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Natural Operations with Projectable Tangent Valued Forms 
on a Fibred Manifold (*). 

JOSEF JANYSKA (**) 

Summary. - Let p: E --~ B be a fibred manifold. Then, we consider the sheaf ~(E) = t2(B) | 2(E) 
of(local) projectable tangent valued forms on E, where ~(B) is the sheaf of(local) differential 
forms on B and $(E) is the sheaf of (local) projectable vector fields on E. The FrOlicher-Ni- 
jenhuis bracket makes ~(E) to be a sheaf of graded Lie algebras [18]. In this paper we study 
all natural R-bilinear operations on ~(E) which are of FrOlicher-Nijenhuis type. By using 
the analytical method of[16], we prove that there is a three-parameter family of such opera- 
tots on ~(E). As a consequence, we obtain a result on the unicity of the covariant differen- 
tial of tangent valued fo~ns and of the curvature associated with a given connection on E. 
All manifolds and mappings are assumed to be infinitely differentiable. 

O. - I n t r o d u c t i o n .  

A. FROLICHER and A. NIJENHUIS [6, 24] introduced a bracket  [, ] in the sheaf 

l)(M, TM) = @ ~ ( M ,  TM), m = dimM, 
O<~r<~m 

of (local) tangent  valued differential forms on a manifold M and proved that  it gives 
rise to a graded Lie algebra. Namely,  the bracket  [, ] is an R-bilinear sheaf 
morphism 

satisfying 

(0.1) 

(0.2) 

[, ]: tY  (M, TM) x #~ (M, TM)--~ tY  + ~ (M, TM), 

[9, ~] = ( -  1) r~ + 1 [~, ~], 

( - 1 )  n [9, [~, o~]] + ( -1 )  r~ [~, [~, ~]] + ( -1 )  ~ [~, [9, ~]] = 0, 

where ~ e ~r (M, TM), ~ e ~ (M, TM), ~ e t~t(M, TM). A. FROLICHER and A. NIJEN- 
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HUIS [6] interpreted this algebra as an algebra of derivations of a certain kind of the 
graded exterior algebra of ordinary forms. This algebra has been widely applied to 
the study of complex, almost complex, almost tangent and other structures on a mani- 
fold (M. CRAMPIN and L. A. IBORT [2], A. FROLICHER and A. NIJENHUIS [7], A. 
NIJENHUIS [25]). 

In some isolated papers the Fr61icher-Nijenhuis algebra was linked with the the- 
ory of connections. In particular, H. K. NICKERSON [23] has studied principal connec- 
tions on a principal bundle, T. V. Duc [4] has studied linear connections on a vector 
bundle and M. CRAMPIN [1] and J. GRIFONE [9] applied this algebra to the study of 
connections on a manifold. All of them expressed the differential calculus associated 
with a connection in terms of the FrSlicher-Nijenhuis algebra. 

L. MANGIAROTTI and M. MODUGNO [17, 18] introduced, by another way, a graded 
Lie bracket on the sheaf 

~(E) = (~ t~r(B) | $(E), n = dimB, 
O<~r<~n 

of (local) projectable tangent valued forms on a fibred manifold p: E ~ B. It can be 
shown that this algebra turns out to be a distinguished subalgebra of the FrSlicher- 
Nijenhuis algebra t~(E, TE) of all tangent valued forms on E. The algebra ~(E) was 
interpreted by M. CRAMPIN and L. A. IBORT [2] as an algebra of derivations of the 
graded exterior algebra of forms on E which preserve the basic forms p* t~(E). 

L. MANGIAROTTI and M. MODUGNO [18] showed that the algebra ~(E) is the natu- 
ral framework for the study of Ehresmann connections on fibred manifolds and that 
the FrSlicher-Nijenhuis bracket yields a generalization of the standard differential 
calculus associated with the traditional connections. In particular, if y is a connection 
on E, i.e. a projectable tangent valued 1-form which is projected on the identity of TB, 
then we obtain the covariant differential of a projectable tangent valued form 

the curvature of r 

and the Bianchi identity 

dr~ = (1/2)[y, v], 

= dry 

drp = O. 

This general approach to the theory of connections on a fibred manifold has been 
developed by P. MICHOR [20]. 

M. MODUGNO [21, 22] has developed further this theory including systems of con- 
nections and applied it to Lagrangian and gauge theories. 

The Fr61icher-Nijenhuis bracket on t~(M, TM) satisfies the naturality condition 

f *  [9, ~] = [f* 9, f*~],  

(A. FROLICHER and A. NIJENHUIS [8]). A natural question arises: there exist other 
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natural operations on ~(M, TM)? This problem has been studied by P. MICHOR [19] 
and I. KOLift and P. MICHOR [14]. I. KOLift and P. MICHOR gave the full classification 
of natural R-bilinear operators ~ (M, TM) x ~ (M, TM) --. ~ + ~ (M, TM). They proved 
that, for r i> 2, s i> 2, r + s < dim M - 1, there exists a ten-parameter family of such 
operators. 

