# On the Global Bifurcation for a Class of Degenerate Equations ${ }^{( }{ }^{*}$ ). 

Pavel Drábek

Summary. - We consider the nonlinear Dirichlet boundary value problems for the second order equation

$$
-\left(a(x)\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x)\right)^{\prime}-\lambda c(x) \mid u(x)^{p-2} u(x)=g(x, u(x), \lambda)
$$

the fourth order equation

$$
\left(a(x)\left|u^{\prime \prime}(x)\right|^{p-2} u^{\prime \prime}(x)\right)^{\prime \prime}-\lambda c(x)|u(x)|^{p-2} u(x)=g\left(x, u(x), u^{\prime}(x), \lambda\right)
$$

with $p \geqq 2, a \in C^{1}, c \in C, a, c>0, g$ Carathéodory's function, and the partial differential equation

$$
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda|u|^{p-2} u+g(x, u(x), \lambda) \text { in } \Omega, u=0
$$

on $\partial \Omega$, with $p>1, \Omega \subset \mathbb{R}^{N}$, bounded domain. There is proved a global bifurcation result of Rabinowitz's type using the degree theoretical approach for the mappings acting from the Banach space $X$ into its dual $X^{*}$.

## 1. - Introduction.

Let us consider nonlinear boundary value problems (BVPs)

$$
\begin{align*}
&-\left(\alpha(x)\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x)\right)^{\prime}-\lambda c(x)|u(x)|^{p-2} u(x)=  \tag{1.1}\\
&=g(x, u(x), \lambda), \quad u(0)=u(\pi)=0
\end{align*}
$$

and

$$
\begin{align*}
\left(a(x)\left|u^{\prime \prime}(x)\right|^{p-2} u^{\prime \prime}(x)\right)^{\prime \prime}-\lambda c(x)|u(x)|^{p-2} u(x)= &  \tag{1.2}\\
& =g\left(x, u(x), u^{\prime}(x), \lambda\right), \quad u(0)=u^{\prime}(0)=u(\pi)=u^{\prime}(\pi)=0
\end{align*}
$$

(*) Entrata in Redazione il 2 maggio 1988.
Indirizzo dell'A.: Department of Mathematics, Technical University of Plzeň, Nejedlého sady 14, 30614 Plzen̆, Czechoslovakia.

If the coefficient functions $a$ and $c$ are sufficiently smooth, $p \geqq 2$, then NECAS [9] proved that the eigenvalues of the eigenvalue problem

$$
\begin{equation*}
-\left(a(x)\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x)\right)^{\prime}-\lambda c(x)|u(x)|^{p-2} u(x)=0, \quad u(0)=u(\pi)=0, \tag{1.3}
\end{equation*}
$$

form a countable discrete set $\left\{\lambda_{i}\right\}_{i=1}^{\infty}, 0<\lambda_{1}<\lambda_{2}<\ldots \lim _{n \rightarrow \infty} \lambda_{n}=\infty$. Moreover, each eigenvalue $\lambda_{0}$ of (1.3) admits only a finite number of isolated normed eigenfunctions.

The same assertion is proved in KratochvíL-Nečas [7] for the eigenvalue problem

$$
\begin{align*}
\left(a(x)\left|u^{\prime \prime}(x)\right|^{p-2} u^{\prime \prime}(x)\right)^{\prime \prime}-\lambda c(x)|u(x)|^{p-2} u(x)= & 0  \tag{1.4}\\
& \quad u(0)=u^{\prime}(0)=u(\pi)=u^{\prime}(\pi)=0 .
\end{align*}
$$

It is known that Ljusternik-Schnirelmann theory ensures the existence of an infinite sequence of positive eigenvalues of (1.3) (or (1.4)) but this theory does not give all eigenvalues in general (see Fučík et al. [6]). If the eigenvalue $\lambda$ of (1.3) (or (1.4)) is of Ljusternik-Schnirelmann type then under some additional assumptions on the nonlinearity $g$ it is possible to prove that $\lambda$ is a point of local bifurcation of (1.1) (or (1.2)) (see [6]). In this paper we intend to prove that if $\lambda$ is any eigenvalue of (1.3) (or (1.4)) to which correspond an odd number of pairs of normed eigenfunctions then $\lambda$ is $a$ point of global bifurcation of (1.1) (or (1.2)) in the sense of Rabinowitz [11]. Our assumptions on nonlinearity $g$ are rather general. In the case of constant coefficients $a$ and $c$ in (1.1) we obtain that from every eigenvalue $\lambda_{n}$ of the corresponding homogeneous problem two unbounded global branches of nontrivial solutions bifurcate. These branches have the same nodal properties as the eigenfunction corresponding to $\lambda_{n}$.

We shall also consider nonlinear BVP's for the partial differential equations:

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda|u|^{p-2} u+g(x, u(x), \lambda) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \tag{1.5}
\end{equation*}
$$

where $\Omega \subset \boldsymbol{R}^{N}$ is bounded domain with sufficiently smooth boundary $\partial \Omega$ and $p>1$. We prove that the first eigenvalue $\lambda_{1}>0$ of the nonlinear problem

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda|u|^{p-2} u \quad \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \tag{1.6}
\end{equation*}
$$

is a point of global bifurcation of (1.5). An analogous result holds also when the Dirichlet boundary data in (1.5) and (1.6) are replaced by the Neumann condition

$$
N(u) \equiv|\nabla u|^{p-2} \nabla u \cdot \boldsymbol{n}=0 \quad \text { on } \partial \Omega,
$$

where $\boldsymbol{n}$ is the outer normal of $\partial \Omega$.
Note that the equations with the principal part $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ arise in the theory of quasiregular and quasiconformal mappings or in physics (see e.g. [8], [10], [13]).

In order to prove our main results we use functional-theoretical approach. The main tool are the properties of the degree of the mapping $A: X \rightarrow X^{*}$ acting from a Banach space $X$ into its dual $X^{*}$. The definition of this degree and its basic properties may be found e.g. in Skrypnik [12] (cf. also Browder-Petryshyn [3]).

## 2. - Second order problem.

Let us consider the nonlinear Sturm-Liouville problem (1.1) with $a \in C^{1}([0, \pi])$, $a(x)>0$ in $[0, \pi], c \in C([0, \pi]), c(x)>0$ in $[0, \pi]$. Let us suppose that $g=g(x, s, \lambda)$ is a Carathéodory's function, i.e. $g(\cdot, s, \lambda)$ is measurable for all $(s, \lambda) \in R^{2}$ and $g(x, \cdot, \cdot)$ is continuous for a.e. $x \in(0, \pi)$. We also assume that $g(x, 0, \lambda)=0$ and

$$
\begin{equation*}
\lim _{s \rightarrow 0}|s|^{-p+1} g(x, s, \lambda)=0 \tag{2.1}
\end{equation*}
$$

uniformly for a.e. $x \in(0, \pi)$ and $\lambda$ from bounded intervals.
We shall say that $u \in X:=\stackrel{\circ}{W}_{p}^{1}(0, \pi)$ (the usual Sobolev space for $p \geqq 2$ ) is $a$ weak solution of (1.1) if

$$
\begin{equation*}
\int_{0}^{\pi}\left[a(x)\left|u^{\prime}\right|^{p-2} u^{\prime} v^{\prime}-\lambda c(x)|u|^{p-2} u v\right] d x=\int_{0}^{\pi} g(x, u(x), \lambda) v d x \tag{2.2}
\end{equation*}
$$

holds for every $v \in X$.
It is proved in Dráber [5] that whenever $u$ is a weak solution of (1.1) then $u^{\prime} \in C([0, \pi]), a(x)\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x)$ is absolutely continuous and (1.1) holds almost everywhere in $(0, \pi)$. From now, we shall speak only about the weak solution bearing on mind its regularity properties mentioned above.

