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On the Global Bifurcation for a Class 
of Degenerate Equations (*). 

PAVEL DR.~BEK 

Summary. - We consider the nonlinear Dirichlet boundary value problems for the second order 
equation 

- (a(x) tu '  (x)lP- 2u' (x))' - ~c(x)!u(x)[ p- 2u(x) = g(x, u(x), ~), 

the fourth order equation 

(a(x) lu" (x) l p-  2 u" (x) )" - ~c(x) iu(x)l p - 2 u(x) = g(x, u(x), u '  (x),)~), 

with p >= 2, a e C 1, c e C, a, c > O, g Carath~odory's function, and the partial differential 
equation 

- div (IVulP-2Vu) = )~lulP-2u +g(x, u(x), ~) in ~9, u = 0 

on a~, with p > 1, t) c R N, bounded domain. There is proved a global bifurcation result of 
Rabinowitz's type using the degree theoretical approach for the mappings acting f rom the 
Banach space X into its dual X*. 

1 .  - I n t r o d u c t i o n .  

Le t  us consider non l inear  boundary  value  prob lems  (BVPs) 

(1.1) - (a(x) lu '  (x) lP-2u ' (x))' - ~c(x) tu(x) lP-2u(x)  = 

= g(x,  u(x),  ~), 

and 

(1.2) (a(x)ju" (x)l p -  ~ u" (x) )" - ~c( x)iu(x)l  p -  2 u(x)  = 

= g(x,  u(x) ,  u ' ( x ) ,  ~), 

u(O) = u(~)  = o, 

u(O)  = u ' ( O )  = u ( ~ )  = u '  (~:) = o.  

(*) Entrata in Redazione il 2 maggio 1988. 
Indirizzo delrA.: Department of Mathematics, Technical University of Plzefi, Nejedl~ho sady 

14, 30614 Plzefi, Czechoslovakia. 
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If the coefficient functions a and c are sufficiently smooth, p >= 2, then NE~AS [9] 
proved that the eigenvalues of the eigenvalue problem 

(1.3) - ( a ( x ) l u '  ( x ) l p - 2 u  ' ( x ) ) '  - A c ( ~ ) l u ( x ) l ~ - 2 u ( x )  = o, u(O) = u (~)  = o, 

A form a countable discrete set { i }i = 1, 0 < A1 < A2 < ... lira An = ~. Moreover, each 

eigenvalue A0 of (1.3) admits only a finite number of isolated normed eigenfunc- 
tions. 

The same assertion is proved in KRATOCHVIL-NECAS [7] for the eigenvalue 
problem 

(1.4) (a(x)lu"(x)lP-2u"(x))"-Ac(x)lu(x)lP-2u(x) = O, 

u(0)  = u ' ( 0 )  = u(~)  = u ' ( ~ )  = 0. 

It is known that Ljusternik-Schnirelmann theory ensures the existence of an infinite 
sequence of positive eigenvalues of (1.3) (or (1.4)) but this theory does not give all 
eigenvalues in general (see FU~iK et al. [6]). If the eigenvalue A of (1.3) (or (1.4)) is of 
Ljusternik-Schnirelmann type then under some additional assumptions on the non- 
linearity g it is possible to prove that A is a point of local bifurcation of (1.1) (or (1.2)) 
(see [6]). In this paper we intend to prove that if A is any eigenvalue of (1.3) (or (1.4)) 
to which correspond an odd number of pairs of normed eigenfunctions then A is a 
point of global bifurcation of (1.1) (or (1.2)) in the sense of RABINOWITZ [11]. Our as- 
sumptions on nonlinearity g are rather general. In the case of constant coefficients a 
and c in (1.1) we obtain that from every eigenvalue A~ of the corresponding homoge- 
neous problem two unbouvded global branches of nontrivial solutions bifurcate. 
These branches have the same nodal properties as the eigenfunction corresponding 
to An. 

We shall also consider nonlinear BVP's for the partial differential equations: 

(1.5) - div(IVulP-2Vu) = AlulP-2u+g(x,u(x),A) in ~, u = 0 on aD, 

where t~ r R N is bounded domain with sufficiently smooth boundary a~ and p > 1. We 
prove that the first eigenvalue A1 > 0 of the nonlinear problem 

(1.6) -div(IVulP-2Vu)=AlulP-2u in t~, u=O on ~t~, 

is a point of global bifurcation of (1.5). An analogous result holds also when the 
Dirichlet boundary data in (1.5) and (1.6) are replaced by the Neumann condi- 
tion 

N(u) =- IVulP-2Vu.n = 0 on ~ ,  

where n is the outer normal of at]. 
Note that the equations with the principal part div (IVul p-2 Vu) arise in the theory 

of quasiregular and quasiconformal mappings or in physics (see e.g. [8], [10], 
[13]). 
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In order to prove our main results we use functional-theoretical approach. The 
main tool are the properties of the degree of the mapping A: X--->X* acting from a 
Banach space X into its dual X*. The definition of this degree and its basic properties 
may be found e.g. in SZRYPNIK [12] (cf. also BROWDER-PETRYSHYN [3]). 

