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Summary. - I n  this paper we consider the pseudo-parabolic equations arising in  the ]iltration 
o] water in media with double po*'osity and moisture trans]er in  soil. The existence~ uni- 
queness and stability /or both classical and weak solutions are studied. 

1 .  - I n t r o d u c t i o n .  

We know tha t  the  fil tration of water  in media with double porosi ty [6], moisture 
t ransfer  in soil [4], and other  similar na tura l  phenomena,  can lead to  the  following 
typica l  boundary  value problem with a pseudo-parabolic equat ion:  

(1.1) u ~ - ~  Au § T ,  in Q~; 

(1.2) u(x, 0) = ~(x), 0 < x < l ;  

(1.3) ~(0, i) = ](t), o < t < r ;  

(1.4) u~(O, t) = g(t) ,  O < t < T .  

where 

(1.5) 

Qr = (0, 1) • (o r T], T > 0 and f, g, % F and a~ (i = 1, 2, 3, 4, 5) are given functions. 
This type  of boundary  value problem (1.1)-(1.4) has been invest igated in [3, 6, 7, 15] 
in the  case when a~ = 0 and the  other  a~ are continuously differentiable in ~)~. 
The basic tool  in [3, 7, 15] is the  Riemalm funct ion me thod  which, of course 
requires appropr ia te  smoothness of the  coefficients a~ = a~(x, t). 

�9 The equat ion of form (1.1) can also arise in s tudying of nons teady  shearing flow 
of a second order fluid [2, 14] with the  boundary  conditions given on both  sides of 
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x ~ 0 gnd x - 1 or on DY2 in ~-dimcnsional spaces. The in i t ia l -boundary value pro- 
blem is studied in [1, 2, 8, 11, 13, 14]. When  a~ ~ a2 ~- 0 in (1.1), S~OWALT~ [9, 10] 
considered the  Sobolev equat ions in Hi lber t  spaces and obta ined abs t rac t  weak 
solutions. Since the  solution u of (1.1)-(1A) is not  specified on x = 1, problem 
(1.1)-(1.r is different f rom those considered in [1~ 2, 8, 9, 10, 11, 13, 14]. 

In  this  paper  we employ the  Bunach fixed point  theorem to show tha t  a maiqne 
solution exists for (1.1)-(1.4) under gssumptions on the  da ta  which are much weaker 
t h a n  those in [3~ 7, 15]. In  the  c~se when all a~ are bounded measurable  functions 
we show tha t  the  solution exists and s,~tisfies (1.1) in the  sense of .L~(Q~). The me thod  
used in this paper  is not  o~ly different f rom th a t  employed in [3, 7, 15], bu t  also f rom 
tha t  employed  in [1, 2, 8, 9, 10~ 11, 13, 14]. 

DESIN~TIO~ 1.1. -- A funct ion u(x, t) is called a classical solution for (1.1)-(Ld) if 

(1.6) u, u~, u,~, u~, u~ ,  u ~ , ~  C(~),~) ; 

utld u satisfies (t.1)-(1.4), where C(~)r) is the  class of continuous functions in ~)~. 

RE~A~K 1.1. - P rom this  definition we see t h a t  t he  solution u satisfies (1.1) not  
only in Q~, bu t  glso in ~)r, so i t  is u ve ry  strong solution. 

We shall use C[0, 1] and C[0, T] to denote  the  class of continuous fnnctions in 
[0~ 1] and [0, T] respectively,  and 

Ck[O, 1] = { ~  C[O, ! ] :  ~(~)e C[0, 1], l < l < k }  

o~[0, T] = ( / e  r r ] :  1, ~) e C[0, r ] ,  l < ~ < k }  ; 

le t  L~-(O, 1) and L~(O, T) denote  classes of the  square integrable  functions on (0, 1) 
and (0, T), respect ively,  and 

mqo,  1) = {~ e L~(o, 1): ~ ,  e L~(o, 1), 1 <  t < k} 

~ ( 0 ,  T) = {1 e Z~(0, T):/c,, e Z~(0, T), 1 < t <  k} 

for k - - 1 ,  2. We employ the  symbol [] i[ with a subscripted name of the  space for 
the  usual  norm for t h a t  space. 

ASSVm~T~ON (H I): 

(i.7) 

(1.8) 

e@[O,l], /,geCl[0,~], ~(o) =/(o), ~'(o) =g(0), 

J~, a~ e C(~)T); i ~- 1, 2, 3, 4, 5 .  

