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Summary. - We study a class of singular or degenerate parabolic variational "inequalities, con- 
taining some nonlinear operators. We prove an existence and uniqueness result for weak so- 
lutions, in the framework of suitable Banach weighted spaces. 

Sunto. - Si studia una classe di disequazioni variazionali paraboliche singolari o degeneri, con- 
tenenti operatori non lineari. Si dimostra un risultato di esistenza e unicitd per soluzioni 
deboli, nell'ambito di opportuni spazi di Banach con peso. 

1. - Introduction. 
In a previous paper[5],  we studied some singular or degenerate parabolic 
variational inequalities of  the form: 

[u(t) ~ K a.e. on ]0, T[; 

(1.1) J [(tu '( t)  + L(t)u(t)  - f ( t ) ,  v - u(t)) >I O, Vv e K, a.e. on ]0, T[; 

where: 0 < T < + ~ ;  V c _ H - H * c V *  is the standard real Hilbert triplet; ( . , .)  
denotes the duality pairing between V* and V; K is a closed convex subset 
of V, with 0 e K; f(t) is some given V*-valued function. Moreover, L(t) is, for 
any t e ]0, T], a linear and continuous operator from V into V*, which is also 
weakly V-coercive; however, L(t) may be singular or degenerate  at t = 0. In [5], 
we proved some existence and uniqueness results for weak and strong solutions 
u(t) of (1.1), i n  the framework of suitable Hilbert weighted spaces (the weights 
involve powers of t and the (,behaviour, of L(t), as t ~ 0+). 

(*) Entrata in Redazione il 18 gennaio 1989. 
This work was supported in part by the ~(Istituto di Analisi Numerica del C.N.R.>~ (Pavia, 

Italy), the G.N.A.F.A. of the C.N.R. and the Ministero della Pubblica Istruzione (Italy) (throu- 
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Our interest in such a problem was motivated by some previous results concern- 
ing (in Various functional settings) singular or degenerate linear evolution equations 
of the form 

(1.2) tu'(t) +L(t)u(t) =f(t), for a.e. t e]0, T[; 

see, in particular, BAIOCCHI-BAOUENDI [2] and BERNARDI [3] (also see, e.g., DA PRA- 
TO-GRISVARD [6], LEWIS-PARENTI [10], FAVINI [8], DORE-VENNI [7]; other references 
can be found in [5]). 

The aim of the present paper is to extend some of the results given in [5] to the 
case where, in (1.1), L(t) is some suitable nonlinear operator from V to V* (which now 
are assumed to be separable, reflexive, and strictly convex Banach spaces). 

We give, in the following Section 2, some notation and definitions, and the precise 
assumptions on L(t); moreover, we give also some preliminary results (in particular, 
we present an extension of a result in BERNARDI [4], which will be useful in the se- 
quel). In Section 3, we prove an existence and uniqueness theorem for (suitably de- 
fined) weak solutions of (1.1); the existence result is obtained by using a suitable pro- 
cedure of penalization. At the end of Section 3, we present some applications of our 
,(abstract, result (in particular, we give some examples of operators L(t), to which 
such result applies). 

2. - Notat ion.  Assumptions .  Some prel iminary results.  

Let V be a real Banach space and H be a real Hilbert space satisfying: 

(2.1) V is separable and reflexive; V c H continuously and densely. 

By identifying H with its dual space, and denoting by V* the dual space of V, we 
also get that  H c V* (continuously and densely). I1"11, I" I, and I1"11. denote respectively 
the norms in V, H, and V*, while (., .) denotes both the scalar product in H and the 
duality pairing between V* and V. 

In the sequel, it will be useful to assume (without loss of generality; see AS- 
PLUND [1]) that: 

(2.2) the norms in V and V* are strictly convex. 

Let  now T, p, and a be given, with: 

(2.3) 0 < T < + ~ ;  l < p <  +cr a e R ,  

and define q = p / ( p -  1). 
We shall use, in the sequel, the following weighted spaces. Given any m e R (with 

V, H, T, p, a, satisfying (2.1) and (2.3)), we define: 

(2.4) Um =- (ultm+~u(t) e LP(O, T; V); tmP/2u(t) e L2(0, T;H)}; 
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(2.5) Z m = - { f l f = f ~ + f 2 ,  with: tr~(p-1)-~f~(t)eLq(O,T;V*); 

tmP/zf2 (t) �9 L 2 (0, T; H)}; 

(2.6) W , ~ -  {ulu(t) �9 U,~; tu'(t) e Zm }. 