2. - S e c o n d  o r d e r  p r o b l e m .  

Let us consider the nonlinear Sturm-Liouville problem (1.1) with a c C~([0, =]), 
a(x) > 0 in [0, =], c e C([0, =]), c(x) > 0 in [0, =]. Let us suppose that g = g (x, s, )~) is a 
Carath~odory's function, i.e. g(., s, )~) is measurable for all (s, ~) c R 2 and g(x,.,  .) is 
continuous for a.e. x e (0, =). We also assume that g(x, 0, ~) = 0 and 

(2.1) lim Isl-P+ l g(x, s, ~) = O, 
8~--> 0 

uniformly for a.e. x e (0, =) and ~ from bounded intervals. 
We shall say that u E X: = W~ (0, =) (the usual Sobolev space for p => 2) is a weak 

solution of (1.1) if 

(2.2) f [a(x)ru' p~- 2u' v' - ~c(~)luj'-~uv~dx -- f g(~, u(x), ~)vd~, 
o o 

holds for every v e X. 
It is proved in DR.~BEK [5] that whenever u is a weak solution of (1.1) then 

u~eC([O, 7~]),a(x)lu'(x)lP-2u'(x) is absolutely continuous and (1.1) holds almost 
everywhere in (0, =). From now, we shall speak only about the weak solution bearing 
on mind its regularity properties mentioned above. 

Let us denote by X* the dual space to X, II'lt and I1"11. the norm in X and X*, respec- 
tively, (-, .) will be the pairing between X and X*. Define operators J, S : X - ~  X* and 
G:••  by 

(Ju, v) -- f a(x)pu~ (x)J" 2u' (x)v' (x)dx, 
o 

(Su, v) = f c(x)Ju(x)l~- 2u(x)v(x) dx, 
o 

(G(~, u), v) = f g(x, u(x), ~,)v(x) dx, 
o 

for any u, v e X. 
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REMARK 1. - With respect to (2.2) the function u is a weak solution of (1.1) if 

(2. 3) Ju  = Su + G(~, u). 

REMARK 2. - The operators J, S and G have the following properties. J is odd, 
(io - 1)-homogeneous, satisfying the strong monotonicity condition 

(2.4) (Zu - z~ ,  u - v) => Co !lu - ~]1 ~ , 

for any u, v e X with some constant co > 0. Moreover, J is a (p - 1)-homeomorphism, 
i.e. it is an homeomorphism of X onto X* and there exist constants cl, c2 > 0 such 
that 

(2.5) cl liuil ' - ~  --< ItJuiL, -< c~ liuli ~ -1  , 

for any u e X. The operator S is odd, (p - 1)-homogeneous and completely continu- 
ous. The operator G is completely continuous, G(,L 0) = 0 and with respect to (2.1) G 
satisfies 

(2.6) lim ]lull -p +1G(,L u) -- 0 
Fluff-~ 0 

uniformly with respect to ~ from bounded intervals. 
We shall say that ~ is an eigenvalue of (1.3) if 

(2.7) Ju  - ;~Su = O, 

has a solution u e X, u ~ 0. Such an element u is called an eigenfunction, CO~Tespond- 
ing to ~. The eigenvalue ~ is said to have finite multipl ici ty  equal n if there are exact- 
ly n pairs {(u/,-ui)}~= ~ of isolated normed eigenfunctions corresponding to ~. 

REMARK 3. - According to [9] the eigenvalue problem (1.3) has a countable set of 
eigenvalues of finite multiplicity satisfying 

0 < ~1 < ~2 < --., lira ~ = ~. 
% - - ~  co 

Let us denote by u any normed eigenfunction of (1.3). It is proved in [9] that for 
~(x) = ]u' (x)] p-2 the set 

W~,~ = h; h(O) = h(~) = 0 and f ( h '  )2~ d x  = LIhill2,~ < ~ 

0 

is an Hilbert space imbedded algebraically and topologically into W~ when 
-- = X}n = I 1 - q  < 2(p -ol)(2p 3) -1. Moreover, the system of functions {v~(x)}~= 1 {sin n 

is dense in W~,.~. Note that X c W~,~ and that {v~ }~= 1 is dense in X. Let u be an eigen- 
function of (1.3) and J'(u), S'(u) be the Fr~chet derivatives of J and S, respectively, 
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at the point u e X, i.e. 

