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On Local Systems over Complements to Arrangements 
of Hyperplanes Associated to Grassmann Strata (*). 

M. SALVETTI - M. C. PRATI 

Summary. - In the first two parts we recall the construction of generalized hypergeometric func- 
lions and of the cellular complex homotopy equivalent to the complement of a family of by- 
perplanes in C N. In the third part we find a generalization of some results in [2] about the ho- 
mology of local systems an an affine space less some hyperplanes. Our method is based 
on [7] and it gives also informations about the cellular complex there constructed. In the last 
part explicit bases for the only non-vanishing homology group are described in terms of the 
cells of the above mentioned complex. The configurations of hyperplanes which we examine 
are those giving fundamental strata in the grassmanian ([2], [3]) and strata in G3,~ allowing 
also triple points. 

Introduction. 

In [1] and a sequence of following papers a theory of the generalized hypergeometric 
function was developed. Such function satisfies a second order holonomic system of dif- 
ferential equations and it can be defined by Eulerian integrals over cycles which are 
contained in a certain covering of an affme space less some hyperplanes ([2]). The con- 
figuration of these hyperplanes individuates a stratum (see [3]) of a suitable Grassmann 
variety, and to each stratum a hypergeometric function is associated. Thus this theory 
is based on a strong connection between combinatorial and analytic methods. 

One of the main tools of the theory is the study of rank l-local systems over the 
complement of hyperplanes and the explicit description of bases for the homology 
with coefficients in such local systems (see [2]). Since in [7] one of the authors 
produced an explicit cellular-complex homotopy equivalent to the complement of the 
hyperplanes (when these hyperplanes are real) it is natural to t ry  to study local sys- 
tems through such complex. Calling Y the complement to the hyperplanes in C N and 
a local system on Y, it was proved in [2] that when the hyperplanes have normal 
crossings (in this case their configuration determines a so called fundamental stra- 
tum) and for generic s then H~ (Y, ~) = 0 for i ~ N. In the third part we obtain analog 
results under less restrictive genericity conditions for ~. The method here used is 
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quite different from that of[2], since it uses the above mentioned complex X. To ob- 
tain the result we just  split X into two parts and apply the Mayer-Vietoris sequence 
and induction on the number of hyperplanes. 

In the fourth part we describe for N = 2 an explicit basis of H~ (Y, s in terms of 
the cells of X, in the two following cases: when the configuration of lines has normal 
crossings, and  when it admits also triple points as singularities. The methods we used 
can be easily generalized to higher dimension: in particular, bases for the so called 
fundamental strata of any dimension can be found similar to those of the first case 
above. In particular the so called ,,double knots, of[2] are given here as a linear com- 
bination of the cells of X. 

At last we report about our computer program (based on the computations in [8]), 
which given any arrangement of lines returns the dimensions of the homology groups 
and their bases. 

We thought useful for the reader to dedicate the first two parts to resume the es- 
sential parts of the theories: the first part is devoted to recall the definition of hyper- 
geometric functions and its main properties, and it was put here expecially to stress 
the role of local systems in the theory of hypergeometric functions; in the second one 
we recall the construction of [7] stressing its geometrical description. 

It is a pleasure to thank Prof. I. M. GELFAND for having exposed his theory of hy- 
pergeometric functions in Pisa and for having pushed us to learn it. 

1. - Recall of the definition of  generalized hypergeometric function.  

Consider the Grassman manifold Gk(CPn)~-Gk+I (Cn+I ) ,  with coordinates 
(x0:... :x~). Indicate by ~ a (k+  1)-dimensional space in C n+~ and with ~, its pro- 
jective image, and let ~3={xj=0} ,  ~ j = { x j i = . . . = x j ~ = O } ,  where J =  

= {jl , . . . ,J~} c (0, . . . ,n}.  

DEFINITION. - One says that ~,, ~/e Gk(P ~) are equivalent iff d i m ( ~ n ~ j ) =  
= dim(~' n ~ ) ,  VJ r  {0, ..., n}. 

The preceding equivalence produces a s trat i f icat ion of the Grassman manifold 
(see [3] for many other equivalent definitions). Let now ~, c Gk (pn), and let D(~) be 

n A 

the set of forms on T of the shape ~ = Z ti dto A ... A dtl ^ ... A dt~ , where ti are lin- 
i=O 

ear coordinates on 7. The set of pairs (~,, ~) determines a rank 1 bundle Gk, n on Gk (P~) 
(a determinant bundle). Note that the~forms ~ have homogeneity degree n + 1. 