(Of course, Urn, Z,~, and W~ are, clearly, Banach spaces with respect to their nat- 
ural norms). The above spaces are particular cases of the ones used by B E R N A R D I  [ 4 ] ;  

let us recall at once (see [4]) the following 

LEMMA 2.1. - Let (2.1) and (2.3) hold, and let m �9 R be given. Then, if u(t) �9 Win, 
it results that: 

(2.7) u(t) �9 C O (]0, T]; H), and moreover t (rap § 1)/~ lu(t)l __) 0, as t---) 0 + . 

REMARK 2.1. - Clearly, when mi < m2, it results that Urn1 c U,~ and Z,~ c Z,~ 
(continuously and densely). We observe, moreover, that Zm can be considered as the 
dual space of U~ (the duality pairing being expressed in terms of weighted L q - L  p 
space, with respect to the measure d~ = tmp dt). 

We also remark that, when a <~ 0 and p I> 2, it results easily that: 

Um = {ultm+au(t) e LP(O, T;V)}; Z,~ = {flt '~(P-1)-af(t) �9 Lq(O, T;V*)}. 

Now, we are going to give the assumptions on the operator L, which appears in the 
variational inequality (1.1). We suppose that L(t; .) = A(t; .) + B(t; .), where A(t; .) and 
B(t; .) satisfy the following conditions. 

{A(t)} (for a.e. t �9 ]0, TD is a family of (possibly nonlinear) operators from V to V*, 
such that: 

(2.8) ,~t---) A(t; v(t)), is V*-measurable on ]0, T[, 

Vv(t) which is V-measurable on ]0, T[ ; 

(2.9) A(t;-) is hemicontinuous a.e. on ]0,T[; 

(2.10) 3C1>0  s.t. (A(t;v),v)~Clt~Pllvll  p, V v e V ,  a.e. on ]0, T[; 

(2.11) 3C2>0  s.t. IIA(t;v)II.<~C~t~PHvH p-I ,  V v e V ,  a.e. on ]0, T[; 

(2.12) 3~/�9 R s.t. the operator A(t; .) + l I  

is monotone from V to V*, a.e. on ]0, T[. 

Clearly, (2.10) is a coercivity hypothesis, while (2.11) is a boundedness assumption 
(which implies, in particular, that A(t; 0) = 0, a.e. on ]0, TD. We refer to the final part 
of the following Section 3 for some examples, also for the operator B(t; .) we are going 
to consider hereafter. 
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{B(t)} (for a.e. t e ]0, T[) is a family of (possibly nonlinear) operators from H to H, 
such that: 

(2.13) ,,t ----> B(t; v(t)),~ is H-measurable on ]0, T[, 

Yv(t) which is H-measurable on ]0, T[; 

(2.14) 3 C 3 > 0  s.t. IB( t ;u) -B( t ;v ) l  < .C31u-v l ,  Yu,  v e H ,  a.e. on ]0, T[; 

(2.15) B(t;O)=O, a.e. on ]0, T[, 

so that, in particular: IB(t;u)l ~ Cs lul, Vu e H, a.e. on ]0, T[. We now define the fol- 
lowing function (recall that  L = A + B): 

(2.16) l0 (t) =- inf{lI(L(t; ul)  - L ( t ;  u2), Ul - u2) + l lul - u212 >i O, YUl, u2 e V}. 

I t  results clearly that  10 (t) e Llo~ (]0, T]). We also define: 

(2.17) lo---ess lira infl0(t). 
t---~ 0 + 

We have obviously that  1 0 ~ [ - ~ , + ~ [  (see, for fur ther  details and examples, 
BERNARDI [4]). Now, let us set: 

(2.18) mo = - (210 + 1)/p, if lo ~ R; m0 = + ~,  if lo = - ~ .  