The purpose of this paper is to classify the R-bilinear natural operators (sheaf 
morphisms) 

~ ( E )  x ~ ( E ) - ,  !~r+~ (E). 

The interest for such a problem arises naturally in the contest of the theory of con- 
nections on fibred manifolds. 

We prove that there is a three-parameter family of such operators. This family is 
generated by the FrSlicher-Nijenhuis bracket and other two operators, which can be 
easily represented by using the projection, the contraction and the exterior deriva- 
tive. In particular, if r = s = 0 we get the uniquenes of the Lie bracket of two pro- 
jectable vector fields on E, 

Our main result has some consequences for the theory of connections on E in- 
troduced by L. MANGIAROTTI and M. MODUGN0 [18]. Namely, if r is a connection on E, 
then the covariant differential d r is the only natural derivation of order 1 of ~(E) re- 
lated with r. Moreover, the curvature is the only natural operator on connec- 
tions. 

The uniqueness of the curvature of a connection on E was proved by KOLiI~ [13], 
by using another approach. 

For the classification of natural R-bilinear operators on ~(E) we use the general 
theory of natural bundles and natural differential operators, J. JANY~KA [10], I. KO z 
Lift [12], A. NIJENHUIS [26], J. SLOViK [27], C. L. TERNG [28]. Our coordinate 
calculations are based on the method of D. KRUPKA [15], D. KRUPKA and J. 
JANYSKA [16]. 

1. - Tangent valued projectable forms on a fibred manifold. 

Let p: E--~ B be a fibred manifold. We shall use the following notations. TE will 
be the tangent space of E and iT(E) the sheaf of (local) vector fields on E. $(E) and 
~V(E) will be the subsheafs of (local) projectable and vertical vector fields on E, re- 
spectively. Moreover, ~(B) = (~) ~9r(B), n = dimB, will be the sheaf of (local) forms 

O<~r<~n 
on B. 

The sheaf of (local) projectable tangent valued forms on E is 

~ ( E ) =  @ ~ ( E ) =  O ~ ( B ) |  
O<.r<~n O<~r<~n 

Thus, if ~ e ~ ( E ) ,  then ~ is a (local) section ~: E--eA~T*B | TE which is pro- 
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jectable on the (local) section ~:B ~ ArT*B | TB via the commutative diagram 

E - - - ~  A~T* B | TE 
p ;  $ id| 

B ~ / \ r T * B |  

Moreover, 

O<~r<~n O<~r<~n 

is the subsheaf of (local) vertical valued forms on E, constituted by the (local) pro- 
jectable tangent valued forms which are projected on zero TB-valued forms on B. 

The Fr61icher-Nijenhuis bracket endowes ~(E) with a canonical structure of a 
graded Lie R-algebras, which extends the Lie algebras [P(E) of projectable vector 
fields on E, [18]. Namely, this bracket in ~(E) can be introduced directly as follows. 
If ~ e ~V(E) and , e ~ ( E ) ,  then [9, ~] is the unique element of ~ + ~ ( E )  such that, 
for each (local) vector fields u l , . . . ,  Ur+~ on B, we have 

1 
~(ff){[,~(Uz(1), "",  Uz(r) ), '~(Uz(r+ 1) " " ,  n,(r+s) ) ] (1.1) [V, ~](ul, . . . ,Ur+~)= ~ 

-r~(u~(1),..., %(~_ 1), [u:(~), _~(u~(~ + 1),..., u~(~ + ~))]) - 

--85([_~(Uz(1), "" ", U~(r) ), U~(r + 1) ], U~(r + 2), " . ' ,  Uz(r + s) ) -~- 

2 v(u~) , . . . ,  u ~ _  ~), i ( [ u ~ ) ,  u,(~ + ~) ], u ~  + 2), .-., u ~  + ~) 
+ )) + 

+ r 8  ~/ , } ,  
- ~  ~gL,~(.U~(1), �9 - ", U~(r- 1), [U~(r), Uz(r + 1) ]), Uz(r + 2), " '- ,  Uz(r + s) ) 

where z is a permutation of (1, ..., r + s )  and ~(~) is its sign. It is easy to see that the 
Fr61icher-Nijenhuis bracket defined by (1.1) satisfies the conditions (0.1) and 
(O.2). 

With respect to the Fr61icher-Nijenhuis bracket, !~(E) is a subalgebra in 
~ ( E ) .  

We shall denote by 

(x~',y i) )~,,~, ... = 1, . . . , n ,  i , j ,  ... = 1, . . . ,m,  

a fibred chart on E, n =d imB,  n + m = dimE. 
The induced fibred chart on A r T * B  | TE is 

(x~Y i , ~i, ~ ) ,  )~ = ()~1, ..., ),~), 

Then, any ~ e ~r  (E) can be expressed as 

l ~ ) . l  < . . .  < ~ r ~  n. 