(J, (u)h, = ( p -  f a(x)lu' I'- h ' k' dx, 
o 

(S'(u)h, k~~ f Jw~,~ = ( P -  1) c(x)lulP-2hkdx, 
o 

O 

for any h, k e W~,~. Then it is also proved in [9] that the linear eigenvalue prob- 
lem 

(2.8) J '  (u)h - t~S ' (u)h = 0 

has only simple eigenvalues ~ (i.e. with multiplicity 1). 

For a fixed eigenfunction u we shall write H = W~,~. 
Let D r X be a bounded open set with boundary aD. Assume that A: X-~ X is an 

operator of the type A = J + K, where J is strongly monotone and K is completely 
continuous. Let A(u) r 0 for any u e aD. Set 

7~ 

~ (u) = ~ (Au, v~ )vi, 
i = l  

and V~ = Span{vi }~= 1. Then it is possible to define the degree of the mapping A in 0 
with respect to D r X as the Brouwer degree of ~ :V~--~ V~ at 0 with respect to 
D n V~ for sufficiently large n. More precisely, 

(2.9) Deg [A; D, 0] = r!im dB [~.; D r~ V~, 0], 

where dB denotes the Brouwer degree. 
It is shown in SKRYPNIK [12] that d8 [ ~ ;  D n V~, 0] is constant for n => no, for some 

no ~N. 

REMARK 4. - In fact, the degree (2.9) is defined for more general maps A in [12]. 
For our purposes it will be sufficient to consider A = J + K which guarantee that all 
assumptions from [12] are satisfied. The properties of the degree defined by (2.9) are 
similar to properties of the Leray-Schauder degree. The reader may found them 
in [12]. 

Using the strong monotonicity of J and the property (2.5) it is easy to see 
that 

Deg [A; D, 0] = deg [I + j -1  oK; D, 0], 

where ,,deg, denotes the Leray-Schauder degree. However, J-1 is not continuously 
differentiable and so it is more convenient to use the properties of ~,Deg>~ in the proof 
of our main result. 

A point Uo e X will be called a critical point of A if A(uo ) = O. We say that uo is an 
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isolated critical point of A if there exists sufficiently small ~ > 0 such that in B~ (u0) 
(the open ball centred at u0 with radius ~) A vanishes only in u0. The degree 
Deg [A; B~ (u0), 0] will be called the index of the isolated critical point Uo (with respect 
to A). 

Let us suppose that F:X--> R is continuously differentaible functional (in the 
Fr~chet sense), and F' (u) = A(u), u �9 X where A is of the form J + K. The following 
assertion is an immediate consequence of the above definition of the degree ,,Deg~ 
and of the finite-dimensional version of the result of AMANN [ 1 ] .  

LEMMA 1. - Let Uo be a local m i n i m u m  of F and an isolated critical point of A.  
Then Deg [A; B~(uo), 0] = I for  ~ > 0 sufficiently small. 

Let E = R x X be equipped with the norm II(~, u)ll 2 = t~1 e + Ilull 2. We say that C = 
= {(~, u) �9 E; ()~, u) solves (2.3), u r 0} is a continuum ofnontrivial solutions of (1.1) if 
it is connected in E. 

We shall formulate and prove our first bifurcation result. 

THEOREM 1. - Let ;~ be an eigenvalue of (1.3) of odd multiplicity. Then there 
exists a continuum C of nontrivial solutions of (1.1) which contains the point (;~, 0), 
in its closure and it is either unbounded in E or it contains in its closure a point 
( ~ ,  0), where ~,~ is an eigenvalue of (1.3),)~ r ~m. 

The proof of Theorem 1 will be performed in several steps. 

Step 1. Let 8 > 0  be such that 2 ~ < m i n { ~ + l - ~ n , ~ - ~ , ~ _ l } ,  where ~n-1 and 
~+1 are the eigenvalues of (1.3) preceding and following ~ ,  respectively. We prove 
that 

(2.10) Deg [J - ( ~  - ~)S; Br (0), 0] r Deg [J - ( ~  + ~)S; Br (0), 0] 

for any r > 0 and ~ > 0 small enough. Let us define a twice continuously differentiable 
function ~: R o  R by the following way: 

~(t) = 0 for t -<_ R, 

~(t) = (~n - ~1 + 2~)(t - 2R) for t >-- 3R, 

positive and strictly convex in (R, 3R), where R > 0 is fixed number. Define the 
functional F~: X ~ R by 

F~, (u) = p-1 (Ju, u) - p - l  ~(Su, u) + ~(p-1 (Su, u)). 