Consider also the function 7:~(x) = I~ (xj) ~j-1 where ~ = (s0, ..., an), ~j e C, and it 
j=O 

holds ~ aj = n -  k. 7:~ is a multivalued function ramified over z = [.J zj. Let us con- 
struct the covering Pr of ~ ' \~  on which 7:~ is univalued. 

First let P be the covering of C n + 1 \ ~ obtained from the universal covering C ~ § 1 
dividing by the subgroup generated by 275(1, ..., 1). Here =~ lifts to a univalued func- 
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tion by the formula 

=~(ao, . . . , a~) :  exp(~ ,a j (a j -  1)). 

Let us denote again by o~ the lifting of ~ to P ] ~ \ ~  and with = ~  the associated k form. 
Now Iet us take the projective image ~, of ~: let Py = (P]~ \~) /C*,  where one lifts the 
action of C* to P I ~ \ ~ ,  endowed with the natural projection onto r \ ~ .  One can see 
that Pr corresponds to the commutator subgroup of =~ (~,\~), so its automorphism 
group is H~ (~,\~). Note that this last group is easily described, since it is isomorphic 
to Z ~ and it is generated by elementary loops around the hyperplanes subjected to 
the only relation that their sum is zero. 

Continue to indicate by =~ ~ the lifting on Pr : the condition ~ ~j = n - k guaran- 
j=o 

tees that =~ oJ is homogeneous of degree 0 so it can be lifted to P~. 
The hypergeometric functions will be defined as integrals on cycles of Pr. So first 

let us study the structure of these cycles. 
Let C~,(P 7) be the complex of those locally finite chains on Py which project onto 

locally finite chains in ~,\~, and let H~,(P r ) the homology of this complex (rf: relative- 

(00) ly finite). Let ~ be  as above and set vj=exp(2,-d~j) so ~3 -= 1 .  Let 
J 

B,(,f ,  ~)r C~,(Pr) be the subcomplex generated by the chains of the form 

where ~ e C~,(Pr), s e H~(y \~) ,  sj is the linking number of s with ~ ,  sz~ is the chain 
obtained from A by parallel transport along s. Indicate by C,(~,,~)= 
= C~,(Px)/B,(~,  , ~), and by H,(y ,  ~) its homology. 

Let Yr = ~,\zo, which is an affine k-dimensional space such that Y~ \ jUIM j is still 
covered by Pr (we set My as the affine hyperplane Y~ n ~j). 

D E F .  - A local system L~ on Yr with monodromy indices zi, i = 1, ..., n, is a rank 1 
bundle on Y~ endowed with a flat connexion, such that a loop around M~ produces on 
the fiber the multiplication by ~. 

So the vj induce a local system ~ on Yr \:7K (set 3K = U Mj). It is not difficult to 
see that ([2]): 

i) The projection induces an i somo~hism 

H ,  (~,, ~) = H~ (Y~ \ gK, 2~); 

ii) The projection H~  (P r) --> Hk (~', ~) is surjective. 

Let now h ~ H~(P~) and consider f ~ ~. When h is not compact such integral can 
h 

diverge, but with a method of subdivision and analytic continuation it is possible to 
define it correctly (see [1]). By definition one has: 

iii) f G ~ depends only on the class of the image of h in Hk (•, ~). 
h 
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Fix now a stratum/" r Gk (P~) and define the generalized hypergeometric function 
on F as follows. Let y ~/', h e H](P~), let U be a simply connected neighborhood of ], 
in F. Then V~ e U, ~ e D(],) define 

h(~) 

where h(~) is obtained from h by parallel transport through the Gauss-Manin connec- 
tion. Here the Gauss-Manin connection lives in the fiber bundle o n / "  with fiber 
H](Pr). 

The main properties of r are the following ones: 

- -  For fixed ],, ~, Ch is meromorphic in ~. 

- -  For fixed a, Ch is analytic in (~,, ~o) for ~, e/ ' .  

- -  Let T be the torus {8= diag(~0, ...,~n),~'e C*}, acting on Gk(P n) and on 
Gk, n : then 

r (~; ~(~, ~)) = ~ (8) Ch (< ~, ~). 

