Hilbert Functions and Betti Numbers in a Flat Family ().

M. BORATYNSKI - 8. Grucoo (*¥)

Summary. — This paper is dedicated to the study of Hilbert functions and Betti numbers of the
projective varieties in a flat family. We prove that the Hilbert fumction H(X,, n), y € Y—a
‘parameter scheme——is lower semicontinuous for any fized n. In case Y is integral and noetherian
we obiain the well-known fact that the set V c ¥ where H(X,, n) is maztmal for all n’s is open
and nonempty. We show also that b(X,}—the i-th Beiti number of X,—is upper semi-
continuous for y e V. The paper contains also a number of results concerning the relations
among the various Betti numbers.

Introduction.

Let f: X — ¥ be a flat family of closed subschemes of a fixed projective space.
The aim of this paper is to study how the Hilbert functions and the Betti numbers
of the fibers X, vary with respect to y €Y.

In §1 we show that the Hilbert function H(X,, n) is lower semicontinuous on ¥
for any fixed » (Prop. 1.5). When ¥ is integral and noetherian this implies the
well known fact that subset V of ¥ where H(X,, n) is maximal for all »’s is open
and non-empty (Prop. 1.7) This set V is particularly important, beeause over it
the ideals of the fibers are « well behaved » (Th. 1.10), in a sense which is esgential
later. All these facts are easy consequences of the semicontinuity theorem for
cohomology in a flat family.

In § 2, which is, but for the geometric applications, independent of § 1, we deal
with a finitely generated, graded R[X,,..., X,]—module H, flat over R, and we
study the Betti numbers of the fibers E® k(p), as p varies in gpec (R). We show
first that these numbers do not decrease under specialization (Cor. 2.6), and that
they are upper semicontinuous (Th. 2.12). These facts, applied to homogeneous
ideals of R[X,, ..., X,], in connection with the results of § 1, show that the Betti
numbers b,(X,) of X, are upper semicontinuous on V—a not too unexpected fact
(Prop. 2.15). This is obviously false on the whole of ¥ (see 2.16).

A number of other results are proved, mainly concerned with the relations among
the various Betti numbers. For example, it is shown that if b,(X,) is minimum
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80 is b(X,) (always y € V), while an example due to A. Geramita shows that b,(X,)
minimal does not necessarily imply that b, is minimal (see 2.17).
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Foreward.

In this paper all rings are commutative and noetherian, and all schemes are
locally noetherian. Basic facts and definitions are recalled at the beginning of each
section. For general reference see [H] and [M].

1. ~ Hilbert functions.

In this section we show that the Hilbert funection in a flat family of projective
schemes is lower semicontinuous (Prop. 1.5 and 1.7), and that the ideals of the
family are well behaved in the set where the Hilbert function is maximal (Th. 1.10).
The section is divided into three subsections: the first one contains preparatory
material, the second deals with Hilbert functions and the third with ideals.

A. Preliminaries and notation.

1.1 Let & be any field and let Zc P]= P" be a closed subscheme of projec-
tive r-dimensional space over k. Let § = k[X,, ..., X,] and let J c § be the (satu-
rated) graded ideal of Z. The Hilbert function of Z (with respect to the given em-
bedding) is defined for all integers » = 0, as

H(Z, n) = dim; S,[J., .
Now from the exact sequence of sheaves:
0—>dJ >0p—>0,-0,
twisting by » = 0 and taking cohomology one gets the exact sequence:

0 — HY(P, J(n)) — HY(P, Op.(n)) — HY(Z, O,(n)) — H (P, J(n)) - 0;
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and sinee HY(P7, J(n)) = J,, H(P’, Op(n)) = 8, one gets:
H(Z,n) = 1(Op:(n)) — W0(J(n), H(Z, n)) = B(O,(n)) — k(T (n)) .

1.2 By a family of projective schemes f: X — ¥ we mean a morphism f of (locally
noetherian) schemes which factors through a cloged embedding X c Py= P. Such
an embedding will be fized once and for all, and its ideal sheaf will be denoted by J.
We denote by ¢: P — ¥ the canonical projection.