Let us denote by $X^{*}$ the dual space to $X,\|\cdot\|$ and $\|\cdot\|_{*}$ the norm in $X$ and $X^{*}$, respectively, ( $\cdot, \cdot$ ) will be the pairing between $X$ and $X^{*}$. Define operators $J, S: X \rightarrow X^{*}$ and $G: \mathbb{R} \times X \rightarrow X^{*}$ by

$$
\begin{gathered}
(J u, v)=\int_{0}^{\pi} a(x)\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x) v^{\prime}(x) d x \\
(S u, v)=\int_{0}^{\pi} c(x)|u(x)|^{p-2} u(x) v(x) d x \\
(G(\lambda, u), v)=\int_{0}^{\pi} g(x, u(x), \lambda) v(x) d x
\end{gathered}
$$

for any $u, v \in X$.

Remark 1. - With respect to (2.2) the function $u$ is a weak solution of (1.1) if

$$
\begin{equation*}
J u=S u+G(\lambda, u) . \tag{2.3}
\end{equation*}
$$

Remark 2. - The operators $J, S$ and $G$ have the following properties. $J$ is odd, ( $p-1$ )-homogeneous, satisfying the strong monotonicity condition

$$
\begin{equation*}
(J u-J v, u-v) \geqq c_{0}\|u-v\|^{p}, \tag{2.4}
\end{equation*}
$$

for any $u, v \in X$ with some constant $c_{0}>0$. Moreover, $J$ is a ( $p-1$ )-homeomorphism, i.e. it is an homeomorphism of $X$ onto $X^{*}$ and there exist constants $c_{1}, c_{2}>0$ such that

$$
\begin{equation*}
c_{1}\|u\|^{p-1} \leqq\|J u\|_{*} \leqq c_{2}\|u\|^{p-1} \tag{2.5}
\end{equation*}
$$

for any $u \in X$. The operator $S$ is odd, ( $p-1$ )-homogeneous and completely continuous. The operator $G$ is completely continuous, $G(\lambda, 0)=0$ and with respect to (2.1) $G$ satisfies

$$
\begin{equation*}
\lim _{\|u\|_{0}}\|u\|^{-p+1} G(\lambda, u)=0 \tag{2.6}
\end{equation*}
$$

uniformly with respect to $\lambda$ from bounded intervals.
We shall say that $\lambda$ is an eigenvalue of (1.3) if

$$
\begin{equation*}
J u-\lambda S u=0, \tag{2.7}
\end{equation*}
$$

has a solution $u \in X, u \neq 0$. Such an element $u$ is called an eigenfunction, corresponding to $\lambda$. The eigenvalue $\lambda$ is said to have finite multiplicity equal $n$ if there are exactly $n$ pairs $\left\{\left(u_{i},-u_{i}\right)\right\}_{i=1}^{n}$ of isolated normed eigenfunctions corresponding to $\lambda$.

Remark 3. - According to [9] the eigenvalue problem (1.3) has a countable set of eigenvalues of finite multiplicity satisfying

$$
0<\lambda_{1}<\lambda_{2}<\ldots, \lim _{n \rightarrow \infty} \lambda_{n}=\infty .
$$

Let us denote by $u$ any normed eigenfunction of (1.3). It is proved in [9] that for $\rho(x)=\left|u^{\prime}(x)\right|^{p-2}$ the set

$$
\stackrel{\stackrel{\circ}{W_{2, \rho}^{1}}=\left\{h ; h(0)=h(\pi)=0 \text { and } \int_{0}^{\pi}\left(h^{\prime}\right)^{2} \rho d x=\|h\|_{1,2, \rho}^{2}<\infty\right\}, ~(0)}{ }
$$

is an Hilbert space imbedded algebraically and topologically into $W_{q}^{1}$ when $1 \leqq q<2(p-1)(2 p-3)^{-1}$. Moreover, the system of functions $\left\{v_{n}(x)\right\}_{n=1}^{\infty}=\{\sin n x\}_{n=1}^{\infty}$ is dense in $W_{2, \rho}^{1}$. Note that $X \subset W_{2, \rho}^{1}$ and that $\left\{v_{n}\right\}_{n=1}^{\infty}$ is dense in $X$. Let $u$ be an eigenfunction of (1.3) and $J^{\prime}(u), S^{\prime}(u)$ be the Frechet derivatives of $J$ and $S$, respectively,
at the point $u \in X$, i.e.

$$
\begin{gathered}
\left(J^{\prime}(u) h, k\right)_{W_{2, p}^{1, p}}^{\circ}=(p-1) \int_{0}^{\pi} a(x)\left|u^{\prime}\right|^{p-2} h^{\prime} k^{\prime} d x, \\
\left(S^{\prime}(u) h, k\right)_{W_{2, e}}^{\circ}=(p-1) \int_{0}^{\pi} c(x)|u|^{p-2} h k d x,
\end{gathered}
$$

for any $h, k \in \stackrel{\circ}{W}_{2, p}^{1}$. Then it is also proved in [9] that the linear eigenvalue problem

$$
\begin{equation*}
J^{\prime}(u) h-\mu S^{\prime}(u) h=0 \tag{2.8}
\end{equation*}
$$

has only simple eigenvalues $\mu$ (i.e. with multiplicity 1 ).
For a fixed eigenfunction $u$ we shall write $H=\stackrel{\circ}{W_{2, p}^{1}}$.
Let $D \subset X$ be a bounded open set with boundary $\partial D$. Assume that $A: X \rightarrow X$ is an operator of the type $A=J+K$, where $J$ is strongly monotone and $K$ is completely continuous. Let $A(u) \neq 0$ for any $u \in \partial D$. Set

$$
\Phi_{n}(u)=\sum_{i=1}^{n}\left(A u, v_{i}\right) v_{i}
$$

and $V_{n}=\operatorname{Span}\left\{v_{i}\right\}_{i=1}^{n}$. Then it is possible to define the degree of the mapping $A$ in 0 with respect to $D \subset X$ as the Brouwer degree of $\Phi_{n}: V_{n} \rightarrow V_{n}$ at 0 with respect to $D \cap V_{n}$ for sufficiently large $n$. More precisely,

$$
\begin{equation*}
\operatorname{Deg}[A ; D, 0]=\lim _{n \rightarrow \infty} d_{B}\left[\Phi_{n} ; D \cap V_{n}, 0\right] \tag{2.9}
\end{equation*}
$$

where $d_{B}$ denotes the Brouwer degree.
It is shown in Skrypnik [12] that $d_{B}\left[\Phi_{n} ; D \cap V_{n}, 0\right]$ is constant for $n \geqq n_{0}$, for some $n_{0} \in \mathbb{N}$.