Rn)IA~K :[.2. - I t  is clear t ha t  assumption (1.8) is much  weaker  t h an  the  requLm- 
men t  of smoothness on the  ai. The  compat ibi l i ty  assumption at  (0, 0) is necessary 
f rom the  definition 1.1. 
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DEF:[~'ITION 1.2. -- A funct ion u(x, t) is called a weak solution for (1.1)-(1.4) if 

(1.9) u, u~, u~,  ut, u~t, u~te  L~(QT); 

and u satisfies (1,1) in the  sense of L~(Q~.) and (1.2)-(1.4) in the  trace sense. 

For  this definition we have 

Ass~_eTIo~ (I t  I I ) :  

(1.1o) 

(1.11) E ~ L2(Q~), and the  a~, i ---- 1, 2, 3, 4, 5, ~re bounded measurab le .  

R]~A~K 1.3. - The classical und weak solutions for (1.1)-(1.4) are defined above,  
bu t  the  proofs of the  existence of classical and weak solutions are r a the r  different. 
W h e n / v ,  ~, ~,, ~,,,/, 1,, g, g, are all bounded measurable functions,  we can show th a t  
the  weak solution u exists in the  sense of u with ~11 its derivatives u~, u~,  ut, u~t 
and u~t  are bounded measurable in Qr. In  fact  i t  will be seen la ter  t ha t  the  proofs 
for this case are exac t ly  the  same as those for classical solutions. 

In  section 2 of this  paper  we will t ransform (1.1)-(1.4) to  an equivalent  integ~'o- 

differential equation,  we ~lso prove some lemmas there  which will be needed sub- 
sequently.  Section 3 contains the  proof for the  existence of the  classical solution 
under  ~ssumption (It  I). We shall show, in section 4, t h a t  the  unique weak solution 
of (1.1)(] .4)  also exists under  the  assumption ( tI  II) .  

2. - A n  equiva lent  problem.  

Suppose u(z, t) is a classical solution for (1.1)-(1.2), then,  we have f rom integra- 
t ion tha t  

$ 

(2.1) ~ =f[~,,(~, ~) + F(~, ~)] a~ + ~"(~), 
0 

t 

(2.2) u, = f  f[Au(e, ~) -~- 2~(e, ~)]d~de -~ ? ' ( x ) -  q/(0) -~ g(t),  
0 0 

0 0 0  

(2.4) ~ ,  =fiAt(e,  t) + ~(e, ~)] de + g'(t), 
0 

0 0 
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I t  is appropr ia te ,  therefore ,  to consider the  integro-different ial  equat ion  

(2.6) 

where 

:~ ~7 

O 0 0 

in Q:v 

(2.7) ~4(x, t)  - 9J(x) - r - , ~ ' ( O ) x  - ~  g ( t ) x  + i ( t )  . 

DEFICIT, O> ~ :A!. - k funct ion u(x, t) is called a classical solution of (2.6) if 

(2.s) 

and (2.6) is satisfied. 

Al though (2.6) does not  give any  in fo rmat ion  on in i t i a l -boundary  values ex- 

plicitly~ t h e y  have  been  bui l t  in (2.6) via  t he  funct ion G(x, t). ~foreover,  (2.6) is a 
p rob lem which is equiva len t  to (1.1)-(1A), owing to t he  following lemmas ,  and  is 
easier  to study.  

LESL}I& 2.1. - ~[f U(X, ~) iS ~ solution of (2.6), t h e n  u~ ,  exists  and  is in C(Qz). 

P~00F. - Different ia te  (2.6). 

L E ) ~ &  2.2. ~ (1.1)-(1.4) is equivalen~ to (2,6) under  a s sumpt ion  (H I)  (ciassicM 

s e n s e ) .  

PICOOF. - If ,~ iS a classical solution of (2.6), then it satisfies (1.2)-(1.4). From 

lemma 2.1 we see that it is a classical solution for (i.I)-(1.4). The other part of lemma 

follows from the formulation of (2.6). 

W i t h  these  two l e m m a  in hand  we shall  s tudy  (2.6) ins tead  of (1.1)-(].4) since 

if we have  a classical solution for (2.6)~ t h e n  i t  is au toma t i ca l l y  a classical soI~tion 

for  (1.1)-(1.4). I t  is also easy  to see t h a t  the  uniqueness and  continuous dependence 
of t he  solution of (2.6) will ca r ry  over  to (1.1)-(1.r 

DE~I~xTIO~ 2.2. - Define the  Banach  space B(M)~ where M is a closed set, b y  

(2.9) 

with norm defined by 

wheye [[ ' l~ is the usual  sup-norm on C(M). 
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3 .  - C l a s s i c a l  s o l u t i o n s .  