For each y € ¥ the embedding X ¢ P induces & closed immersion of the fiber X,
into the fiber P,, which is naturally isomorphic to the projective case Pj,.

We denote by I(X,) the homogeneous ideal of this embedding, and by H(X,, n)
the Hilbert function of X,. Note that both I{X,) and H(X,, n) depend on the fixed
embedding X c P.

1.3 When ¥ is affine we always put ¥ = spec (R) and P = Proj (4) where
A = R[X,, ..., X;] (graded with respect to the variables). Thus X = Proj (4/I)
where I is a graded saturated ideal of 4. If y € ¥ we then have P,= Proj (4 ® k(y)),
X,= Proj ((A/I)® k(y)) where all the tensor products are over R.

Note that in general I® k(y) 4s not equal to I(X,); however the image of the
canonical map I® kly) — AR k(y) is a graded ideal corresponding to the embedding
X,c P,.

1.4 We reeall that if f: X — ¥ is a projective morphism of noethérian schemes
and 5 is & coherent sheaf over X which is also f-flat, then the functions y
> dimg,(HY(X,, F,)) are upper semicontinuous on ¥ (see [H], ITI, 12.8).

In particular the sets {y € ¥: dim,,H*(X,, F,) is minimal} are open in ¥; and
if moreover ¥ is irreducible with generic point ¢, then

dimyH (X, F,) > dim, H (X,,;, F,,) for all ye¥.

B. Semicontinuity of the Hilbert functions.

In this subsection we show that given a flat family of projective schemes X — ¥,
the function H(X,, n) is lower semicontinuous on ¥ for each n, and we characterize,
under suitable assumptions, the set V ¢ ¥ where it reaches the maximum for all #’s.

1.5 PROPOSITION. — Let f: X — ¥ be a flat family of projective schemes (see 1.2),
and let # be a fixed integer. Then the function from ¥ to N defined by: y > H(X,, n)
is lower semicontinuous.

PROOF. — Let y € ¥, and let J and ¢ be as in 1.2. From the exact sequence
1) 0 -3 —>0p-—>0;—0
tensoring with k(y) and using the g-flatness of Oy we get the exact sequence

0 —J,— OPy_> OXV——>O



280 M. BORATYRSKI - 8. GRECO: Hilbert functions and Betti numbers, cle.

which shows that J,= J® k(y) is the ideal sheaf of the embedding X,c P,. Hence
by 1.1 we have:

H(X,, n) = h“(OPy('n)) — B3, (n)) .

Now by (1) and the g-flatness of Oy we have that J(n) is g-flat; hence we can apply
the semicontinuity theorem (see 1.4) to show that the funeticn k"(Jy(n)) is upper
semicontinuous on ¥. The conclusion follows from the fact that h°(OPy(n)) is con-
stant on Y.

1.6 CoroLLARY. — Let the assumptions be as in 1.5. Then:

(@) the set V,= {y € Y: H(X,, n) is maximum} is open in ¥;

—

(b it y, o€ Y and y is a specialization of y,, then H(X,, n) < H(X, , n);

(¢) if ¥ is irreducible with generic point y, then H(X,, n) < H(X, , n) for all
ye¥.

Proor. ~ It follows from 1.0 and 1.4.

1.7 PROPOSITION. — Let the assumptions be as in 1.5, and assume further that ¥
is integral and noetherian. Then the set V = {y € ¥: H(X,, n) is maximum for
all n} is open and non-empty.

Proo¥. — For each n let V,= {y € ¥: H(X,, n) is maximum}. Since V, is open
by 1.6 it is sufficient to show that V,= Y fcr n >0.

Now for each n the sheaves O, (wn) are g-flat and hence by 1.4 and quasi-
cormpactness we get that HY(X,, Oy (n)) = 0 for all i>0, all ye ¥ and n >0.
Since J(n) is g-flat we can apply the same kind of argument to H(X,, 3y (n)) and
in view of the remark made in 1.1 we obtain H(X,, n) = h(X,, Oz (n)) = z(Ox (n))
for all y € ¥ and » >90. But since f is flat, X(Oxy(n)) is constant on ¥ (see [H],
111,9.9.) and the conclusion follows.