Remark 4. - In fact, the degree (2.9) is defined for more general maps $A$ in [12]. For our purposes it will be sufficient to consider $A=J+K$ which guarantee that all assumptions from [12] are satisfied. The properties of the degree defined by (2.9) are similar to properties of the Leray-Schauder degree. The reader may found them in [12].

Using the strong monotonicity of $J$ and the property (2.5) it is easy to see that

$$
\operatorname{Deg}[A ; D, 0]=\operatorname{deg}\left[I+J^{-1} \circ K ; D, 0\right],
$$

where «deg» denotes the Leray-Schauder degree. However, $J^{-1}$ is not continuously differentiable and so it is more convenient to use the properties of «Deg» in the proof of our main result.

A point $u_{0} \in X$ will be called a critical point of $A$ if $A\left(u_{0}\right)=0$. We say that $u_{0}$ is $a n$
isolated critical point of $A$ if there exists sufficiently small $\varepsilon>0$ such that in $B_{\varepsilon}\left(u_{0}\right)$ (the open ball centred at $u_{0}$ with radius $\varepsilon$ ) $A$ vanishes only in $u_{0}$. The degree $\operatorname{Deg}\left[A ; B_{\varepsilon}\left(u_{0}\right), 0\right]$ will be called the index of the isolated critical point $u_{0}$ (with respect to $A$ ).

Let us suppose that $\Psi: X \rightarrow \mathrm{R}$ is continuously differentaible functional (in the Fréchet sense), and $\Psi^{\prime \prime}(u)=A(u), u \in X$ where $A$ is of the form $J+K$. The following assertion is an immediate consequence of the above definition of the degree «Deg» and of the finite-dimensional version of the result of Amann [1].

Lemma 1. - Let $u_{0}$ be a local minimum of $\Psi$ and an isolated critical point of $A$. Then $\operatorname{Deg}\left[A ; B \varepsilon\left(u_{0}\right), 0\right]=1$ for $\varepsilon>0$ sufficiently small.

Let $E=\mathbb{R} \times X$ be equipped with the norm $\|(\lambda, u)\|^{2}=|\lambda|^{2}+\|u\|^{2}$. We say that $C=$ $=\{(\lambda, u) \in E ;(\lambda, u)$ solves (2.3), $u \neq 0\}$ is a continuum of nontrivial solutions of (1.1) if it is connected in $E$.

We shall formulate and prove our first bifurcation result.
Theorem 1. - Let $\lambda_{n}$ be an eigenvalue of (1.3) of odd multiplicity. Then there exists a continuum $C$ of nontrivial solutions of (1.1) which contains the point ( $\lambda_{n}, 0$ ), in its closure and it is either unbounded in $E$ or it contains in its closure a point $\left(\lambda_{m}, 0\right)$, where $\lambda_{m}$ is an eigenvalue of (1.3), $\lambda_{n} \neq \lambda_{m}$.

The proof of Theorem 1 will be performed in several steps.
Step 1. Let $\delta>0$ be such that $2 \delta<\min \left\{\lambda_{n+1}-\lambda_{n}, \lambda_{n}-\lambda_{n-1}\right\}$, where $\lambda_{n-1}$ and $\lambda_{n+1}$ are the eigenvalues of (1.3) preceding and following $\lambda_{n}$, respectively. We prove that

$$
\begin{equation*}
\operatorname{Deg}\left[J-\left(\lambda_{n}-\delta\right) S ; B_{r}(0), 0\right] \neq \operatorname{Deg}\left[J-\left(\lambda_{n}+\delta\right) S ; B_{r}(0), 0\right] \tag{2.10}
\end{equation*}
$$

for any $r>0$ and $\delta>0$ small enough. Let us define a twice continuously differentiable function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ by the following way:

$$
\begin{gathered}
\psi(t)=0 \quad \text { for } t \leqq R, \\
\psi(t)=\left(\lambda_{n}-\lambda_{1}+2 \delta\right)(t-2 R) \quad \text { for } t \geqq 3 R,
\end{gathered}
$$

$\psi$ positive and strictly convex in $(R, 3 R)$, where $R>0$ is fixed number. Define the functional $F_{\lambda}: X \rightarrow \mathbb{R}$ by

$$
F_{\lambda}(u)=p^{-1}(J u, u)-p^{-1} \lambda(S u, u)+\psi\left(p^{-1}(\mathrm{~S} u, u)\right) .
$$

Then $F_{\lambda}$ is twice continuously differentiable and the critical points of $F_{\lambda}^{\prime}$ correspond to the solutions of the equation

$$
\begin{equation*}
J u-\left(\lambda-\psi^{\prime}\left(p^{-1}(S u, u)\right)\right) S u=0 \tag{2.11}
\end{equation*}
$$

Let us suppose that $u_{0} \in X$ is a critical point of $F_{\lambda}^{\prime}, \lambda \in\left[\lambda_{n}-\delta, \lambda_{n}+\delta\right] \backslash\left\{\lambda_{n}\right\}$. Then
either $u_{0}=0$ or $u_{0} \neq 0$. In case $u_{0} \neq 0$ it follows from (2.11) that

$$
\lambda-\psi^{\prime}\left(p^{-1}\left(S u_{0}, u_{0}\right)\right)=\lambda_{k},
$$

for some eigenvalue $\lambda_{k}<\lambda$ and $u_{0}=l u_{k}$ for some $l=l(\lambda) \in \mathbb{R}\left(u_{k}\right.$ is a normalized eigenfunction corresponding to $\lambda_{k}$ ). Simultaneously, with respect to the definition of $\psi$, for any normed eigenfunction $u_{k}$ corresponding to $\lambda_{k}<\lambda$ we find precisely one $l_{k}=$ $=l_{k}(\lambda)>0$ such that $u_{0}=l_{k} u_{k}$ is a critical point of $F_{\lambda}^{\prime}$. Hence $F_{\lambda}^{\prime}$ has a finite number of isolated critical points of type $0, l_{k} u_{k},-l_{k} u_{k}$, where $u_{k}$ is the eigenfunction corresponding to $\lambda_{k}<\lambda$. If $x>0$ is large enough, we can suppose (with respect to the definition of $\psi$ ) that all these critical points lie in $B_{x}(0)$ and that $\left(F_{\lambda}^{\prime}(u), u\right)>0$ for any $u \in \delta B_{x}(0), \lambda \in\left[\lambda_{n}-\delta, \lambda_{n}+\delta\right] \backslash\left\{\lambda_{n}\right\}$. It follows from the properties of the degree (see [12]) that

$$
\begin{equation*}
\operatorname{Deg}\left[F_{\lambda}^{\prime} ; B_{x}(0), 0\right]=1 \tag{2.12}
\end{equation*}
$$