Let  K = [0~ x'] • [0, t'] with x' ~ (0, 1] and t ~ (0,/~], and 

(3.1) BL(K  ) = { u e B ( K ) :  ]lu[t~(g)<L, u(x, O) --~ ? (x ) ,  

u(O, t) : (/, t) and u~(O, t) : g(t)}, 

where J5 is a positive constant  which will be defined later. The mapping S on BL(/s ) 
is defined by  

x U t 

(3.2) Su 

0 0 0 

where G(x, t) is defined in (2.7). We know f rom (3.2) t h a t  for any  u ~ BL(K ) we have 

(3.3) (Su)(x, O) = q(x) , 

~ffow we shall show tha t  

(Su)(O, t) = / ( t )  and (Su)~(O, t) = g(t) .  

S: BL(K ) --> Bz(K)  

for some appropria te  choices of x'~ t' and L, and tha t  S is a contract ion mapping 
on BL(K ). I t  is easy to deduce f rom (3.2) and (2.1)-(2.5) t ha t  

(3.5) II su II~(~) < o + c* ~ax{x',  t'} 1] u I[~(~) 

where C = C(], g~ of, F ,  :T) and C* = C*(a~, T) are two positive constants.  I f  we let  

(3.6) L : 2 C ,  a ~ ( 2 C * +  1) -1 and K ~ :  [0, a] •  a] 

t he n  we can obtain f rom (3.5) t ha t  

I1SuI],~(K~)<L , fox" all u e BL(K,)  

and 

(3.8) i i S u -  Svl],L(Ko)<rllu- vlf~.(Ko), for all  u, v e BL(K.) .  

TH~,0~E~ 3.1. - Under  assumption ( H I ) ,  (2.6) has a unique (~local~) classical 
solution in K~. 

where r = 2C*(2C*+  1 ) -1<  1. Combining (3.7)-(3.8) and assumption (H I) we see 
t ha t  we have established 
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I n  fact ,  if we observe t h a t  the  cons tant  C* defined in (3.5) is independent  of t he  
in i t i a l -boundary  d~ta  and  free t e r m  F,  we can obta in  

Tm~o~E~[ 3.2. - Under  ~ssumpt ion  ( t~I ) ,  (2.6) has a unique global  classical 
solution in QT for a n y  g iven  T ~ 0. 

PRo0~. - Le t  K ~  = [~, 2a] • [0, ~] and  

(3.9) Br . , (K~)  = 

= (v ~ B ( K ~ ) :  [ iv l l~(z , )<Z' ,  v(x,  O) = of(x), v((r, t) = u((r, t) and  v.((r, t) = u~(~, t)} 

where a is defined in (3.6) and  ~t is the  unique <~ local )) solution obta ined  in t heo rem 3.1. 
We c~n define a m app i ng  similar  to t h a t  above  ~nd the  a rgumen t s  above  tel l  us 

t h a t  there  exists  a unique classical solution in K ~ .  l~ow repea t ing  the  previous ar-  
gument s  f initely m a n y  t imes  we see t h a t  the re  exists  a unique solution in [0, 1] • [0, a]. 
Then,  repea t ing  all  of t he  procedure  above  finitely m a n y  t imes  we have  t h a t  the  

unique classical solution of (2.6) exists  in Qz. 
l~ow let  p rove  a t h e o r e m  which concerns the  cont inuous dependence upon  

the  data .  

Tm~o~n~  3.3. - I f  u ~, (k -~ 1, 2) are two solutions wi th  the  da ta  ]~, g~, ~ and  _~, 

then we have 

(3.1o) I ~ 1 _ _  

where C - ~  C(T)  is a posi t ive  cons tant  depending upon  a~ and  T;  and  

(3.11) 

and  

(3.~2) 

Pgoov .  - I n  K~, where  ~ is defined in (3.6), we have  f rom (2.1)-(2.5) t h a t  

t t e r e  and  in what  follows C denote  the  various constants  which depend upon  Y and 

a~ or finite combina t ion  of such constants .  

l#ow in ~ K~, ,  we see t h a t  

(3.14) 

<C{ll~ 1 -  ~211~+ 11~ 1 -  ~11~-l- 1i~2(~, " ) -  ~2(~, .)I]1+ Ji~(~, " ) -  ~(~, .)LI1} < 

< c { ! l ~  1 -  ~ h §  l l z l -  F~II~+ li~ 1 -  ~,~il~(~o)} �9 



JOI-IN ]~. C A N N O N  - YANPING LI~: Classical and weak sohttions~ etc. 381 

In general we let 

and 

K~.= [(m--1)a, ma]• m=1 ,2 , . . . ,  <[l /a]  + 1 

Then it follows that  

y~ < ~{y~_~ + a},  (3d5) 

where 

m = 1, 2, . . . , < [ i / a ]  -~- 1 ,  

y~.= []ul-- ~2[]~(Kmo) for m:l ,2 , . . . ,<[1 /a] -F1  and y o = O .  