Now we want to give a better description of the open set ¥, under suitable as-
sumptions on the fibers of f. For this consider the exact sequence of graded
O,-modules

0 — @ 805 ge(3(n)) 2> @ 4(0xn)) — @J{,n% 0.

S*(Ort) denotes the n-th symmetric power of 0T ¢ is the canonical map and
X = @ X, is its cokernel. Notice that if Y = spec R, the above exact sequence
corresponds in each degree n to the exact sequence of R-modules (notation as in 1.3):

(2) 0 — An /L, H(X, Ox(n)) — K,—0

were K,= HY(P, I(n)).
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1.8 PrROPOSITION. — Let f: X — ¥ be a flat family of projective schemes with ¥
integral and noetherian. Assume further that H*(X,, O Xy(")) =0 for all ye ¥ and
alln > 0. Then V= {ye¥: X, is O, free}.

Proor. — Since everything in local on ¥ we may assume that Y = spec (R)
and use the notation as in 1.3. The assumption on the fibers implies (see [MF])
that f,(Ox(n)) is locally free over R (of constant rank ), and HY(X,, Oxy(n)) =
= H'(X, Ox(n)) ® k(y) for all » >0, and for all y € ¥. Tensoring (2) by k(y) we
get the exact sequence of k(y)-vector spaces:

A1, @ kly) — HY(X, 0x(n)) @ k(y) — K. Q@ kly) ~0.

But H(X, Ox(n)) ® k(y) = H'(X,, Ox(n)), and the image of A/I® k(y) in
P H(X,, L‘)X”(n)) is a coordinate ring of X,c P, (3ee 1.3); hence by 1.1 we have:

H(X,, n) = dimy, H(X, 0x(n)) @ k(y) — dimu, Ko @ k(y) = 7, — dimy, K, ® k(y) .

In particular if y, is the generic point of ¥, we bave H(X, , n) = r,— rk(K,), and
hence H(X,, n) = H(X, , n) if and ounly if rk(K,) = dim, K, ® k(y), that is if and
only if (K,), is free over R, (see e.g. [H], I11.8.9). The conclusion follows.

1.9 REMARKS. — (i) Proposition 1.7 remains true, with ¥V possibly empty, also
without the assumption « ¥ integral »; indeed it is easy to reduce the problem to
the integral case by working on each irreducible component.

(ii) Proposition 1.8 can be applied for example, to families of zero dimen-
sional schemes. We do not know whether a similar description of V can be given
for more general families.

C. Ideals of the fibers.

In this subsection we show that the ideals of the fibers of a flat family have a
good behaviour over the set ¥V described in 1.7.
We use the notation stated in 1.2.

1.10 THEOREM. — Let f: X — ¥ be a flat family as in 1.2, with ¥ integral and
noetherian and let Vc ¥ be as in 1.7. Then:
(a) g43(n) is locally free at all y €V and for all n > 0;
(0) gL IR kly) = I(X,), for all y €V and all » > 0.

Proor. — From the exact sequence ¢ — 3 — Op — Oy — 0 and the flatness of f
we deduce that J(n) is g-flat for all » > 0. Moreover H(X,, n) is constant on V for
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all n >0 (see 1.7), and hence the same is true for dimgy H(P,, J;(n)), because I,
is the ideal sheaf of the embedding X,c P, (see proof of 1.5).
Hence we can apply a theorem of Grauert ([H], I11.12.9) which gives (a) and

(') g:3(n) ® k(y) — H(P,, 3,(n)) is an isomorphism for all y V.

Sinee J, is the ideal sheaf of X,c P, it follows that H°(P,, J,(n)) is the n-th
homogeneous component of the saturated graded ideal of the same embeddnng,
namely HY(P,, 3,(n)) = I(X,)..

Thus (b) follows from (b') and the proof is complete.