Then F~ is twice continuously differentiable and the critical points of F~ correspond to 
the solutions of the equation 

(2.11) J u -  (~ - ~, (p-i  (Su, u)))Su = O . 

Let us suppose that u0 �9 X is a critical point of F~, ~ �9 [ ~  - ~, ~ + ~ ] ~ { ~  }. Then 
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either u0 = 0 or u0 r 0. In case uo r it follows from (2.11) that  

- ~' (p-~ (SUo, Uo)) = ~ ,  

for some eigenvalue )~k < 2 and Uo = luk for some 1 = l(~) e R (uk is a normalized eigen- 
function corresponding to ~k). Simultaneously, with respect  to the definition of ~, for 
any normed eigenfunction uk corresponding to ~k < )~ we find precisely one lk = 
= Ik (~) > 0 such that u0 = lk uk is a critical point of F~I. Hence F ;  has a finite number  of 
isolated critical points of type  0, lku~,- lzu~,  where  u~ is the eigenfunction corre- 
sponding to ~ < ~. If  ~ > 0 is large enough, we can suppose (with respect  to the defi- 
nition of ~b) that  all these critical points lie in B~ (0) and that  (F;  (u), u) > 0 for any 
u e ~B~(0), ~ e [ ~ , - ~ , ; ( , +  ~ ] \ { ~ } .  It  follows from the propert ies  of the degree 
(see [12]) that  

(2.12) ~~ Deg [Fz, B. (0), 0] = 1. 

Let  u~ = Ik uk be any nonzero critical point of F>I. We claim that  for k < n and for ~ > 0 
small enough the index of u~ ~- ~ (with respect  to F~'_ ~) is equal to the index of u~ ~- + ~ 
(with respect  to FI~ + ~) and it is either 1 or - 1. We also claim that  the index of Un ~ + ~ 
(with respect  to FI~ + ~) is either 1 or - 1. Suppose for a moment  that  claims are true. 
Then for ;( = ;(~ - ~ the index of 0 (with respect  to F>I~-~) is equal to 1 - s, where  s is 
the sum of indeces of all critical points of F ~ _  ~ different from 0 (see the additivity 
proper ty  of the degree [12] and (2.12)). For  ~ = ~ + ~ the index is 1 - (s + ~), where  
is the sum of indeces of critical points u~ ~+~. Since the multiplicity of )~n is odd, it is 
.~ r 0. It  follows that the index of 0 with respect  to F~ changes when ~ crosses ;(~. Be- 
cause J ,  S are homogeneous and F~I (u) = Ju - ~Su, for u e BR (0) we have (2.10) with 
arbi t rary  r > 0 and ~ > 0 small enough. 

Step 2. We prove above claims. Let  uk be the eigenfunction corresponding to s 
We shall take the basis {vi }i \  1 in X and in H, where  H corresponds to uk. According 
to the definition of the degree the index of u~ is equal to 

ds[~ ,q ;B~  (u~ ~ ) c~ Vq, 0], 

where  

q 

�9 ~,,q (u) = ~ ((F;  (u), v i )vi, 
i=1 

q _-__ q(~) and ~ > 0 is small enough. It  is 

(F'; (u~ )w, v) = (J '  (u~ )w, v) - (~ - iJ (p-1 (Sui  , u~ ))). 

"(S r (u~')w, v) -Jr ~" Qo -1 (Su~, u~ ))(Su~',  w)(Su~, v), 
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for any w, v e H. Note that  ~ - ~' (p-1 (Su~, u~')) = ~k. Le t  us suppose that  there is 
pr s �9 

Wo e H, Wo ~ 0, such that  (F~, (uk)wo, v) = 0 for all v ~ H. Then for v = ug ~ we get 

(2.13) 

Because 

( J '  )wo , u i  ) - (S  ' )wo , ) + 

+tJ' (p (Su  , Wo )(Su  , ) = o. 

( J '  (u~)Wo, u~ ) = (p - 1)(Ju~ ~ , w0), (S' (u~)Wo, u~ ) = (p - 1)(Su~, Wo) 

and (Su~, u~)=/= 0 it follows from (2.13) that  (Su}i, Wo)= 0. In this case, however, 

( J '  (u~)Wo, v) - ),k (S'  (u~)Wo, v) = 0, 

for any v e H and since ~k is a simple eigenvalue of the linear problem (2.8) (with 
u : =  u~), it should be Wo = u~ a contradiction with (Su~ ~ , Wo)= 0. Hence 

(2.14) F~' (u~)w :/= 0, 

for any w e H,  w r 0 and for ~ e [)~ - 6̀ , ~ + 6`]. if k < n, )~ = ~n + 6' if k = n. 
We show that  there exists qo = qo (8) such that  for all Z e [Z~ - 6̀ , ~ + 6̀ ] if k < n and 

5( = ~ + 6 `  if k = n  

(2.15) ~ ,  q (u~)w r 0, 

for any w e Vq, w r 0, q -  qo. Le t  k < n .  Suppose that  (2.15) is not true,  i.e. there 
exist q --) 0% ~(q) e [~,. - 6̀ , ~ + 6`], Wq ~ Vq, wq :/: 0 such that  

(2.16) q~(q), q (u~ (q))Wq = O. 

