
Hilbert Functions and Betti Numbers in a Flat Family (*). 
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S u m m a r y .  - This paper is dedicated to the study o] Hilbert ]unctions and Bet~ numbers o] the 
pro]ectixe varieties in a ]lat ]~nily. We prove that the Hilbert ]unction H(X~, n), y e Y - - a  
parameter scheme---is lower se~,,icontinuous /or any ]ixed n. I n  case Y is integral and noetherian 
we obtain the well-l~nown ]act that the set V c Y where H(Xv,  n) is maximal ]or all n's is open 
and nonempty. We show also that bi(Xv)--the i-th Berg number o] Xv-- i s  upper semi- 
continuous ]or y e V. The paper contains also a number o] results concerning the relations 
among the various Betti numbers. 

I n t r o d u c t i o n '  

Let  ]: X --> Y be a flat fami ly  os closed subschemes of ~ fixed project ive space. 
The aim oi this  paper  is to  s tudy  how the  Hi lber t  funct ions  and the  Be t t i  numbers  
of the  fibers X~ va ry  with respect to y ~ Y. 

I n  w i we show tha t  the  Hi lber t  funct ion H ( X ~ ,  n) is lower semicontinuous on Z 
for any  fixed n (Prop. ].5). When  Y is integral  ~nd noether ian this implies the  
well known fact  t ha t  subset V of Y where H ( X ~ ,  n) is 
and  non-empty  (Prop. 1.7) This set V is par t icu lar ly  
the  ideals of the fibers are <~ well behaved ,> (Th. 1.10), 
later.  All these facts are easy consequences of the 
cohomology in a fiat family.  

maximM for all n's is open 
impor tan t ,  because over i t  

in a sense which is e~sentiM 
semicont inui ty  theorem for 

In  w 2, which is, bu t  for the  geometr ic  applications,  independent  of w 17 we deal 
with a f initely generated,  graded R[Xo,  .... ,X, . ] - -module  E,  flat over R, and we 
s~udy the  Be t t i  numbers  of the  fibers E(D k(p), as p varies in spec (R). We show 
first t ha t  these numbers  do not  decrease under  specialization (Cor. 2.6), and tha t  
t hey  are upper  semicontinuous (Th. 2.12). These facts,  applied to homogeneous 
ideals of R[Xo,  ..., Xr], in connect ion with the results of w 1, show tha t  the  Bet t i  
numbers  b~(X~) of X~ are upper  semicontinuous on V- -a  not  too unexpec ted  fact  
(Prop. 2.15). This is obviously false on the  whole of ~ (see 2.16). 

A number  of other  results are proved,  main ly  concerned with the relations among 
the  various Be t t i  numbers.  For  example ,  it  is shown tha t  if b~(X~) is min imum 
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so is bo(X~) (always y ~ V), while an example  due to A. Geramitu shows tha~ b2(X~) 

minimM does not  necessari ly imply  tha t  b0 is minima~l (see 2.17). 
A pre l iminary  version of this paper  was wri t ten  while bo th  authors  were visit ing 

the Depa r tmen t  of Mathematics  and Statist ics at Queen's Univers i ty  and was 
included in the  volume (( The Curves Seminar  I I I  ~, Queen's Papers  in Pure  and 
Applied Mathematics  ]go 67 (1984). The authors  wish to t hank  A. GERA)~ITA not  
only for providing t hem with financial support ,  and for creat ing a ve ry  s t imulat ing 

a tmosphere  in the  Algebra Seminar  at Queen's,  bu t  also for suggesting the  problems 
studied in this paper.  The authors  ~re also grateful  to D. EISE~u1) ,  whose sug- 
gestions allowed great  improvements  in w 1. 

F o r e w a r d .  

In  this paper  all rings are commuta t ive  and noether ian ,  and all schemes are 
locally noetherian.  Basic facts and definitions are recalled at  the  beginning of each 
section. For  general  reference see [H] and [3I]. 

1.  - H i l b e r t  f u n c t i o n s .  

In  this section we show tha t  the  I t i lber t  funct ion in ~ fiat fami ly  of project ive  
schemes is lower semicontinuous (Prop. 1.5 and 1.7), and t ha t  the  ideals of the  
fami ly  are well behaved  in the set where the  Hi lber t  funct ion is maximal  (Th. 1.10). 
The section is divided into th ree  subsections:  the  first one contains p repara to ry  
material ,  the  second deals with Hi lber t  funct ions and the  th i rd  with ideals. 

A.  Preliminaries and notation. 

1.!  Le t  k be any  field and let  Z c  P ~ :  P r  be a closed subseheme of projec- 
t ive r-dimensionM sp~ce over k. Le t  S -~ k[Xo, ..., X~] and let  J c S be the  (satu- 
rated)  graded ideal of Z. The Hilbert function of Z (with respect  to the  given em- 
bedding) is defined for a l l  integers n _--> 0, as 

H(Z,  n) ~ dim~ S~/J,, . 

Now from tho exact  sequence of sheaves:  

0 - ~ J  § Op,-~. Oz-+O , 

twist ing by  n ~ 0 and taking cohomology one gets the exact  sequence: 

o Ho(P , Y(n)) Ho(pr, Opt(n)) -> HI(p , 0 ; 
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and since H ~  ~, J (n) )  = J . ,  H ~  r, 0v~(n)) = S~ one g e t s :  

. ~ ( Z ,  ~ )  = h ~  - -  h~ J~Y(Z, n))  =-- h ~  - -  h l ( y ( ~ ) )  . 