Let $u_{k}^{\lambda}=l_{k} u_{k}$ be any nonzero critical point of $F_{\lambda}^{\prime}$. We claim that for $k<n$ and for $\delta>0$ small enough the index of $u_{\hat{k}^{n}}^{\lambda_{n}-\delta}$ (with respect to $F_{\lambda_{n}-\delta}^{\prime}$ ) is equal to the index of $u_{k_{n}^{n_{n}}+\delta}$ (with respect to $F_{\lambda_{n}+\delta}^{\prime}$ ) and it is either 1 or -1 . We also claim that the index of $u_{n}^{\lambda_{n}+\delta}$ (with respect to $F_{\lambda_{n}+8}^{\prime}$ ) is either 1 or -1 . Suppose for a moment that claims are true. Then for $\lambda=\lambda_{n}-\delta$ the index of 0 (with respect to $F_{\lambda_{n}-\delta}^{\prime}$ ) is equal to $1-s$, where $s$ is the sum of indeces of all critical points of $F_{\lambda_{n}-\delta}^{\prime}$ different from 0 (see the additivity property of the degree [12] and (2.12)). For $\lambda=\lambda_{n}+\delta$ the index is $1-(s+\bar{s})$, where $\bar{s}$ is the sum of indeces of critical points $u_{n}^{\lambda_{n}+\delta}$. Since the multiplicity of $\lambda_{n}$ is odd, it is $\bar{s} \neq 0$. It follows that the index of 0 with respect to $F_{\lambda}^{\prime}$ changes when $\lambda$ crosses $\lambda_{n}$. Because $J, S$ are homogeneous and $F_{\lambda}^{\prime}(u)=J u-\lambda S u$, for $u \in B_{R}(0)$ we have (2.10) with arbitrary $r>0$ and $\delta>0$ small enough.

Step 2 . We prove above claims. Let $u_{k}$ be the eigenfunction corresponding to $\lambda_{k}$. We shall take the basis $\left\{v_{i}\right\}_{i=1}^{\infty}$ in $X$ and in $H$, where $H$ corresponds to $u_{k}$. According to the definition of the degree the index of $u_{k}^{\lambda}$ is equal to

$$
d_{B}\left[\Phi_{\lambda, q} ; B_{\varepsilon}\left(u_{k}^{\lambda}\right) \cap V_{q}, 0\right],
$$

where

$$
\Phi_{\lambda, q}(u)=\sum_{i=1}^{q}\left(\left(F_{\lambda}^{\prime}(u), v_{i}\right) v_{i}\right.
$$

$q \geqq q(\lambda)$ and $\varepsilon>0$ is small enough. It is

$$
\begin{aligned}
\left(F_{\lambda}^{\prime \prime}\left(u_{k}^{\lambda}\right) w, v\right)=\left(J^{\prime}\left(u_{k}^{\lambda}\right) w, v\right)-\left(\lambda-\psi^{\prime}\right. & \left.\left(p^{-1}\left(S u_{k}^{\lambda}, u_{\hat{k}}^{\lambda}\right)\right)\right) \\
\cdot & \cdot\left(S^{\prime}\left(u_{\hat{k}}^{\lambda}\right) w, v\right)+\psi^{\prime \prime}\left(p^{-1}\left(S u_{k}^{\lambda}, u_{k}^{\lambda}\right)\right)\left(S u_{k}^{\lambda}, w\right)\left(S u_{k}^{\lambda}, v\right),
\end{aligned}
$$

for any $w, v \in H$. Note that $\lambda-\psi^{\prime}\left(p^{-1}\left(S u_{k}^{\lambda}, u_{k}^{\lambda}\right)\right)=\lambda_{k}$. Let us suppose that there is $w_{0} \in H, w_{0} \neq 0$, such that $\left(F_{\lambda}^{\prime \prime}\left(u_{k}^{\lambda}\right) w_{0}, v\right)=0$ for all $v \in H$. Then for $v=u_{k}^{\lambda}$ we get

$$
\begin{align*}
\left(J^{\prime}\left(u_{k}^{\lambda}\right) w_{0}, u_{k}^{\lambda}\right)-\lambda_{k}\left(S^{\prime}\left(u_{k}^{\lambda}\right) w_{0}, u_{k}^{\lambda}\right) & +  \tag{2.13}\\
& +\psi^{\prime \prime}\left(p^{-1}\left(S u_{k}^{\lambda}, u_{k}^{\lambda}\right)\right)\left(S u_{k}^{\lambda}, w_{0}\right)\left(S u_{k}^{\lambda}, u_{k}^{\lambda}\right)=0 .
\end{align*}
$$

Because

$$
\left(J^{\prime}\left(u_{k}^{\lambda}\right) w_{0}, u_{k}^{\lambda}\right)=(p-1)\left(J u_{k}^{\lambda}, w_{0}\right),\left(S^{\prime}\left(u_{k}^{\lambda}\right) w_{0}, u_{k}^{\lambda}\right)=(p-1)\left(S u_{k}^{\lambda}, w_{0}\right)
$$

and $\left(S u_{k}^{\lambda}, u_{k}^{\lambda}\right) \neq 0$ it follows from (2.13) that $\left(S u_{k}^{\lambda}, w_{0}\right)=0$. In this case, however,

$$
\left(J^{\prime}\left(u_{k}^{\lambda}\right) w_{0}, v\right)-\lambda_{k}\left(S^{\prime}\left(u_{k}^{\lambda}\right) w_{0}, v\right)=0,
$$

for any $v \in H$ and since $\lambda_{k}$ is a simple eigenvalue of the linear problem (2.8) (with $u:=u_{k}^{\lambda}$ ), it should be $w_{0}=u_{k}^{\lambda}$ a contradiction with ( $\left.\mathrm{S} u_{k}^{\lambda}, w_{0}\right)=0$. Hence

$$
\begin{equation*}
F_{\lambda}^{\prime \prime}\left(u_{k}^{\lambda}\right) w \neq 0, \tag{2.14}
\end{equation*}
$$

for any $w \in H, w \neq 0$ and for $\lambda \in\left[\lambda_{n}-\delta, \lambda_{n}+\delta\right]$. if $k<n, \lambda=\lambda_{n}+\delta$ if $k=n$.
We show that there exists $q_{0}=q_{0}(\delta)$ such that for all $\lambda \in\left[\lambda_{n}-\delta, \lambda_{n}+\delta\right]$ if $k<n$ and $\lambda=\lambda_{n}+\delta$ if $k=n$

$$
\begin{equation*}
\Phi_{\lambda, q}^{\prime}\left(u_{\hat{k}}^{\lambda}\right) w \neq 0, \tag{2.15}
\end{equation*}
$$

for any $w \in V_{q}, w \neq 0, q \geqq q_{0}$. Let $k<n$. Suppose that (2.15) is not true, i.e. there exist $q \rightarrow \infty, \lambda(q) \in\left[\lambda_{n}-\delta, \lambda_{n}+\delta\right], w_{q} \in V_{q}, w_{q} \neq 0$ such that

$$
\begin{equation*}
\Phi_{\lambda(q), q}^{\prime}\left(u_{k}^{\lambda(q)}\right) w_{q}=0 \tag{2.16}
\end{equation*}
$$

