Existence of Global Solutions with Prescribed Asymptotic
Behavior for Nonlinear Ordinary Differential Equations (¥).

TARAST KUSANO - WILLIAM F. TRENCH

Summary. ~ Conditions are given for the nonlinear differential equation (1) L,y + f(t, y, ...,
v, YD) = O to have solutions which ewist on a given interval [{,, co) and behave in some
sense like specified solutions of the linear equation (2) L,z= 0 as t —>co. The global
nature of these results is unusual as compared to most theorems of this kind, which guaraniee
the ewistence of solutions of (1) only for sufficiently large t. The main theorem requires mo
asswmptions regarding oscillation or nonescillation of solutions of (2). A second theorem is
specifically applicable to the situalion where (2) is disconjugate on [t,, o), and a corollary
of the laiter applies {o the case where Lz = ™.

1. — Introduction.
We consider the nonlinear differential equation
(1) YO+ GOy 4 b aay [y, Y =0, >0
as a perturbation of the linear equation
(2) 2 g (B VL at)e =0, t>1.

It is assumed throughout that a,e O[%,, oo}, 1<i<n. We give conditions which
imply that (1) has a solution # which is defined on [¢,, co) and behaves as ¢ — oo
in some sense like ¢, where £is a given solution of (2) and ¢ is a constant. Although
much has been written on the existence of solutions with prescribed asymptotic
behavior for nonlinear equations, almost all such results are «local » near infinity,
in that the desired solutions are shown to exist only for ¢ sufficiently large. Global
conditions, i.e., conditions which imply the existence of solutions on the given
interval [t,, co) are relatively rare (see, e.g., [3], [5], and [6]), and—as far as we
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know-—confined to equations of the form

Y+t y) =0.
Here we give a global existence theorem for the general equation (1), which
requires no assumptions concerning oscillation or nonoscillation of the solutions

of (2). We also obtain from this theorem a result which applies specifically to the
case where (2) is disconjugate on [#y, oo).

2. — The main results.

We impose the following standing assumption on the nonlinear term in (1).

ASSUMPTION A. — The function f: {4, co) Xx R*— R is continuous and satisfies
the inequality

(3) F(ty oy vuvy U 3)| <E(, oy envy [Uaa]) s

where F': [1;, oo} X R} — R, is continuous and (¢, v,, ..., v,_,) is nondecreasing in
each v, 0 <r<mn—1, and satisfies one of the following hypotheses:

(H,) For fixed (8, vyy .0y Vpa)y AL (3, AVy, ...y AV, ;) is nondecreasing in A for
A >0, and
4) Lim AT F (¢, Avgy ov.y AVps) = 0
A—>+0
or
(H,) For fixed (f, Vg, ...y Vp_y)y A LF(E, Ay, ..., Av,_;) 18 nonincreasing in 4 for
A > O, and

Hm A2 F(t, Avy, ..., Av,_y) = 0.

A>o0

Hypotheses (H;) and (H,) were employed in [4] for the study of second order
semilinear elliptic equations.
It will be convenient below to abbreviate

{5) ity Y(8)y o ¥ 2@) = (fy)(D)
It is to be understood that all equations and inequalities involving ¢ hold for 1>7,

unless otherwise specified, and that «o» and «O» have their standard meanings

a8 t — co.
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Let 2y, ..., 2, form a fundamental system for (2), and denote

W (Rry eery Biay Bigay oovy @n)
W21y oy 2a) ’

w; =

where W(@q, ..., ) 18 the Wronskian of ¢y, ..., ¢,.. The following well known
identities will be useful below:

n
(6) S (=" e W wilt) = g, O<r<m—1.
i=1

THEOREM 1. — Let £ be a given solution of (2), and suppose that there are positive
COLINUOUS fUNCLions 0o, ..., 0n_y 0N [ty, o) and an integer k, 1 <k<n, such that