1.2 By  a ]amily o] projective schemes ]: X -~ Y we mean  a nmrph i sm ] of (locally 

noether ian)  schemes which factors  th rough  a closed embedd ing  X c P r =  P" Such 
an embedding will be/ixed once and/or all, and its ideal sheaf  will be denoted b y  3. 
We denote b y  g: P -> 17 the  cunonicM project ion.  

For  each y ~ Y the  embedd ing  X c P induces ~.~ closed immers ion  of the  fiber X~ 
into the  fiber P , ,  which is na tu ra l l y  isomorphic  to the pro jec t ive  case P '  k(y) �9 

We denote  b y  I(X~) the  homogeneous  ideal of this  embedding ,  and  by  H(Xv,  n) 

the  Hi lbe r t  funct ion  of X~. Note  t h a t  bo th  I(X~) and H(X~, n) depend on the  fixed 
embedd ing  X c P.  

1.3 W h e n  [Y is affme we always pu t  Y- - - - spec (R)  and  P - - - - P r o j ( A )  where 

A = R[Xo, ' v ,  X~] (graded wi th  respect  to the  variables).  Thus X = Proj (A/I) 
where I is a graded sa tu ra t ed  ideal of A. I f  y e IZ we then  have  P ~ =  Proj (A @/c(y)), 

X ~ =  Proj  ((A/I)@ k(y)) where all the  tensor  products  are over  R. 

Note  t h a t  in general  I@ k(y) is not equal  to I(X~);  however  the  image of the 

canonical  map  I@ k(y) --> A @ k(y) is a graded ideal corresponding to the  embedd ing  
X , c  P,.  

1.~ We recall  t h a t  if ]: X -+ IZ is a projec t ive  morph i sm  of noe ther ian  schemes 
and  ~- is a coherent  sheaf over  X which is also f-flat, then  the  funct ions  y ~-> 
~-> dim~0(~)(H~(X~ F~)) are uppe r  semicont inuous on Y (see [H], I I I ,  12.8). 

I n  va r t i cu la r  the  sets {y ~ IZ: " ~ ~ " minimal}  are _ dlmk(~)H (X~ :Y~) !s open in Y; and 
if moreover  Ix is i rreducible wi th  generic point  Yo then  

dimz~(~)H~(X~, 5~) > dlmk%)H (X~, ~-~.) for all  y ~ Y .  

B. Semicontinuity o/ the ttilbert ]unctions. 

I n  this  subsect ion we show t h a t  g iven a flat f ami ly  of projec t ive  schemes X --> Y, 
the func t ion  H(X~, n) is lower semicont inuous on Y lot  each n, and  we charactcrize~ 

under  sui table assumpt ions ,  the  set V c Y where it reaches the  m a x i m u m  for all  n 's .  

1.5 P~oPosI~IoN. - Le t  ]: X --> Y be a flat f ami ly  of pro jec t ive  schemes (see 1.2), 
and  let  n be a fixed integer.  Then  the  funct ion  f rom Y to N defined by :  y ~-> H ( X ~  n) 
is lower semicont inuous .  

P~ooF.  - Le t  y e Y, and  let  ~ and  g be as in 1.2. F r o m  the  exact  sequence 

(1) 0 -+3 --> O v --> O x --> O 

tensor ing wi th  k(y) and  using the  g-flatness of Ox we get the  exact  sequence 

0 -~ 3,, --> Op~ --> Ox~ -~ 0 
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which shows t h a t  ~ =  3@ k(y) is the  ideal sheaf of the embedding  X~c P~. 

b y  1.1 we have :  

H(X,~, n) = h~ - -  h~  

Hence  

Now by  (1) and  the  g-flatness of Ox we have  t h a t  3(n) is g-flat; hence we can a p p l y  

the  semicont inu i ty  ~heorem (see 1A) to show t h a t  the  funct ion  ho(3~(n)) is uppe r  

semieonginuous on Y. The  conclusion follows f rom the  fac t  t h a t  h~ is con- 

s t an t  on Y. 

1.6 C0t~0LLAI~Y. - Let  the  assumpt ions  be as in 1.5. Then :  

(a) the  set V~ = {y e iz: H(X,~, n) is m a x i m u m }  is open in Y; 

(b) if y, y0e~g and  y is a special izat ion of y, ,  t h e n  H(X~ n) <_ N(X~., n); 

(s) if :g is i r reducible  wi th  generic poin t  Yo t h e n  N(X~, n) _< H(X~.,  n) for atl  

y e N .  

PRoof .  - I t  follows f rom 1.5 and  1.~. 

1.7 PRoPos~mlO~. - Le t  the  a s sumpt ions  be as in 1.5, and  assume  f u r t h e r  t h a t  iF 

is in tegra l  and  noether ian .  Then  the  set  V = {y e lZ: H(X~, n) is m a x i m u m  for 

all  n} is open and  non -empty .  