We can suppose that $\lambda(q) \rightarrow \lambda,\left\|w_{q}\right\|_{H}=1$ and $w_{q} \rightarrow w_{0}$ in $H$, for some $w_{0} \in H$. Choose $\widetilde{w}_{q} \in V_{q}$ such that $\widetilde{w}_{q} \rightarrow w_{0}$ in $H$ as $q \rightarrow \infty$. Then (2.16) implies

$$
\left(F_{\lambda(q)}^{\prime \prime}\left(u_{k}^{\lambda(q)}\right) w_{q}, w_{q}-w_{0}\right)=\left(F_{\lambda(q)}^{\prime \prime}\left(u_{k}^{(q)}\right) w_{q}, \widetilde{w}_{q}-w_{0}\right) .
$$

Because the right hand side tends to zero and

$$
\left(F_{\lambda(q)}^{\prime \prime}\left(u_{k}^{\lambda(q)}\right) w_{0}, w_{q}-w_{0}\right) \rightarrow 0,
$$

(realize that $u_{k}^{\lambda(q)}=l_{k}(q) u_{k}$ with some $l_{k}(q)$ from compact interval not containing 0 ) we get

$$
\begin{equation*}
\left(F_{\lambda(q)}^{\prime \prime}\left(u_{k}^{\lambda(q)}\right)\left(w_{q}-w_{0}\right), w_{q}-w_{0}\right) \rightarrow 0, \tag{2.17}
\end{equation*}
$$

as $q \rightarrow \infty$. It follows from here, from the definition of the norm in $H$, from the compactness of $S^{\prime}\left(u_{k}^{\lambda}\right): H \rightarrow H$ and from (2.17) that

$$
w_{q} \rightarrow w_{0} \text { in } H .
$$

Since $\lambda(q) \rightarrow \lambda$ implies $u_{k}^{\lambda(q)} \rightarrow u_{\hat{k}}^{\lambda}$ in $X$, we obtain

$$
\left(F_{\lambda}^{\prime \prime}\left(u_{k}^{\lambda}\right) w_{0}, v\right)=0,
$$

for any $v \in H$ with $\left\|w_{0}\right\|=1$. But this is a contradiction with (2.14). Analogously we prove (2.15) also for $k=n$.

Because
$\Phi_{\lambda, q}^{\prime}\left(u_{k}^{\lambda}\right) w=\sum_{i=1}^{q}\left[\left(J^{\prime}\left(u_{k}^{\lambda}\right) w, v_{i}\right)-\lambda\left(S^{\prime}\left(u_{k}^{\lambda}\right) w, v_{i}\right)+\psi^{\prime \prime}\left(p^{-1}\left(S u_{k}^{\lambda}, u_{k}^{\lambda}\right)\left(S u_{k}^{\lambda}, w\right)\left(S u_{k}^{\lambda}, v_{i}\right)\right] v_{i}\right.$, $w \in V_{q}$, and $u_{k}^{\lambda}$ depends continuously on $\lambda, \operatorname{det} \Phi_{\lambda, q}^{\prime}\left(u_{k}^{\lambda}\right)$ is a continuous function of $\lambda$ and it is

$$
\operatorname{det} \Phi_{\lambda, q}^{\prime}\left(u_{\hat{k}}^{\lambda}\right) \neq 0
$$

with respect to (2.15), for all $\lambda \in\left[\lambda_{n}-\delta, \lambda_{n}+\delta\right]$ if $k<n, q \geqq q_{0}$. Hence for $k<n, \lambda \in\left[\lambda_{n}-\delta, \lambda_{n}+\delta\right]$, the Brouwer degree $d_{B}\left[\Phi_{\lambda, q} ; B_{\varepsilon}\left(u_{k}^{\lambda}\right) \cap V_{q}, 0\right]$ is a constant function of $\lambda$ either equal to +1 for all $q \geqq q_{0}$ or equal to -1 for all $q \geqq q_{0}$. We obtain directly from (2.15) that

$$
d_{B}\left[\Phi_{\lambda_{n}+\delta_{q},} ; B_{c}\left(u_{n}^{\lambda}\right) \cap V_{q}, 0\right]= \pm 1
$$

independently of $q \geqq q_{0}$. If we take $q(\lambda)=q_{0}$ in the definition of $\Phi_{\lambda, q}$ the claims are proved.

Step 3. Put

$$
\mathscr{P}(\lambda, u)=J u-\lambda S u-G(\lambda, u) .
$$

Then it follows immediately from (2.6) and from the homotopy invariance property of the degree (see [12]) that

$$
\begin{equation*}
\operatorname{Deg}\left[\mathscr{P}\left(\lambda_{n}-\delta, \cdot\right) ; B_{r}(0), 0\right] \neq \operatorname{Deg}\left[\mathscr{P}\left(\lambda_{n}+\delta, \cdot\right) ; B_{r}(0), 0\right] \tag{2.18}
\end{equation*}
$$

for $r>0$ and $\delta>0$ small enough.
Step 4. Following step by step the Rabinowitz's proof [11, Theorem 1.3], using (2.6) and (2.18), the existence of the continuum $C$ of nontrivial solutions of (1.1) with the desired properties can be proved. This completes the proof of Theorem 1.

## 3. - Second order problem with constant coefficients.

Let us consider the special case of $(1.1)$ with $a(x) \equiv c(x) \equiv 1$ on $[0, \pi]$. It is proved in [5] that in this case the eigenvalues of (1.3) are simple and that any eigenfunction corresponding to the $n$-th eigenvalue $\lambda_{n}$ has precisely $n-1$ simple nodes (i.e. $u^{\prime}\left(x_{0}\right) \neq 0$ for $\left.u\left(u_{0}\right)=0\right)$ in $(0, \pi)$. If $g=g(x, u, \lambda)$ is a continuous function then one can prove that $\left|u^{\prime}\right|^{p-2} u^{\prime} \in C^{1}([0, \pi])$ for any solution $u$ of (1.1) (see [5]).

Using the assumption (2.1) it follows directly from equation (1.1) that any nontrivial solution of (1.1) has only simple nodes in $[0, \pi]$ (in 0 and in $\pi$ it means that $u_{+}^{\prime}(0) \neq 0$ and $u_{-}^{\prime}(\pi) \neq 0$, respectively). We have also the following information about the structure of $C$.

Lemma 2. - The convergence $\left(\lambda_{n}, u_{n}\right) \rightarrow(\lambda, u)$ in $E,\left(\lambda_{n}, u_{n}\right),(\lambda, u) \in C$, yields $u_{n} \rightarrow u$ in $C^{1}([0, \pi])$.