We can suppose that  ~(q) --~ s IlWq IIU = 1 and wq --~ Wo in H, for some Wo e H. Choose 
~Vq e Vq such that  ~q-~ Wo in H as q-~ oo. Then (2.16) implies 

(F'~q) (u~ (q) )wq , wq - Wo ) = (F ~(q) (U (k q) )Wq , ~)q -- W 0 ). 

Because the right hand side tends to zero and 

(F'~'(q) (u~ (q) )Wo , Wq - W 0 ) --> O, 

(realize that  u~ (q) = lk (q)u~ with some lk (q) from compact interval not containing 0) we 
get 

(2.17) (F'S(q) ( U ~  '(q) ) (Wq --  W 0 ), Wq --  W 0 ) -'-> O, 

as q ~  oo. It  follows from here, from the definition of the norm in H, from the compact- 
ness of S '  (u~) :H-~ H and from (2.17) that  

w q ~ w o  in H. 



P. DRJ~BEK: On the global bifurcation for a class, etc. 

Since ~(q)~ ~ implies u~(q)~ u~ in X, we obtain 

(F;~ (u~ ~)wo, v) = 0, 

for any v e H  with IIw011=l. But this is a contradiction with (2.14). Analogously we 
prove (2.15) also for k = n. 

Because 

q 

~'~,q (u~)w = ~ [(J' (u~)w, v~) - ~(S'  (u~)w, v~) + ~" (p -~ (Su~ ~ , u~)(Su~', w)(Su~,  v~)]v~, 
i = 1  

w ~ Vq, and u~ depends continuously on )~, det ~,q (u~') is a continuous function of )~ 
and it is 

det ' ~,q(uk ) ~: O, 

with respect to (2.15), for all ) ~ e [ ~ - ~ , ~ + ~ ]  if k<n,q>-qo .  Hence for 
k < n, ;~ ~ [An - 8, ~ + ~], the Brouwer degree dB [~, q; Be (u~) n Vq, 0] is a constant 
function of ~ either equal to + 1 for all q => q0 or equal to - 1 for all q _-> q0. We obtain 
directly from (2.15) that 

d B [ ~ + ~ ;  B~ (u~) r~ Vq, O] = +1, 

independently of q => q0. If we take q(~) = q0 in the definition of ~,q the claims are 
proved. 

Step 3. Put 

6'(~, u) = Ju - ~Su - G(~, u). 

Then it follows immediately from (2.6) and from the homotopy invariance property of 
the degree (see [12]) that 

(2.18) Deg [8'(~n - 8, .); B~ (0), 0] :/: Deg [tP(~n + 8, .); Br (0), 0], 

for r > 0 and 8> 0 small enough. 

Step 4. Following step by step the Rabinowitz's proof [11, Theorem 1.3], using 
(2.6) and (2.18), the existence of the continuum C of nontrivial solutions of (1.1) with 
the desired properties can be proved. This completes the proof of Theorem 1. 

3. - S e c o n d  order prob lem wi th  c o n s t a n t  coe f f i c i en t s .  

Let us consider the special case of (1.1) with a(x) - c(x) = 1 on [0, 2]. It is proved 
in [5] that in this case the eigenvalues of (1.3) are simple and that any eigenfunction 
corresponding to the n-th eigenvalue ~ has precisely n - 1  simple nodes (i.e. 
u '  (Xo) ~ 0 for U(Uo) = 0) in (0, =). If g = g(x, u, ~) is a continuous function then one 
can prove that lu' IP-2u' e C~([0, 2]) for any solution u of (1.1) (see [5]). 
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Using the assumption (2.1) it follows directly from equation (1.1) that any non- 
trivial solution of (1.1) has only simple nodes in [0, r:] (in 0 and in 7: it means that 
uS (0) ~ 0 and u" (7:) :/: 0, respectively). We have also the following information about 
the structure of C. 

LEMMA 2. - The convergence ( ~ ,  u ~ ) ~  (~, u) in E, (~ ,  u~), ()~, u)~ C, yields 
un---~ u in C1([0, =]). 