(1.2) ~ = ( ~ ( x ) ~  + ~. (x, y)a~) | d z , 
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where a~ ~ ~/ax ~ , a~ = a/ay i , d ~ = dx ~1A ... A dx ~" and its projection ~_ e .Qr(B, TB) can 
be expressed as 

= ~ (x)a~ | d ~ . 

Moreover, !o is vertical iff _~ = 0. 
If ~ e ~ (E), ~b �9 !~ ~ (E) and 

i = (~.% + ~.%) | d ", ]al = r, 

= (~a~  + ~ )  | g~, IPl = s, 

then the local coordinate expression of the FrSlicher-Nijenhuis bracket is 

(1.3) [~,r = { ( ~ w  ~ a ~ -  r ~ a ~ +  s ~ a z ~ ) 3 ,  + 

p i " i ~ i i ~ i d r  - r a~ ~ . -  a ~ ) a ~  

where lat = r -  1, ]fl] = s - 1 and ~, denotes the antisymmetrization of all indices a 
and ft. 

From the coordinate expression (1.3) it is easy to see that the FrSlicher-Nijenhuis 
bracket is a natural R-bilinear sheaf morphism (differential operator) ~ ( E ) x  
x ~ (E)-~ ~r+ ~ (E), which is of order one. Here, order one means that, for Vy �9 E, 
[~, ~](y) depends on the first order derivatives (with respect to x ~ , y~) of ~ and ~b at y. 
Naturality means that, for any (local) fibred diffeomorphism f :  E--~ E projectable on 
the diffeomorphism f:B---> B the following condition holds 

(1.4) f *  [~, ~] = [ f*  ~, f *  ~], 

for any ~ e ~ ( E ) ,  where f *  : ~ ( E ) - ~  ~ ( E )  is defined as 

(1.5) f * ~ :  ( A r T * f |  T f ) o ~ o f - l :  -E-~ A~T*-B | T-E. 

In the present paper we shall classi~ all natural R-bilinear operators 

B~: ~ ( E )  x ~ ( E ) ~  ~ §  

Such classification for the case of TB-vatued forms on B was done by I. KOL~t~ and 
P. MICHOR [14]. They have deduced that ff dimB > r + s + 1, r I> 2, s i> 2, then there is 
a ten-parameter family of R-bilinear natural operators of demanded type. In our main 
theorem it is sufficient to suppose r ~  > 1, s~> 1. 

2. - T h e  order of natural ](-bilinear operators ~r(E)x  ~ (E)--, ~r+~(E). 

Local operators are finite order differential operators, by the Peetre theorem, 
[27]. Then, we can restrict our study to finite order operators. 

Let G~+~ be the group of k-jets of diffeomorphisms f : R ~ + ~  R ~+m with source 



176 J. JANYSKA: Natural operations with projectable tangent, etc. 

and target 0. Let G k~,m c G k~+m be the subgroup of k-jets of diffeomorphisms which 
preserve the fibration R n + ~-o  R~, i.e. whose coordinate expression is 
( f f  (x~ ), f~ (x ~ , yJ ) ). 

k given by Hence, the coordinates on G~,~ are 

(jk f(O)) = O,3pfi(0, 0), (2.1) a[  (jk f(0)) = 3 i f '  (0), a~  

where 9., a,p are (symmetric) multiindices such that IZI = 1,..., k, lal + Lpl = 1,..., k, 
and 3~ = ~1" "~i~," We shall denote by tilde the coordinates of the element A-1 e G~+ 
inverse of A e G~+~ and we shall write shortly 

A = (a~ ,a~p) and A - I ( ~ ,  ~i aap ). 

The type fibre of A~T*B | TE is 

S o = (R ~ | A~R n* ) x (R m | A~R ~* ). 

Its global coordinates are 

(2.2) ( ~ ,  ~ ) ,  12,1 = r , l < ~ l < . . .  < ~ < n .  

We obtain an action z of the group G~,m on S ~ which is given in coordinates 
by 

(2.3) ~ o z = ~ "~ ~p ,,.% , , ~ p , ~  , 

(2.4) 4 ~ ~ + aj f , { )~  o Z = (a~ ~p 

where ~ = ~;1~ ... ~:. 
Now, let S~ be the type fibre of JE k (A r T* B | TE) (where JE k denotes the jet  func- 

tor over E). It means that S~ is the space of k-jets, with source 0, of the maps 
: ~ + m_~ o,~ 0 which are projectable on ~_: R ~-* R ~ | A r R ~* via the commutative 

diagram 

R n+m ~:* S o = (RUG AnR n*) x (R~| A~R n*) 

R n ) Rn |  n* . 

The induced coordinates on S~ are 

(2.5) ( ~ . . ,  i . Ixl = r ,  = o ,  . . . ,  k ,  ]PJ + = O, . . . ,  k .  

By using standard jet  techniques, the action z: G~,~ x S o --+ S O can be prolonged to 
the action 

(2.6) X k "G k + 1 X Sr k ---> Sr  k , 
�9 q~, m 

According to the general theory of natural differential operators [10, 12, 28], all 
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natural R-bilinear operators of order k ~ ( E ) x  ~*(E)-+ !l}~+*(E) are in bijective 
correspondence with the G~,~l-equivariant R-bilinear maps 

(2.7) f : S~ k o x S~ --> S~+,. 

