Stabilization of a Hybrid System of Elasticity
by Feedback Boundary Damping (*).

W. LirTMAN - L. MARKUS

Summary. — A hybrid control system is presenied as consisting of an elastic beam linked to o
rigid body, and the system is asymplotically stabilized through feedback boundary damping.
Solutions of the hybrid sysiem are construcied that decay towards zero ai nomexponential, even
arbitrarily slow, decay rates. This feedback conirol analysis complements the authors’ earlier
report on the open-loop controllability of this same hybrid system, which is a simplified
model of a space-structure.

1. — The hybrid system, an elastic space-structure: motivation and a summary of
results.

In a previous publication [5] the authors have analysed the controllability of
2 hybrid dynamical system consisting of a long elastic beam, clamped at rest at one
end and clamped (or linked) at the other and to a moveable rigid body upon which
the boundary controllers are applied. Such a system provides a simple model for
a large-scale space-structure, where the elastic beam is a long flexible mast (M),
clamped at one end to a massive space-ship (8) (now at rest after completing some
space maneuver), and fastened at the other end to a rigid antenna (4) whereon the
control is effected by means of gas-jets. The earlier paper treated the controllability
of the system (M) -+ (A4) using open-loop controllers, but in the current work we
analyse the stabilization of this system by means of closed-loop controllers specified
by feedback laws depending only on the state of a rigid body (4). The goal is the
regulation of the system (M) 4 (4) towards some specified rest state—say, where
(M) is represented by a line segment that is orthogonal to the two segments (S)
and (4) at its ends.

The dynamical system (M) +- (4) is regarded as a hybrid control system in that
the elastic vibrations of the mast (M) are governed by a partial differential equation
(the PDE of Euler-Bernoulli in linear elasticity theory), whereas the oscillations of
the antenna (4) are described by ordinary differential equations (the ODE of Newton-
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Euler in rigid body dynamiecs). The linkage of the control of the ODE to the boundary
conditions of the PDE creates the hybrid system (M) + (4).

Assuming that all motions and forces are resiricted to a fixed plane, with x-axis
normal to the space-ship (8), and with all vibrations along the y-axis orthogonal to
the x-axis, the authors have described the control dynamics of the hybrid system
(M) - {4). Namely, the Euler-Bernoulli PDE is

Wy Waawy = 0 for w(z, ) on O, >0
and the rigid-body ODE are

ol = — wo,(1,%) + K(f) on t>0.

Here w(w, 1) is the transverse displacement of (M) satisfying the Euler-Bernoulli
PDE and the boundary conditions are:

w(0,8) =0, w,(0,7)=0 (clamped at z = 0)

i

and

w{l, ) =y(), wl,t)=001) (linked at z =1},

where y(t) and () are the linear and angular displacements, respectively, of the
rigid antenna (4). The Newton-Euler dynamics of the rigid body (4) are the two
ODE, where w,,,(1, ) and — w,,(1, t) are the force and torque, respectively, that (M)
exerts on (A4)—aceording to the classical linear theory of elasticity. Further, fi(f)
and f,(t) are the open-loop controllers that are applied to (4), and hence to the
boundary eonditions of (M). We have selected the physical units so that the length
of (M) is 1, and then the positive constants u; > 0, y, > 0 pertain to the elastic and
inertial properties of the hybrid system (M) -+ (4). We refer to [5] for further de-
seriptions of the physical structure (M) -~ (4), and for the engineering significance
of the various mathematical assumption and conclusions.
The state of the system, at each time >0, is:

w(, t), w5 1), y{t), 9(), 6(t), O(t) ’

that is, two real functions (of appropriate smoothness) on 0<w<1, and four real
numbers. The control problem requires that any prescribed initial state at ¢t =0
be steered to the zero-state (or some pre-assigned target state) by selecting suitable
open-loop controllers f,(2), f»(t) on some finite duration 0 <t< 7. In the previous paper
the authors constructed such open-loop eontrollers f,(t), f,(f) on any arbitrarily short
duration T > 0. Hence the entire hybrid system (M) + (4) is exactly controllable
in arbitrarily short times. Moreover this exact control can be accomplished, in an
engineering sense, by gas-jets acting on (4) alone.
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In this current paper we now demand that the controllers f;, f, be specified through
linear feedback laws utilizing only the data of the state (y, 9, 6, §) of the rigid an-
tenna (4). In contrast to our earlier results the decay towards rest is only asymptotic
as ¢ — oo, yet the results may be more practical from an engineering viewpoint since
clogsed-loop controllers are employed.