PROOF. - We have 

(3.1) - ( lu ;  F-~u;  )' = ~ lu~ F-~un + g(x, u~, ~ ) ,  

(3.2) -(1~' I ~-~u') '  = ~luF - ~  + g(x, u, ~), 

and u~ ~ u in C([0, ~]) with respect to continuous imbedding X r C([0, =]). We get 
from (3.1), (3.2) 

lu '  ( x ) l p - 2 u  ' (x )  ' P - ~  ' -]u~(x)l u ~ ( x )  = 

x 

= k + f[Zn jun (t)JP- 2 u~ (t) - ~ju(t) jP- ~ u(t)  + g(t ,  u~ (t), ~.~ ) - g(t ,  u(t) ,  )~)]dt, 
0 

i.e. 

lu4 (x) l p- 2 u~ (x) ---) k + ju' (x) l p- ~ u '  (x) in C([0, =]). 

But u~---) u in X implies u~--. u uniformly on [0, =]. Hence it follows that k = 0. Since 
the function s ~ l s l  ~/(p-1) sign s is ( p ,  1)-l-Hslder continuous we have u4---)u' in 
C([0, =]) which concludes the proof. 

REMARK 5. - In other words Lemma 2 states that the topology on C induced by  
the norm on E is equivalent to the topology on C induced by the norm 

I1(~, u)ll~ = I~1 ~ + jjull~,(~0,~). 

Let us suppose that ~n is the n-th eigenvalue of (1.1) and un is the corresponding 
normalized eigenfunction satisfying u~(0)> 0. Using the same argument as in [11, 
Lemma 1.24, Theorem 1.25] it is possible to show that there are two maximal connect- 
ed subsets of C (C being from Theorem 1) bifurcating from ()~, 0) in the directions Un 
and -un. More precisely, let z e (0, 1) and K~ + = {(~, u) e E; (~*, u) > zlluII}, K j  = 
= {(~, u) e E; (~*, u) < -~llull}, where 9" e X* is a fixed element such that (~*, u~) = 1. 
Then there are maximal connected sets C~ + , C j  such that C~ + w C j  c C, C~ contain 
( ~ ,  0) in its closure and C~ + • ~s ( ~ ,  0) r K~ + , C j  n ~ ( ~ ,  0) r K j  with some 
s = s(z)> 0 small enough (here t~ ( ~ ,  0) is the ball in E with radius s > 0 centred at 
( ~ ,  0)). 

It follows immediately from Lemma 2 that C~ + n C~[ = 0. Moreover, if m :~ n then 
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C~ n Cn = 0 for any v e {+, - }  with respect to the nodal properties of the eigenfunc- 
tions and Lemma 2. 

THEOREM 2. - Let )~n be an eigenvalue of (1.1) with constant coefficients 
a(x) = c(x) =- 1. Let the funct ion g = g(x, u, )~) be continuous and satisfy (2.1). Then 
there are two unbounded continua of nontrivial solutions C~ + and C~ bifurcating 
f rom ( ~ ,  O) with the property that if(h, u) ~ Cn then u has n - 1 simple nodes in (0, r:) 
and sign u'(O) = v, ~ e {+, - } .  

PROOF. - It follows from the above considerations that the continuum Cn bifurcat- 
ing from (s 0) which can be decomposed as Cn + u C~ does not satisfy the second al- 
ternative of Theorem 1. According to Lemma 2 both C + and C~ save the nodal prop- 
erties of un and -us ,  respectively. Hence neither C~ + nor C~ contains the points of the 
form (~, u), (~, - u). Then following the proof of Theorem 1.27 in [11] we get that Cn is 
unbounded for both ~ = ,~+, and v = ,(-)). 

4. - F o u r t h  o r d e r  p r o b l e m .  

Let us consider the nonlinear problem (1.2) with the same assumptions on a and c 
as in Section 2. We suppose that g = g(x, s, r, )~) is a Carath~odory's function, i.e. 
g(. ,s ,r ,~)  is measurable for all (s,r,)~)e R 3 and g(x, . , . ,  .) is continuous for a.e. 
x e (0, =). We also assume that g(x, O, O, ~) = 0 and 

Um ls2 +r2i(-P+l)/2g(x,s,r,~) =0,  
(s, r)--,  (0, 0) 

O 

uniformly for a.e. x e (0, ~) and ~ from bounded intervals. Set X:  = W~(0, =) and de- 
fine J,S:X--->X* and G : R •  as follows 

(Ju, v) = ~ a(x)]u" (x) l p - 2 u" (x)v" (x) dx, 

o 

7: 

(Su, v) = j c(x) lu(x)l p - 2 u(x)v(x) dx, 

o 

rz 

(GO~, u), v) = j g(x, u(x), u '  (x), s dx, 
o 

for any u, v e X. 
The operators J, S and G have the same properties as these in Section 2 (cf. Re- 

marks 1, 2). 
It is proved in KRATOCHViL-NE~AS [7] that the eigenvalue problem (2.7) with J 
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and S defined above has a countable set  of eigenvalues of finite multiplicity 