Hence, the classification of natural R-biliner operators 

: x 

is reduced to be classification of R-bilinear G)+Lequivalent maps (2.7) for certain k. 
To classify the maps (2.7) we shall use the method of[16] modified for the group G k +1 n~ m �9 

This method is based on the following 

LEMMA. - Let U and W be two G~,~-manifolds and f: U--* W a map. Then, the fol- 
lowing conditions are equivalent: 

(i) f is a G~(+)-equivariant map. 

(ii) For each element $ e g~,~ (where g~,~ is the Lie algebra of Gnk,~) we 
have 

(2.8) a~f = 0, 

where 8e denotes the Lie derivative with respect to $ and r_k(+) is the maximal con- 
nected subgroup of G ~ �9 n, m" 

This lemma is a simple modification of the lemma for a Lie group G which is 
proved, for instance, in [16]. 

THEOREM 1. - All natural R-bilinear operators ~ r ( E ) x  ~8 (E)--~ ~ + *  (E) are of 
order one. 

PROOF.  - According to the general theory, we have to prove that  all R-bilinear 
G~,+l-equivariant maps f :  S) x S s ~  S~ k i> 1, depend on the coordinates of S) x 
X S is only. 

Let  

(2.9) ' o  ~ z j j 

(2.10) i 1- z,i ,~ j j 
9r ~ = J r  ( g a ,  ~ ,  v ,  v, 9a,~l, 

IT1 = r +  s, lal = r, Ifll = s, Irl = 0, ..., k, i~t + Ill = 0, ..., k, be the coordinate expression 
off. 

Let ~: G~ x G 1--~ ~k +1 be the canonical group homomorphism. I f f  is a G~ +Lequiv- ~ n ,  m 

, 1 G~)-equivariant map. The restriction of the ariant map, t h e n f h a s  to be also a .(G~ x 
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action ~ to the subgroup ~(G~ • G 1) has the following simple coordinate expres- 
sion 

(2.11) ~*, ~~ -- - e  ~ , ~ %  ~ v ,  {v[ = O, . . . ,  k ,  

( 2 . 1 2 )  ~ , ,  ~ ,oZ ~ = a~  ~ , ~  7 "  7- ~ a ~  ~v .~, I~[ + Ill = O, ..., k ,  

Let ca, e~ be a base of the Lie subalgebra in ~+~ ~ ,  ~ corresponding to the subgroup 
~(G~ • G~) and ~ be an element of this subalgebra. Then 

(2.13) ~ = ~ e 2 +  ~ e  q ~q p "  

The fundamental vector field on &.~ related to the action (2.11) and (2.12) of ~(G~ • G~) 
on S~ can be expressed by 

(2.14) 3(S~) = z~(S ~ ~ + :qc,q k )~P ~) ,~  r ~t~ ~ p ~ r  J~q ,  

where r~c,~k~ ~(,~k~ -~,_~ ,, ~ , _ ~ ,  are vector fields on S~ defined by 

k k 

(21 ) s + +2 " = , 

' I~1 = o ' Ifl = ' 

k 

(2.16) ~q (S~) = s o(S-~,~,,,/aa~)~a~.,,", ~P I~I + Iml = 

where e is the unity in the group G k+~ i.e. 

e = j~ + l id~ .... and 8ff'v = a/8~. ~, 8) ~m = 8/8~j. , , .  

The condition (2.8) is then equivalent to the f-relation of vector fields Z(S~)+ 
+~(S~) and ~(S~ From the first part of the coordinate expression offi given by 
(2.9), we obtain, for 2 =~, p = q ,  the following systems of partial differential 
equations 

(2.17) 
k k 

E (1-r-Jvl)~,,,8~' f'+lvl+t~l=o Vl)~,,~mO~ fr+ 
[~[ =o 

k k 

+ E (1 - s  -]v])~,  5"~r  . . . .  ~ ~r + E ( - s  [ v l ) ~ r  (1 r - s ) f ~ ,  
>l = 0 Ivl + Lml = o 

k k 

(2.18) E (1-iml)fo j ~ ' ~ f ~ #  E (1-Iml)~,~m-~'~mf~ = O, 

where IJ, l = r, lpl = s and ~ '~- -  a/8r v ' ~ ,  vm = a/aCJ v,,. We are interested in bilinear 
and hence polynomial solutions of (2.17) and (2.18). Let us denote as al~ I the degree o f f  
with respect to ~ ,  as aq~qlm I the degree o f f  with respect to ~J ~ and similarly as b1~ T the 
degree with respect to ~,v and as bl~llm I the degree with respect to ~, ,~. Then, accord- 
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ing to [16], the degrees have to satisfy the following system of linear equations 