We can state the following 

LEMMA 2.2. - Let  (2.1), (2.3), (2.8) ... (2.15) hold. Then, for every  m < m0, there  
exist r ( m ) e R  and c(m)> 0 such that, for every  r>~r(m): 

(2.19) L(t; .) + 1 (rt - (rap + 1))I is strictly monotone from V to V*,  

(2.20) (L(t; v), v) + 2 (rt - (rap 

a.e. on ]0, T[; 

on ]0, T[ .  

PROOF. - We fix any m < m0. Then, thanks to (2.16), (2.17), and (2.18), we obtain 
that  there  exists tm e]0, T], such that  L(t; .) - ((mp + 1)/2)I  is strictly monotone (from 
V to V*) for a.e. t e]0, tin[. Now, by using (2.12) and (2.14), we have that  there  exists 
l* such that  L(t; .) + l* I  is strictly monotone a.e. on ]0, T[. Hence, (2.19) follows, by 
choosing r(m) such that: r(m) t,~ - (rap + 1)/2 I> l* (e.g. r(m) > 0 large enough). 

In order to prove (2.20), it suffices to extend slightly the argument  used in the 
proof of Lemma 2.2 in BERNARDI [ 4 ] ,  to obtain that  (thanks to (2.16), (2.17), (2.18), 
(2.10), (2.11), (2.14), and (2.15)) there  exist t~ E]0, T] and ~ ( m ) >  0 such that: 

(L(t;v) ,v)-((mp+l)/2)lvl2>~5(m)[t~PNvllP+lvl2],  V v e Y ,  a.e. on ]0, t,~[. 

+ 1))jvl I1 11  + 

Vv e V, a.e. 
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Hence, (2.20) follows, by choosing r(m) such that: r (m) t ,~-  (rap + 1)/2 - Cs > 0 (e.g. 
r(m) > 0 large enough). 

Now, we can observe that Theorem 3.1 in BERNARDI [4] is easily extended to the 
present situation (remark that here the operator B is not necessarily linear as in [4]); 
so, we have the following 

THEOREM 2.1. - Let (2.1), (2.3), and (2.8) ... (2.15) hold. Let mo be given by (2.18), 
and take any m < mo. Then, for every f e Z~,  there exists a unique u e W~, which 
solves (recall that L = A + B): 

(2.21) tu'(t) + L(t;u(t)) =f( t ) ,  a.e. on ]0, T[. 

(Remark that the solution u( t )e  W.,~ of (2.21) satisfies the ,4nitial trend,  given in 
(2.7)). 

REMARK 2.2. - Theorem 2.1 is easily extended to the more general situation, 
where B(t; .) satisfies (2.13), (2.14), and 

(2.22) B(t; O) ~ Zm, 

instead of (2.15). In fact, the equation (2.21) is equivalent to 

(2.23) tu'(t) +A(t;u(t))  +B(t;u(t))  =f( t ) ,  a.e. on ]0, T[, 

where B(t; .) = B(t; .) - B(t; 0) satisfies (2.13) ... (2.15), and f ( t )  = ( f  (t) - B(t; 0)) e Z , ,  
Remark also that lo(t) and hence m0 do not change, if we replace B(t; .) by B(t; .) in 
(2.16). 

REMARK 2.3. - We observe that Theorem 2.1 is no longer true, in general, if one 
takes m >i m0. In fact, even in the case where L = A + B is a linear operator, it may 
happen that, for some m I> m0, the existence and/or the uniqueness of a solution 
u(t) e Wm of (2.21) (corresponding to some given f ( t ) e  Z,~) fails (see, e.g., BER- 
NARDI [3], [4]). 

3. - T h e  m a i n  r e s u l t  a nd  s o m e  e x a m p l e s .  

In this section, we introduce a suitable definition of a weak solution for the varia- 
tional inequality (1.1), and we prove an existence and uniqueness result for such a 
solution (in the framework of the weighted spaces defined in the previous Sec- 
tion 2). 

In the sequel, given V and H as in (2.1), we shall also take 

(3.1) a closed convex subset K of V, such that 0 e K.  
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3.1. - In order to motivate our definition of a weak solution for (1.1), we 
make the following remark (see, for a similar procedure,  BERNARDI-POZZI [ 5 ] ) .  