Proof. - We have

$$
\begin{gather*}
-\left(\left|u_{n}^{\prime}\right|^{p-2} u_{n}^{\prime}\right)^{\prime}=\lambda_{n}\left|u_{n}\right|^{p-2} u_{n}+g\left(x, u_{n}, \lambda_{n}\right),  \tag{3.1}\\
-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=\lambda|u|^{p-2} u+g(x, u, \lambda), \tag{3.2}
\end{gather*}
$$

and $u_{n} \rightarrow u$ in $C([0, \pi])$ with respect to continuous imbedding $X \subset C([0, \pi])$. We get from (3.1), (3.2)
$\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x)-\left|u_{n}^{\prime}(x)\right|^{p-2} u_{n}^{\prime}(x)=$
$=k+\int_{0}^{x}\left[\lambda_{n}\left|u_{n}(t)\right|^{p-2} u_{n}(t)-\lambda|u(t)|^{p-2} u(t)+g\left(t, u_{n}(t), \lambda_{n}\right)-g(t, u(t), \lambda)\right] d t$,
i.e.

$$
\left|u_{n}^{\prime}(x)\right|^{p-2} u_{n}^{\prime}(x) \rightarrow k+\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x) \quad \text { in } C([0, \pi])
$$

But $u_{n} \rightarrow u$ in $X$ implies $u_{n} \rightarrow u$ uniformly on $[0, \pi]$. Hence it follows that $k=0$. Since the function $s \mapsto|s|^{1 /(p-1)}$ sign $s$ is $(p-1)^{-1}$-Hölder continuous we have $u_{n}^{\prime} \rightarrow u^{\prime}$ in $C([0, \pi])$ which concludes the proof.

Remark 5. - In other words Lemma 2 states that the topology on $C$ induced by the norm on $E$ is equivalent to the topology on $C$ induced by the norm

$$
\|(\lambda, u)\|_{1}^{2}=|\lambda|^{2}+\|u\|_{C^{1}([0, \pi])}^{2}
$$

Let us suppose that $\lambda_{n}$ is the $n$-th eigenvalue of (1.1) and $u_{n}$ is the corresponding normalized eigenfunction satisfying $u_{n}^{\prime}(0)>0$. Using the same argument as in [11, Lemma 1.24, Theorem 1.25] it is possible to show that there are two maximal connected subsets of $C$ ( $C$ being from Theorem 1) bifurcating from $\left(\lambda_{n}, 0\right)$ in the directions $u_{n}$ and $-u_{n}$. More precisely, let $\tau \in(0,1)$ and $K_{\tau}^{+}=\left\{(\lambda, u) \in E ;\left(\varphi^{*}, u\right)>\tau\|u\|\right\}, K_{\tau}^{-}=$ $=\left\{(\lambda, u) \in E ;\left(\varphi^{*}, u\right)<-\tau\|u\|\right\}$, where $\varphi^{*} \in \mathrm{X}^{*}$ is a fixed element such that $\left(\varphi^{*}, u_{n}\right)=1$. Then there are maximal connected sets $C_{n}^{+}, C_{n}^{-}$such that $C_{n}^{+} \cup C_{n}^{-} \subset C, C_{n}^{ \pm}$contain $\left(\lambda_{n}, 0\right)$ in its closure and $C_{n}^{+} \cap \mathscr{B}_{s}\left(\lambda_{n}, 0\right) \subset K_{\tau}^{+}, C_{n}^{-} \cap \mathscr{B}_{s}\left(\lambda_{n}, 0\right) \subset K_{\tau}^{-}$with some $s=s(\tau)>0$ small enough (here $\mathscr{B}_{s}\left(\lambda_{n}, 0\right)$ is the ball in $E$ with radius $s>0$ centred at $\left.\left(\lambda_{n}, 0\right)\right)$.

It follows immediately from Lemma 2 that $C_{n}^{+} \cap C_{n}^{-}=\emptyset$. Moreover, if $m \neq n$ then
$C_{m}^{\nu} \cap C_{n}^{\nu}=\emptyset$ for any $\nu \in\{+,-\}$ with respect to the nodal properties of the eigenfunctions and Lemma 2.

ThEOREM 2. - Let $\lambda_{n}$ be an eigenvalue of (1.1) with constant coefficients $a(x) \equiv c(x) \equiv 1$. Let the function $g=g(x, u, \lambda)$ be continuous and satisfy $(2.1)$. Then there are two unbounded continua of nontrivial solutions $C_{n}^{+}$and $C_{n}^{-}$bifurcating from $\left(\lambda_{n}, 0\right)$ with the property that if $(\lambda, u) \in C_{n}$ then $u$ has $n-1$ simple nodes in $(0, \pi)$ and sign $u^{\prime}(0)=\nu, \nu \in\{+,-\}$.

Proof. - It follows from the above considerations that the continuum $C_{n}$ bifurcating from ( $\lambda_{n}, 0$ ) which can be decomposed as $C_{n}^{+} \cup C_{n}^{-}$does not satisfy the second alternative of Theorem 1. According to Lemma 2 both $C_{n}^{+}$and $C_{n}^{-}$save the nodal properties of $u_{n}$ and $-u_{n}$, respectively. Hence neither $C_{n}^{+}$nor $C_{n}^{-}$contains the points of the form $(\lambda, u),(\lambda,-u)$. Then following the proof of Theorem 1.27 in [11] we get that $C_{n}$ is unbounded for both $\nu=«+$ » and $\nu=«-$.

## 4. - Fourth order problem.

Let us consider the nonlinear problem (1.2) with the same assumptions on $a$ and $c$ as in Section 2. We suppose that $g=g(x, s, r, \lambda)$ is a Carathéodory's function, i.e. $g(\cdot, s, r, \lambda)$ is measurable for all $(s, r, \lambda) \in \mathbb{R}^{3}$ and $g(x, \cdot, \cdot, \cdot)$ is continuous for a.e. $x \in(0, \pi)$. We also assume that $g(x, 0,0, \lambda)=0$ and

$$
\lim _{(s, r) \rightarrow(0,0)}\left|s^{2}+r^{2}\right|^{(-p+1) / 2} g(x, s, r, \lambda)=0
$$

uniformly for a.e. $x \in(0, \pi)$ and $\lambda$ from bounded intervals. Set $X:=\stackrel{\circ}{W}_{p}^{2}(0, \pi)$ and define $J, S: X \rightarrow X^{*}$ and $G: \mathbb{R} \times X \rightarrow X^{*}$ as follows

$$
\begin{gathered}
(J u, v)=\int_{0}^{\pi} a(x)\left|u^{\prime \prime}(x)\right|^{p-2} u^{\prime \prime}(x) v^{\prime \prime}(x) d x \\
(S u, v)=\int_{0}^{\pi} c(x)|u(x)|^{p-2} u(x) v(x) d x \\
(G(\lambda, u), v)=\int_{0}^{\pi} g\left(x, u(x), u^{\prime}(x), \lambda\right) v(x) d x
\end{gathered}
$$

for any $u, v \in X$.
The operators $J, S$ and $G$ have the same properties as these in Section 2 (cf. Remarks 1, 2).