1.11 BEMARKS. ~ (i) It is not clear to us which is the subset of ¥ where I(X,) =
= @ ¢+(I(n)) ® E(y). It is not even clear to us if this condition is open on ¥.

(ii) Under the assumptions of Proposition 1.8 it is easy to show that the
given family is very flat over V; this means, when Y is affine and the notation is
as in 1.3, that A,/I, is flat at all points of V for all n (see [H], p. 266, 9.5).

It might be interesting to know whether this is true more generally, and which
are the relations among being very flat, maximality of the Hilbert funection, and
good behaviour of the ideals of the fibers (see 1.10).

2. — Betti numbers.

In this section we show that given a flat irreducible family f: X — ¥ of projee-
tive schemes, the Betti numbers b,(X,) (2.2) are upper semicontinuous as y varies
in the set where th Hilbert function is constant (see 1.7). Our treatment is purely
algebraic and independent of § 1, but for the geometric applications.

For a better exposition we divide this section into four subsections. After giving
some definitions and notation in subsection A4, we show that the Betti numbers
cannot decrease under specialization (subsection B), and from this we deduce the
semicontinuity theorem in subsection C. Geometrie applications are given at the
end.

A. Notation and definitions.

2.1 Let k be a field and let S be a finitely generated graded k-algebra. If M
is a finitely generated graded S-module, the Betti numbers of M are defined as:

b{M) = dim, Tor§ (k, M) dfor i=0,1,...
where k is viewed ag an S-module in the obvious way.

Clearly if § is a polynomial ring in # + 1 variables over & one has b,(M) = 0
for i > -+ 2.
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One can also show, by using the graded Nakayama lemma, that M has a minimal
free resolution

Fin.>F,—-F, ,~..>F,—M—0

i.e. a resolution where F; is free graded and the maps F,— ¥, , are zero modulo
the irrelevant maximal ideal of §; this easily implies that b,(M) = rk(F;) for all
1 >0,

In particular the ranks of the F,’s are independent of the minimal resolution
chosen.

Observe also that by(M) is equal to the minimum number of homogeneous
generators of M.

2.2 If Z is a closed subscheme of I and J ¢ k[X,, ..., X,] is the ideal of Z we
put b;(Z) = b;(J) (considering J as a graded k[X,,..., X,J-module).

2.3 NOTATION. — (i) In the rest of this section R is a {noetherian commutative)
ground ring, and all tensor products will be taken over B, unless differently written.

(ii) If B is a domain we always denote by K its field of fractions; when E
i local we denote by k& its residue field.

(iil) We shall denote by 4 = R[X,, ..., X,] the ring of polynomials in » + 1
variables, and by F a fixed finitely generated graded A-module.

Note that if p € spec (R), B k(p) bas a natural structure of a graded k(p)[X,, ...,
v, X,J-module. We shall always consider this structure, and the Betti numbers
b(E® k(p)) are thus well defined.

(iv) Whenever M is a module over & graded ring we denote by u(M) the
minimal number of homogeneous generators of M (thus u(M) = b(M) whenever
bo(M) is defined).

B. Behaviour of the Betti numbers under specialization.

We want to study how b,(F® k(p)) changes when specializing p, and give condi-
tions for it to remain constant. The key results are 2.5 and 2.10, from which a
number of corollaries are deduced. Clearly, it is sufficient to deal with a local
ground ring R; so in this subsection R is always assumed to be local, unless the
contrary is stated.

2.4 LEMMA. — Let ¥ be a finitely generated graded A-module, and assume R
is a local ring. Then

u(B) = wBERk) = din, (BQ,k) .
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Proor. — By the graded Nakayama lemma and the local Nakayama lemma
over R one has:

WE) = wHEQ,R) = dim; (BEQRuk) = p(EQ k) .
2.5 PROPOSITION. —~ Assume B is a local domain, and ¥ is R-flat. For each ¢ put

di: dz(E) = bz(E® k) — bz(E®K) .
Then:
(—1)y+d, =0 dforall vr>=0.