As previously, we can incorporate the hybrid dynamies of (M) - (4) into a
single PDE with rather novel boundary control. Namely use the relations
y(¢) = w(l, ?), 0(t) = w,(1, ) to obtain

Wiy - Wegee =0 Tor w(z,?) on O<a<l, >0,
w(0,1) =0, w,(0,1)=0 (elamped at x = 0)
Wy — Wy = f;  (linked at # =1)

ﬂztht + wmc = f2

We next specify the form of the linear feedback laws
h=ILyw, fi= Lyw (at & =1),

where L, and L, are real linear functions of the four variables (y,%,0,6). Only
certain linear functions I, and L, will be acceptable in that they inforce a dissipa-
tion of the energy of the system, for example f,= — ¢ = — w,(1, ) and fy=— 6 =
= — wy(1,¢). In this way we utilize the concept of control by feedback boundary
damping, which produces an asymptotic stabilization of the hybrid system.

In the next section of this paper we characterize the dissipative feedback laws
in terms of the system energy E. In the subsequent sections 3 and 4 we reinterpret
the feedback control dynamics as a contraction semi-group in an infinite dimensional
state-space, the Hilbert space J; of all finite energy states. In this analysis the
authors benefited from informal communications with M. Slemrod. Within this
framework we are able to assert and prove our main Theorem 2 that each initial
state in J€p decays asymptotically to the zero state. We then return to our original
description of the physical control system of (M) - (4), with feedback boundary
damping, and interpret our Theorem 2 to demonstrate the stabilization of this hybrid
system of elastic structures. In the lagt Section 5 we provide examples of solutions
w(z, t) that decay to zero at a rate that is not exponential, but in fact at an arbitrarily
slow rate. This result is in contrast to the sitnation analysed by Chen et. al[9],
where the elastie mast is not linked to a boundary mass.

While a briefer proof of Theorem 2 is possible by referring to certain general
results of semigroup theory [7], our development, employing Liapounov functionals,
illuminates the geometry of the dynamics. Further benefits involve delicate proper-
ties concerning the smoothness of the solutions and how this relates to the quan-
titative decay rate.
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2. — Energy dissipation and feedback boundary damping.

Congider the Euler-Bernoulli PDE with boundary control

Wy - Wpeew— 0 for wix, t) on 0o, >0
w(0, 1) =w,(0,1) =0 (clamped at x = 0)
P, — W, = f; (linked at z =1)

s Waps T+ Wap = f2

with feedback boundary control given by

fi= Lyw = oy + p1y -+ y:0 -+ 6,0
fo= Lyw = oy + By + 720 -+ .6
for real constants o, fi,0;, Y12y O1,o-Where L; and L, are the specified linear diffe-
rential operators on w, but they may also be interpreted as real-valued functions
on the state (y, ¢, 0, 0) of the antenna (4).
Rach solution w(x, t) of this boundary control problem (suitably smooth as spe-
cified in the Proposition asserted later) is likewise a solution of the corresponding
hybrid control problem deseribed in Section 1, and vice versa, provided we intro-

duce y(f) = w(1, 1), 6(f) = w,(1,t). For each such solution w(z, t), at each time >0,
there ig the corresponding state of the hybrid system:

w(+, 1), wil+, 1), (&) = w(l, 1), Y(2), 0(t) = wu(l, ?), G(t) ’
and we then define the energy of such a state
i
Bt) = 3o, 0+ waulay 141d0 + F g0 + mb0)]
0
Clearly, the energy HE(f), which is a functional of the state of w(w, 1), depends con-

tinuously on $>0.

