Classical and Weak Solutions for One-Dimensional
Pseudo-Parabolic Equations with Typical Boundary Data (%)

JoaN R. CANNON - YANPING Lin

Summary. — In this paper we consider the pseudo-parabolic equations arising in the filiration
of water in media with double porosily and moisture transfer in soil. The existence, uni-
queness and stability for both classical and weak solutions are studied.

1. - Introduction.

We know that the filtration of water in media with double porosity [6], meisture
transfer in soil [4], and other similar natural phenomensa, can lead to the following
typical boundary value problem with a pseudo-parabolic equation:

(1.1) Uppr = Au -+ F, in Qr;

(1.2) uw(z,0) = @l@), O<o<ly

(1.3) w(0,1) = f(2), 0<t<T;

(1.4) 4,(0, ) = ¢(t) , 0<i<T,
where

(1.5) A = @ty - GaWr + W3y + G Uy - G50,

Qr=(0,1)x(0, T, T>0and f, ¢, 9, F and a, (1 =1, 2,3, 4, 5) are given functions.
This type of boundary value problem (1.1)-(1.4) has been investigated in [3, 6, 7, 15]
in the case when a,= 0 and the other a, ave continuously differentiable in Q,:
The basic tool in [3,7,15] is the Riemann function methed which, of course
requires appropriate smoothness of the coefficients a; = a.(z, i).

. The equation of form (1.1) can also arise in studying of nonsteady shearing flow
of a second order fluid [2, 14] with the boundary conditions given on both sides of

(*) Entrata in Redazione il 19 ottobre 1987.
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# =0 and x = 1 or on 9£2 in n-dimensional spaces. The initial-boundary value pro-
blem is studied in [1, 2, 8, 11, 13, 14]. When a, = a,= 0 in (1.1), SHOWALTER [9, 10]
considered the Sobolev equations in Hilbert spaces and obtained abstract weak
solutions. Since the solution u of (1.1)-(1.4) is not specified on @ = 1, problem
(1.1)-(1.4) is different from those comsidered in [1, 2, 8, 9, 10, 11, 13, 14].

In this paper we employ the Banach fixed point theorem to show that a unique
solution exists for (1.1)-(1.4) under assumptions on the data which are much weaker
than those in [3, 7, 15]. In the case when all ¢, are bounded measurable functions
we show that the solution exists and satisfies (1.1) in the sense of L*(,). The method
used in this paper is not ouly different from that employed in [3, 7, 15], but also from
that employed in [1, 2, 8, 9, 10, 11, 13, 14].

DerFinirroN 1.1, ~ A function u(z, ¢) is called a classical solution for (1.1)-(1.4) if

(1.6) Uy Uy Wiy Uty Waty Uuns € C(@r);

and w satisfies (1.1)-(1.4), where C(Q;) is the class of continuous functions in Qr.

REMARK 1.1. — From this definition we see that the solution « satisfies (1.1) not
only in @, but also in @y, so it is a very strong solution.
We shall use C[0,1] and C[0, T'] to denote the class of continuous functions in
[0,1] and [0, T] respectively, and
00,11 = {pe 0[0,1]: ¢ e C[0, 1], 1<I< K}
"0, TN = {f € 0[0, T]: f¥ € C[0, T, L<I<k};

1) and L2(0, T') denote classes of the square integrable functions on (0, 1)

let L2(0,
0, T'), respectively, and

and (
H%0,1) = {p e L¥0,1): e L2(0,1), 1<I<k}
H 0, T) = {fe L¥0, T): fve LX0, T, 1<i<k}

for k==1,2, We employ the symbol | | with a subscripted name of the space for
the usual norm for that space.

AssvmpTioN (HI):
(L.7) p e 00,17, f,9€ 040, T], @(0) = f(0), @'(0) = ¢(0),

(1.8) F,a,€0(Qr); i=1,2,3,4,5.

BEMARK 1.2. —~ It is clear that assumption (1.8) is much weaker than the requize-
ment of smoothness on the a;. The compatibility assumption at (0, 0) is necessary
from the definition 1.1.
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DeriNITION 1.2. — A funetion u(z,t) is called a weak solution for (1.1)-(1.4) if
(1.9) Uy Uy Yy Uiy Uty Wias € L2 @r) 5

and u satisfies (1.1) in the sense of L*@Q,) and (1.2)-(1.4) in the trace sense.
For this definition we have

AssumprioN (HII):

(1.10) @€ H*0,1), fy9€ HY0, T);
(111) FeLl*}Qr), and the a,, i =1,2,3, 4,5, are bounded measurable .