It is proved in Kratochvíl-Nečas [7] that the eigenvalue problem (2.7) with $J$
and $S$ defined above has a countable set of eigenvalues of finite multiplicity

$$
0<\lambda_{1}<\lambda_{2}<\ldots, \lim _{n \rightarrow \infty} \lambda_{n}=\infty .
$$

Moreover, if $u$ is any normalized eigenfunction then the set

$$
\stackrel{\circ}{W}_{2, \rho}^{2}=\left\{h ; h(0)=h^{\prime}(0)=h(\pi)=h^{\prime}(\pi)=0 \text { and } \int_{0}^{\pi}\left(h^{\prime \prime}\right)^{2} p d x \equiv\|h\|_{2,2, \rho}^{2}<\infty\right\},
$$

where $\rho(x)=\left|u^{\prime \prime}(x)\right|^{p-2}$, is the Hilbert space imbedded algebraically and topologically into $W_{q}^{2}$ when $1 \leqq q<2(p-1)(2 p-3)^{-1}$. It is also proved in [7] that the linear eigenvalue problem

$$
\int_{0}^{\pi} a(x)\left|u^{\prime \prime}(x)\right|^{p-2} h^{\prime \prime}(x) k^{\prime \prime}(x) d x-\mu \int_{0}^{\pi} c(x)|u(x)|^{p-2} h(x) k(x) d x=0,
$$

for any $k \in \stackrel{\stackrel{\circ}{W}}{\dot{W}, p} 2$, has only simple eigenvalues.
Set $H:=W_{2, p}^{2}$ for fixed eigenfunction $u$ and as $\left\{v_{n}\right\}_{n=1}^{\infty}$ take the eigenfunctions of the problem

$$
u^{I V}-\lambda u=0, \quad u(0)=u^{\prime}(0)=u(\pi)=u^{\prime}(\pi)=0 .
$$

Then $\left\{v_{n}\right\}_{n=1}^{\infty}$ is dense both in $X$ and in $H$. By a weak solution of (1.2) we shall mean a function $u \in X$ satisfying (2.3). Similarly as in Section 2 we define a continuum $C$ of nontrivial weak solutions of (1.2). Using essentially the same approach as in Section 2 we get.

THEOREM 3. - Let $\lambda_{n}$ be an eigenvalue of homogeneous fourthorder problem (1.4) of odd multiplicity. Then there exists a continuum $C$ of nontrivial weak solutions of (1.2) which contains the point $\left(\lambda_{n}, 0\right)$ in its closure and it is either unbounded in $E$ or it contains in its closure the point $\left(\lambda_{m}, 0\right)$ where $\lambda_{m}$ is an eigenvalue of (1.4), $\lambda_{m} \neq \lambda_{n}$.

## 5. - Partial differential equations.

In this section we consider the bifurcation problem (1.5). We shall suppose that the nonlinear function $g=g(x, s, \lambda)$ satisfies the assumptions from Section 2 with $[0, \pi]$ replaced by $\Omega \subset \mathbb{R}^{N}$. Set $X:=\stackrel{\circ}{W}_{p}^{1}(\Omega)$ and define $J, S: X \rightarrow X^{*}$ and $G: \mathbb{R} \times X \rightarrow X^{*}$ as follows

$$
(J u, v)=\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla v d x,
$$

$$
\begin{gathered}
(S u, v)=\int_{\Omega}|u|^{p-2} u v d x \\
(G(\lambda, u), v)=\int_{\Omega} g(x, u(x), \lambda) v(x) d x
\end{gathered}
$$

for any $u, v \in X$, with $p>1$.
The operators $J, S$ and $G$ have the same properties as those defined in Section 2 (cf. Remarks 1,2 ) for $p \geqq 2$. In the case $1<p<2$ the operator $J$ is not strongly monotone in the sense of (2.4) but it satisfies condition ( $\alpha$ ) from SkRypnik [12] (cf. Remark 4).

A function $u \in X$ is said to be $a$ weak solution of (1.5) and (1.6) if it satisfies

$$
\begin{equation*}
J u=\lambda S u+G(\lambda, u) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
J u=\lambda S u, \tag{5.2}
\end{equation*}
$$

respectively.
REMARK 6. - If a weak solution $u$ of (1.5) (or (1.6)) satisfies apriori $u \in L_{\infty}$ then it follows from the result of Tolksdorf [13] that the derivatives of $u$ are already Hölder continuous. Particularly, if $g$ is bounded, we obtain the regularity in this sense in the case $p>N$ with respect to the Sobolev's imbedding theorem.

As in Section 2 we define a continuum $C$ of nontrivial weak solutions of (1.5).

The following assertion concerning the first eigenvalue to the problem (1.6) is proved in Anane [2].

Lemma 3. - Let us suppose that the boundary $\partial \Omega$ is of class $C^{2, \beta}$. Then there exists the first eigenvalue $\lambda_{1}>0$ of (1.6) which is simple and isolated. A corresponding eigenfunction $u_{1} \in C^{1, \alpha}(\bar{\Omega}), \alpha \in(0,1)$, can be chosen such that $u_{1}>0$ in $\Omega$ and $\partial u_{1} / \partial \boldsymbol{n}<0$ on $\partial \Omega$.

We use this and the approach from the proof of Theorem 1 in order to prove the following global bifurcation result.

Theorem 4. - Let us suppose that all assumptions stated above are fulfilled. Then there exists a continuum $C$ of nontrivial weak solutions of (1.5) which contains the point $\left(\lambda_{1}, 0\right) \in E$ in its closure and it is either unbounded in $E$ or it contains in its closure a point $\left(\lambda_{0}, 0\right)$, where $\lambda_{0}>\lambda_{1}$ is an eigenvalue of (1.6).

Proof. - We prove that

$$
\begin{equation*}
\operatorname{Deg}\left[J-\left(\lambda_{1}-\delta\right) S ; B_{r}(0), 0\right] \neq \operatorname{Deg}\left[J-\left(\lambda_{1}+\delta\right) S ; B_{r}(0), 0\right] \tag{5.3}
\end{equation*}
$$

for $r>0$ and $\delta>0$ small enough.
Similarly as in the proof of Theorem 1 we define the function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\begin{gathered}
\psi(t)=0, \quad \text { for } t \leqq R, \\
\psi(t)=2 \delta(t-2 R), \quad \text { for } t \geqq 3 R,
\end{gathered}
$$

$\psi$ positive and strictly convex in $(R, 3 R)$, where $R>0$ is fixed number and $\delta>0$ is chosen in such a way that ( $\left.\lambda_{1}, \lambda_{1}+\delta\right]$ does not contain any eigenvalue of (1.6) (cf. Lemma 3). Following the notations from the proof of Theorem 1, we obtain that $F_{\lambda}$ is at least once continuously differentiable (we have, now, $p>1$ ) and that the critical points of $F_{\lambda}^{\prime}$ correspond to the solutions of the equation (2.11). We obtain also that for $\lambda=\lambda_{1}-\delta$ the point $0 \in X$ is the only critical point of $F_{\lambda}^{\prime}$ while for $\lambda=\lambda_{1}+\delta$ there are precisely three isolated critical points of $F_{\lambda}^{\prime}: 0, u_{1},-u_{1}$, where $u_{1}>0$ is an eigenfunction corresponding to $\lambda_{1}$. Since 0 is the minimum of $F_{\lambda_{1}-\delta}$, the index of 0 with respect to $F_{\lambda_{1}-\delta}^{\prime}$ is 1 , by Lemma 1, i.e.

$$
\begin{equation*}
\operatorname{Deg}\left[J-\left(\lambda_{1}-\delta^{0}\right) S ; B_{r}(0), 0\right]=1 \tag{5.4}
\end{equation*}
$$

with arbitrary $r>0$.
The points $u_{1}$ and $-u_{1}$ are minima of $F_{\lambda_{1}+\delta}$ and hence, by Lemma 1, their index with respect to $F_{\lambda_{1}+\delta}^{\prime}$ is 1 . Simultaneously, $\operatorname{Deg}\left[F_{\lambda_{1}+\delta}^{\prime} ; B_{x}(0), 0\right]=1$, for $x>0$ large enough, with respect to the definition of $\psi$. Combining these two facts we get that the index of 0 with respect to $F_{\lambda_{1}+\delta}^{\prime}$ is -1 , i.e.

$$
\begin{equation*}
\operatorname{Deg}\left[J-\left(\lambda_{1}+\delta\right) S ; B_{r}(0), 0\right]=-1 \tag{5.5}
\end{equation*}
$$

with arbitrary $r>0$.
The relation (5.3) then follows from (5.4) and (5.5). To complete the proof we proceed by the same way as in Steps 3 and 4 of the proof of Theorem 1.