(2.19) ~, a,,i(1-r-lvl)+ ~ al<ml(-r-lv[)+ 
i , i  = o I~l + [ml = o 

k k 

+ E bl=i(1-s-[vl)§ E 
Ivl  = o I~i  + [m[ = 0 

bl~l lml ( - s  - I v [ )  = 1 - r - s ,  

k k 

(2.20) ~_, alvllm ! (1 - I m  i) + ~_, bivllm I (1 - Im[) = 0. 
I~i + Iml = o I~1 + ]ml = 0 

It  is easy to see that  there are only four solutions (in {0} u N) which correspond to 
bilinear maps. They are: 

(2.21) 

ao = 1, bol = 1 

a o = 1, bl = 1 

am=  1, bo = 1  

a 1 =1 ,  bo = 1 

and the other variables vanish, 

and the other variables vanish, 

and the other variables vanish, 

and the other variables vanish. 

It  implies that  f~  is defined on S~ x S~ only. 
By using the same method for the second part offi  given by (2.10), we obtain the 

following system of linear equations for the degrees 

k k 

(2.22) ~ a l , j ( 1 - r -  ]vl) + ~ ai~ilml ( - r -  ]vl) + 
p,p = o I,I + ]mr = o 

k k 

+ g k i(1-s-lvD+ E 
ivi = o ivJ + im] = o 

bL~lLml(-s- [ v l )  = - r - s ,  

(2.23) 
k k 

af,H,,, d (1 - !m i) + ~ blv][,< (1 - Iml) = 1. 
IvJ + Im[ = 0 I,I + rmJ = 0 

There are only six solutions which correspond to bilinear maps. They are: 

(2.24) 

ao =1 ,  b io=1 

a l o = l ,  b0 = 1  

aoo = 1, b m = 1 

a m = l ,  boo=l  

aoo=l ,  bl = 1  

al = 1, boo = 1 

and the other variables 

and the other variables 

and the other variables 

and the other variables 

and the other variables 

and the other variables 

vanish, 

vanish, 

vanish, 

vanish, 

vanish, 

vanish. 

Hence also f~  is defined on S 1 > S~ only which proves our Theorem 1. [] 
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3 . -  Classification of R - b i l i n e a r  n a t u r a l  o p e r a t o r s  from ~ r ( E ) •  t o  

~r+~(E).  

The Theorem 1 implies that we can restrict our study to the first order R-bilinear 
operators only. Such operators are in bijective correspondence with R-bilinear G~, m- 
equivariant maps f :  S 1 • S~--) o •1 1 S~+~. The action of the group 2 G~,m on S~ has, 
together with (2.3) and (2.4), the following coordinate expression 

( 3 . 1 )  - ~  1 - - 
= U" 3 ~e, 7 Cbp, y "'" 1 r~ 

:+ a~a~ )% , ~,~,~a~ )}az + ( a j % +  ~ j ~ . o a z +  + ~ u ~ ) ,  

--/ ~ i ~ m  k . i k ~ m - -  i ~ m  (3.3) ~ox,jozl= tak~a j z, , ,-eak%,~a j . a z m a  j ~ ) a [ ,  

where 6 and 9, arise from 6 and )~ by leaving out one index and the summation runs 
over a and (zi, g). 

Let ~ e g~,~. Then 

(3.4) 5=5~e2+ p q 5Pe~+ ~ '~+ p ~ p v ~ qr . "~ ~qep + ~ p ~,~e~ ~,ep + ~qep + ~qrep , 

where el,  e~, %, ei ep , e~ , e~ ~s a system of generators of gn,~. The fundamental 
vector field on S~ generated~by ~ related to the action Z~ of G~ m on S~ is 

(3.5) E(S~) = ~ " ~ "  ~ q ~ ' ~ -  ~ 

~,l~ 1 P . . ~ p  (S  r p + ~  ( S r ) ~  + :q~(S l ~x~ :q~ 

where ,~z~(.qt~,_~, and ~(Sir)  are given by (2.15) and (2.16), respectively, and 

( 3 . 6 )  : ~  ( S ~ )  - m  ~ z 

(3.7) F ~ ( . q l  - - m  ;~ ).,~ -~, , ~  ) = (e~;.,~/0a)~)~ ~'~ + ( ~ , ~ / 0 %  )~ ~m , 

(3.8) : ~ r ~  0 - ~  ~ ~,~ 

- -m p 9~ k 
( 3 . 9 )  ~p~'q'~ x ~ r  ('~ 1 ,~ __ ( ~ 2 : , , / O a q  p )e O~ ~ "~- (OV)~, k /Oaq~  )e O'm , 

( 3 . 1 0 )  Wqs (,~ l ~ --m p X,k 
~ p  , ~ r  ~ = (~PZ, k / O a q s ) e O  m , 

where e is the unity in G ~ The vector fields (2.15), (2.16) and (3.6)-(3.10) span the //,~ m "  

Lie algebra of fundamental vector fields on Sir. Now, we are in posit~on to prove the 
main theorem 

THEOREM 2. - All natural R-bilinear operators 

~ r ( E ) x ~ " ( E ) ~ * + * ( E )  d i m B > r + s ,  r>~l ,  s>~ 1, 
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form a vector space over R generated by the following three operators 

[~, ~b], p*dC~_A~, ~Ap*dC~_, 

where C is the contraction operator, d is the exterior derivative and A is the exterior 
product of basic differential forms and tangent valued forms on E. 