AL

®

PrOOF. — We use induction on r. If » = 0 we have to prove that b(ERE%) >
= bo(H @ K); but by 2.4 we have:

b (B k) = p(B) 2 (B Q K) = b(EQ K)

and we are done in this case.

In order to be able to make the induction step we need some preliminaries. So
let 0 - N — F — E — 0 be an exact sequence of finitely generated graded A-modu-
les, with I free. Since F is flat over R, we get an exact sequence of graded k[X]-
modules

(3) 0Nk >FRk >ERQk 0.

Tensoring (3) with & over k[X] and using the Tor-sequence we get an exact se-
quence of k-vector spaces

0 —Tor'™(k BQk) »NQk >FRk ~HERQk —0

where the upper bars mean reduction modulo (X). Likewise we get an exact se-
quence of K-vector spaces:

(5) 0 —Torf" K EQK) > NQK »FPRK -ERK —0.

Taking the alternating sum of dimensions in (4) and (5) and using the obvious
equality dim, F®k = dimgz F® K we get

(6) dy(B) — do(B) = do(N) .
Moreover by again using (3) and the Tor-sequence we have, for ¢ = 2;

Tor!™(k, BE® k) = Tor*™(k, N® k)
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and similarly with & replaced by K. From this it follows:
(M) d,(B)y =d,_(N) fori=>2.

Aggume now 7> 0. Since N is flat, we have, by induction,

}
[N

T

(—1)#1dy(N) = 0

i
<

and the conclusion follows by using (6) and (7).

2.6 COROLLARY. ~ Let the assumpytions be as in 2.5. Then we have:
8—1

(@) d,> 3 (—1)#*-1d,>0 for all s >0;

B) b(BRE) >b(EQE) for all s=0;

ProOF. ~ (a) By 2.5, with r = s, we get the first inequality, while the second
one follows again by 2.5 applied with v =5 — 1.

(o) Follows from (&) and the definition of d,.
(¢) We have h,(EQRQK)=0=>0,(ERE) for i =n -+ 2; hence (¢) follows from
(a) applied with s = n - 2.

2.7 COROLLARY. — Let s be a non-negative integer and let the assumptions be
as in 2.5. Then the following are equivalent:

(@) ds=0;
() 2(=1fd;i=0= 3 (—1)d;.
i<s i>w

PROOF. — Assume (a). Then Y (— 1)id,== 0 by 2.6 (a); from this and 2.6 (¢) we
i<s
have also Y (—1)’d,= 0. The converse follows immediately from 2.6 (c).
i>v
2.8 COROLLARY. — Let the assumptions be as in 2.5. Then we have:
(a) It b(BEQ K) = b(ER k), then b(BER K) = by(BER k);

(b) If bBEQK) = b (BEQK) and b(EQk) =0 for i >h + 2 then b, ,(FQ®
R K) = bp (BR E).

Proor. — To prove (a) apply 2.7 with s = 1. To prove (b) observe that b,(F®
®K) =0 for ¢ >h -+ 2 by 2.6 (b), whence d,= 0 for ¢ >h - 2; the conclusion
follows from 2.7 applied with s = h.
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We have also the following well known:
2.9 CorOLLARY. — Let the assumptions be as in 2.5. Then vk(ER® k) = rk(ER® K).

PrROOF. — By using minimal resolutions (see 2.1) one has:

rhEQk) = 2 (—1)'0:(EQ k)

20

and similarly for £ K. The conclusion then follows from 2.6 (e).
The next proposition gives a condition which is equivalent to the minimality
of the first s Betti numbers, and should be eompared with 2.7.
2.16. PrROPOSITION. ~ Let the assumptions be as in 2.5. Then for any fixed
integer s the following conditions are equivalent:
(@) d;=190 (ie. )(ERQK) = b,(E® k) for i <s).
(b) Tor!(H, R) is R-free, for ¢ <s.

{¢) There is a free graded resolution of length s - 1:
¥ —F,—~. —>F—F->90

which is minimal with respect to (X) (i.e. the maps F,Q R — F, Q. R are zero
for 1<i<s+1).