0 < ~ l < : ~ 2 < . . . , , ! i m c c ) , n =  O~ 

Moreover, if u is any normalized eigenfunction then the set  

W 2 = h;h(O)=h'(O)=h(~)=h'(r:)=O and h")2~dx--llh ~,~<~ , 2,~ , 

0 

where  p(x) = lu" (x)l p-2, is the Hilbert  space imbedded algebraically and topologically 
into Wg when 1 _-< q < 2(p - 1)(2p - 3) -1. I t  is also proved in [7] that  the linear eigen- 
value problem 

0 0 
o 

for any k e W~o2,~, has only simple eigenvalues. 

Set H : =  W~2,.: for fixed eigenfunction u and as {v~ }3= i take the eigenfunctions of 

the problem 

u ~ -  ~u = 0, u(0) = u '  (0) = u(~) = u '  (~) = 0. 

v ~ is dense both in X and in H. By a weak solution of (1.2) we shall mean a Then { ~ }~ = 1 
function u �9 X satisfying (2.3). Similarly as in Section 2 we define a continuum C of 
nontrivial weak solutions of (1.2). Using essentially the same approach as in Section 2 
we get. 

THEOREM 3. - L e t  ~ be an eigenvalue of  homogeneous fourthorder problem (1.4) of 
odd multiplicity. Then there exists a continuum C of nontrivial weak solutions of  
(1.2) which contains the point ( ~  , O) in its closure and it is either unbounded in E or 
it contains in its closure the point (~m, O) where ~,~ is an eigenvalue of (1.4), 

A m r An. 

5. - Par t ia l  d i f f erent ia l  e q u a t i o n s .  

In this section we consider the bifurcation problem (1.5). We shall suppose that  
the nonlinear function g = g(x, s, )~) satisfies the assumptions from Section 2 with 

o 
[0, =] replaced by t~ r R y. Set X: = W 1 (t~) and define J ,  S: X--~ X* and G: R • X---~ X* 
as follows 

(Ju, v) = f IVulP-2VuVvdx, 
D 
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(Su, v) = f lul~- %v dx, 

(G(2, u), v) = f g(x, u(x), ~) v(x) dx, 
t~ 

for any u, v �9 X, with p > 1. 
The operators J, S and G have the same properties as those defined in Section 2 

(cf. Remarks 1, 2) for p => 2. In the case 1 < p < 2 the operator J is not strongly mono- 
tone in the sense of (2.4) but it satisfies condition (~) from SKRYPNIK [12] (cf. Remark 
4). 

A function u e X  is said to be a weak solution of (1.5) and (1.6) if it satis- 
fies 

(5.1) Ju = ;,Su + G(~, u) 

and 

(5.2) Ju = ~Su, 

respectively. 

REMARK 6 .  - If a weak solution u of (1.5) (or (1.6)) satisfies apriori u �9 L~ then it 
follows from the result of TOLKSDORF [13] that the derivatives of u are already HSlder 
continuous. Particularly, if g is bounded, we obtain the regularity in this sense in the 
case p > N with respect to the Sobolev's imbedding theorem. 

As in Section 2 we define a continuum C of nontrivial weak solutions of 
(1.5). 

The following assertion concerning the first eigenvalue to the problem (1.6) is 
proved in ANANE [2]. 

LEMMA 3. - Let us suppose that the boundary at~ is of class C 2,~. Then there exists 
the first eigenvalue ~i > 0 of (1.6) which is simple and isolated. A corresponding 
eigenfunction Ul �9 C1'~(~), ~ �9 (0, 1), can be chosen such that ul > 0 in t) and 
~u~/~n < 0 on 3t). 

We use this and the approach from the proof of Theorem 1 in order to prove the 
following global bifurcation result. 

THEOREM 4. - Let us suppose that all assumptions stated above are fulfilled. 
Then there exists a continuum C of nontrivial weak solutions of (1.5) which contains 
the point (~1, O) �9 E in  its closure and it is either unbounded in E or it contains in its 
closure a point (~o, 0), where ~o > )~1 is an eigenvalue of (1.6). 
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P R O O F .  - We prove that 

(5.3) Deg [J - (~ - ~) S; B~ (0), 0] =/= Deg [J - (~1 + 8) S; B~ (0), 0], 

for r > 0 and ~> 0 small enough. 
Similarly as in the proof of Theorem 1 we define the function ~b: R-~ R by 