So Ch is determined by its value at one point ~ of/ ' ,  and Ch will be thought of as a func- 
tion on the space / ' /H .  

- -  Let  h0 be the image of h in Hk (~,, a): then Ch depends only on h0 and it can be 
indicated by Ch0(a;~,o~). So the hypergeometric functions with fixed a are 
parametrized by H~ (Yr \ g~, 2~ ). 

Call a stratum /" a fundamental stratum if for any ], e/" there is an index 
i e {0, ..., n} such that the arrangement of hyperplanes y n :j, j = 1, ..., i, ..., n, in 
the affine space ~ \ ~  has only normal crossing singularities. Recall from [2]: 

- -  Let y be a real point of a fundamental s t ra tum/ ' ,  and assume aj ~ Z, Vj. 
Then if hi,..., hg e H~(Y.~ \g~, s are linearly independent, the associated hyperge- 
ometric functions are independent. 

2. - Reca l l  o f  the  ce l lu lar  c o m p l e x  a s s o c i a t e d  to  an  a r r a n g e m e n t  o f  hyper-  

p lanes .  

Let g~ = [J Mi be a family of affine hyperplanes in C n which have real equations. 
i 

We shall assume that the family is locally-finite and set Y = ~ v \  [.J Mi as its 
i 

complement. We recall from [7] the construction of a cellular complex X r Y which 

is homotopy equivalent to Y (see also [6; ch. 8]). It is convenient to give a 
geometrical picture in the two dimensional case, for which X is a 2-dimensional 
cellular complex. So, assume that the arrangement is the one given in picture 
1: it determines a cellular decomposition of t( 2 into facets (chambers are the 



345 

Q 

interiors of the 2-dimensional cells, faces are the interiors of the 1-dimensional 
cells, and so on). 
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Fig. 1. 

Let Q be the cellular complex in R 2 which is dual to this decomposition (Q is ob- 
tained by a baricentrical subdivision). Each vertex of Q is dual to a chamber, each 
edge is dual to a face, each 2-cell is dual to a 0-cell (that is, a singularity) of the ar- 
rangement. First we describe the complex X above and a dimension-preserving cellu- 
lar map ~b: X--* Q in an abstract manner, without taking into account its realization in- 
side Y. The 0-skeleton X0 is isomorphic to Q0 through ~. The 1-skeleton X1 is obtained 
from Q1 by ~,doubling)) each edge : that is, substitute to each edge of Q a pair of edges 
with same ends. Such edges are oriented (so that their union represents a loop around 
a hyperplane). The map ~b is defined naturally as taking each 1-cell of X into the 1-cell 
of Q with same ends (see fig. 2). 

Let e 2 be a 2-cell of Q. There are in X as many 2-cells going to e 2 through ~ as the 
vertices of e 2. If v e e 2 is a vertex, let us indicate by e 2 (v) �9 X the 2-cell whose bound- 

Fig. 2. 

1-cell of Q codimensional 1 
1-cells of X 

t f facet of the 
arrangement  
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Fig. 3. 

ary is given by the two positive paths of X going from v to the vertex opposite to v in 
e 2 (see fig. 3). 

For higher dimension the construction is similar. 
The realization of X into Y is obtained by using some formulas, as follows. First, 

give to the set of all facets of the arrangement the following partial ordering: 

F ~ > F j r closure (F i) ~ closure (F j)  

(the exponent i o f F  i means codimension). Moreover, given a vertex v of Q and a facet 
F i of the arrangement, let WF~,v be the vertex of the/-cell of Q dual to F ~ which is clos- 
est to v; here distance between two vertices is understood as the minimum number of 
edges of a path in Q1 connecting the two vertices. The Wr~,v belongs to the dual cell to 
F ~ iff it is dual to a chamber which has F ~ in its closure; it is convenient to indicate by 
~(F ~) the set of vertices which satisfy this property. So a realization of Q in R N is 
given by 

Q = [.J s (Fh> ... > F ~ ) ,  

where: 

the union above is taken over all chains F h >  ... > Fk; 

if w(F j)  is the point chosen in F j for the baricentrical subdivision which defines 
Q, then s (Fh> ... > F k) is the simplex associated to the chain F h >  ... > F k which is 
given by 

s ( F h > . . .  > F  ~) = ): 0< )~ j~  < 1 , ~ ) , j =  1 . 