Let  us assume that, for some m e R  a n d f ( t )  e Zm, (1.1) has a solution u(t) e Win. 
Fix now any v(t) such that: 

(3.2) v(t) ~ W,~; v(t) E K, a.e. on ]0,T[; 

fix moreover  any r e R.  Taking v = v(t) in (1.1), multiplying both sides of the resulting 
inequality by tmp exp ( -2 r t )  and integrating from 0 to s (with 0 < s ~< T), we obtain, 
with some calculations and using Lemma 2.1, that: 

8 

f 1 (3.3) t~Pexp(-2r~)(tv'(t) +L(t;u(t)) + -~(mp + 1 - 2rt)(v(t) - u(t)) - f ( t ) ,  
0 

1 mp+l v(t) - u(t)) dt >I ~ s  exp(-2rs)tv(s) - u(s)l 2 , Vs el0, T]. 

We take now (3.3) as the weak formulation of (1.1), in the f ramework of the weighted 
spaces (2.4), (2.5), (2.6). Our main result  is the following 

THEOREM 3.1. - Let  (2.1), (2.2), (2.3), (2.8) ... (2.12), (2.13) ... (2.15), and (3.1) 
hold. Let  ml < m0 be given (where mo is defined in (2.18)). Then, for a n y f ( t )  e Z,~I, 
there  exists a unique u(t), with 

'(I) 

(3.4) (II) 
(IIi)  

[ ( IV)  

which satisfies (3.3) (where L = A + B), with m = ml and r = r((ml ) (given by  Lemma 
2.2), for any v(t) satisfying (3.2) (still with m = ml). Moreover,  such u(t) satisfies (3.3) 
also for every  m e [ml,  m0 [, and every  r >I r(m), for any v(t) as in (3.2). (Recall (see 
Remark  2.1) that  m > ml implies that  Urn1 c Um and Z,~I c Zm). 

REMARK 3.1. - By the same argument  we used in Remark  2.2, it is easily seen that  
Theorem 3.1 still holds, if the assumption (2.15) is replaced by  

(3.5) B(t; O) e Z,~ . 

u(t) e U~ 1; 

u(t) e K ,  a.e. on ]0, T[;  

t(mlp + 1)/~ ]u(t)]~ O, as t--+ 0 + ; 

u(t) e C~ T]; H) ,  

REMARK 3.2. - In our weak formulation (3.3), the presence of te rms depending 
on r (e.g. e x p ( -  2rt)) is due to the fact that  the operator  L(t; .) is only ~,weakly coer- 
cive-; while the presence of terms depending on m (e.g. t "~p) obviously comes from 
our choice of working in the f ramework of weighted spaces (also see BERNARDI- 
POZZI [5]). 

We could also consider the weak formulation obtained by  replacing, in (3.3), s by 
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T in the left-hand side, and taking 0 as right-hand side. The existence result follows 
then obviously from Theorem 3.1. On the other hand, in the following subsection 3.2, 
we shall prove directly the uniqueness result for such a weaker formulation. 

In order to prove Theorem 3.1, we need a preliminary result, i.e. the follow- 
ing 

LEMMA 3.1. - Let T, p, and a be given as in (2.3). Let any m �9 R be fixed, and let K 
satisfy (3.1). Let moreover w(t) �9 Um be given, with w(t) �9 K a.e. on ]0, T[. 

Take now any h > h0 = max (0; (mp + 1)/2; (rap + ap + 1)/p), and define: 

t 

(3.6) wh( t ) -h t -h  f sh-iw(s)ds, O<t< .T .  
0 

Then, we have that: 

I(I) wh (t) �9 K, 0 < t < T; 

(3.7) [(II) wh (t) �9 Urn; 

(3.8) h-ltw~(t) +wh(t) = w(t), a.e. on ]0, T[; 

(3.9) tw/~ (t) �9 U~, and hence wh (t) �9  and satisfies (2.7); 

(3.10) 
(I) wh(t)---~ w(t) (weakly) in U,~, and moreover 

(II) wh(t)---~w(t) (strongly) in {vltmP/2v(t)�9 T;H)} as h ~  + ~ .  

PROOF. - We use here a procedure, which is similar to the one employed in the 
proof of Lemma 3.1 in BERNARDI-POZZI [ 5 ]  (which, on the other hand, deals with the 
case where p = 2 and V is a Hilbert space). 