LEMMA. — The energy H(t), of a suitably smooth solution w(x,t) on 0<2<1, t>0,
has a derivative

B() = g@) Lyw + 0@) Lyw  on ¢>0
S0

H(t) — B(0) = f [(7) Lyw -+ 6(7) Lyw] dz .
4]
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In particular if Lyw =0, Lyw =0, then

Proor. — Compute the derivative dE/dt on ¢>0 (with smoothness as specified
by conditions i) and ii) of Section 3)

1
E(t) :f[wt’wtt F Wor Wene] A% + W Wes + Yo Wy Wes
0

the latter terms evaluated at o = 1, as usual. Integration by parts yields

1 1 1
fwmm(wy t)wmmt(my t) dW = w:caawmt];=o “J‘wwwwwwtdx = Wy Wy — wxmxwt];=0 +fww'macwt dx 4
0 0 0
Then

E(t) = Wea(1, ) Wer(1y 1) — Wara(Ly YW1y 1) - W, W1 4 po W10, -
Hence, writing L, ,(t) for I, ,w(1,%), we find

) = WLy 1)Ly (8) -+ wea(1, 2) Lo(t)

or
B(t) = y(t) Lo(t) + 00 Lo(t) 5

as required. O

The conclusion of the lemma is understandable from the viewpoint of classical
mechanics, since the rate that work is done on the system (M) -} (4) (in appro-
priate units) is the product of linear velocity and force (or angular velocity and
torque).

DEerFINITION. The linear feedback laws

fi=Lyw = oy + fy + y.0 + 6167 fo=Lyw = apy + oy + 7.0 + 526,
with real constant coefficients, are called dissipative in case

yLyw 6L,w<0

for all values of (y,4,0,0) in Ri. The corresponding control is called feedback
boundary damping.
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CorOLLARY. [The linear functions L, and L, define dissipative feedback laws if
and only if:

Lyw = — ag -+ b0, L2w=oy'——d9
for constanis a>0, d>0, 4ad> (b + ¢)%

Proor. — The dissipative condition asserts that, for all real values of the four
variables (y, 7, 0, 6) we find

J(oay + Bug + 110 + 6:0) + Oloay + By + 720 + 8:.6) <0,
or
Bu -+ 8:0°+ (01+ Ba)g0 + (@ayy + 1189 + aayl + 1200)<0 .
First assume that L,, L, are dissipative. If we set § = § = 0, then we demand
fry® + wyy <0,

which is linear in %. Thus we conclude that « = 0. Similarly, set y =9 =0,
to demand
5292+ 7296<0, S0 YQ:O.

Again, set y =0 =0, to obtain y,= 0. From 0 =y =0, we obtain o= 0.
Therefore we conclude that the quadratic form

B+ (8. + B2yl + 8,62<0.

In this case we conclude that

Bi<0, 0.<0, and (6, Ba)?— 46,0,<0.

Now change notation to let

a=—f, d=— 0, b=0, G:ﬁz

to obtain the required result:

Liw=—ay+ b0, Lw=cy—db

with constant coefficients satisfying

=0, d=0, 4ad>(b-} ).

On the other hand, any such choice of I, I, is clearly dissipative. [
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For any such dissipative laws we can define the energy decay-rate (for state ¢, 0):
|E(8)] = — [§Lyw + 0L,w] = ay®— (b - ¢)gb -+ b= .

COROLLARY. ~ If — [§Lyw -+ 0L,w] is a positive definite quadratic form in (4, 6),
then Ly, Ly are called siricily dissipative feedback laws. This occurs if and only if

a>0, d>0, 4dad> (b4 c).

REMARK. — An expecially interesting case of feedback boundary damping, by
dissipative laws, is given by

Lyw=— g+ b0, Lw=—bj— ub.
In this case

yLyw + ész = — [ y* -+ H262] ?

irrespective of the constant b. [If, for simplicity of exposition, we should take
= ps=1, b =0, then the dissipative feedback boundary damping reduces to
Lyw = — g, Lyw = — 0, which is an illuminating special circumstance.]

We shall characterize this case, among all possible dissipative laws, through an
extremal prineciple. For all appropriate (a, b, ¢, d) the decay rate is defined by

— [§Lyw + 6Lyw] = ag®— (b + ¢)gf + df=.