See an example in fig. 4. 
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Fig. 4. 

Fixing F k and varying the chain which contains F k as its last element we obtain 
the k-cell e k r •N of Q which is dual to F k. The complex X is realized in Y c E y as 

X =  [.J s ( F h >  ... > F k ; v ) ,  

where: 

the union is taken over all chains F h > ... > F k and all vertices v of Q which are 
dual to a chamber C such that closure (C)~ Fk; 

s ( F h >  ... > F k ; v )  is the simplex given by 

s(F h > ... > F k; v) = 

= w ( F  j )  + 2 ~j (WF~v -- w ( F  j )  I 0 <- ;(j <~ 1, • )~j = 1 . 
J 2 k 

Here wr~,v is defined as above. 

Fixing F k and v as above, the union of all simplexes s (F  h > ... > F k ; v) varying the 
chain which contain F k as last element is a k-cell e k (v) of X which is cellularly homeo- 
morphic (through ~) to the k-cell e k which is dual to the facet F k. So any cell of X has a 
natural preferred point (v for e k (v)). Note that when X is realized in Y as above, ~ is 
just the real projection ~: cN-~ I~ N. 

3. - Computat ions  with local  systems.  

Let Y be as in the preceding part. The following results hold for any local system 
L~, and are proved by using Poincar~ duality and conjugation in cN: 

(a) H~(Y,  L~) -~ ( H ~ _ i ( y ,  L v ) ) * ;  
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(b) HN(Y ,L~)  ~-HN(Y,  LV);  

(c) H i ( Y , L ~ ) = O  for i > N ,  H [ f ( Y , L ~ ) = O  for i < N .  

Here L v is the local system with monodromy indices z~ -1. 
Let us suppose that [J Mi has only normal singularities; so, when 5 is finite, the 

given arrangement represents a fundamental stratum in GN+I(~ I~l) (see part 1). 
Let X c Y be the associated cellular N-complex, according to [7]. (Recall ([7; Lem- 

ma 13]) that in the considered case X can be obtained by its real projection by glueing 
the cells DYe, DJ,~ ' if and only if IF j I = IF 'j t. However, here we prefer to use another 
method). 

Let Mi be a hyperplane of g~, Mi = {t ai " x + bi = 0}, a~ �9 RN, bi �9 R, and indicate by 
M + = { ta i ' x  + bi >I 0}, M (  --- {ta~.x + bi <~ 0} as the two half-spaces delimited by Mi. 
Set also g~ = g~ \{Mi  } and let g~i = (Mi n My }j ~ ] , j ~  be the configuration deter- 
mined on Mi by the remaining hyperplanes. Clearly both the arrangements g ~ ,  ~ i  
have normal crossing singularities. Correspondingly to g~ and g~i one constructs cel- 
lular complexes X(g~i), X ( g ~  ) in the same manner as X (X(g~) in general will be still 
an N-complex while X ( ~ i )  is an ( N -  1)-complex). 

Set K" = {s(Fh > ... > Fk;v )  e XI either F k is not contained into Mi and v varies 
through ~(Fk), or F k r Mi and v e ~(F k) n M +  }; 

X+ = K~ u { s (Fh> ... > Fk;v) lF~ c Mi,  Fh c M+,  v e ~ ( F k ) n M (  } ; 

X~- = K(  u {s(F J~ > . . .  > F k ; v)lF k r Mi,  F h r M~- , v �9 "V(F k) n M (  } .  

The complexes above are shown in picture 5, in the case when the arrangement is 1- 
dimensional (a set of points in R). 

Fig. 5. 

M7 

Ki'  �9 . . . . .  X~(  - Ki '  

+@+ 
. . . . .  X T - K ~ '  

T H E O R E M  1.  - One has: 

(1) x~ + • z~- = x ;  

(2) X + (~ Xi- has two connected components: K" and another one (say Ki); K[ is 
a deformation retract of X ( ~ '  ) and Ki is isomorphic to X(g~i); 

(3) K" is a deformation retract of both X + and Xi-. 
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PROOF. - (1) is clear since each simplex of X is in X + or in X( .  