Proor. — (a) = (b). Since d, = 0, by 2.4 and the graded Nakayama’s Lemma
we have:
and hence B &, R iz R-free for ¢ = 0 and any s; thus if s = 0 there is nothing
else to be proved.

Agsume then s > 0, and let us proceed by induction on s. For this let 0 — N —
— F — E -0 be an exact sequence of graded A-modules, with # free and rk (F) =
= u(H), the minimal number of homogeneous generators of E. By flatness we have
exact sequences:
(8) 0 >NYK—--FRK—-ERXHK —0
(9) 0 >NRE -FRLF -EQE —0.

Moreover by assumption and by 2.4 we have:

b(BQK) =1k (FQK) and b(ERE) =1k (FQk).
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Then the maps FRQK - ERQ K -0 and FRFIk —~EBXEk — 0 give the beginning
of a minimal resolution of £ K and of E X k respectively. Hence by (8), (9) and
the assumption we have, for ¢ <s—1:

b(NQK) =biu(BQF) =bin(BEQ K) = (N ® K) .

Now N is R-flat, and hence by the induction hypothesis Tor{ (¥, R) is R-free for
0 << s—1, and from Tor-sequence it follows that Tor? (E, R) is R-free for ¢ > 2.
Moreover we have the exact sequence '

0—>Tor (B,R) > NQR—-FR,R—>ER,R >0

and since the last three R-modules are free we have that Tor? (E, R) is free too.

(b) = (¢). Induction on s. If s =0 we have, by assumption, that ER, R is
E-free of rank r, say. Then by 2.4, we have u(E) = r, and hence there is a free
resolution ¥y, — F,— K — 0 of graded A-modules, where rk (Fy) == r. Tensoring
with B over A this gives an exact sequence F,Q,R - FQ,R—EXR, R —0.
But Fy@u R and EQ4R are free of the same rank, and hence F,RQ, R - ER, R
is an isomorphism, which implies that F; ¥ B — F,X R is the zero map. Thus our
claim is proved for s = 0.

To make the induction step consider the exact sequence 0 —~ N — F, —~ F — 0
where F,-> B is as before, and N is the kernel. Then N is flat over R and
from the Tor-sequence and the assumption we have that Tor? (¥, R) is free for
1< i< s—1. Moreover in the exact sequence

0 — Tort (B,R) > NQ,R—~>F,Q,R->BR,R >0

the first, third and fourth R-module are free.

Hence N @, R in free as well, and we can apply the induction hypothesis to N.
Then we then have a free resolution ¥, , - F, >.. - F, - N — 0 with all the
required properties, and the conclusion follows.

(¢) = (a). By assumption and flatness of E it follows that FRQ K and FRk
are minimal resolutions of HQ K and E®k respectively; hence the coneclusion.

2.11 REMARK. — The following fact holds: let the assumptions be as in 2.10,
and assume further that Tor! (E, R) is R-free for ¢ <s.

Then Torf]X[ (E®ky k) = Tor? (B, Ry® k for i < s (i.e. Tor; « commutes with tak-
ing fibers »). This can be proved by using 2.10. We leave the details to the reader.

C. Semicontinuity of the Betti numbers.

In this subsection we show that the Betti numbers are upper semicontinuous

19 - Annali di Malemalica
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2.12 THEOREM. — Let the notation be as in 2.3 and assume E is B-flat. Let 4,
a be two integers. Then the sets

B} = {p espec (R)p(ER® k(p)) < a}
are open in spec (R).

PRrROOF. — By a well known lemma of Nagata it is sufficient to prove (see [M],
p. 156, (22.B)):

(@) If pe B} and qCp, then ge B;.

(b) If p e B; then B!N spec (R/p) contains a non empty open subset of
spec (B/p).

Now {a) is an easy consequence of 2.6 (b), because the fibers do not change
after the base change R — R /qR,.