Then define the «least decay rate» for (a, b, ¢, d) compatible with unit cnergy of
the antenna (4):

By={(wmy*+ Mzéz) =1,
that is R = R(a, b, ¢, d) is given by

R = Min [ag? — (b 4 ¢)yf + d6?].

Es=1

Under the further normalization (fixing the determinant of the quadratic-form for
the decay-rate):
— (40

a _ 7

2
1= 10 = tas
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we claim that R = R{a, b, ¢, d) is maximized only when

L1W=——M1:€J~’r59, Ly = — by — b .

The motivation is the wish to select the parameters (a, b, ¢, d) so as to maximize
the decay rate—in terms of the worst case R(a, b, ¢, d).

Note that we can assume a >0, d >0, for otherwise, say d =0, we have
(b + ¢) = 0 and so the least decay rate B == 0—which is then eliminated by the
demand A = y,u,. Further note that in the Ruclidean plane with coordinates
7= (,/2) 9, 6 = v/ (u;/2)6, the locus

s . (5 -
oyt — (b + e)yd |- do* = 2 [_CE_ gz_fi o)

H1 s

g0 -+ 4 62] = const
M

defines a family of similar ellipses. Hence the point on the unit circle #, =1 (or
7%+ 62=1) where this quadratic form is minimized, lies on the ellipse

KOO Ul il T/ DL, FO 9
i V gy e
which ig inseribed in the unit eirele.

In order to consider the maximization of B = R(a, b, ¢, d), among the dissipative
laws under the normalization of 4 = u,u,, we perform a rotation of coordinates
(still called #, 6) so that the major axis of the ellipse now is horizontal. That is, the

ellipse becomes

Mt + 2,0%= R[2,

where 4, and 1, are the eigenvalues of the matrix

[ & =09

H1 2 \/‘ul U 1
s 80 Ml = A=1.
—(to falte
2V Y fhs 2

Further compute the area of this ellipse to be (#/2)(RV m) == zR/2.

Now we choose (a, b, ¢, d) to maximize the area of the inscribed ellipse, and this
maximum value is achieved only for the case where the ellipse i, in fact, the unit
circle. Thus, the solution of the extremal problem occurs only for

—=mxm or R=2.
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In the extremal case, the ellipse was the unit eirele (even hefore rotation) so

2a 2d
e —— = ) = 0.
=l ap—l bF9=0

The corresponding extremal feedback laws are

Low=— gy + b0, Law=—0bj—ub,

a8 asserted.
The motivation of the concept of dissipative feedback laws

Liw=—ayj+ b0, Lyw=cy—db

(>0, d>0, 4ad> (b + ¢)?), is the energy decay of any corresponding solution
w(z, 1), namely

B(t) = gLyw + 0L,w<0 .

In such a case H(f) is noninereasing, and we might anticipate that ;1}90 HB(t)=0,
and further lim w(z, 1) = 0. The demonstration of these results of asymptotic stability
constitute the main theorem of this paper, and will be proved in subsequent sections.

3. — Evolutionary dynamics for feedback damping.

We shall interpret the Ruler-Bernoulli PDE, with clamped and dissipative
boundary conditions, as an evolutionary ODE in an infinite dimensional Hilbert
Space. For this purpose consider the PDE system

ow ov

—a'i'—vy at——wmmm

for the pair of real functions w(x, 1), v(x, t) on 0<x <1, 1>>0. In order to make precise
agsertions concerning the differentiability of the solutions we shall assume:

i) w(w, t) and v(w,?) in class O for O<a<l, 0.
In addition we shall assume that, for each fixed ¢>0,
(w(y 1), v(-, 1)) lies in H®[0, 1] X H*[0, 1].

Here H*[0,1] denotes the Sobolev-Hilbert Space of all real functions on O0<a<1
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with E-th derivative in L*0, 1], as nsual. In this conneetion we shall make the as-
sumption that:

ii) ¢ — (w(-, ), v(+, 1)): [0, o0) — H[0, 1] X HY0, 1] is a continuous map.
From these two assumptions i) and ii) there are several immediate conclusions
about the regularity of the solution w(z, ?), v(z, {). Namely we conclude:
1) W, Way Wany Wasey Wassey Wasewe 0D Dy Vsy Voay Vasa
are each continuous in #, for each fixed ¢>0. Moreover, since the H'-norm

dominates the uniform norm on 0<a <1, these functions are each uniformly con-
tinuous in ¢ for 0 <o <1. Hence they are each continuous in (, ) on 0<o <, t>0.