Remark 7. - The proof of Theorem 4 works also without the assumption of simplicity of $\lambda_{1}$. In order to establish (5.3) (and hence to prove Theorem 4) it is sufficient to know that the set of normalized eigenfunctions corresponding to $\lambda_{1}$ is finite. The simplicity of $\lambda_{1}$ (Lemma 3) allows us to strengthen the assertion of Theorem 4 in the following sense.

Theorem 5. - Let the assumptions of Theorem 4 be fulfilled. Moreover, suppose that there exists $\delta>0$ such that

$$
\begin{equation*}
J u \neq \lambda_{1} S u+G\left(\lambda_{1}, u\right), \tag{5.6}
\end{equation*}
$$

for $0<\|\mathrm{u}\| \leqq \delta$. Then there are maximal connected subsets $C^{+}, C^{-}$, of $C$ containing
$\left(\lambda_{1}, 0\right) \in E$ in their closure, $C^{ \pm} \cap \mathfrak{B}_{s}\left(\lambda_{1}, 0\right) \subset K_{\tau}^{ \pm}\left(\right.$for $K_{\tau}^{ \pm}, \mathscr{B}_{s}\left(\lambda_{1}, 0\right)$ see Section 2, $n=1$ ) and such that either
(i) both $C^{+}, C^{-}$are unbounded in $E$, or
(ii) both $C^{+}, C^{-}$contain in their closure a point different from $\left(\lambda_{1}, 0\right) \in E$.

The proof of this Theorem may be performed step by step as the proof of Theorem 2 in Dancer [4]. In fact, with respect to our hypothesis (5.6), we need only Lemma 1 and 2 from [4], where the linearity of the principal part of the equation is not essential.

Let us consider the BVP with Neumann boundary data

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda|u|^{p-2} u+g(x, u(x), \lambda) \quad \text { in } \Omega,  \tag{5.7}\\
N(u) \equiv|\nabla u|^{p-2} \nabla u \cdot \boldsymbol{n}=0 \quad \text { on } \partial \Omega .
\end{array}\right.
$$

Setting $X:=W_{p}^{1}(\Omega)$ and defining the operators $J, S$ and $G$ like at the beginning of this section we define a weak solution of (5.7) as a function $u \in X$ satisfying (5.1). The following analogue of Lemma 3 holds.

Lemma 4. - The first eigenvalue $\lambda_{1}=0$ of the homogeneous problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\lambda|u|^{p-2} u \quad \text { in } \Omega,  \tag{5.8}\\
N(u)=0 \quad \text { on } \partial \Omega,
\end{array}\right.
$$

is simple and isolated. There exists precisely one normalized positive eigenfunction $u_{1} \equiv(\text { meas } \Omega)^{-1 / p}$ corresponding to $\lambda_{1}=0$.

Proof. - The simplicity of $\lambda_{1}$ follows from the property

$$
0=\lambda_{\mathrm{I}}=\min _{u \in X, u \neq 0}\left(\int_{Q} \mid \nabla u^{p} d x\right)\left(\int_{\Omega}|u|^{p} d x\right)^{-1}
$$

Let us suppose that there are $\lambda_{n} \rightarrow 0$ (the eigenvalues of (5.8)) with corresponding normalized eigenfunctions $u_{n}$. Then with respect to complete continuity of $S$ we can suppose that $u_{n} \rightarrow u$ in $X$ and $(J u, u)=0$. Since $\|u\|=1$, it should be either $u \equiv(\text { meas } \Omega)^{-1 / p}$ or $u \equiv-(\text { meas } \Omega)^{-1 / p}$. Simultaneously, taking $v \equiv 1$ in

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v d x=\lambda \int_{\Omega}\left|u_{n}\right|^{p-2} u_{n} v d x,
$$

we get

$$
\int_{\Omega}\left|u_{n}\right|^{p-2} u_{n} d x=0
$$

which is a contradiction.
If we use Lemma 4 instead of Lemma 3 and substitute everywhere $\lambda_{1}:=0$, we can prove the same assertions as Theorems 4, 5 concerning the global bifurcation for the Neumann BVP (5.7).

## REFERENCES

[1] H. Amann, A note on the degree theory for gradient mappings, Proc. Amer. Math. Society, 85 (1982), pp. 591-595.
[2] A. Anane, Simplicité et isolation de la premier valeur propre du p-laplacian avec poids, C. R. Acad. Sci. Paris, 305, Sér. 1 (1987), pp. 725-728.
[3] F. E. BRowder - W. F. Petryshyn, Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Functional Analysis, 3 (1969), pp. 217-245.
[4] E. N. Dancer, On the structure of the solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 23 (11) (1974), pp. 1069-1076.
[5] P. Drábek, Ranges of a-homogeneous operators and their perturbations, Čas. Pěst. Mat., 105 (1980), pp. 167-183.
[6] S. Fučík - J. NečAS - J. SoučEk - V. Souček, Spectral Analysis of Nonlinear Operators, Lecture Notes in Math., 346, Springer, Berlin, 1973.
[7] A. Kratochvíl - J. Nečas, On the discretness of the spectrum of nonlinear forth-order Sturm-Liouville problem (in Russian), Comment. Math. Univ. Carolinae, 12 (1971), pp. 639-653.
[8] L. Libourty, Traité de Glaceologie, Masson and Lie, Paris (I) 1964 et (II) 1965.
[9] J. Nečas, On the discretness of the spectrum of nonlinear second-order Sturm-Liouville problem (in Russian), Dokl. Akad. Nauk SSSR, 201 (5) (1971), pp. 1045-1048.
[10] M. C. PÉllister - L. Reynaud, Étude d'un modéle mathématique d'écoulement de glacier, C. R. Acad. Sci. Paris, Sér. A, 279 (1979), pp. 531-534.
[11] R. H. Rabinowitz, Some global results for nonlinear eigenvalue problem, J. Functional Analysis, 7 (1971), pp. 487-513.
[12] I. V. Skrypnik, Nonlinear Elliptic Equations of Higher Order (in Russian), Naukovaja Dumka, Kyjev, 1973.
[13] P. TolkSdorf, Regularity of a more general class of quasi-linear elliptic equations, J. Differential Equations, 51 (1984), pp. 126-150.