PROOF. - For  each n let  V, = {y e iF: H(X~, n) is max imum}.  Since V~ is open 

b y  1.6 it  is sufficient to  show t h a t  V ~ =  Y for n>>0. 
Now for each n the  sheaves Ox(n ) are g-flat and  hence b y  1.4 and  quasi- 

compac tness  we get t h a t  H~(X~, Oz,(n))-~0 for all  i > 0 ,  all  y e n  and  n>>0.  
Since ~(n) is g-flat we can a p p l y  the  same kind  of a r g u m e n t  to H~(X~, 3~(n)) and  
in view of the  r e m a r k  made  in 1.1 we obta in  H(X~, n) -~ h~ Ox~(n)) = z(Ox~(n)) 
fo r  all  y e I z a n d  n >>0. Bu t  since ] is flat, Z(Ox~(n)) is cons tan t  on Y (see [H], 

I I I , 9 . 9 . )  and  the  conclusion follows. 

Now we wan t  to  give a be~ter descr ip t ion of the  open set V, under  sui table  as- 

sumpt ions  on the  fibers of /. F o r  this  consider the  exac t  sequence oI graded 

Or-modules  

0 --, @ S"(Oi+~)lg,(~(*~)) ~ |  @ ~ - - ,  0 .  

,~ ~+~ O r , ~ is the  canonical  m a p  and  S (O r ) denotes  the  n- th  s y m m e t r i c  power  of V+l 
= @)N;~ is its eokernel .  Not ice  t h a t  if Y = spec R, t he  above  exac t  sequence 

corresponds in each degree n to t he  exac t  sequence of R-modules  (nota t ion as in 1.3) : 

(2) 0 -> A~/I~ --, H~ Ox(,~)) - ,  ~:~ -> 0 

w e r e  = H (e, 
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1.8 P~oPosI~Io~.  - Le t  ]: X -~ Y be a flat fa.mily of pro jec t ive  schemes wi th  Y 
in tegra l  and noetherian.  Assume fu r the r  t h a t  H~(X~, Oz,(n)) ---- 0 for all  y e Y and  
all n ~ 0. Then  V ---- {y e Y: . ~  is O~,r-free }. 

P~ooF. - Since eve ry th ing  in local on Y we m a y  assume t h a t  Y ~--spec (R) 

and  use the  no ta t ion  as in 1.3. The a s sumpt ion  on the  fibers implies  (see [MF]) 

t h a t  ],(Oz(n)) is local ly free over  R (of cons tan t  r a n k  r ) ,  and  H~ Oz,(n))--~ 

= H~ Ox(n)) Q k(y) for el]L n > 0, and  for all y e Y. Tensor ing  (2) b y  k(y) we 
get the  exac t  sequence of k(y)-veetor spaces:  

A~/I~ Q lc(y) ~ Ho(X, Ox(n) ) ~) k(y) -> K~ (~ k(y) -+ O . 

But  H~ Ox(n))Q k ( y ) =  H~ 0x~(n)), and  the  image  of A / I |  k(y) in 
(~H~ Ox(n)) is a coordinate  r ing of X~c P~ (see 1.3); hence  b y  ] .1 we have :  

q~ 

H ( X ~  n) = dim~(~)Ho(X, 0x(n)) ~) k(y) -- dim~(,)K~(D k(y) = r~-- dimT:(~)K.(D k(y) . 

I n  pa r t i cu la r  if Y0 is the  generic poin t  of Y, we have  H(X~,, n) ---- r~-- rk(K,)~ and  

hence H(X~, n) -~ H(Xn ,  n) if and  only  if rk(K~) = dimT~r k(y), t h a t  is if and  
only  if (K.)~ is free over  / 4  (see e.g. [H], I I .8 .9) .  The conclusion follows. 

1.9 RE~[A~KS. -- (i) Proposi t ion 1.7 remains  t rue ,  wi th  V possibly emp ty ,  also 
wi thou t  the  a s sumpt ion  << Y integrM ~>; indeed it is easy  to  reduce the  p rob lem to 
the  in tegral  case b y  working on each irreducible component .  

(if) Proposi t ion 1.8 c a n  be appl ied  for example ,  to families of zero dimen- 

sionM schemes.  We do not  know whether  a s imilar  descript ion of V can be given 

for more  general  families.  

C. Ideals o] the ]ibers. 

i n  th is  subsect ion we show t h a t  the  ideals of the  fibers of a fiat f ami ly  have  a 

good behav iour  over  the  set V described in 1.7. 
We use the  no ta t ion  s ta ted  in 1.2. 

1.10 THEOREm. -- Le t  ]: X -~ Y be a flat f ami ly  as in 1.2, wi th  Y integral  and 

noether ian and  let  V c  Y be as in 1.7. Then:  

(a) g.~(n) is locally free a t  all  y s V  and for all n ~ 0; 

(b) g .  J(n) Q k(y) ~- I(X~,). for all  y e V and  M1 n > 0. 

P~oo~.  - F r o m  the  exac t  sequence 0 -> 3 -~ Op --> Ox-~  0 and  the  flatness of ] 

we deduce t h a t  J(n) is g-flat for all  n ~ 0. Moreover  H(X~, n) is cons tan t  on V for 
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all n >_ 0 (see 1.7), and hence the  same is t rue  for dimk(~,//0(p~, 3~(n)), because 3~ 
is the  ideal sheaf of the embedding X~c P~ (see proof of 1.5). 

t t enee  we can apply  a theorem of Grauer t  ([I-I], III .12.9)  which gives (a) and 

(b') g ,3 (n )@ ]~(y) --> H~ 3"(n)) is an isomorphism for all y ~ V. 

Since 3,~ is the  ideal sheaf of X~c P~ it follows t h a t  H~ 3~(n)) is the  n- th  
homogeneous component  of the  sa tura ted  graded ideal of the  same embeddnng,  
namely  Ho(P~, ~(n)) - - I (X~) , .  