(2) Clearly K" c X  + nX~- and K" is connected. A simplex s =  
= s(F h > ... > F k ;v) c X + , which is not contained in K/', is also a simplex of X/- if and 
only ff F h c Mi and in that case s n K" = 0. Then X + n X (  = K" N Ki, where 

K i =  { s ( F h > . . . >  Fk; v)!Fh c M i ,  v e  ~(Fk)r~M~ -}  

(and this is clearly connected). 
Note that, because of the normality conditions on the singularities, the chambers 

F ~  M (  having Mi as a wall bijectively correspond to the codimensional 1 facets 
F 1 c Mi. From here it easily follows that Ki is isomorphic to X(g~i): one can construct 
an isotopy in C N taking Ki into X(g~i) by moving each vertex w(F ~ belonging to a 
chamber F ~ having Mi as a wall into the corresponding w(F 1) �9 Mi. 

For K/' one obtains the result by crushing each simplex 
s(F h > ... > F k; v), F k c Mi,  into Mi,  through an homotopy which fixes the vertices 
w(F ~ ) �9 Mi and takes w(F j)  into w(F j + 1 ) when F j > F j + 1 r Mi , F j e~ Mi (we use again 
the normality condition). The obtained complex will coincide with X(gW ). 

(3) is obtained in a similar way as (2), by contracting onto K" those simplexes of 
Xi + (X/-) which are not contained into K/' : the homotopy is similar to that exploited in 
(2) (see pic. 5). Q.E.D. 

D E F .  - A vertex of an arrangement is a facet of dimension 0, and an arrangement 
containing vertices will be called of m a x i m a l  rank.  

For brevity, we shall set Hi (g~) for Hi (X(g[0; 2~ ) and similarly for :~i, gs where 
the local system on X ( ~ i )  is the restriction of 2~ and that on X ( ~  ) is the one with co- 
efficients {zj }j ~ i. Moreover, c bd (g~) will indicate the number of bounded chambers of 
Kg. 

T H E O R E M  2. - Assume that the arrangement g~ has only normal crossing singular- 
ities and is finite (#  g~ = r) and of maximal rank. Let  s be a local system on Y and as- 

sume that there are hyperplanes Mil, ... Mi~ such that Mi~ ~ 0 and Mij crosses 
' j = l  "= 

all the intersections of hyperplanes of dimension I> 1; moreover zis r 1 for j = 1, ..., s. 
Then: 

Hi (g~) = 0 for i < N .  

PROOF. - If the arrangement is in general position then the shortest way is to use 
a homotopy operator as in [4, prop. 3.4]. For a generic arrangement verifying the 
above hypotheses, we proceed by induction on N and r - s .  

For r = s (= N) the arrangement is in general position, as it is for N = 1, and the 
above applies. Let us assume the thesis for all pairs N',  r ' - s '  such that either 
N'  ~<N - 1, whatever r '  - s', or N '  = N  and r'  - s' < r  - s. For r >  s, let Mi e g~ such 
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s ( s 
that J=N 1Mij contains a vertex which is not in Mi if j~l  Mi~ contains two vertices such 

M~ always exists; if it contains only one vertex and all the hyperplanes pass through 
\ 

it, then we return to the general position case ). Then gg~ verifies the hypotheses of 

Theorem 2 with r -  1 hyperplanes and the same N and s; g~.~ verifies the hypotheses 
with N -  1. By Theorem 1 there is a Mayer-Vietoris exact sequence 

--) H:(gg~ ) O Hj(:)g~ ) ~ H:(gg)-§ Hj_ l (:)g ~ ) G Hj_ ~ (gg.~) 

and by induction Hj (grc~) = 0 for j < N - 1, Hj (3rci) = 0 for j ~< N - 2 from which theo- 
rem follows. Q.E.D. 

COROLLARY. - In the hypotheses of Theorem 2, the only non trivial homology 
group is the one in dimension N, and 

dim HN (gg) = c b~ ( ~ ) .  

PROOF. - Since Hi (grC) = 0 for i > N the only non trivial homology group is the one 
in dimension N, so dim HN (gg) is the Euler characteristic of Y. But it is known (see 
for instance [6, Corollary 6.10]) that z(Y)=cbd(gg), SO the corollary fol- 
lows. Q.E.D. 

The preceding corollary could be proved using again a Mayer-Vietoris sequence 
and [11, Corollary 7.2]. 