Firstly, (3.7) (I) follows from (3.6) (being w(t) �9 K a.e. on ]0, T[). In order to prove 
(3.7) (II), we use the Hardy inequality (see HARDY-LITTLEWOOD-POLYA [ 9 ] ,  Theorem 
330), and we obtain: 

(3. i i )  

T T 

f 4 trap Iwh (t)12 dt <~ (2 - mph -1 - h- l )  2 dt ; 
o o 

(3.12) 

T T 
pP 

f t P§ (p_mph_l aph_l h_l) p f t  § 
o o 

Now, (3.8) follows from (3.6), and (3.9) follows from (3.8) and (3.7)(II). 
We remark that, thanks to (3.11) and (3.12), (wh(t);h>ho} is bounded in U~. 
Then, with the same argument as in the proof of Lemma 3.1 in [5], we can get 
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(3.10) (I). Finally, we observe that, from (3.11), it follows that; 

(3.13) (; ); l imsup t mplwh(t)I2dt <. t "~plw(t)l 2 dt. 
h--> +~ 

0 0 

Hence, (3.10) (II) follows from (3.10) (I) and (3.13). (Remark that, if the Banach space 
{vlt "~+ a v(t) e L p (0, T; V)} is uniformly convex, the above argument, applied to (3.12), 
gives in fact that: w ~ ( h ) ~  w(t) (strongly) in U~. On the other hand, we observe that, 
for the proof of Theorem 3.1, we need only (3.10)). 

3.2. - We proceed now to the proof of Theorem 3.1. We begin with the proof of  
the uniqueness. In fact, we prove  a stronger uniqueness result, which we now 
state. 

Firstly, let us write the following inequality (obtained by weakening (3.3)): 

T 

(3.14) f t ~p exp ( -2r t ) .  
o 

�9 ttv'(t)/ + L(t; u(t))+ 1(rap + 1 - 2rt)(v(t)-  u ( t ) ) - f ( t ) ,  v ( t ) -  u(t))dt ~ >10. 

Under the assumptions in Theorem 3.1, let now m l < m o  and f ( t ) ~ Z ~  1 be 
given. 

Assume that ul(t) and uz(t) both satisfy (3.4), and for a given m e [ml, m0[ also 
satisfy (3.14), for every v(t) as in (3.2), and for some r>~r(m) (given by Lemma 2.2). 
We can prove that  Ul = u2. To do this, we suitably modify the procedure used in sub- 
section 3.2 of BERNARDI-POZZI [5]. 

Firstly, we define 

1 
(3.15) w(t) =- ~ (ul (t) + u2 (t)). 

Then, from w(t) (which clearly satisfies (3.4)), we can consider the family 
(wh (t)} (h > h0 ) defined as in Lemma 3.1. Hence, {w~ (t)} satisfies (3.7) ... (3.10) (and, 
in particular, (3.2)). Now, we take (3.14), with u(t) = ul (t) and v(t) = wh (t), and then 
we also take (3.14), but with u(t) = u2(t) and v(t) = wh (t); we obtain, by adding the re- 
sulting inequalities and using (3.8): 

T 

~ t mp exp(-2rt ) f (L( t ;ul ( t ) ) ,  wh(t) - ul(t)) + (L(t;u2(t)), wh(t) - u2(t)) + (3.16) 
k 

0 

+ 1 (rap + 1 - 2rt)[Iwh (t) - ul (t)l 2 + Iwh (t) - u2 (t)l 2 ] - 2(f(t),  wh (t) - w(t)) t dt O. 
) 
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We now let h--> + ~ in (3.16), and we use (3.10); then, in the resulting inequality, we 
substitute w(t) with its expression (3.15); so, we get: 

(3.17) 

T �9 

0 >1 f tmp exp(-2rt){(L(t;ul  ( t ) ) -  L(t;u2(t)), u, ( t ) -u2(t))  + 
o 

+ l ( 2 r t - m p  + 1)lu 1 ( t ) -  ue (t)[ 2 }dt .  

Hence, being m < mo and r >I r(m), we deduce from Lemma 2.2 (in particular, from 
(2.19)), that ul(t) = u2(t) on ]0, T]. 