~(t)=0,  for t ~ R ,  

@(t) = 2~(t - 2R), for t = 3R, 

~b positive and strictly convex in (R, 3R), where R > 0 is fixed number and ~> 0 is cho- 
sen in such a way that (s ~1 + ~] does not contain any eigenvalue of (1.6) (cf. Lemma 
3). Following the notations from the proof of Theorem 1, we obtain that F~ is at least 
once continuously differentiable (we have, now, p > 1) and that the critical points of 
F~ correspond to the solutions of the equation (2.11). We obtain also that for A = ;~1 - 
the point 0 �9 X is the only critical point of F~ while for ~ = ;(1 + ~ there are precisely 
three isolated critical points of F;  : 0, Ul, -u~, where Ul > 0 is an eigenfunction corre- 
sponding to ~1. Since 0 is the minimum of F~,_ ~, the index of 0 with respect to Fj, _ ~ is 
1, by Lemma 1, i.e. 

(5.4) Deg [ J -  (~1 - ~)S;Br(O), 0]  = 1, 

with arbitrary r >  0. 
The points Ul and - u l  are minima of F).,+~ and hence, by Lemma 1, their index 

with respect to F'zl+~ is 1. Simultaneously, Deg[F~II+~;B~(0),0] = 1, for x > 0  large 
enough, with respect to the definition of ~. Combining these two facts we get that the 
index of 0 with respect to F'I+~ is -1 ,  i.e. 

(5. 5) D e g [ J -  (Z~ + ~)S;Br(O), 0]  = --1, 

with arbitrary r > 0. 
The relation (5.3) then follows from (5.4) and (5.5). To complete the proof we pro- 

ceed by the same way as in Steps 3 and 4 of the proof of Theorem 1. 

R E M A R K  7 .  - The proof of Theorem 4 works also without the assumption of sim- 
plicity of 21. In order to establish (5.3) (and hence to prove Theorem 4) it is sufficient 
to know that the set of normalized eigenfunctions corresponding to ~ is finite. The 
simplicity of ~1 (Lemma 3) allows us to strengthen the assertion of Theorem 4 in the 
following sense. 

THEOREM 5. - Let the assumptions of Theorem 4 be fulfilled. Moreover, suppose 
that there exists 8> 0 such that 

(5.6) Ju ~ ),l Su + G(~I , u), 

for 0 < [lull <- ~. Then there are maximal connected subsets C + , C- ,  of C containing 
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(~1, O) e E in their closure, C +- n ~ 0~1, O) C K~ (for K~ , t~ (2~, 0) see Section 2, 
n = 1) and such that either 

(i) both C § , C-  are unbounded in E, or 

(ii) both C +, C-  contain in their closure a point different f rom (hi, 0) e E. 

The proof of this Theorem may be performed step by step as the proof of Theorem 
2 in DANCER [4]. In fact, with respect to our hypothesis (5.6), we need only Lemma 1 
and 2 from [4], where the linearity of the principal part of the equation is not 
essential. 

Let us consider the BVP with Neumann boundary data 

(5.7) f -d iv  (Ivul p -~ Vu) = )~lui p- 2 u + g(x, u(x), ~) 

N(u) =- tVulP-2Vu.n = 0 on ~t~. 

i n ~ ,  

Setting X: = W~ (t~) and defining the operators J, S and G like at the beginning of this 
section we define a weak solution of (5.7) as a function u e X satisfying (5.1). The fol- 
lowing analogue of Lemma 3 holds. 

LEMMA 4. - The first eigenvalue ~1 = 0 of the homogeneous problem 

[-div(jVulP-2Vu) = ~lulP-2u in ~, 
(5.8) ~ ' ' I N ( u ) = 0  on ~ ,  

is simple and isolated. There exists precisely one normalized positive eigenfunction 
ul-= (meas ~)-l/p corresponding to h I "~- O. 

PROOF. - The simplicity of ~1 follows from the property )( )1 
min ( l  flul'dx 

Let us suppose that there are ~ 0 (the eigenvalues of (5.8)) with corresponding 
normalized eigenfunctions u~. Then with respect to complete continuity of S 
we can suppose that u~-ou  in X and (Ju, u)=O. Since ]lull=l, it should be 
either u --- (meas ~9) -1/p or u --- - (meas  ~)-1/~. Simultaneously, taking v - 1 in 

f rVu~l'-2Vu~Vvdx=~ f lu~]P-2unvdx, 
D 
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we get 

which is a contradiction. 

f ]u ]P-2u dx = O, 
t) 

I f  we use Lemma 4 instead of Lemma 3 and substi tute everywhere ~1 : = 0, we can 
prove the same assertions as Theorems 4, 5 concerning the global bifurcation for the 
Neumann BVP (5.7). 
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