4. - Construction of special bases for the homology.  

We give now an explicit description of a base of Hy(gg) in two cases: when gg lies 
in a fundamental stratum of Gs, ~, that is gg is a union of lines in C 2 with normal cross- 
ing singularities, and when gg is a union of lines with at most triple points (these last 
strata are the next interesting case after the fundamental ones). The basis which we 
give in the first case is easily generalizable to fundamental strata in Gk,~. 

THEOREM 3. - Let gg be a union of lines with real equations with only 
double points as singularities (such arrangement determines a fundamental stratum 
in G~,~). Let ~e~ be a local system on the complement Y of :~g. Then to each 
bounded chamber C in R 2 a 2-cycle ?.(C) in X(gg) is associated, with coefficients 
in L~, where 

(.) y(C)= ~ ( I] (1-~i)Iy(C,  F2). 
F 2 c closure (C) \ ] C  :> Mi,  F ~ M i 

Here C > M~ means that the line M~ intersects the closure of C in a 1-cell (a 
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Fig. 6. 

W3 

e ' e2 
3 e: 

W 4 e4 w2 

~t 

non-degenerate segment), while ~,(C,F 2) is the alternate sum of the 2-cells of 
X whose real projection is the 2-cell of Q dual to F 2 (see picture 6). 

PROOF. - Since X(gr~) is decomposed into cells e~ (v) (where F 2 is here a vertex of 
g~ and v is a vertex of X(g[~) belonging to ~(F ~); see part 2) every 2-chain with coef- 
ficients in the local system can be given the form 

~(F 2 , v) er2~ (V), 
F2,v 

where z(F 2 , v) is a section of L~ over v (for definition and calculation of local system 
over cellular complexes a good reference is [10]). Similar expressions hold for the 
1-chains and the 0-chains. The boundary 3(ze~2 (v)) is computed as in singular homolo- 
gy, but giving as coefficients to the boundary cells those obtained by trasporting z on- 
to their preferred point. 

Let  w be the 0-cell of X contained into the bounded chamber C. If  F 2 is a vertex of 
C there are four cells Ei = e~(wi), i = 1, ..., 4 (Wl = w), around F 2 which are attached 
to eight edges el, e~,... ,  e4, e~ ([8]; see pic. 6). 

In the follo~dng the symbol - over a cell e i (v) means that such cell is endowed 
with the section of L~ obtained by transporting the trivial section over the point w 
along the cell E l ,  til the preferred point v. 

We look for a chain 

4 
~(C, F2) = ~ ~/~i, ~ e C ,  

i= l  

such that 3(~,(C, F2)) does not contain edges with indices 2 and 3 (so it only contains 
some combination of edges whose real projection intersects C). By computing the 
boundary of •(C, F 2) one obtains that the linear system s~ + ~+ 1 = 0, i = 1, ...4, is to 
be satisfied (the indices are rood 4). So the general solution is ~(F2).y(C,F~), 
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~(F 2) e C, where r(C, F 2) = E1 - E2 zr E3 - E4 and it follows 

3(~(F 2)" ~'(C, r ~)) = ~(F ~){(~1 + e~ )(1 - re ) - (e4 + e~ )(1 - Zl )}. 

Now looking for a cycle of the kind 

,[(C) = E ~(F2)y(C, F2), 
F 2 c closure (C) 

one obtains (computing the boundary) another linear system in the ~(F 2), which gives 
formula (.). 

(Note that the fact that  C is bounded is essential to the vanishing of the boundary 
of ~,(C).) Q.E.D. 

It  is not hard to prove directly that  (under genericity conditions for the ~i) the 
above constructed cycles are independent. 

THEOREM 4.  - Let us assume now that g~ has also triple points as singularities, but 
not higher order singularities. Let s be a local system on the complement Y of grg. 
Then to each bounded chamber C of g~ a 2-cycle ~(C) with coefficients in ~ is associat- 
ed, where 

(**) ~,(C) = E I-[ �9 y ( C ,  F 2 ). 
F 2 e closure(C)(C>Mi,F ~ ~M~(1 -- ~i)t// f2 e closureH (c) k(C'f2)l, 

]\  f~#F~,O(f2)=3 / 

Here O(f 2) is the order of the singularity f2 of g~ and ~,(C, F 2 ) is as in theorem 3 if 
O(F 2) = 2; if O(F 2) = 3 it is given by the 2-chain 