Thus (b) follows f rom (b') and the  proof is complete.  

1.11 Rn)~RKS. - (i) I t  is not  clear to us which is the  subset of iF where I(X~) -~ 
= @g, (3 (n ) )  @ It(y). I t  is not  even clear to us if this  condit ion is open on Y. 

(if) Under  the  assumptions of Proposi t ion 1.8 it  is easy to show tha t  the 
given fami ly  is very flat over V; this  means,  when Y is affine and the  nota t ion  is 
as in 1.3, t ha t  A~/I~ is flat at  all points  of V/or  all n (see IN], p. 266, 9.5). 

I t  might  be in teres t ing to  know whether  this  is t rue  more generally,  and which 
are the  relations among being ve ry  flat, max imal i ty  of the  t{ilbert  funct ion,  and 
good behaviour  of the  ideals of the  fibers (see 1.10). 

2 .  - B e t t i  n u m b e r s .  

I n  this section we show tha t  given a flat i rreducible fami ly  ]: X -> 1 z of projec- 
t ive schemes, the  Bet t i  numbers  bi(X~) (2.2) are upper  semicontinuous as y varies 
in the  set where th  Hi lber t  funct ion  is constant  (see 1.7). Our t r ea tmen t  is pure ly  
algebraic and independent  of w 1, bu t  for the geometr ic  applications. 

For  a be t t e r  exposi t ion we divide this section into four subsections. After  giving 
some definitions and nota t ion  in subsection A, we show th a t  the Be t t i  numbers  
cannot  decrease under  specialization (subsection B), and f rom this we deduce the  
semieont inui ty  theorem in subsection C. Geometr ic  applications are given at  the  
end. 

A. Notation and definitions. 

2.1 Le t  k be a field and  let  S be a f initely genera ted  graded k-algebra. I f  M 
is a f ini tely genera ted  graded S-module,  the  Betti numbers of M are defined as: 

b~(M) = dimk Tor s (k, M) for i = 0, 1, ... 

where t~ is viewed as an S-module in the obvious way. 
Clearly if S is a polynomia l  ring in r @ 1 variables over k one has bi(M) = 0 

for i >_r @ 2. 



M. BORATYI%KI - S. GlCECO : Hilbert ]unctions and Betti numbers, etc. 283 

One can also show, by  using the  graded Nakayama  lemma,  t h a t  M has a minimal 
]ree resolution 

F ' :  . . .  - *  . F ,  - - > / ~ , _ ~  - + . . .  - >  -Fo - +  M --+ 0 

i.e. a resolution where F~ is free graded and the maps _~-+ $~_x are zero modulo 
the  i r re levant  maximal  ideal of S; this  easily implies tha t  b , ( M ) :  rk(F~) for all 

i_~0 .  
In  par t icu lar  the  ranks of the  2~'s are independent  of the  minimal  resolution 

chosen. 
Observe also t ha t  be(M) is equal to the  min imum number  of homogeneous 

generators of M. 

2.2 I f  Z is a closed subsc]heme of I and J c  k[Xo, ..., Xr] is the  ideal of Z we 
pu t  b i ( Z ) :  bi(J) (considering J as a graded k[Xo, .... , X~]-module). 

2.3 ~OTATIO:N. -- (i) In  the  rest  of this section R is a (noetherian commutat ive)  
ground ring, and all tensor  products  will be t aken  over R, unless differently wri t ten.  

(ii) I f  R is a domain  we always denote  by  K its field of f ract ions;  when R 

.s local we denote  by  k its residue field. 1 

(iii) We shall denote  by  A -~ R[Xo, ..., X . ]  the  r ing of polynomials in n q- 1 
variables, and by  E a fixed finitely genera ted  graded A-module.  

Note  tha t  if p e spcc (R), E @  k(p) has a na tu ra l  s t ruc ture  of a graded k(p)[Xo, ..., 
..., X~]-module. We shall always consider this s t ructure ,  and the  Be t t i  numbers  
bi(.E~) k(p)) are thus  well defined. 

(iv) Whenever  M is a module  over a graded r ing we denote  by  #(M) the  
minimal  number  of homogeneous generators  of M (thus ju(M)----be(M) whenever  

bo(M) is defined). 

B. Behaviour o] the Betti numbers under specialization. 

We want  to s tudy  how hi(E@ k(p)) changes when specializing 10, and give condi- 
t ions for it to remain  constant .  The  key  results are 2.5 and 2.10, f rom which a 
number  of corollaries are deduced. Clearly, it  is sufficient to deal with a local 
ground ring /~; so in this subsection R is always assumed to be local, unless the 
con t ra ry  is s tated.  

2.4 LE~tA.  - Le t  E be a f initely genera ted  graded A-module,  and assume R 
is a local ring. Then  

tt(_E) = tt(.E@k) = dim~ (.E@~ k). 
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P~ooP. - By  the  graded N a k a y a m a  1emma and the local N a k a y a m a  lemma 

over R one has :  

#(E) = # (E@~R)  = dimk (E@~ k) = / ~ ( E @  k).  