3.3. - We now prove the existence result in Theorem 3.1. We proceed by several 
steps: some of them are suitable generalizations of the ones in subsection 3.3 
of[5]. 

a) Firstly, let us define 

(3.18) ~(v) - J(v - PK V), YV �9 V, 

where PK is the projection operator from V to K, and J is the duality mapping from V 
to V*, connected with the function ~(r) = r p-1 , r~> 0. Thanks to (2.2), it is well known 
(see, e.g., LIONS [11], chap. 3, n. 5) that ~ is a penalty operator connected with K, 
i.e. 

(3.19) /~: V--* V* is a bounded hemicontinuous monotone operator, 

moreover, since 0 �9 K, it results that: 

(3.20) (fl(v), v) I> 0 Vv �9 V; 

with ker(~) = K; 

IIp(v)ll, Ilvil Vv v. 

We also remark that ~,v(t) ~ t~P~(v(t))~ is, for every m �9 R, a penalty operator con- 
nected with the closed convex set 

{v(t)lt'~+~v(t) e LP(0, T;V); v(t) �9 K a.e. on ]0, T[}. 

b) We now consider, for every integer k > 0, the penalized equation 

(3.21) tu~ (t) + L(t; uk (t)) + kt~P~(uk (t)) =f( t) ,  a.e. on ]0, T[. 

Hence, Theorem 2.1 applies here to (3.21) (by taking of course, L(t; .) in (2.21) as 
L(t; .) + kt~P~(.) in (3.21)). We thus have that (3.21) has a unique solution uk (t) �9 Win, 
(and hence uk (t) �9 for every m/> ml). We fix any m e [ml, m0 [ and any r i> r(m); 
then we ,,multiply, (in the duality pairing between V* and V) both sides of (3.21) by 
tmp exp (-2rt)  uk (t) and we integrate from 0 to T. Thanks to Lemma 2.1 (see (2.7)) and 
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to Lemma 2.2 (see (2.20)), we obtain that: 

(3.22) 

T 

c(m) f tmp exp ( -2r t ) [ t  ~p Iluk (t)il p + ]uk (t)l 2 ] dt + 
0 

T T 

+k f t (m+~)p exp (-2rt)(fl(uk (t)), uk(t))dt <~ f tmp exp ( -2 r t ) f ( f ( t )  , 

o o 

uk (t))l dr. 

So, we obviously get  that: 

(3.23) {uk (t)} is bounded in U,~; 

(3.24) t t k f t ('~+~)p (~(uk(t)),uk(t))dt is bounded.  
o 

Then, from {uk(t)} we can take a subsequence (still denoted by {uk(t)}), such 
that, for every  m e [ml ,m0[ ,  as k ~  + ~:  

(3.25) uk (t) ---) u(t) (weakly) in U~; 

(3.26) L(t; uk (t)) --~ x(t) (weakly) in Z~;  

(3.27) t~P~(u~ (t)) --) ~(t) (weakly) in Z~;  

(3.28) 

T 

f t (m+~)p (~(u~ (t)), uk (t)) dt ~ O. 
o 

Of course, in (3.25) ... (3.27), u(t), x(t) and ~(t) do not depend on m e Ira1, mo [, 
thanks to the continuous imbeddings Urn1 r and Z~I c Z , ,  

Now, from (3.23), the properties of L(t; .), and (3.21), we can deduce that,  in 
(3.27), ~(t) = 0 a.e. on ]0, T[. Hence, thanks also to (3.28) and to the pseudomonotonic- 
i ty of t~Pp('): U~---~Z~, we can get  that: 

(3.29) fl(u(t)) = 0 a.e. on ]0, T[, i.e. u(t) c K a.e. on ]0, T[. 

c) We prove now that, for every m ~ [ m l ,  m 0 [, u(t) satisfies (3.3), for any v(t) as 
in (3.2), and for every  r >I r(m). We fix any such m, any r >~ r(m), and any v(t) satisfy- 
ing (3.2). Then, we can get  that  (by using: (3.21); the fact that  ~(v(t))= 0 a.e. on 
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]0, T[; the monotonicity of ~('); the initial trend in (2.7) for v(t) and uk(t)): 

(3.30) f ( 1 tmp exp (-2rt)  tv' (t) + L(t; uk (t)) + -~ (mp + 1 - 2rt)(v(t) - 

0 

- u k ( t ) ) - f ( t ) ,  v ( t ) -uk( t ) )d t>~ lsmp+~ exp( -2rs ) lv ( s ) -uk(s )12~O,  O < s < . T .  