From (3.15) we have 

(3.16) y ~ C y ~ _ ~  Cd<C2y,~_~ C2d~ Cd<...< 

since y~< r Hence, we have 

[ l /a]  + I I l i a ]  + 1 

~=1 / = 1  

Thus we see from (2.17) that  

(3.18) fl ~ -  ~l[~(Eo.. • o{g + l[~ ~ -  ~lI~(Eo.. • < c(~)a, 

Hence (3.10) follows from a similar urgument to that  above applied at most [T/a] ~ 1 
times. 

4 .  - W e a k  s o l u t i o n s .  

I a  this section we shall study (1.!)-(1.4) where some of the data is not necessarily 
smooth and where the smoothness of the rest the data is not enough to provide a 
classical solution. We begin by defining 

(4.1) 

with norm 



382 JOK~ [~. C~LNN0~ - YAN~I~(~ L I ~ :  Classical a~d wea]r sohttions~ etc. 

DEFI~T~O~ 4.i .  - A f u n c t i o n  u(x,  ~) is cal led u weak  so lu t ion  for  (2.6) if u ~ W(Qz) 

a n d  satisfies (2.6) in  L~(Q~). 

LE~nw_x 4.1. - U n d e r  a s s u m p t i o n  ( t I  I I ) ,  if u is a w e a k  solut ion of (2.6), t h e n  

u ~  ~ L~(Qr) all4 u satisfies (1.2)-(1.4) in  t he  t r~ee sense. 

L E ~ r ~  4.2. - U n d e r  a s s u m p t i o n  ( I t  II)~ (1.1)-(1.4) is equ iva l en t  to  (2.6) in  t h e  
w e a k  sense. 

The  proofs  of these  t wo  ! e m m a s  are  e l e m e n t a r y  and ,  there fore ,  omi t t ed .  W e  

n o w  a p p r o x i m a t e  our  w e a k  so lu t ion  u in  t he  fo l lowing  w a y :  F o r  s > 0 stud.l l, let  

(4.3) us(x, t) : ~(x) ~ for  t < O  

and  for  t>~0, us(x, 8 is defined b y  

(~.4) 
x rl 

0 0 9 

- e) + / ~ ( ~ ,  T)]d~d~, @ + G(x, t) 

where  G is defined in  (2.7). I n  fac t ,  u ~ is defined in (4.4) b y  r e t a rd ing  a r g u m e n t s  on t. 

F o r  u~ we h a v e  

L E ) ~  4.3. - U n d e r  a s s u m p t i o n  (H I I ) :  for  each suif iciently smal l  s > O, us(x, t) e 

e W(Q~) and u ~ ~,~ ~ L~(QT) w i t h  

(5.~) u~(x, O) - -  ~ ( x ) ,  u~(O, t) -~ / ( t )  and  u~(O, t) -~ g( t ) .  

P~ooF .  - I t  fol lows f r o m  t h e  def ini t ion of u ~ and  l e m m a  4.1. 

LE~WA 4.4. - There  exists  a pos i t ive  cons t an t  C > 0 such t h a t  

(4.6) [I u~ I[~(Q~)< c 

where  C is i n d e p e n d e n t  of s. 

P~ooF.  - Reca l l  t h a t  u s ~ W(Qr) ,  us ing  (2.1)-(2.5) a n d  i n t eg ra t i ng  on [O, x] x [0~ t] 

for  0 < x < l  a n d  0 < t < T ,  we ob ta in  f r o m  a s s u m p t i o n  ( I I I I ) t h a t  

(4.7) 
0 0 0 0 0 

m t 0 

§ f + § § + 
0 0 - - s  

< c +  r l u l l ' +  u ; ~ +  u s 1 ' + , ,  ~- . 
0 0 0 
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Here  and  in what  follows, we denote  the  various constants  b y  C which are inde- 
pendent  of e, bu t  depend on the  da ta  and  T. F r o m  Gronwall ' s  inequal i ty ,  we see t h a t  

(4.8) 
x t t x v 

f f ( l<~  + I ~1 + < ~ + l~,:,l-') �9 
0 0 0 0 0 

A similar  a rgumen t  will lead to 

(4.9) 

t ~ x V t 

ff( f f f< ~ 
0 0 0 0 0 

Thus (4.6) follows f rom combining (4.8) and  (4.9) toge ther  and  using GronwalPs 
inequa l i ty  twice for x and  t. 