PROOF. - To prove our theorem we have to find all R-bilinear G~,~-equivariant 
maps S~ •176 During the proof of Theorem 1 we have proved ((2.21) and 
(2.24)) that  the coordinate expressions of such maps are 

(3.11) j ~  a ~ a ~  ~_~ap~ ~ ~ ~ ~ m  .,,z_ 

(3.12) i _  Ci,p~ r m - i ~  ~ Di~p~ ~ 

m r ia~  m • "-~iflap.pm 

where, from the invariancy condition, all real coefficients a~.P~ ~ P +  are absolute ~ y ~ y  , ' " , ~ y m  7 

invariant tensors, i.e. linear combinations of Kronecker symbols, [3], [12], [16]. 
The condition (2.8) is equivalent to the f-relation of vector fields 

2(S~ ) + 2(S~ ) and E(S~ ~ ). 

By using the vector fields (3.7)-(3.10), we obtain that  both (3.11) and (3.12) have 
to sa t i s~  the following systems of partial differential equations 

(3.13) |  + ~8~ '~ f  - ~ ~z'~+ ~ ~z'"+ ~ ~z'~+ ~ ~z'~+" , r ~ % -  j -  r ~ _ ~ -  j -  r ~ x ~  j -  r . ~ z ~  j T  

- - ,vz ~ a , ~ / ' _ ~ , ~ , r  ~ a , ~ c  ~ , v m - 5 ~ , ~  7 - - ~ , ~  _ 

(3.15) ~[ 8~'~f+ ~ x'q % f + + = o, 

( 3 . 1 6 )  V [ o ~ , r f _ b  r ). q q~a ,  d r - ~ a , q ~ c _  ~z ~ '  f + ~ ~f + ~'~ ~v ~ -  O, 

JZl = r, lal = s, IZl = r -  1, I_al = s - 1. Let us discuss first the mapf~  given by (3.11). 
By putt ing (3.11) into (3.16), we get B ~  - ~, ~ r ~  = 0. Hence, we can rewrite (3.11) 
in the form 

(3.17) f~ A 1  ~ ~ r ~ r = ~ ,~+A~r~_~r~ ,~+A~  ~a Cr~,~ + A4~raC~,r + A~ ~ ~r~_, ~ 8, + 

+ A 6  ~ ~ • ~ ~ ~ - r  - a  ~ ,  o ~ - r  + 

+ A l l  ~z o - r  - -  -~ ~ r ;, ; 7 z % ~,~ %~, ~ ~- A~ r ~_~,~.  + A,s r e~ %_~,,~ + AI~ ~ ~_~,~ + A ~ e ~ , ~  + 

- -  )~ ? "  - -  - -  - -  7 A +A~q~rp~Oa,~ +~_a~V~,~ + A  ~rr V,,, ~ r -r' A~r~vrz,,~r ~ + A~ ~rP_ V,,,~ + 
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+ A T ~ , ~ I ~ , r  + A s ~ z ~ t %  2. ~ r . . . . .  + A g ~  ~ , z s - l + A l o ~ r ~  .... 1+ 

+ A n r  ~ ~ r 2. ,~ r _ A14 ~8 ~ ~p ~,p,  + A12~Z,~rl~a,~ + A 1 3 ~  ~lj~ra,~ + 2., P r 

where  ]al = r - 2, [ill = s - 2 and 7 is the ant isymmetr iza t ion of all indices a and ft. 
At  the moment  we have to suppose r >i 2, s ~> 2, bu t  this assumpt ion  can be omit ted  
later.  By  put t ing  (3.17) into (3.13), we  obtain af ter  long and tedious  calcula- 
tions 

A1 = A1 = A5 = A5 = A6 = A6 = A7 = A~ = A l l  = A l l  = A14 = A14 = 0, 

A--4 = - A 4 ,  A2 = ( -  1y rA4,  A-~ = - ( -  1) s sA4,  A12 = ( -  1) ~ - ~ ]12,  

A9 = (-1)~A~o + (-1)*+~ (r - 1)A1~, -49 = (s - 1)A~s + (-1)~A~o, 

and As, A~, A4, As, As,  Alo, A~o, A~2, AI~, A~s are arbitrary.  Hence, we get  

2. 2. 
(3.18) f~ = A~ ( ~  ,~,r - ~ 2. 2. ~ ~ , ,  r - s(-1)~ ~_~0~,,z, + r ( - 1 )  c?rs~,~ ~) + As ~ r~ , z ,  + 

S 2. r $^  s - 1  2. ~: y _ AI~ ( ~ , ~  + (-1) ~ _ ~ _ t , ~ )  + .... 1 + ( - 1 )  . . . .  2. \ 

p Y r^ + A~s (t~t~or_~,,~ + ( r -  1 ~ ~ ^  .',~ ). 