REMARK 1.3. —~ The classical and weak solutions for (1.1)-(1.4) are defined above,
but the proofs of the existence of classical and weak solutions are rather different.
When F, ¢, ¢, ¢", f, f, ¢, 9' are all bounded measurable functions, we can show that
the weak solution # exists in the sense of 4 with all its derivatives w,, Uy, %,y Uy
and #,.; are bounded measurable in @,. In fact it will be seen later that the proofs
for this case are exactly the same as those for classical solutions.

In section 2 of this paper we will transform (1.1)-(1.4) to an equivalent integro-
differential equation, we also prove some lemmas there which will be needed sub-
sequently. Section 3 containg the proof for the existence of the classical solution
under assumption (H I). We shall show, in section 4, that the unique weak solution
of (1.1)-(1.4) also exists under the assumption (H II).

2. — An equivalent problem.

Suppose u(x, t) is a classieal solution for (1.1)-(1.2), then, we have from integra-
tion that

£
21) e =[[dule, 7) -+ Fla, D)d7 + ¢'(0),

0

o i
22)  w = [[4u 1) + FE nldvdé + ¢'0) — ¢'(0) + g0t),
2 n %
@3) w =[ [ [l4u, ) + FE D dvasdy + pla) — p(0) — ¢'O)2 + gz + 1),

@4) = [[Au(E, 1) + P& 016 + g'0),
]

z N

@5)  u, =[ [[4u(&,?) + P 10y + g'a + 1)
090
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It is appropriate, therefore, to consider the integro-differential equation

R I

(2.6) ww, 1) =] [ [[4u(g, v) + P&, v dvdsdy + 6, 1), in Qs
90 0

where

(2.7) (o, t) = ple) — @(0) — ¢ (0)w + g(t)2 + () .

DerFINiTioN 2.1. — A function w(w, ?) is called a classical solution of (2.6) if
(2.8) Uy Yoy Uaay Uiy Uy € O(QT)E

and (2.6) is satisfied.

Although (2.6) does not give any information on initial-boundary values ex-
plicitly, they have been built in (2.6) via the function G(z,?). Moreover, (2.6) is a
problem which is equivalent to (1.1)-(1.4), owing to the following lemmas, and is
easier to study.

Lemnta 2.1, ~ If u(, 1) is & solution of (2.6), then u,,, exists and is in G’(QT).
Proor. - Differentiate (2.6).

Lemma 2.2, - (1.1)-(1.4) is equivalent to (2,6) under assumption (H I) (classical
sense).

Proor., - If » is a classical solution of (2.6), then it satisfles (1.2)-(1.4). From
lemma 2.1 we see that it is a classical solution for (1.1)-(1.4). The other part of lemma
follows from the formulation of (2.6).

‘With these two lemma in hand we shall study (2.6) instead of (1.1)-(1.4) since
if we have 2 classical solution for (2.6), then it is automatically a classical solution
for (1.1)-(1.4). It is also easy to see that the uniqueness and continuous dependence
of the solution of (2.6) will carry over to (1.1)-(1.4).

DEFINITION 2.2. — Define the Banach space B(M), where M is a closed set, by
(2.9) B(M) = {we O(M): thy, Upyy ey U € O(M)}
with norm defined by
19 ]e= [+ [l [%azleo T [%i ]+ [ Uat]oo -

where |-

i

e 18 the usual sup-norm on J(M).
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3. — Classical solutions.
Let K = [0, 2] X[0,%] with o’ € (0,1] and ¢e (0, ], and

(3.1)  BEK) = {ueB(EK): |u|zg <L, u,0) = p),
u(0,2) = (f, 1) and u,(0,%) = g()},
where L i a positive constant which will be defined later. The mapping § on B, (K)

is defined by
3

& 7
(3.2) Su=| [ [Lau, o) + P vjavasan + 6,1, in Qr,
000
where G(w, t) is defined in (2.7). We know from (3.2) that for any « € B (K) we have
(8.3) (Su)(@, 0) = @),  (Su)(0,) = j(¢) and (Su),(0,?) = g(3).
Now we shall show that
8: B,(K) — B,(K)

for some appropriate choices of #',¢ and L, and that § is a contraction mapping
on B, (K). It is easy to deduce from (3.2) and (2.1)-(2.5) that

(3.5) [8ulpy < @ -+ C* Maw{e!, '} [l

where C = C(f, g, 9, F', T) and C* = C*(a;, T) are two positive constants. If we let
(3.6) L=20, o¢=20*+1)1 and K,=[0,0c]x][0,0]

then we can obtain from (3.5) that

8], xy<L, for all ueB,(K,)

and

(3.8) 80— 800y <7l — 0l gy, for all w,v e By(K,).

where r = 20%(20%* 4+ 1)-1<< 1. Combining (3.7)-(3.8) and assumption (HI) we see
that we have established

TEEOREM 3.1. ~ Under assumption (HI), (2.6) has a unique «local» classical
solution in K. '
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In fact, if we observe that the constant 0¥ defined in (3.5) is independent of the
initial-boundary data and free term ¥, we can obtain

THEOREM 3.2. ~ Under assumption (HI), (2.6) has a unique global classical
solution in ¢, for any given 7 > 0.