Hence, thanks to (3.25) and (3.26), (3.30) gives that: 

limsu [j  )t tmp exp(-2rt)  (t; uk(t))+ l ( 2 r t - m p - 1 ) u k ( t ) , u k ( t )  dt <. 

o 

8 

o 

( 1 )t + tv'(t) + -~(mp + 1 - 2rt)v(t) - f ( t ) ,  v(t) - u(t) dt. 

To proceed in our proof, we need now to remark the following fact. 

(3.32) Let m, r e R ,  and let w(t) e Um with w(t) e K a.e. on ]0, T[. Consider, from 
w(t), the family {wh(t)} (h > h0), defined as in Lemma 3.1. Then, in addition 
to (3.7)... (3.10), the following property holds: 

lim sup tmp exp(-2rt) .  
h---~ + ~  

0 

( 1 t] �9 tw/~ (t) + ~ (rap + 1 - 2rt) wh (t), wh (t) - w(t) dt <- 

In fact, to get (3.32), it suffices to remark that, thanks to (3.8), 

(3.33) 

O, Vs e [0, ~ .  

$ 

f ( 1 ) t mp exp (-2rt)  tw/~ (t) + ~ (rap + 1 - 2rt) wh (t), wh (t) - w(t) dt = 
o 

8 

: - h  -1 f tmp exp (-2rt)ltw g (t)l ~ dt + f t m~ exp ( -2r t ) .  

o o 

1 �9 -~ (rap + 1 - 2rt)(wh (t), wh (t) - w(t)) dt ,  
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and clearly, at the right-hand side of (3.33), the first term is ~< 0, while the second 
term goes to 0, as h ~ + ~ (thanks to (3.10)(II)). 

Now, we take w(t)=u(t) (and then we set wh (t) =- uh (t)) in (3.32). Hence, by 
choosing v(t) = uh (t) in (3.31) and making h-~ + ~, we get that (3.31) gives (thanks to 
(3.32) and (3.26)): 

(3.34) lim sup t "~p exp (-2rt)  L(t; uk (t)) + 
k--~ +~ 

0 

+ 1 (2rt - m p  - 1 )  uk (t), uk (t) - u(t)) dt} <- O, Vs �9 [0, T]. 

We now recall we are working with some fixed m �9 [ml, m0 [ and r >I r(m). Hence, 
thanks to Lemma 2.2 (in particular, to (2.19)) and to the properties of L = A + B, we 
have that [L(t; .) + (rt - (rap + 1)/2)I]: U ~  Zm is a pseudomonotone operator. We 
thus obtain, from (3.34), that: 

(3.35) 
k--~ +~ [0" 

8 

0 

Vs e [0, T], Vv(t) � 9  

Now, from (3.30), taking any ~(t) e C~ T]), with ~(t)i> 0 on [0, T], we get that (re- 
call that any v(t) satisfying (3.2) was previously fixed): 

(3.36) 

T 8 

f j ( 1 ) ~(s) ds tmp exp (-2rt)  tv' (t) + ~ (mp + 1 - 2rt) v(t) - f( t) ,  v(t) - uk (t) dt >I 
0 0 

T 8 

>I f ~(s)ds f t ~p exp(-2~) . (L( t ;uk( t ) )+ l ( 2 ~ - m p - 1 ) u k ( t ) , u k ( t ) - - v ( t ) ) d t +  
0 0 

T 

1 f V(s) smp + 1 exp (-2r@v(s) - uk (@z 
0 

Hence, by taking in (3.36) the lira inf, for k-~ + ~, and using (3.25) and (3.35), we ob- 
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tain that u(t) satisfies: 

T s 

(3.37) f ~(s)ds f tmp exp(-2r t )  �9 
0 0 

( 1 ) �9 tv'(t) + L(t;u(t)) + -~(mp + 1 - 2rt)(v(t) - u(t)) - f ( t ) ,  v(t) - u(t) dt >I 

T ij >~ ~ .~(s)s mp§ e x p ( - 2 r s ) l v ( s ) - u ( s ) l  2 ds,  

o 

V~(t) e C~ T]), with ~(t) I> 0 on [0, T]. 