We k n o w  f rom l emmu 4.4 t h a t  there  exists ~ e W(QT) such t h a t  

~(4.:[o) 

(4.11) 

(4.12) 

(4.13) 

(4.]_~) 

Obviously,  we have  

(4.15) 

for  some O >  0. 

(4.16) 

u ~ - ~ u  weakly  in L2(QT); 

u~ -~ u~ weakly  in Z2(QT); 

u~  -+ u ~  weakly  in L~(QT); 

u~ -> u, weakly  in Z~(QT) ; 

u~t -~ u~  weukly in Z~(Q~). 

So t h a t  

u ~ - >  u~ t  weakly  in L~(QT). 

I f  we write the  opera tor  A : A(x, t), t hen  we see t h a t  

(4.17) u ~ ( a ,  t) = A(a, t ) ~ ( a ,  t - -  e) §  t) for all  e > 0 sma l l .  

We have  for a n y  V e L~(QT) t h a t  

1 T - - e  1 0  

0 0 Q~ 0 --e 
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Obviously,  t he  last  t e r m  on the  r ight  hand  side of (4.18) goes to zero as s -+ 0. Fo r  
the  first t e r m  on the  r ight  hand  side, since 

(4.19) j ~o(x, t + e)[A(x, t + e)u~(x, t)] = 
1 T - - e  0 0 1 T - - e  

O 0 0 0 

= z + J  

and 

QT-s 

which goes to zero as e -> 0 because of the  cont inui ty  of averages of JL~(Q~) funct ions 

and  the  boundedness  of u% we have  

Q~ QT Q~ 

for all V ~ L~(QT) �9 Thus~ u satisfies (1.1) in the  sense of L~(QT) and  (1.2)-(1.4) in the  

t race  sense. Le t  us summar ize  above  analysis :  

Tm~0EE~i 4.1. - Under  a s sumpt ion  (H I I ) ,  there  exists  a unique weak  solution u 

for (1.1)-(1.4), which satisfies 

(4.21) , 2  : ' ~ ' ~ I 2 ]luil~(~.)+ C{l]~]l~'(o,,)+ I]]~,(o,r),] + Ilg[[.(o,.)+ 

where C = C(T) is a posi t ive cons tant  independent  of the  data .  

P~ooF.  - The  existence of the  weak solution follows f rom the  a rgumen t  given 

above  and  (4.21) can be dr ived f rom (2.1)-(2.5), f rom which the  uniqueness follows. 

RE~A~t~ 4.1. - The  m e t h o d  developed in th is  pape r  works well for the  general  
l inear  case, moreover ,  i t  appears  t h a t  the  m e t h o d  can be modified to  be  appl icable  

to  non-l inear  cases, a t  leas t  for some local results.  
We have  shown t h a t  t he  p rob lem (1.1)-(1.4) is well-posed for any  da ta  including al 

and  a3 of a r b i t r a r y  sign. This is not  surprising since when  (al)t and  (a3)t exist ,  an  
in tegra t ion  wi th  respect  to the  t ime  t yields a non-classical  second order ord inary  
differential  equa t ion  (2.1) wi th  ini t ial  da ta  u(0, t) = ](t) and  u~(O, t) = g(t) for which 

in general  the  well-posedness is not  a p roblem.  Therefore,  our me thod  can be viewed 

as a general  m e t h o d  for s tudying  this  k ind  of problem.  
Fo r  t he  regular i ty  of the  weak  solutions, since ~ e H2(0, 1) and  1, g e H~(O, T), 

i t  follows t h a t  9' e C�89 1] a.nd ], g e C�89 T]. Thus, i t  is easy  to see f rom (2.2)-(2.3) 

t h a t  we can obta in  
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TII:EOI~E~ 4.2. -- The  weak  so lu t ion  u of (1.1)-(1A) is such t h a t  

(4.2) ~, ~ e c~ '~ (~ ) ,  

where  C -~ und  C L�89 ~re I-Iolder clusses of one a n d  two va r i ab le s  w i th  e x p o n e n t  �89 
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