2.5 PI~OPOSITION. - Assume R is a local domain,  and E is R-flat. For  each i pu t  

d~=  as(E) = b , ( E |  k) -- b~(2~|  

Then:  

~ ( - -  1)~+Sdi>_ 0 for all r > 0 . 
~ = 0  

PI~OOF. - We use induct ion on r. I f  r = 0 we have to prove tha t  bo(E@ k) >_ 
>_ bo(E@K); but  by  2.~ we have:  

b0(E| k) = ~(~) >_ # ( E |  K) ----= bo(E| K) 

and we are done in this case. 

I n  order to be able to make the  induct ion step we need some preliminaries. So 

let 0 -+ N -+ F -+ E --> 0 be an exact  sequence os finitely generated graded A-modu-  

les, wi th  J~ free. Since E is flat over R~ we get an exact  sequence of graded k[XJ- 
modules 

(3) 0 - + N |  - + _ F | 1 7 4  

Tensoring (3) with k over k[X] and using the  Tor-sequenee we get an exact  se- 

quence of k-vector spaces 

0 -+ Tor~tXJ(k, E@k) -+N@k ---)-F@k -+E@k -+0 

where the upper  bars mean  reduct ion modulo (X). Likewise we get an exact  se- 

quence of K-vec tor  spaces: 

(5) 0 -+ T o r f  ~xJ (K, E @ K) -+ 2g @ K --~ F @ K -+ E @ K -+ 0 . 

Taking the a l ternat ing sum of dimensions in (4) and (5) and using the obvious 

equal i ty  dim~/~@k = d i m x F @ K  we get 

(6) d~(~) --  do(E) = do(N). 

Moreover by  again using (3) and the  Tor-sequence we have,  for i ~ 2; 

Tor~E~(k, ~ |  k) = Tor~_~:(k, ~ |  k) 
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and s imilar ly  wi th  k replaced by  K.  F r o m  this  it  follows: 

(~) d,(E) = d,_~(~) for i __ 2 .  

Assume now r > O. Since ~V is fiat, we have,  b y  induct ion,  

( -  1)~+~-~a~(2r _> o 

and  the  conclusion follows b y  using (6) and  (7). 

2.6 COROLLARY. - Le t  the  assumpt ions  be as in 2.5. Then  we have :  
S--1 

(a) d~_> ~ (--  1)~+~-~d~>_ . 0 for all s _> O; 
i = O  

(b) b~(E@k)>b~(E@K) for all  s ~ 0 ;  

(el ~ ( - 1 ) % =  o. 
i = l  

PRoom - (a) B y  2.5, wi th  r = s, we get  the  first inequal i ty ,  while the  second 

one follows again  b y  2.5 ~pplied wi th  r = s -  1. 

(b) Follows f rom (a) and  the  definit ion of d~. 

(e) We have  bd_E(DK) ==- 0 = b,(E@ k) for i _ n @ 2; hence (c) follows f r o m  

(a) appl ied  wi th  s = n -}- 2. 

2.7 COROLLARY. - Le t  s be a non-negat ive  integer  and  let  the  assnmpt ions  be  

as in 2.5. Then  the  following are equivalent :  

(~) a s =  o; 

(b) Z ( -  1)~a~= 0 = ~: ( -  n % .  
t < s  i > v  

PnooF. - Assume (a). Then  ~ (--  1)*d~ : 0 b y  2.6 (a); f rom this  and  2.6 (e) we 
t < s  

have  also ~ (--  1)*d~ = 0. The converse follows i m m e d i a t e l y  f rom 2.6 (e). 
i > v  

2.8 COROLLAgY. -- Le t  the  assumpt ions  be as in 2.5. Then  we have :  

(a) I f  b~(E@K) = b~(.E@ lc), t hen  bo(N@K) = bo(E(~ k); 

(b) I f  b~ (E@K)  = b~(]~G k) and  b~(N(Dk) = 0 for i ~ h @ 2 t h e n  b~,+~(E@ 
@ K) : bh+~(-E@ k). 

P ~ o o m  - To p rove  (a) a p p l y  2.7 wi th  s = 1. To p rove  (b) observe t h a t  b{(E@ 
@ K )  = 0 for i > h t -  2 b y  2.6 (b), whence d { =  0 for i > h -~ 2; the  conclusion 
follows f rom 2.7 appl ied  wi th  s = h. 
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We have  also t he  following well  known:  

2.9 CO~OLLA~X. -- Le t  the  assumpt ions  be as in 2.5. Then  r k ( ~ @  k) -= r k ( E @  K).  

P~ooF. - B y  us ing  m i n i m a l  resolut ions (see 2.1) one has:  

.,'1~(Z| k) = X (--  1 ) % ( E |  k) 
i~>0 

and  s imi lar ly  for E @ K .  The conclusion t h e n  follows f rom 2.6 (c). 

The nex t  proposi t ion  gives a condit ion which is equivalent  to  the  min ima l i t y  
of the  first s Be t t i  number s ,  and  should be  compared  wi th  2.7. 

2.10. PP~OPOSITION. - -  Let  the  a s sumpt ions  be as in 2.5. Then  for a n y  fixed 
integer  s the  following condit ions are equivalent :  

(a) d ~ =  O (i.e. G ( E @ K )  = bdE@.~) for i < s). 

(b) Tor~ (E, R) is R-free,  for i _< s. 

(c) There  is a free graded  resolut ion of length  s @ 1: 

F~: .F~+~ -+ E~ -> ... -+ No -+ E --> 0 

which is m i n i m a l  wi th  respec t  to (X) (i.e. the  maps  E~@,~R-+F~_~@aR are zero 
for l g i < s @ l ) .  