I t  is easy to see that  (3.18) satisfies (3.14) and (3.15) identically. 
The map (3.12) can be rewri t ten  in the form 

(3.19) f r~ -- C1 r ~ r i r ~_ - ~ ~ , r  + C ~ , ~ +  

- -  ~, i ~ " i m m i - -  i m +C~ r ~,~. + Cs ~ Cr~, ~ + D~ ~ ~,m + D ~  r + D~ ~ % , ~  + 

- -  m i i ~ i r i ~ - -  i y - -  i ~ - -  i + E~ ~, ~ ,  ~ + E~ _ _ _ E2 ~r/~ ~a,~, + ~" + D ~ t  ~,,~ ~ ~ ,~  + Es %~rt, z~ + E1 ~t ~o~, r + Es  r ~r_~, 

By putt ing (3.19) into (3.13)-(3.16), we get  

C 2 =  C 2 =  C 3 = C 3 - ~ E 1  = E l  = 0 ,  

D2 = D2, C~ = D2, -C~ = - D ~ ,  E2 = - ( - 1 ) ~ -  ~rD~, E~ = (-1)~-1 sD2 

and De, Es ,  E--s are arbitrary.  Hence f r  has the form 

~, i m i (3.20) f r  r ~ m - -  ~ ~ , ~  - -  

~ a  ~ , m - -  

�9 - 1  i ~ i r - -  i - ( -1)~-~r~ .~b~,~+ ( -1 )  ~ s ~ r ~ , ~ )  + + E s ~ r ~ _ , ~ .  Es  % ~_,~ 
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We have not yet used the vector field (3.6). By using it, we get 

(3.21) ~ • ~pf~,i + ~,-~' ~ up~'~r~-jr ~,'~ p ~,~'~ri*J r - ~ ~-'a~f~i + ~'~,'r~ ~ "5~,~r ~ ~ - ~.,~,'t~m p "5~'~'fi~m ., r = ~pf~.i ~, 

By putting (3.18) and (3.20) into (3.21), we get 

(3.22) A4 = D2, As = E3, A3 = Es, As = As = Alo = Alo = A12 = A13 = AI~ = 0, 

which proves our Theorem 2, since (3.18) and (3.20), where (3.22) is satisfied, give 
G~l+~)-equivariant maps. It is easy to see that they are also G~, m-equivariant and that 
the corresponding natural operators are 

A 4 [ ~ , r  �9 

REMARK. - During the proof of Theorem 2 we have proved that, for any natural 
R-bilinear operator BE : ~r(E)  x ~8 (E)--) ~r+8 (E), its projection B_E (~, ~b) depends 
on ~, _~ (and their 1st order derivatives) only. Hence, our result (3.18) for B z (_~, ~) is 
exactly the same as the result due to I. KOLJ~I~ and P. MICHOR [14]. Among ten opera- 
tors deduced by them there are two operators which are defined only if r t> 2, s ~> 2. 
These operators correspond to our parameters Alo, Alo. But these operators have no 
role if we compare the underlying operators on the base with the vertical part of 
B E (~, ~). That is why it is sufficient to suppose r i> 1, s t> 1 in our Theorem 2. 

There are several corollaries which follow immediately from Theorem 2. 

COROLLARY 1. - The FrSlicher-Nijenhuis bracket is the only (up to a multiplica- 
t i re constant) natural graded R-bilinear operator ~ ( E ) x  ~(E)--* ~(E). 

PROOF. - It is easy to see that, in the 3-parameter family of natural R-bilinear op- 
erators of Theorem 2, only multiples of the FrSlicher-Nijenhuis bracket satisfy the 
conditions (0.1) and (0.2). [] 

COROLLARY 2. - The Lie bracket is the only (up to a multiplicative constant) natu- 
ral R-bilinear operator 5'(E) • ~(E) --* 5'(E). [] 

COROLLARY 3. - The FrSlicher-Nijenhuis bracket is the only (up to a multiplica- 
tive constant) natural R-bilinear graded operator ~(E) • ~9(E)--) ~(E). [] 

4. - C o n n e c t i o n s  o n  a f i b r e d  m a n i f o l d .  

According to [18] we define a (local) connection on E as a (local) tangent valued 
1-form 

(4.1) ~,: E---> T * B  | TE ,  
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which is projectable onto 

y= I :B - - .  T * B |  

Its coordinate expression is 

(4.2) 7 = G, | dx~' + 7~ (x, y)ai | dx ~ �9 

The covariant differential with respect to a connection 7 is then defined as the R- 
linear sheaf morphism 

(4.3) dr: ~ ( E ) - ~  ~r+1 ( E ) : ~ d r ~  = 1/217, ~]. 

The formula (0.2) yields the following property for d r 

(4.4) d r [~, ~] = [d r ~, ~] + ( -  1) r [~, dy ~], 

e ~r(E),  ~ e ~ ( E ) .  Thus, d r is a derivation of degree 1 of ~(E).  From the coordi- 
nate expression, it is easy to see that dr~ e ~(E) for any ~ e ~(E). 