() t o) <o), O<r<m—1,
(8) [2t)] f ()| F (s, A00(8), +ery Aon_a(s)) ds = o{e.(1)) ,
) I<ig<k—1, Ogr<n—1,
and
9) lzi”(t)lofolwxs)ws, 200(8), -1y Agaals)) ds = o{o,() ,
i

k<ign, O0<r<n—1,

for 2 > 0. Let 0 be an arbitrary positive number, and suppose that ¢ is & given constant:
Then (1) has a solution 4§ on [i,, oo) such that

(10) gty — BNty <Blelot), O<r<mn—1,

provided that |c| is sufficiently small ¢f (H;) holds, or sufficiently large if (H,) holds.
Moreover,

(11) () = cAn(t) - ofo.(t)), O<r<m—1.

ProoF. — It is convenient to define

¢
(12) Pty 2) =[S B(s, 20o(8); -, douals) ds,  T<i<h—1,
t, oo
(13) @ity 4) :flwi<5*)lF(8a A2q(8)y ey A@n_l(s)) ds, k<i<n,
and | t
(14) Ot 1) = 3 Wit 1), 0<ran—1.

25 - Annali di Matematica
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Then (8) and {9) imply that

(15) D,(t, A) = o{o,(t)), O<r<m—1.
Now let y be an arbitrary positive number. Then

(186) @ity A <ylo iy, O<r<n—1,

for A sufficiently small if (H,) holds. To see this, let 1, be an arbitrary positive
number, and choose T >4, such that

(17 D, (t, ho) <who0-(t), =T, 0<r<n—1.

(This is possible because of (15).) Since (H,) implies that 1-1@,(f, A) is nondecreas-
ing in 4, (17) implies (16) for t>T and 0 < A << 4,. If{,<t< T, then (12), (13), and
{14) imply that

(18) (8, ) < E RO el T, 2) + D 1B pilte, 4),  O<r<m—1.

i=k
From (4) and Lebesgue’s bounded convergence theorem,

(19) tim Algdr, A) =0, 1<i<k,

Ak 0

for any fixed v>%. Since the functions ¢ '|2"| (0<r<n—1,1<i<k) are all
bounded on [t,, T], (18) and (19) now imply that if 1 is sufficiently small, then (16)
also holds on {t,, T].

A gimilar argument shows that (H,) implies (16) for sufficiently large .

We will now use the Schauder-Tychonoff theorem to obtain 4 as a fixed point
(funetion) of the transformation G defined by

t
fo—

(By)(t) = e2(s E(—M-w J w,(s)(fy) (s

to
=]

+ 3 (=1 f wi(s)(7y)(5) ds
i=k ;
(recall (3)) on a suitable subset of 0"=D[t,, oo). Let 0"—2[f,, co) be given the topology

of uniform convergence on finite intervals; i.e., ¥, — y means that hm y‘”( ) = y(2),

0 <r<n—1, where the convergence ig uniform on [i,, Z] for every T>1,. ¥or a
given constant ¢, let V be the closed convex subseb of 0 I[4;, oo) defined by

(20) V = {y e 001, oo): [yn(t) — e20(1)| <Blelo. (), 0 <r<m —1}.
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Because of (3) and the convergence of the integrals in (9) for all A, By is defined
on [t,, o) if ¥ € V; moreover, the identities (6) and the fact that 2y, ..., #, are solu-
tiong of (2) imply that

t
k-1

(1) (B = () — 3 (— 1)) f w0,(5) () (5) ds -+

=1
ty o

n
2 “””tf Yfy)(s)ds, O<r<n—1,

i

i

and that

(22) (By)(t) = — 3 a;(Oy"=2(t) — f{t, y(t), ...,y (1)) .

e

From (14) with 1 = |e[(1 4 §) and (21),
(23) (By)"(8) — e2(1) | <2, )1 +6)), O<r<mn—1,yeV.