W, == Uy Wyy= V== — Wy, are continuous in (x, f), and w; -+ Weuw,=0 on

3) w,, w, and w, = v, are continuous in (z, ), 80 W= Wy,.

Also vy, v, and U, = — Wype, are continuous in (z,?), SO V== ,y!
4) Wipp = Uy $0 Wipy = Wysp = Wy, are continuous in (w, ).
B) Wie= Vo= — Wopgans SO Wye== Wy, == Wy 2Te continuous in (w, ).

AlSO  Wips = Vopey 90 Winps = Woiwe = Wyans LE iall continuous in (z,%) on
0o, i>0.

It is true that any solution w(z,t), v(x,1) of the PDE boundary value problem,
which satisfies condition ii) must necessarily also satisfy i). However, for clarity
we shall usually demand both i) and ii).

Under these differentiability assumptions i), ii), the energy calculations of the

preceeding section are valid. We next use these concepts to demonstrate a funda-
mental uniqueness result.

LEyua, — Oonsider a solution w(w, 1), ¢(x, t) of the PDE system on 0<2<1, 10

ow ov

Fr v, o == — Wapse
with the boundary conditions
w{0, 1) = w,{0,8) =0 at x=20
Wy — Wege = Lo

PaWass - Wop = Lyw at w=1,

where Ly, L, ave dissipative feedback laws.
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Assume w(x, t), v(z,t) satisfy the regularity conditions i), ii). Then w(x, 1), v(x, )
provide the unique solution (satisfying i), ii)) of the PDE system with the given boundary
conditions, and agrecing with the initial data w{x, 0), v(z, 0).

ProoF. — Because the boundary value problem is linear and homogeneous, it is
sufficient to prove the result for the case of zero initial data.

Then let w(z, 0) =0, v(x, 0) =0 and let H(f) be the energy of this solution,
that is,

1
B() =} [[0* + whlde + § ol 07+ paroui(L, 077
0
In this case we can caleulate (recall & = w,(1, %), § = w,,(1,?))
§
B() — E(0) = f [§Lyw -+ 6Lyw]d .
0

But H(0) = 0 and ylyw 4 9L2w<0, and hence E(t)<0 for {>0. Thus E{)=0
and 80 (@, 1) = w,(s,t) =0 on ¢>0. Since w(wr, 0)=0 and w,(w,t)=0, we con-
clude that w(z,$) =0 and v(, ) = w2, {) =0. O

Next we define an evolutionary ODE that incorporates the dynamiecs of the
Euler-Bernoulli PDE with the specified boundary conditions. The clamped-end
condition (0, t) = w,(0,f) =0 at » = 0 will be incorporated into the specification
of the state space. To account for the feedback boundary damping at » = 1, namely,

MWy — Wogy = Lyw, HaWags T Wy = Lyw,

we introduce extra state components p(f), ¢(f) by defining p(t) = »(1,1),
q(t) = v,(1, 1) (that is, p(t) = §(t) and q(t) = f(t) in the earlier notation deseribing
the mechanical system). Then the feedback damping at & = 1 becomes

d d
L = wen(1,0) + Lo, T = —wal(1,0) + Low,

where
Lyw=~—ap+bg, Lw=cp—dg

are the dissipative feedback laws, as before.
In this way we are led formally to the infinite dimensional dynamical system

dw v dp 1 1 dg —1 1
o e — — L= — 1 R s —
dt .y dt — Wezwe » dt s wacm(ly t) "]_ e 1W di U wm(ly t) + s sz
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or, the abstract evolutionary ODE

du
o = A .