P~o0F. - (a) ~ (b). Since do = 0, b y  2.4 and  the graded N a k a y a m a ' s  L e m m a  
we have:  

dimk (E @~ R) @R/~ = dimK (E @~ R) @~ If2. 

and hence E @ ~ R  is R-free for i = 0 and  a n y  s; thus  if s = 0 there  is nothing 

else to be proved.  
Assume then  s > 0, and  let  us proceed b y  induct ion on s. For  this let 0 -~ N -> 

-> N - + / ~  ~-> 0 be an exact  sequence of graded A-modules ,  wi th  E free and  rk  (E) -= 
= #(E),  the  min imal  num ber  of homogeneous generators  of E. B y  flatness we have  

exact  sequences: 

(8) 0 --~ N @ K -+ E @ K ---~ .E @ K --~ 0 

(9) 0 - > N @ k  - ~ @ k  - + E @ k  -->0. 

3Ioreover  b y  a s sumpt ion  ~nd b y  2.4 we have :  

bo(~ | K) = rk (2~ | K) and bo(2~ | k) = rk ( F |  k). 
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Then  the  maps  F @ K - > E @ K - ~ 0  and F @ k - - ~ E @ k - + 0  give the  beginning 

of a min ima l  resolut ion of E @  K and  of E @  k respect ively .  Hence  b y  (8), (9) and  

the  assumpt ion  we have,  for i < s -  1: 

b~(N @ k) ---- b~+~(E@ k) ~- b~+~(E@ K) -~ b~(N @ K) . 

:Now N is R-fl~t, and  hence b y  the  induct ion hypothes i s  Tor~ (N, R) is R-free for  
0 < i < s - -  1, and  f rom Tor-sequence it follows t h a t  Tor~ (E, R) is R-free for i _> 2. 

~ o r e o v e r  we have  the exact  sequence 

0 --> Tor~ (E, R) -~ N @a R @ F @~ R -+ E @A R -~ 0 

and since the  last  three  R-modules  are free we have  t ha t  Tor~ (E, R) is free too. 

(b) ~ (e). I n d u c t i o n  on s. I f  s ---- 0 we have,  b y  assumpt ion ,  t h a t  /~@~ R is 

R-free of r a n k  r, say. Then  b y  2.4, we have  #(E) ---- r, and  hence the re  is a free 

resolut ion F1 -> F0 -> E -~ 0 of graded A-modules ,  where rk  (Fo) ~ r. Tensoring 
wi th  R over  A this  gives an exac t  sequence F~@A R - ~ F o @ A R - - ~  E @ a  R - ~  0. 

Bu t  Fo @a R and  /~@,t R are free of the  s~me rank,  and  hence Fo @,t R --> E@A R 
is an  i somorphism,  which implies t h a t  FI  @ R -> Fo @ R is the  zero map .  Thus our 
c la im is p roved  for s : 0. 

To make  the  induct ion step consider the  exact  sequence 0 -~ N--~ Fo -~ E -~ 0 

where F o - ~ / ~  is as before,  and  N is the  kernel .  Then  N is flat over  R and 
f rom the Tor-sequenee and  the  assumpt ion  we have  t ha t  Tor~ (N, R) is free for 
1 _~ i _~ s - - 1 .  Moreover  in the  exact  sequence 

o ~ Tor~ (E, R) -~ N @~ R -> Fo @~ R-~- B @~ R -+ o 

the first, th i rd  and  four th  R-module  are free. 

Hence  N @~ R in free as well, and we can apply  the induction hypothesis  to N. 
Then we then  have  a free resolution F~+I -~ F ,  -~ ... -~ F1 -> N -+ 0 with all the  
required propert ies,  and  the  conclusion follows. 

(e) ~ (a). B y  assumpt ion  and  flatness of E it  follows t h a t  F @ K  and  F @  k 

are min ima l  resolutions of E @ K  and E @ k  respect ive ly ;  hence the  conclusion. 

2.11 REMARK. -- The following fac t  holds:  let  the  assumpt ions  be as in 2.10, 
and  assume f u r t h e r  t h a t  Tor~ (E, R) is R-free for i < s. 

Then  Tor~ ~xC (E@ k, k) ~ Tor~ (E, R) @ k for i _< s (i.e. Tor~ (~ commutes  wi th  t ak-  

ing fibers @. This can be p roved  b y  using 2.10. We leave the  details to the  reader.  

C. Semicontinuity of the Betti numbers. 

I n  this  subsect ion we show t h a t  the  Be t t i  numbers  are uppe r  semicont inuous  

19 - A n n a l i  d i  Matematlea 
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2.12 TKE0~EX. - Le t  the  nota t ion  be as in 2.3 gnd assume E is R-fiat. 
a be two integers.  Then  the  sets 

are open in spec (R). 

Le t  i, 

B ' = ,  {0 ~ spee (R)lb,(E @ k(10)) _< a} 

P~ooF.  - By  a well known lemma of Nagata  it  is sufficient to  prove (see [M], 
p. 156, (22.B)): 

a (a) ! i  p ~ B  ~ and q c p ,  t h en  q e B ~ .  

(b) I f  p ~B~ t h e n  B~Ch spee (R/p) contains a non e m p t y  open subset of 
spee (R/I)). 

Now (a) is an easy consequence of 2.6 (b), because the  fibers do not  change 
a l te r  the  base change R -> Rv/qR ~. 