Therefore, to guarantee that By e V whenever y € V (see (20)), we have only to
choose ¢ so that

qjv(% M(l ‘|" 6)) < [0|69r(t) ’ 0 <r<n—1 ’
which is possible for |¢| sufficiently small if (H,) holds, or for |¢| sufficiently large
it (H,) holds. (See (16) with y = 6/(1 -+ 6) and A = |¢|[(1 + 6).)
Having chosen ¢ in this way, we have G(V)c V. We now show that 6 is con-

tinuous on V. To this end, suppose that {y,} is a sequence in V such that y, — y.
We must show that

(24) Gy, Gy .

From (21), if T>1,, then

(25)  |(By.)"(t) — (By) ()] < Z (1) lflw )M(Fya)(s) — (Fy)(s)| ds +

n
+ 2 IZE”(t)If[wis NI(Fya)(s) — (fy)(s)| ds,  to<t<T, O<r<m —1.
i=k

The integrands on the right of (25) converge pointwise to zero as ¢ — co, and they
are respectively dominated by

2]w;(8)|F(s, [6](1 + 0)06(8), .ovy Je|(1 + O)onu(s)), 1<i<n.
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Our integrability conditions on ¥ and Lebesgue’s dominated convergence theorem
imply that the integrals in (25) converge to zerc as # — co. This implies (24).
From (23), the families

(26) {(Ty)»:yeV}, O<r<mn—1,

are all nuniformly bounded on finite subintervals of [{,, co). Moreover, (3), (20), and
(22) imply that

[(By)™ ()| < [e|(1 + 6) Zl [;(2)|0n_;(t) + (2, [e](L + 0)0o(E), ..., [e](1 + 0)g.s(t)),
yev,

which, together with (23), implies that the families (26) are also equicontinuous
on finite subintervals of [f,, oco). This and the Ascoli-Arzela theorem imply that
BG(V) has compact closure, which completes the verification of the hypotheses of
the Schauder-Tychonoff theorem. Therefore, G7 = ¢ for some § in V. That §
satisfies (1), (10), and (11) can be seen from (22) and (23) with ¥ = By = ¢, and
(15). This eompletes the proof.

REMARK 1. - As will be seen in Example 1, (23) may yield estimates of (1) —
— ¢8M(t) a8 t — oo which are sharper than (11).

Theorem 1 implies and extends Theorem 1 of [3].

We now apply Theorem 1 to the case where (2) is disconjugate; i.e., none of its
nontrivial solutions has more than # — 1 zeros, counting multiplicities, on [4,, oo).
Then it is possible to choose a fundamental system z, ..., 2, with the properties
assumed in the following theorem. (For a convenient reference for this statement,
see [7, Lemma 1]; however, it is clearly implicit in the earlier papers of HARTMAN [1]
and WILLETT [8].)

THEOREM 2. — Suppose that the fundamental system 21, ..., 2. for (2) is such that

(27) 2, >0, w, >0, I<i<wn,

w.\ L
(28) (——) >0, 1l<i<ji<n,

w;
and

e Kl . 3 i . .

(29) lim 20 i 20 o 1cicien.

100 We(E) t->00 25(1)

Let %k be an integer, 1<k <n, define
n
(30) o= wi' Y wilel], O0<r<m—1,
i=1 :
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and suppose that

(31) fw,c(s}F(s, I00(8)y erey M0y i) dS < 00, A >0.
to

Let 9 be an arbitrary positive number. Then (1) has a solution y, on [ty, oo) such that
[yl (2) — ez (8) | <Blelvn(t), O<r<m—1,

and
y(1) = ezl(t) + o(on(t)), O<r<n—1,

provided that |c| is sufficiently small if (H,) holds, or sufficiently large if (H,) holds.