Here the state = , in appropriate Hilbert space ¥, defined subsequently,

R e 8

and the linear operator 4, defined on the domain D(4)c XKy, is given by:

f ¢

1 1
W — A = § — w1, t) - —ILw
221 Ha

—1

1

42

In more technical detail we define the real Hilbert space of finite energy states
for feedback dynemics by

8r= {u=(w,v,p,q): we H[0,1],ve L’[0, 1], pc R, g R}

with the supplementary requirement w(0) = w,(0) = 0. The corresponding inner
product is specified by

1
Cuty By = [[08 + 0, .0 do + [ + ]
0

Then we can specify the norm [u|p in bterms of the energy E(u) of a state we Jp
lulz = <w, up = 2H[u] .

It should also be noted that the norm in J& is equivalent to the usual norm inherited

from the Sobolev-Hilbert gpace HY0, 1]1x L0, 11X R?, since |u]z— 0 implies that

w —>0 in the ¢l-uniform norm. Also we note that, strictly speaking, the feedback

operators should now be written

Lyw=—ap -+ bg, ILyu=op—dyg

a8 bounded (finite-dimengional) operators on the state ue J&. But we shall con-
tinue to denote these terms as Lyw and ILyw, in conformity with earlier notations.
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The domain D(4) of the operator A is a linear subspace of JCr, as defined by:
w = (w, v, p, q) € D(4)
in case e ¥y 80
we HY0,1], wvel0,1] with w(0)= w,(0) = 0;
but further conditions are imposed by Awu e ¥Kg,
ve HY0,1], W€ L?0,1] with 2(0) = v,(0) =0
and an additional demand to match the feedback dynamies
W) =p, vl)=q.

These conditions complete the specification of the linear subspace D(4)c ¥p.
Similar analyses for the domain of A2:

D(A?) = {ue Ry: ue D(A) and Aue D(4)},
yield the prior conditions for # € D(4) and further

ve H0,1], we HYO,1]

and also at v =1,

i 1
- wﬂcwwm{l) = —waca:w(l) "{" —Llw
sl i1
1 1
- wacaa'cmm(l) = '—‘—‘i!)m;(l) + — sz .
Yo M

Further studies determine the domain of 4=+ for n =1,2,3, ...
D(A") = {u e Kp: we D(4*1) and Aue D(A")} .
Also define, as usual

D(A®) =(] D(4"),

fi=1

a8 a linear subspace of Kp.
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It is clear that D(A4) is dense in J€, because H*[0, 1] is dense in H?[0, 1] {even
accounting for the clamped conditions w(0) = w,(0) = 0) and also H2[0, 1] is dense
in L0, 1] (even aceounting for the arbitrary boundary conditions for » and v, at
x=0 and »=1). We shall later prove that 4 is the infinitesimal generator of a
strongly countinuous semigroup S({) on the Hilbert space J,. From general con-
siderations of semigroup theory it then will follows that the solution wu(f) = S()u,,
from each initial u,€ D(4), lies in D(4) for each ¢>0; and «(f) has the derivative,
in JCp-norm,

lim L [u(t + At) — w(t)] = Ault) = S()(Au,) ,
a0 At

(of eourse, At> 9 if ¢ = 0). Furthermore D(A%) is dense in Jp, and S() carries
D(A») into itself for each >0 and n=1,2,3,....

The relation between the solutions of the Huler-Bernoulli PDE (with feedback
boundary damping) and the infinite dimensional evolutionary ODE (as solved by
the semigroup S{i) generated by A) is illuminated in the following Proposition.

PROPOSITION, — Let wx, t), v(x,t) be real functions on 0<w <1, 10 where they
satisfy
1) wlx, t) and v(z,t) in class O in (z,1), ond

ii) ¢ — (w(-, 1), v(-, 1)) : [0, oo} — HO[0, L] X H*[0,1] is a continuous map.
Under these hypothese 1), i) we further assume

wo_
ot 7 ot

— Waann

and the boundary conditions hold

w(0,1) =w,(0,8) =0 (at z = 0)
and
WL, 1) = Wl §) + Lyw
P 1, 1) = — w,, (1, 8) + Lpw  (at 3 =1)

for dissipative feedback laws Ly, L.