In order to prove (b) we-may assume p = 0 and it is sufficient to show that for
all s >0 the sets U,= {q espec (R)|[b,(ER k(q)) = b,(E® K)} are open (here, as
usual, K iz the quotient field of R). But for all q € spec (R) and all ¢ > 0 there are
somorphism Torf (B, R)® R, =Tor{!®*«(E® R, R,), and hence by 2.10 we have

U, = {q € spec (R)|Tor;' (B, R)® R, is R,free for i <s}.
The conclusion follows because Tor; (H, R}is a finitely generated R-module for allé’s.

2.13 QoroLLARY. — Let the assumptions be as in 2.12. Then the sets
B,= {p espec (B)b,(BE® k(p)) is minimum}

are open and non-empiy in spec (R).

2.14 REMARE. — The assumption « F flat» in 2.6 (b) and 2.12 can be omitted,
see Appendix. However we do not know any application of these more general
statements.

D. Betti numbers in a flat family.

Now we show how the previous results on Betti numbers can be applied to a
flat family X -» ¥ of projective schemes, such as we congidered in § 1.

Since the properties we are interested in are local on ¥ we may assume ¥ =
= Spec (R) and X = Proj (4/I), where A = R[X,, ..., X,} and I is a homogeneous
saturated ideal of A. Recall that if 4 € ¥ we have, by definition, b(X,) = b,(I(X,)),
where I(X,) c AQ k) = k(@) [Xo, -.., X,] is the homogeneous (saturated) ideal cor-
responding to the embedding X,c P,= Proj (A® k(y)), see 2.2, 1.2, 1.3.
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The results of subsections B and C can be applied to the 4A-module I, provided
we know that:

(10) I is R-flat.

In this case we get informations about b,(I® k(y)) as y varies in ¥. In order
to also get informations about b,(X,) we also have to know when

(11) I(X,) = IQ k(y) -

Now conditions (10) and (11) have been discussed in 1.10, where it was shown
that they hold, if ¥ is integral and noetherian, at all points of the open set V
where the Hilbert function H(X,, n) is maximal for all n's. It is then clear how
to give geometric applications. As an example we give the following:

2.15 PROPOSITION. — Let f: X — Y be a flat family of projective schemes (see
1.2), and assume ¥ is integral and noetherian with generic point y,. Let Vc ¥ be
the open set where the Hilbert function is maximal (see 1.7). Then:

(@) by(X,) =bi(X,) for all yeV;
() B;= {y € V|bi(X,) = b,(X,)} is open and non-empty;
(¢) B,> B,.

Proor. — It follows from 1.10, 2.6, 2.12, 2.8 (b) and the above discussion (we
leave the details to the reader).

2.16 REMARKS. — (i) Proposition 2.15 (a) is false if we do not restrict to V.
Indeed let d be any integer and let f: X — ¥ be the flat family of all subschemes
of P} consisting of d distinet points (here Y is a suitable open set of the symmetric
product of d copies of P, or, equivalently a suitable open set of he Hilbert scheme
which parametrizes all zero dimensional subschemes of P having degree d).

Now if n = 2 among the X,’s there are complete intersections of two curves
of degrees ¢ and b, with ab = d; and for any such, one has by(X,) = 2. Butif d >3
and X, is general one hag 5,(X,) > 2: for example if d = 3 and X, consists of 3 non-
collinear points, then b,(X,) = 3. Notice also that complete intersections, for d > 3,
do not have maximal Hilbert function, in agreement with 2.15. For references on
Hilbert functions of finite subschemes of P" gee for example the bibliography
of [GGR].

(ii) Let X — ¥ be as in (i). The fact that b,(X,) is constant on a non-empty
open set (see 2.15 (b)) was proved by GERAMITA and MAROSCIA [GM], with different
methods. The problem of computing this value is not yet settled; partial results
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in this direction can be found in [GGR], where a conjecture concerning the above
value of by(X,) stated in [GO] is proved to be true in many cases.

(iii) If X — ¥ is as above, then b,(X,), the last non-zero Betti number, coin-
cides with the CM type of the graded ring of the embedding X,c P,. A proof that
this number is constant on a non-empty open set was given by L. Romerts [R],
who also conjectured a value for such a constant. This conjecture turns out to be
true in many cases, see [GGR]. The general problem is still unsettled.