Proor. — Liet H,;= [o, 20] X[0, o] and

(3.9) BL'<K2 )=
= {ve B(K,,): 19 s,y <L's (@, 0) = (@), v(0, 1) = u(o,t) and v,(s, 1) = u.(0, 1)}

where o is defined in (3.6) and « is the unique «local » solution obtained in theorem 3.1.
We can define a mapping similar to that above and the arguments above tell us
that there exists a unique clasgical solution in K, . Now repeating the previous ar-
guments finitely many times we see that there exists a unique solution in [0, 1] X {0, ¢].
Then, repeating all of the procedure above finitely many times we have that the
unique classical solution of (2.6) exists in @y.

Now let prove a theorem which concerns the continuous dependence upon
the data.

THBOREM 3.3. — If w*, (k = 1, 2) are two solutions with the data f*, ¢*, ¢* and F*%,
then we have

(3.10) [t — w2y < O(D{g*— @*le+ [9*— gl -+ [ — Pla+ [F*— F*|e}

where O = O(T') is a positive constant depending upon «, and T'; and

(8.11) [9li= [plet |9}, for ye 010,11,
and
(3.12) [9le= 19lat 19 lot [9"le, for yeoo,1].

Proor. — In K, where o is defined in (3.6), we have from (2.1)-(2.5) that
(3.13) [t — w gy < O{IF— PPl + 10" — g2+ o' — @2+ [F*— F2[o}

Here and in what follows € denote the various constants which depend npon T and
a; or finite combination of such constants.
Now in K,!, we see that

(3.14) lt — w* gz, <
<O{|¢*— @2la+ [F— F2lo 4 (o, -) — (o, )i+ [0y +) — uglo, ) ) <
<O{lg*— ¢*la+ |1t — Foloo -+ [ — 9%y} -
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In general we let

me

K :[(m—l)a,mq]x[(),o], m=1,2,.., <[1/c]+1
and

d=lg'= ¢*| 4+ [ = P+ [ = PPl + [0~ g%] -

Then it follows that

(3.15) Yn<OWna+ 4, m=1,2,..,<[1/e] +1,
where

Yn= [ — w?|pg,,, for m=1,2,.,<[1f6]+1 and y,=0.
From (3.15) we have

(3.16)  Yn<OYpy + CAd< C?y,y + C2d + Cd<...

A

I=m [1/6]1+1

3 0”)}d

<Oy, Od(

™M

C’)g{()”"’”l—l— 0'(

[4

1
-

since y;< Od. Hence, we have

[1/e1+1 [1/61+1

(B1T) o' — w o axpm< > i<([1/o] - 1) {0“/“”1 +0 > 01}d< 0(o)d.
=1 i=1

Thus we see from (2.17) that

(3.18) [l — o [30,11x 10,200 < O + [ —~ 42 [lgg0, 11 50,0} < Ol0)

Hence (3.10) follows from & similar argument to that above applied at most [Tlo]+ 1
times.
4. — Weak solutions,

In this section we shall study (1.1)-(1.4) where some of the data is not necessarily
smooth and where the smoothness of the rest the data is not enough to provide a
classical solution. We begin by defining
(4.1) W(Qr) = {u € LA(Qr): sy togy Ugsy Uy € L2<QT)}

with norm

(4.2) Huﬂ?v(gr): ““H%"(QT)‘I‘ ﬂ%“izmm)"l— ”’“mmn?f(am‘l” ]Wmn%ﬁ(am)'lr ﬂ’“t”]zﬁ(am) s
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DErINITION 4.1. — A function (=, ?) is called a weak solution for (2.6) if v € W(@Q;)
and satisfies (2.6) in Z3*(Qy).

Lemma 4.1, ~ Under assumption (H II), if » is a weak solution of (2.6), then
Uy € LAQr) and u satisfies (1.2)-(1.4) in the frace sense.

Lgmuya 4.2, — Under assumption (H II), (1.1)-(1.4) is equivalent to (2.6) in the
weak sense.

The proofs of these two lemmas arve elementary and, therefore, omitted. We
now approximate our weak solution w in the following way: For ¢> 0 small, let

(4.3) ut(w, 1) = @(x), for {0

and for i>0, u*w,1?) is defined by
' x n t
(4.4) wiz, 1) = | [[Au(&, v — ¢) + P&, 7)1 drdé, dy -+ G, )
090090

where G is defined in (2.7). In fact, u¢is defined in (4.4) by retarding arguments on ¢.
For u¢ we have

Levma 4.3, — Under assumption (H 1I), for each sufficiently small ¢ > 0, us(2, ) €
e W(@r) and ut, € L*(Qy) with

(5.4) w(®, 0) = @lx), w¥0,1) = f(¢) and % (0, ) = g(7).
ProoF. — It follows from the definition of «¢ and lemma 4.1.
Lemma 4.4, — There exists a positive constant ¢ > 0 such that

(4.6) 1 e < ©

where (' is independent of s.