THEOREM 3. - Let 7 be a connection. Then, covariant differential d r is the only (up 
to a multiplicative constant) derivation D r : ~ ( E ) ~  ~(E) of degree 1, which satisfies 
the naturality condition 

f *  (Or~) = D f . r ( f *  ~). 

PROOF. - Theorem 2 implies that there is a two-parameter family of R-linear sheaf 
morphisms ~r  (E) --> ~r  + 1 (E) related with a given connection 7. This family is gener- 
ated by d r and ~ ~ p *  dC[ A 7. It is easy to see that only multiples of dy satisfy 
(4.4). [] 

The curvature of a given connection 7 is defined as 

(4.5) ~ = dry = 1/217, 7]. 

The curvature is a natural sheaf morphism C(E) -~ ~2 (E), where e(E) r ~(E)  is 
the subsheaf constituted by the projectable tangent valued 1-forms which are pro- 
jected on the identity of TB. The coordinate expression of ~ is 

(4.6) ~ = (G, 7~ + 7~ aj 7~ )d x~ A dx 4 | 5i. 

THEOREM 4. - All natural operators which associate a vertical valued 2-form with 
a given connection 7 are of the form k~, with k e R. 

PROOF. - The proof of Theorem 4 has the same steps as the proof of Theorem 2. 
First, from [27] it follows that all natural operator from e(E) to ~2 (E) are of finite or- 
der. Let ~o = R~ | Rn. be the type fibre of C(E) with global coordinates r~ and the ac- 



J. JANYSKA: Natura l  operations wi th  projectable tangent, etc. 185 

tion ~ of the group G 1 ,~, m on S~ given by 

a m-Y~ a t + a  vaa .  

Let  B~ : C(E) ~ N2 (E) be a k-order operator  for some k i> 1. Then, we get  the cor- 
responding Gnk,+~l-equivariant map f :  S~--) ~o = R m | A2 Rn. where  $1 k = J0 k (R ~ + m, ~o) 

~ k + l  X and ~o is the vertical part  of S ~ The action ~ can be prolonged to the action Z k: ~n, ,~ 
X S~ ~ $1 k . By using the same method as in the proof of Theorem 1, we prove that  all 
G~ *~Lequivariant globally defined maps from ~;1 k to ~o are polynomials of degrees  al~iim ! 
with respect  to ~,~, ~ such that  

k 

(4.7) 2 al~[Iml ( - 1  - Iv [ )  = - 2 ,  2 al~lLml ( 1 -  lint) = 1. 
I~1 § Iml = o I,I + F~I = 0 

The equations (4.7) have only two solutions in {0} u N :  

a~0 = 1 and the other  variables vanish, 
(4.8) 

aoo = 1, aol = 1 and the other variables vanish. 

This implies t h a t f i s  defined on ~1 only, i.e. all operators  from e(E) to ~2(E)  are 
of order one. 

The formula (4.8) yields the following coordinate expression o f f  

(4.9) f ~ = z l i ~  ,.m a _ ~ i ~ r  m p 

and, by using the equivariancy condition, we can rewri te  (4.9) in the form 

(4.10) f ~  = n l  ].[,. + n2 ~.~,;~ + B1]J~ y~,,m + B2 yi~ y~,,m + Ba yp yi~,m + B4 y~ yi~,m . 

Now, b y  using the vector  fields (3.6)-(3.10), we get  

A1 = - A 2 ,  B3 = A 2 ,  B4 = - A 2 ,  B I = B e  = 0, 

which proves our Theorem 4. [] 

This theorem was proved by I. Koc~.~ [13], by another approach. 
Le t  ]'0, r~ be two connections on E.  We can defme a pencil 

(4.I1) 7 t=(1 - t )7o+t~ ,~ ,  t e R ,  

of connections on E.  The curvature  Pt of rt is then 

(4.12) Pt = (1 - t)2po + 2(t - t2)d~o ~'1 + t261, 

where  .~0 and p~ are the curvatures of ~'o and ~'1, respectively.  
dro ~1 : 1/2['~0, ~1 ] is a natural operator  r x e(E) ---) ~3 e (E). By  using the same 

methods as in the proofs of Theorem 2 and 4, we can easily prove 

THEOREM 5. - All natural operators r x ~(E) ~ ~3 ~ (E) form a three-parameter  
family k~ Po + k~ p~ + k~ dro ~,~ with real coefficients k~, i = 1, 2, 3. �9 
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I. KOL~,~ [13] has remarked that  this theorem is true if we replace the operator 
dro]'l by the mixed curvature • ~'1), [11]. In our notation 

(4.13) x(~'0, ]'1 ) = 2d~o Y1 - 2po. 

In the te rm of the mixed curvature we can rewrite (4.12) as 

(4.14) ~t = (1 - t 2 )Po + (t - t 2 )• Y1 ) + t2p1, 

which coincides with [11]. 
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