Then wu(f) = (w(y 1), »(, 1), p(B), Q(t))’ where p{t) = v(l, 1), g} = v,(1, %), lies in
D(A)c ¥y for each t=0; and furthermore u(t) = S(t)u(0) is the solution of the evolu-
tonary ODE

du

V7 Aw  from u{0),

in the sense that 8(t) is the semigroup with infinitesimal generator A, as defined previously.
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On the other hand, under the hypotheses i), ii), assume that
u(t) = (w(+, 1), o(+, 1), (1), q(t)) = 8(t)u(0)

lies tn D(A) for each 10, where S(t)u, is the solution of the evolutionary equation
produced by the semigroup S(t). Then

ow ?.E_

o

—
WZU.Z"Z‘CC

and hence w(s, t), v(z,t) satisfy the Euler-Bernoulli PDE, with clamped end at x = 0
and feedback boundary demping at © = 1.

REMARK. — The Proposition asserts that a solution (w(w, ), v(z, )) of the Buler-
Bernoulli PDE, with feedback boundary damping, produces a solution w(f) of the
evolutionary ODE—and vice versa. Of course, rather special regularity condi-
tions i), ii) are demanded in each case. The Proposition does not guarantee the
existence of such solutions, but they are demonstrated later.

Proor. - The first assertion holds that a suitably smooth solution (w(x, ?), v(z, t) =
= w,(w, 1)) of the Euler-Bernoulli PDE, with clamped end at # = 0 and given feed-
back boundary damping at & = 1, provides a solution u(f) = (w(-, t), v(-, t), p(?), q(2)
of the evolutionary ODE. Clearly, w(-,?) e HY0, 1], »(-,t) € H2(0,1] for all {>0,
and  w(0,?) =w,(0,f)=0, v(0,1) =2,(0,f) =0; and then set p()=02(,1),
q(t) = v,(1,%). Hence we find that u(f) € D(4) for all {>0.

We must next verify that

dw
dt
av
e i 2_
7 Wonng (in L2-norm)
dp 1

1
= — W1, ¢ —Taw
dt 1u'1 ( ? )+M1 1
dq _
dt

=7 {(in. H?norm)

1 1
—— {1, t —L,w .
Mz ( $ )+[M2 2

Since w,= v we find that, for each >0,

w(w, t -+ At) — w(z, 1)

lim T

At—0

— (@, 1) =0,

with uniform convergence on 0<w<1. Similarly, uniform convergence holds for
the limits

Awm_

, Aw,,
At ¢ o

lim Y
At e

At->0

Ab->p
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Therefore,
1
. Aw 2 Aw 2 Aw, 2
Hm | |=— —%] + |2 4 o | do =
At—>0J( 1 At I At (" I‘ l i (1P dw 0 ,
b .
80
1 , }
%—_— v, in the sense of the H*norm.

In the same way use the uniform convergence

lim v{w, ¢ 4+ At) — v{z, 1)
A0 At

+ wwwwwl = { 3

to prove that

dv .
ik Weews s 10 the sense of the L*norm.

The last two equations of the evolutionary system for v = (w, v, p, q) are merely
regtatements of the feedback boundary damping conditions for the PDI. Hence
we obtain du/dt = Awu.

On the other hand, assume that w(z, ), v(», t) (satisfying i), ii)) and p() = v(1, 1),
g(t) = v,(1,t) define the Jes-valued function wu(f) = (w(-,?),v(-, 1), p(t), q(f)) which
lies in D(4) for each #>0. Also assume that () is a solution of the evolutionary
equation in the sense

80

d__u = A%
df

That is assume that for each i>0 we have

1
bim - [8(F -+ At)w(0) — S(t)4(0)] = Auli),
a0 A%

with the limit in the JKp-norm.
In this case we obfain

dw

—_— =0 in H#norm
dt ?

S0

—- =%, in uniform and hence pointwise sense .
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From the second equation of du/dt = Au we compute

dv .
= Wesee, DL Lz-norm ,
a

or
1

lim f
A0

0

(@, t — iz, t 2
UBTE LD =Y |y, dw = 0.