Proor. — Recall that e W(@,), using (2.1)-(2.5) and integrating on [0, #] X [0, ]
for 0 <2<l and 0 <t< T, we obtain from assumption (H II) that

@ i T

0
z & 0
+ 0 [ [t o g ) <
0

[ JCrer =t e gl )
0
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Here and in what follows, we denote the various constants by € which are inde-
pendent of e, but depend on the data and 7. From Gronwall’s inequality, we see that

i iz

(8) f Jler - <o+ of | f (gl + fu,

2).

A gimilar argument will lead fo

r n ¢

(L.9) f f(iuﬂ“r ) <0+ Of [ (e usfe - e,

Thus (4.6) follows from combining (4.8) and (4.9) together and using Gronwall’s
inequality twice for » and ¢.
‘We know from lemma 4.4 that there exists v € W(Qz) such that

2(4.10) ut —u weakly in L*(Qr);

(4.11) uy — 4, weakly in L*Qy);
(4.12) Woy —> Wy, Weakly in L2(Qr);
(4.13) u; —u, weakly in L2(Qr);
(4.14) Wy — U, Weakly in L3Qr) .

Obviously, we have
(4.15) 1%aetlzn <O + Ol [wan
for some C > 0. So that
(4.16) Woms —> Ugs Weakly in L¥Qz) .

If we write the operator 4 = A(x, ), then we see that
(4.17) Uiy 1) = A, tyuglw,t — &) + F(a,t)  for all ¢> 0 small.
‘We have for any y e L*(Qg) that
(4.18) ffu;xt'tp :H[A(x, tyue(w, t — &)]p(x, t) +UF¢ —

ar ar er

1 T—e

10
=] [+ @t + eyusw, 0] + [ [Fp +[ [plo,t + Al t + oyusta, ]
[ ] Qr :

0 —e¢
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Obviously, the last term on the right hand side of (4.18) goes to zero as ¢ — 0. For
the first term on the right hand side, since

1 I'—s
(419) | Jf (#,t + e)[A(, t + e)us(e, 1)] =

o/

17— 0 1 T—s

—f [v@, ) 4@, twrta, +f f[y)m,t-ra)A(w,t-rs,-«p(m,t)A(x,t)}W(m,t):IJrJ

¢

and

lJ|<C fo i@, T + &) (@, T + &) — aulw, 1) p(®, 1)|2 da dt|u’ |5 q,,
1—‘1

Q7_s

which goes to zero as ¢ — 0 because of the continuity of averages of L2(@;) functions
and the boundedness of %%, we have

(4.20) f f Ut P = f fAuw + f f Fy
Qr Qr Qr

for all y € L¥Qy). Thus, 4 satisfies (1.1) in the sense of L*@y) and (1.2)-(1.4) in the
trace sense. Let us summarize above analysis:

TaeoreM 4.1. — Under assumption (H II), there exists a unique weak solution u
for (1.1)-(1.4), which satisfies

@21)  ulen T lhulien < CUe o + [en !+ 191700 + 1715

where ¢ = O(T) is a positive constant independent of the data.

ProoF. — The existence of the weak solution follows from the argument given
above and (4.21) can be drived from (2.1)-(2.5), from which the uniqueness follows.

REMARK 4.1. — The method developed in this paper works well for the general
linear ease, moreover, it appears that the method can be modified to be applicable
to non-linear cases, at least for some local results.

We have shown that the problem (1.1)-(1.4) is well-posed for any data including a,
and a, of arbitrary sign. Thig is not surprising since when (a,), and (a;); exist, an
integration with respect to the time ¢ yields a non-classical second order ordinary
differential equation {2.1) with initial data «(0,¢) = f(¢) and «,(0, ) = g(t) for which
in general the well-posedness is not a problem. Therefore, our method can be viewed
as o general method for studying this kind of problem.

For the regularity of the weak solutions, since ¢ € H2(0,1) and f, g € HY0, 1),
it follows that ¢’ € O%[O, 1]and f, g € C}[0, T]. Thus, it is easy to see from (2.2)-(2.3)
that we can obtain
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TororEM 4.2. — The weak solution « of (1.1)-(1.4) is such that

(4.2) w14, € OF¥Qy)

where CF and O0b* are Holder classes of one and two variables with exponent }.
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