I n  order to p rove  (/?) w e m a y  assume p == 0 and it is sufficient to show th a t  for 
~11 s > 0  the  sets U~= { q e s p e c ( R ) l b i ( E @ k ( q ) }  = D ~ ( E @ K ) }  are open (here, as 
u s u a l  K is the  quot ien t  field of R). Bu t  for all q ~ spee (R) and all i > 0 there  are 
somorphism Tor~ (E, R)@Rq:TorA| Rq), and hence by  2.10 we have 

U, = {q e spec (R) lTor~ (/~, R) @ Rq is Rq-free for i _< s}. 

The conclusion follows because Tor~ (E, R) is a finitely genera ted  R-module lor a l l i ' s .  

2.13 CO~05LA~u - Le t  the  assumptions be as in 2.12. Then  the  sets 

B~ {p  e spee (R) tbdN @ k(p)) is minimum} 

are open and non-empty in spee (R). 

2.14 :gE3'~A~X. - The assumption ~(/~ flat ~> in 2.6 (b) and 2.12 can be omit ted,  
see Appendix.  However  we do not  know any  applicat ion of these more general 
s ta tements .  

D. Betti numbers .in a fiat ]amily. 

Now we show how the previous results  on Be t t i  numbers  can be applied to  a 
fiat fami ly  X-=> Y of project ive  schemes, such as we considered in w 1. 

Since the  proper t ies  we are in te res ted  in are local on :g we m ay  assume :g = 
= Spec (R) and X = Proj  (A/I) ,  where A = R[Xo, ...7 X~] and I is a homogeneous 
sa tura ted  ideal of A. ]gecall t ha t  if y e If we have,  by  definition, bi(X~) = bi(I(X~)), 
where I ( X ~ ) c  A @  l~(y) = k(y)[Xo, . . . ,X~]  is the  homogeneous (saturated) ideal cor- 
responding to the  embedding X~e P ~ =  Pro]  ( A @  k(y)), see 2.2, 1.2, 1.3. 
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The results of subsections B and C can be applied to the A-module I ,  provided 

we know tha t :  

(10) I is /~-flat. 

In  this  case we get informat ions  about  b~(IQ k(y)) as y varies in Y. In  order 
to also get informat ions  about  bdX~) we also have to know when 

(11) I(X~) = I |  k(y) . 

Now conditions (10) and (11) have been discussed in 1.10, where i t  was shown 
tha t  t hey  ho ld ,  if Y is integral  and noetherian,  at  all points of the  open set V 
where the H i l b e r t / u n c t i o n  /~7(X~, n) is maximal  for all n's. I t  is t hen  clear how 
to give geometr ic  applications.  As an example we give the  following: 

2.15 P~oPosi~io~.  - Le t  f: X -+ Y be a fiat f a m i l y  of project ive  Schemes (see 
1.2), and assume ]z is integral and noetheriun with generic point  Yo. Le t  V c Y be 
the  open set where the  Hi lber t  funct ion is maximal  (see 1.7). Then:  

(a) bdX~) >_ b~(X~.) for all y e V; 

(b) B ~ :  {y ~ V]b,(X~) z b~(X~.)} is open and non-empty ;  

(e) Boo B1. 

P~ooF.  - I t  follows f rom 1.10, 2.6, 2.12, 2.8 (b) and the  above discussion (we 
leave the  details to  the  reader).  

2.16 REMARKS. -- (i) Proposi t ion 2.15 (a) is false if we do not  res t r ic t  to V. 
Indeed  let  d be any  integer  and let  ]: X -+ Y be the  flat fami ly  of all subschemes 
of P~ consisting of d dis t inct  points (here Y is a suitable open set of the  symmetr ic  
p roduc t  of d copies of P ' ,  or, equivalent ly  a suitable open set of he Hi lber t  scheme 
which parametr izes  all zero dimensional subsehemes of P~ having degree d). 

Now if n--~ 2 among the X~'s there  are complete intersect ions of two curves 
of degrees a and  b, wi th  ab z d; and for any  such, one has bo(X~) z 2. But  if d _> 3 
and X~ is general  one has bo(X~) > 2 : for example  if d ~ 3 and X~ consists of 3 non- 
collinear points,  t hen  bo(X~) - 3. Notice also tha t  complete intersections,  for d >_ 3, 
do not  have maximal  Hi lber t  funct ion,  in agreement  with 2.15. For  references on 
Hi lber t  funct ions of finite subschemes of P "  see for example the  bibl iography 
of [GGR]. 

(if) Le t  X -~ Y be as in (i). The  fact  t ha t  bo(X~) is constant  on a non-empty  
open set (see 2.15 (b)) was p roved  by  CxEI~AlVs and  I~AI~OSCIA [G~r with different 
methods.  The problem of comput ing  this value is not  ye t  set t led;  par t ia l  results 
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in this direct ion can be found in [GGR], where a conjecture  concerning the  above 

value of bo(X~) s ta ted  in [GO] is p roved  to be t rue  in m a n y  cases. 

(iii) I f  X -> Iz is as above,  t h en  b~(X~), the  last non-zero Be t t i  number ,  coin- 
cides wi th  the  CM t ype  of the  graded r ing of the  embedding X~c P~. A proof tha t  
this  number  is constant  on a non-empty  open set was given by  L. I~O~ElCTS [1~], 
who also conjec tured  a value for such a constant .  This conjecture  turns  out to be 
t rue  in m a n y  cases, see [GGR]. The general  problem is still unset t led.  