(***) •(C, F2)= 1 ((v~ zy-  1)/~1 + ( 1 -  zr)E2 + 
~ %  - 1 

+ (1 - z~)zr Es + (z: zy - 1) E4 + (1 - zr) ~/~5 + (1 - z~ ) E6 ),  

where El, ..., E6 are the six 2-cells of X whose real part is dual to F 2 (see picture 7). 
For each F 2 e closure (C), a,/~, ~" denote the indices of the lines passing through F 2, in 
the anticlockwise order (and so that  M~ n closure (C)= F2), and 

(****) k(C, F 2) = ( z ~ z r -  1)/(v~ z~-  1). 

PROOF. - If F 2 is a triple point of a chamber C which contains w as 0-cell of X, 
there are six 2-cells E~=e~.~(wi), i=1, . . . ,6  (Wl=W), and twelve 1-cells 
el ,e~, ...,e6,e~ around F 2, where each 2-cell is attached over six 1-cells ([8]; see 
fig. 7). 
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Fig. 7. 

W4 e 8 / 

e2 

0 

As in Theorem 4, we look for a chain 

6 
r(C,F ~) = F~ r =~ �9 r  

i=1 

such that ~(r(C, FZ)) does not contain edges of index different from 1 and 6. If  a,/~, 1" 
are the indices of the lines containing F 2 and crossing respectively the real projec- 
tions of el, e2, e3 one obtains that the following linear system is to be solved: 

Q + r + v~,~6 = 0 ,  

zl +~2+~8 = O, 

r + z~ (r + r = O, 

r "~- r ~- Z6 = 0 ,  

~2 -I- r -t- r = 0 ,  

~5 + ~ (r + ~4) = O, 

r + r + ~6 ---- 0,  

"ca ~-2 -}- r -{- $6 = 0 ,  

which gives as general solution r �9 ~,(C, F e), dF 2 ) �9 C, where ~,(C, F 2) is as in for- 
mula (***) (it is obviously assumed v=~z ~ 1). One has 

a(,l(C, F ~)) = k(C, F 2 ). [(1 - vy )(}1 at" }~ ) -- (1 -- Ta )(}6 ~- }6 ) ] ,  

where k(C,F  z) is the rational function in the T's .given by (****). 
For every bounded chamber C we look as above for a cycle of the kind 

~,(C)= ~ dF2).~,(C,F ~) where now F ~ can be either a double point or 
F z e closm'e(C) 
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a triple point. By computing the boundary we obtain another linear system which 
yields the expression given in formula (**). Q.E.D. 

Again one can prove directly that the cycles 7(C) are independent (for generic z's). 
When :~ has more complicated singularities one has to work harder to obtain an 

explicit expression for a basis of HN(~)  since chains with analog properties to the 
above y(C, F 2) cannot be found. However the above strategy can be generalized by 
,,grouping, bounded chambers togheter. For instance note that if F 2 e closure (C') is a 
4-fold point and C' is bounded there always exists another bounded chamber C" adja- 
cent to C' and with F2eclosure(C"). We shall probably return to this in the 
future. 

NOTE. - By using different methods in [5] a result analog to Theorem 2 is proved 
for any arrangement under genericity conditions of L~ (expressed in terms of connex- 
ions) which are more restrictive than ours for fundamental strata. 

REMARK. - By using the semplification of X(g~) given in [9] (which is in turn 
based on [8]) we implemented a computer program (LISP language) which given 
whatever arrangement g~ and local system L~ returns the matrix associated to the 
boundary operators, and computes from it the dimensions of Hi (Y; L~) and their bases 
(in this case the difficulties are in dimension two). The <,experimental, results obvi- 
ously agree with the theoretical fact of[5] that for generic L~ one has H1 (g~)= 
= H0 (g~) = 0. Experimental results give also indications about the interesting problem 
(on which we have some partial results) of determining in a combinatorial fashion the 
polynomial equations in the z's whose solutions lower the dimension of H2. 

Observe that one could use directly the complex X(g~): for any dimension, it is in 
theory possible to write a computer program which returns the dimension of the ho- 
mology groups and their bases. In practice the simplified complex given in [9] is very 
useful having in general much less cells than X. 
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