PROOF. - We apply Theorem 1 with £ = 2, and ¢, = v,,. Then (30) obviously
implies (7). Because of (27), (28), and (29), it is easily inferred from (31) that
o
fwi(s)F(s9 I001(8)5 +uvy M0n_y1(8)) ds = o{w () wi(t)), 1<i<k—1,

to
and

f WSV (S, 2004(8)y vvvy ADu_s 1(8)) ds = o{w,(W)fi0,(t)), E<i<n.

i

The last two equations imply (8) and (9) with g, = v,,; hence, Theorem 1 implies
the coneclusion.

COROLLARY 1. — Suppose that k is an inieger, 1 <k<n, such that

(32) f 2 B(t, Mt MEF2, ... M, Mt ..., M-+ @< o0, M >0.
to

Let p be an arbitrary positive number. Then the equation
YO+ [ty ey ) =0, t>1>0),
has a solution ¥y, on [t;, oo) such that

(33) W00 — ok —r — 11| < el G<r<k—1,

(34) @) <plel, k<r<n—1,
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and

(35) ) (6 + o))tk —r —1)!, O<r<k—1,
I ‘y?’ o=
: o(tF—-1), E<r<n—1,

provided thet |c| is sufficiently small if (H;) holds, or sufficiently large if (H,) holds.

Proor. ~ In this case we can take z,{f) = 1/(i{ — 1}! and w,(t) = t»¢/(n — ) L.
Then v,.(t) = ¢,;t*1, where

3 1
i<t (n— )l —r—1)1"

= (n—k)!

Now choose 0 se¢ that ¢,,0 < p (0 <r<n —1), and apply Theorem 2.
Corollary 1 extends Theorem 1 of [3].

RemArx 2. — Trivial modifications of the proofs show that Theorems 1 and 2
and Corollary 1 still hold under (H,) if the integrability conditions on F (i.e., (8)
and (9) for Theorem 1, (31) for Theorem 2, and (32) for Corollary 1} are assumed
only for sufficiently small A (or M in (32)).

3. — Examples.

In this section we apply our results to equations of the form (1) with

n—1
(36) f(tf u07 ey un_1> = z pr(t)(’u’r)yr b
r=0
where D, ..., p,_1€ Cffy, oo) and y,, ..., ¥._; are positive rationals with odd denomi-

nators, so that f is real-valud for all (t, u,, ..., #,_1) With t>%,. (We depart slightly
from these conventions in Example 2.) Clearly (36) implies (3) with

Fty vgy ceey Vpa) :E:: [P ()07,
and (H;) holds if y, > 1 (0 <r<n — 1), while (H,) holds if 0 < y,< 1 (0<r<n —1).
ExampLe 1. ~ The equation
B L — =0
has the fundamental system

(37) Z(t) = cost, 2,(f) =sint, 2,() = e,
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and it is easily verified that

cos t — sin¢

cos ¢ -+ sin ¢ 1
wn(t) = ——5—— e

2 y  Wy(t) = — 3 et

wa(?)
Applying Theorem 1 to the perturbed equation

(38) Y=Y+ ¥ —y + 2Oy 4 pL(8)(y) - P (0 ") =0

yields the following results.

(@) If po, 1, and p, are either bounded or absolutely integrable on [f,, oo) and
(39) max (Yo, 1, ¥2) =7 <1,
then (38) has a solution ¢ on [{,, oo) such that
§701) = ce' - 0(e"™), r=10,1,2,

provided that |e¢| is sufficiently large.

(b) If p,, p1, and p, are absolutely integrable on [#,, oo) and § is a fixed real
number, then (38) has a solution § on [#, co) such that

I

csin (t 4+ 6) 4 o(1), r
IO (1) = ceos(t +90) o), r
—esin (t 4+ 0) +o(1), r

0,

l
bl

?

2

i

’

provided that (39) holds and [¢| is sufficiently large, or that

min (707 Y1, 72) >1
and |e| is sufficiently small.