(3.37) thus gives that, for every m e [morn1 [ and every r~> r(m), u(t) satisfies (3.3)for 
a.e. s e ]0, T[, and every v(t) as in (3.2). 

d) Now, we have only to prove that u(t) satisfies (3.4)(III) and (IV) (and this 
also gives that u(t) satisfies (3.3) for  evew s �9 ]0, T[). 

Since u(t) has the properties (3.4) (I) and (II), we can consider, from u(t), the fam- 
ily {u~(t)} defined as in Lemma 3.1 (where m = ml and h > h0). Hence, {uh(t)} satis- 
fies (3.7)... (3.10) (with m = ml and r >I r(ml )); by using (3.8) (where wh (t) is replaced 
by uh(t)), we obtain that (recall the conclusion in the preceding step c)): 

0 

1 - 2rt) luh (t) - u(t) l 2} �9 ((L(t; u(t)) - f ( t ) ,  uh (t) - u(t)) + -~ (m lp  + 1 dt, 

for a.e. s �9 T]. 

Hence, thanks to the properties of {uh (t)} (in particular, (3.9) and (3.10)), (3,38) gives 
clearly that u( t )sat is f ies  (3.4)(III) and (IV). 

Thus, Theorem 3.1 is completely proved. 

3.4. - We finish this paper, by presenting some applications of our abstract re- 
sults (Theorems 2.1 and 3.1): in particular, we give some examples of operators A(t; .) 
and B(t; .), to which such results apply. 

As an introductory remark, we firstly present an example concerning ordinary 
differential equations and inequalities (also see BERNARDI [ 4 J ) .  

EXAMPLE 3.1. - Let us take: 

V = H = V* = R; B(t; u) = bu, A(t; u) = tap t u lp-  1 sgn (u) 
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where  b, a e R ,  and p >  1. Hence, (2.8) ... (2.15) hold trivially; in particular, A(t; .) 
is monotone for every  t e ]0, T] (and nonlinear, if p r  So, our abstract  results  
apply here to this situation. We observe (also see [4]) that  it results  here: mo = (2b - 
- 1)/p,  if p r 2; m0 = (b - (1/2) + lim t2a~ if p = 2. More generally, our results  apply as 

\ t---~ 0 + / 
well to the following situation. Take: B(t; u) = b(t) r(u), where  b(t) e L ~ (0, T) and r(u) 
is uniformly Lipschitz continuous on R,  with r (0 )=  0 (recall however  Remarks  2.2 
and 3.1). Take moreover  A(t;u)=t~P),(u)  where: a e R ,  p > l ;  ~(u) e C ~  and 
satisfies: 

I3el  > 0: u~(u) >- el lul p , Yu e R; 

(3.39) [3c2 > 0: I~(u)] ~< c2 lul p - l ,  Yu e R; 

(3.40) 3 l * e R : ( 2 ( u ) - ~ ( v ) ) / ( u - v ) > ~ l  *, Y u ,  v e R ,  with u C v .  

Hence, (2.8) ... (2.15) hold trivially. Remark  however  that  here, unlike the previous 
case, A(t; .) is not necessarily monotone. 

EXAMPLE 3.2. - Let  now ~ be a bounded open subset  o f R  n and let p > 1 such that  
! / p -  1/n<. 1/2. Take Y = W~'P(~), and H = L2(t~) (hence V* = W-t'q(t~)). Then, 
(2.1) and (2.2) clearly hold. Take now (for some a eR) :  

i=  1 -~X/ ~ X /  ~"~X i ' 

and, for instance, B(t; u) = b(t) ,{(u), where  b(t) and ~(u) are as in the previous Exam- 
ple 3.1. Hence, (2.8) ... (2.15) clearly hold. So, our abstract  results  apply here as well. 
Remark  that  the operator  A(t; .), given in (3.41), is monotone, for every  t e ]0, T]. 
However ,  we recall that  our results need only the ,~weaker monotonicity assumption,, 
(2.12). 
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