ,  z~(t) = sin t ,  za(t) = e t , 
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and i t  is easily verified t ha t  

cos t -- sin t cos t @ sin t 1 
w~(t)  - 2 , w~(t) - 2 , w~(t)  = - - f f  e - ~ .  

Applying Theorem I to the perturbed equation 

(38) y " - -  y" @ y ' - -  y @ po(t)y ~ @ pl(t)(y ')  rl @ p~(t)(y") ~ = 0 

yields the  following results. 

(a) i f  Po, Pl ,  and p~ are either bounded or absolutely integrable on [to, co) and 

(39) max (yo, yl, Y~) = Y < 1 ,  

then  (38) has a solution ~ on [t0, oo) such tha t  

?)(~)(t) = eel@ 0(e79 , r = 0 ,  1, 2 ,  

provided tha t  Ic[ is sufficiently large. 

(b) i f  P0, P~, and P2 are absolutely integrable on [to, co) and ~ is a fixed real 
number,  then  (38) has a solution ~ on [to, co) such tha t  

c sin (t @ ~) @ o(1), r = 0 ,  

9 ( ~ ) ( t ) =  c c o s ( t @ ~ ) @ o ( 1 ) ,  r = l ,  

- -  c s i n  (t @ (~) -4- o ( 1 ) ,  r = 2 ,  

provided tha t  (39) holds and [cl is  sufficiently large, or tha t  

min (Yo, Yl, Y~) > 1 

and [c] is sufficiently smut1. 

P~ooF. - (a) Let k = 3 and ~(t) = ~.(t) = ~(t) = ~(t) = et Then our assump- 
tions imply tha t  the  integrals in (8) are O(e n) for i = 1, 2, and tha t  the  integral  in 
(9) is O(e (~-1)~) for k = 3. From this and (37), 

q~ , ( t ,~ )=O(e  v ' ) = o ( e  ~), r = 0 ~ 1 , 2  

(see (15)); hence, Theorem 1 and Remark  1 imply the conclusion. 

(b) Le t  k = l , $ ( t ) = s i n ( t @ ~ ) , a n d  ~ ( t ) = l , r = 0 ,  l ,  2. Then our assump- 
tions imply  (9) for i = 1, 21, 3, and Theorem 1 implies the conclusion. 
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EXAmPLeS 2. - Consider the  ell iptic equat ion  

(40) ~ + ~ u  + ~(l~l)l~l'+ ~(Ixl)lVul ~=  0 

in the  exter ior  domain  

where  m, r and  ~ are  pos i t ive  cons tan t s  and  ~, F: [R, oo) -+ :~ are cont inuous hme-  
tions. A radia l ly  s y m m e t r i c  %nctio~s u -~ u(Ixl)  is a solution of (40) if  and  only 

if She fm~etion y(t) = tu(t) is a solution of the  o rd inary  differential  equat ion 

(42) ?/ '+ m~Y + t~-'q)(t) lY] ~ + t~-~r lY - - t y '  y =  o ,  t > R ,  

which can be regarded  as a pe r tu rba t ion  of the  l inear  equat ion  

(43) 

with  

I(~, ~o, u~) = r  ~ ( t ) I n .  i ~ -~- r  tu~ i ~ . 

I~Iere (3) hold% with 

which satisfies (FL~) if ct 7/~ > 17 or (K~) if ~, fi < 1. For  (43)7 we t ake  z~(t) = mw~.(t) =- 
cos mt ~l~d z~(t) = m.w~(t) = sin rot. I f  d is a fixed real  number ,  then  app ly ing  

Theorem i wi th  lc ---- 17 z(t) =- cos (rot -4- ~)7 0~o(~) = 1, and  ~( t )  ~ m shows t h a t  ii 

o o  o o  

ftl-~t~(t)let<~ and f<~l~(t)let.~7 
2t tt 

then (42) has a solution ~ on [R7 cx~) such that 

~(t) = e cos (mr @ d) @ o(1) , 

p rov ided  tha.t [e I is sufficiently smal l  if ~, fi > 1, or sufficiently large if ~, fi < 1. 

This implies  tha~ ( 4 0 ) h a s  a solution ~ o n  9~ such t h a t  

lira (Ixl~(ixl) - ~ cos (~lxl + ~)) = 0 .  



TAKASI KIJSAN0 - V~'IILIA?I F .  TI~ENCIt: Global existence theorems 3 9 I  

Note t ha t  ~ is oscillatory with respect to Ix[. I t  would be of interest  to develop a 
theory  which establishes the existence of oscillatory solutions for s e c o n d  order 
elliptic equations on unbounded domains. 

EXA3~LE 3. -- Consider the  equation 

n - - 1  

(44) y(~) ~- ~., p~(t)(y(~))v" = 0 ,  
V = 0  

where p~e C[to, c~), 0 < r < n -  1, and 
oo 

f t"-k+v'(~-~-l)lp~(t)l a t <  c~ , 
to 

0 < r < n - - 1 ,  

for some integer k, l<k.<<n.. Suppose t ha t  /z > 0. Then Corollary 1 implies tha t  
(44) has a solution Yk on [to, oo) which satisfies (33), (34), and (35) if 

rain (Y0, .-.. Y~_l) > 1 

and ]c I is sufficiently small, or if 

max (Yo, ..., Y~-~) < 1 

and [el is sufficiently large. 

EXAMPLE 4. - -  Consider the 2m-th order elliptic e q u a t i o n  
f a - - 1  

(45) + o 
l=0 

in the  exterior domain (41), where %: [R, ~ )  --> ff~, 0 < / < m - - l ,  are continuous. 
I t  is easy to see t ha t  a radial ly symmetr ic  function u = u(lx[) is a solution of (45) 
in D~ if and only if 

f a - - 1  

o,  t > R ,  
l~O 

or, equivalently,  if and only if y( t ) -~  tu(t) is a solution of 

m--1 
(46) y(2~)_~ ~ tl-r,~(t)(y(2~))v,= 0 ,  t > R .  

l=0 

Corollary I implies t ha t  if k is an integer, l < k < 2 m ,  and 
oo 

ft~m-7~+r'('~-2~-l) lcfz(t)[ d t <  oo, 0 < l < m - - 1 ,  
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t h e n  (44) has  a solut ion yk on [R, oo) which  satisfies (35) (with n = 2m), p r o v i d e d  

~hat  lc[ is suff iciently smal l  if y ~ >  1 (O<l<~m--1) ,  or suff iciently large  if y ~  1 

( 0 ~ < / < m - - 1 ) .  This  impl ies  t h a t  (45) has  a so lu t ion  uk on zQ R such t h a t  

lira lx[-~'+'ul,([xl) = c ,  
i~l-,oo 

u n d e r  t he  same  cond i t ions  on C. 
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