(iv) We do not  know whe ther  the  set B'~ : {y e Y[b~(X~) = b~(Xn) } (notat ion 
as in 2.15) has some nice topological  p roper ty .  I t  might  be possible t h a t  repea ted  

applicat ions of 2.15 allow one to prove t h a t  B', is construet ible  for all i 's. 

(v) Wi th  the  no ta t ion  as in 2.15 it  is false, in general,  t h a t  B~c Bo, not  even 
if we assume tha t  X~ is finite for all y e Y. We have indeed the  following example,  

k indly  communica ted  to us by  A. G ~ T A .  

2.17 EX_A~PLE. - Le t  X -~ Y be the fami ly  of all subschemes of P~ consisting 
of 15 dis t inct  points,  and let  V c Y be as usual. I f  y e V then  the  points of X~ ~re 
said to be ~ in generic position ~, and conversely.  For  15 points in generic position 
one can prove the  ~ C-M conjecture  ~, which implies t h a t  the  m i n i m u m  value  of 
b2(X~), y e V is 5, see [GGI%], 4.6. l~oreover one can show direct ly  t h a t  the  m in im u m  
value for bo(X~), y e V, is 5 (see [GGR]). On the  other  hand  one can construct  a 
set of 15 points in generic position having b~ = 5, b~ = 11, bo = 7, as follows. S tar t  

wi th  the ideal 

f <X~, X 3 Xg, X1X~, XIX~Xa, ~ ~ X~X ~\ k[X~, X~, X3] B 

I t  is easy to  check t h a t  

(i) The Hi lber t  funct ion of B/1 is: 1 3 6 5 0 -+. 

(if) I f  m is the  maximal  homogeneous ideal of B/I t hen  Ann (m) =(B/I)3 
and so dim~ (Ann (m)) = 5; hence t h e  Cohen-~Iaeaulay t y p e  of B/I  is 5. 

Since f is a monomial  ideal, by  [H!]  (see [GGI~] for details) the re  are 15 dis- 
t inc t  points  in p3, whose ideal J c k[Xo, X1, X~, X3] = C has the  following propert ies :  

(iii) Xo is not  a zero divisor on C/J; 

( iv)  (J ,  x o ) / ( x o )  = I c  B = r 

I t  follows t ha t  the  t t i l be r t  func t ion  of C/J is: 1 4 10 15 -% which means tha t  
the  points corresponding to  J are in generic position. Moreover I is min imal ly  
genera ted  by  7 e lements  (e.g. the  ones given above), and hence b y  (iii) and  (iv) the  
same holds for J, i.e. bo(J) = 7. Final ly ,  by  (if), (iii) and (iv) the  C-M ty p e  of C/J 
is 5, and by  general  facts  this  means t h a t  b2(J) = 5, which concludes our proof. 

Notice  t h a t  f rom the  above it  follows t h a t  bl(J)= 11 (e.g. b y  2.6). 
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Appendix. 

We generalize two resul ts  of section 2, by  showing tha t  2.6 (b) and  2.12 do hold 
wi thout  flatness assumpt ions ,  

A1 PI~0POSITION. - Let  the  no ta t ion  be as in 2.3 and  assume t h a t  R is a local 
domain .  Then  b~(E@ k) > b~(E@ K). 

PROOF. -- We assume first t h a t  R is a DVR.  Then  the  R-tors ion snbmodule  T 
of /~ is a graded A-submodule  of E,  and  hence it  is easy  to see t h a t  E = N |  T 

where ~ = E/T is A-graded and  R-flat. Then b y  2.6 ( i i ) a n d  the  e q u a l i t y / ~ @  K = 
= N @ K it  follows : 

b~(E@ k) = b~(~@ k) ~- b,(T@ k) >_ 

> b~(F@ K) = 

= bi(-~(~ K )  

whence the  conclusion in this  case. 

To p rove  the  general  case recal l  t h a t  there  is a DVI~ R' ,  domina t ing  R, and  wi th  
quot ient  field K.  I f  k' is the  residue field of R ' ,  b y  the  previous step we have:  

b~(E| k) = b~[(E| ~) | k'] = 

= b,[(B|  R')  | k'] _> 

> b~[(~| R')  |  = 

= b~(E@R K) 

and the  proof  is complete.  

A2 TtIEOIgE~. -- I~et the  no ta t ion  be as in 2.3 (with R a n y  noe ther ian  r ing a n d / ~  
not  necessari ly  R-flat). Then the  sets 

B ~ = {~ e spec (R)Ib~(E| ~(~)) < a} g - -  �9 

arc open. I f  moreover  R is a domain  wi th  quot ient  field K the  sets 

B~ = {V e spec (R)Ib~(E | k(p~) = b~(E|  g } 

are open (and non empty ) .  
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PROOF. - W e  h a v e  to  p r o v e  (a) a n d  (b) as in t h e  p roof  of 2.12. N o w  (a) follows 

i m m e d i a t e l y  f r o m  A1. I n  order  to  p r o v e  (b) we m a y  ~ssume p = 0. N o w  b y  the  

t h e o r e m  of gener ic  fiat, nes~ (see [3I]~ p. :[56, 22.A),  t he re  is a non-zero  f e R such 

t h a t  E ( ~  R s is R i f l a t .  T he  e o u c h s i o n  follows t h e n  b y  2.10. 
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