PROOF. — (a) Let k= 3 and £(t) = g,(t) = 0.(t) = go(t) = ¢’. Then our assump-
tions imply that the integrals in (8) are O(¢") for ¢ = 1, 2, and that the integral in
(9) is O™~V for k = 3. From thiy and (37),

D¢, 1) = 0(™) = o(6?), r=0,1,2
(see (18)); hence, Theorem 1 and Remark 1 imply the conclusion.

(b) Let k =1, £(t) = sin (¢ + d), and g,(f) = 1, = 0,1, 2. Then our assump-
tions imply (9) for i =1, 2, 3, and Theorem 1 implies the conclusion.
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ExamprLe 2. — Congider the elliptic equation
(40) Au + w2 A g([w])|ul* -+ (o)) [Vul’= 0
in the exterior domain
(41) 2,={xeR x| >R}, R>0,
where m, «, and 5 are positive constants and g, v: [R, co) — R are continuous funec-
tions. A radially symmetric function u = u(|z|) is a solution of (40) if and only
if the function y() = tu(t) is a solufion of the ordinary differential equation
(42) Y+ mty )y ety — ' P =0, >R,
which can be regarded as a perturbation of the linear equation
(43) g miz =0,
with
F(Ey y, ) = %@ (8) |uo " - 72 0p(t) |uhg— tw, [P .
Here (3) holds, with
Bty 00, v2) = 7 |p(®)]0g -+ 7 [y () [vg + 10,7
which satisfies (H;) if «, § > 1, or (H,) if o, << 1. For {43), we take 2,(¢) = mw,{f) =

= cog mt and 2,(t) = maw;(f) = sin mi. If § is a fixed real number, then applying
Theorem 1 with £ = 1, 2(¢) = cos (mt + 8), go(t) = 1, and p.(?) = m shows that if

[t=glat< oo ana  [#Plp() dt< oo,
B R

then (42) has a solution 4 on [R, 60) such that
#(t) = ¢ eos (mt - 6) + o(1),

provided that [¢| is sufficiently small if «, § > 1, or sufficiently large if «, ,3 < 1.
This implies that (40) has a solution 4 on &2, such that

lim (|old(jo]) — o cos (mlaf 4 8)) = 0.

[#]—>c0
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Note that 4 is oscillatory with respect to |z|. It would be of interest to develop a
theory which establishes the existence of oscillatory solutions for second order
elliptic equations on unbounded domains.

BExAMPLE 3. — Consider the equation
n—1
(44) ¥4 2 OO =0,
r=0

where p,€ Cfty, oo}, 0 <r<n—1, and
[prmrtmrDp i at< e, 0<ran—1,
ta

for some integer %k, 1<k<n. Suppose that g > 0. Then Corollary 1 implies that
(44) has a solution y, on [f,, oo) which satisfies (33), (34), and (35) if

min (Yo, ooy Y1) > 1
and |e] is sufficiently small, or if
MaX (Yo, vory V1) < 1

and |¢] is sufficiently large.
ExaMPLE 4. — Consider the 2m-th order elliptic equation .

m—1
(43) Amu 4 zz o |2} (Au)" = 0
o

in the exterior domain (41), where ¢;: [R, co) > R, 0<l<m — 1, are continuous.
It is easy to see that a radially symmetric funetion » == u(|#]) is a solution of (45)
in Q. if and only if
m—1
Etu())em S e[ (tu®))* ] =0, >R,
=0

or, equivalently, if and only if y(f) = tu(t) is a solution of
m—1

(46) g+ 3 ey n=0, ¢>R.
=0

Corollary 1 implies that if % is an integer, 1 <k<2m, and

ftgm"k”‘(k—m‘l)Itpl(t)|dt< oo, O<l<m—1,
R
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then (44) has a solution y, on [R, oco) which satisfies (35) (with » = 2m), provided
that |¢| is sufficiently small if y,>1 (0<i<m —1), or sufficiently large if y,< 1
(0 <l<m —1). This implies that (45) has a solution w, on f2, such that

im ol uja]) = 0,

|&]—00

under the same conditions on C.
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