(iv) We do not know whether the set B,= {y € Y|b,(X,) = b(X,)} (notation
as in 2.15) has some nice topological property. It might be possible that repeated
applications of 2.15 allow one to prove that B, is constructible for all ¢’s.

(v) With the notation as in 2.15 it is false, in general, that B,C B,, not even
if we assume that X, is finite for all y € ¥. We have indeed the following example,
kindly communicated to us by 4. GERAMITA.

2.17 EXAMPLE. — Let X — ¥ De the family of all subschemes of P} consisting
of 15 distinct points, and let V c ¥ be as usual. If y € V then the points of X, are
said to be «in generic position », and conversely. For 15 points in generie position
one can prove the « C-M conjecture », which implies that the minimum value of
b (X,), y € V is b, see [GGR], 4.6. Moreover one can show directly that the minimum
value for by(X,), y€ V, is b (see [GGR]). On the other hand one can construct a
set of 15 points in generic position having b, = 5, b, = 11, by= 7, as follows. Start
with the ideal

I = <X?7 Xg, Xg, Xnga X1X2X37 X§X§, X%X§> c k[Xla X27 X:i] = B.

It is easy to check that
(i) The Hilbert function of B/I is: 1 3 6 5 0 —.

(ii) If m is the maximal homogeneous ideal of B/I then Ann (m) ==(B/I),

and so dim,(Ann (m)) = 5; hence the Cohen-Macaulay type of B/I is 5.

Since I is a monomial ideal, by [H1] (see [GGR] for details) there are 15 dis-
tinct points in P, whose ideal J c k[X,, X;, X,, X;] = C has the following properties:

(iii) X, is not a zero divisor on C}J;
(iv) (J, Xy)/(Xe) = Ic B = 0/X,C.

It follows that the Hilbert funetion of CfJ is: 1 4 10 15 —, which means that
the points corresponding to J are in generic position. Moreover I is minimally
generated by 7 elements (e.g. the ones given above), and hence by (iii) and (iv) the
same holds for J, i.e. by(J) = 7. Finally, by (ii), (iii) and (iv) the C-M type of CfJ
is B, and by general facts this means that by(J) = b, which coneludes our proof.

Notice that from the above it follows that b,(J) = 11 (e.g. by 2.6).
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Appendix.

We generalize two results of section 2, by showing that 2.6 (b) and 2.12 do hold
without flatness assumptions,

Al PROPOSITION. — Let the notation be as in 2.3 and assume that R is a loecal
domain. Then b (X k) > b, {ER K).

PRrROOF. — We assume first that R is a DVR. Then the R-torsion submodule 7
of ¥ is a graded A-submodule of E, and hence it is easy to see that E=FO T
where F' = E/T is A-graded and R-flat. Then by 2.6 (ii) and the equality FQ K =
= HQ K it follows:

BERK) = b(FQK + (TR k) >
> b (FRE) =
= b(EQK)

whence the conclusion in this ease.
To prove the general cage recall that there is a DVR R’, dominating R, and with
quotient fleld K. If k' is the residue field of R’, by the previous step we have:

b(B®r k) = b[(EQr k) Qi k'] =
= b[(EQzr B') Qr k'] >
> b[(BQe R) Qr K] =
= b:;(EQr K)

and the proof is complete.

A2 THEOREM. — Let the notation be as in 2.3 (with R any noetherian ring and E
not necessarily R-flat). Then the sets

B = {p e spec (R)b,(ER k(p)) < a} .
are open. If moreover R is a domain with quotient field K the sets
B;= {p espec (R)|p,(ERk(p}) = b(BERQ K }

are open (and non empty).
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ProoF. — We have to prove (a) and (b) as in the proof of 2.12. Now (a) follows
immediately from Al. In order to prove (b) we may assume p == 0, Now by the
theorem of generic flatness (see [M], p. 156, 22.A), there is a non-zero f & R such
that EQ R, is R-flat. The conclusion follows then by 2.10.
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