But then, for a subsequence At, — 0 we have pointwise convergence for almost all
0<<1, and so (recalling that v(z, t) lies in the class €1)

E = — Wogwe -

Hence w(z, 1), v(x, t) is a solution of the Euler-Bernoulli PDE. The boundary condi-
tions are also satisfled at # = 0

w(0, ) = w,(0,7) =0  (definition of ¥;),

and the feedback boundary damping conditions at » = 1 are explicitly specified
by the last two equations of the evolutionary ODE. O

We now turn to the question of the existence of the strongly continuous semi-
group S(t) generated by A in the Hilbert space J¢,. For this purpose we first show
that the densely defined linear operator 4 is dissipative (that is, — A is monotone).

LeMMA, — The lincar operator A is dissipative in the sense
{Au, up<0, for each ue D(4).

ProOF. — From the definition of the inner product in ¥,

1
<.A/M/, u> :f[vwwwxw— wwxwmv] dx +
0 + [wacme(ly t) _I" Llw]/l;(:[? t) + [_ ww'c(:l? t) —{— sz:l’l)m(l, t) .

The integration by parts yields

1 1
<A.’M, ’M> = vmwwm](}i _fvmwxwx d{I/‘ - vwmm]é '{_J.”acwmmc d%' "I"
[

- [0gn - Lyt010(L, ) -+ [— w00+ Lawlon(l, 1) .
Thus

{Au, wy = v(1, 1) Lyw + 0,(1, 1) Lyw< 0,

since Ly, L, are dissipative feedback laws. [I
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REMARK. — It is interesting to relate the dissipative behavior of 4 with the
decrease in the energy of a solution w(f) = S(t)u,, for some u, e D(4). Then, the
energy becomes

50
B(@t) = §{Au, uy + <u, Auw>
and
B@t) = (Au, uy<0.
We are now in a position to prove that A is the infinitesimal generator of a

strongly continuous semigroup S(¢) on Jy. In fact, we shall prove that S(7) is a
contraction semigroup in that the operator norm

18()|s<1 for all £>0.
We follow the Lumer-Phillips Theorem [6] which guarantees the existence of
this contraction semigroup S(f) provided three conditions hold:
1) D(A4) is dense in JCp.
2) The range R(4,I— A) = Ky, for some real J,> 0.
3) A is dissipative.

We have already verified that D(4) = Xy, and that the linear operator 4 is
dissipative. There remains only the condition

2) R(A,I— 4) = Xy, for some real i,> 0.
TaEOREM 1. Consider the real Hilbert space 3y with the dissipative lineay operator A,
with domain D(A) dense in €z, as before. Then A is the infinitesimal generator of a
strongly continuous semigroup S(t) on Cr, and 8(t) is contractive

18 z<1  for all 1>0.

ProOF. — With reference to the Lumer-Phillips Theorem [6], and the previous
lemmag, we need only verify that the range

R(AI— A) = ¥y, for some real 14,>0.
For this purpose assign an arbitrary element

v = {p, 9, 0, 6) € Bp and seek w = (w, v, p, ¢) € D(4) s0 (Al — Ayu =
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or
}LOW——’U:‘—(}D, on_l"wwwm:'(/’)

1 1 1 1
Ao — Wy — — L == A — Wy —— L0 = o .
o p i 1 0, 0q +M2 p 2

1 2

We shall solve this differential system for « = (w, v, p, ¢), where 2, > 0 is specified
later, From the first two equations eliminate v to write

d*w
%;‘l‘ low = + Ly

and note that h(w) =y 4 e L}0,1]. We seek a solution w(»)e H[0,1] with
with w(0) = w,(0) = 0. Then we shall define o(x) = Aw(®)— ¢(x) c H0, 1] with
v(0) = v,(0) = 0 and v(1) =p, »,(1) =¢. Thus the first two equations in the
system are satisfied, and the last two also hold (while determing p = v(1), ¢ = v,(1))
provided at » =1,

1 1
AP —— Wy —— Ly = ¢
o P s U 1 &
and
1 1
2 — Wap — LW = ¢ .
o +M2 1 2

That is, replace

p=0(1)=Awl)— (1), ¢=7l)=hw'(l)— ()

and

Lyw = — av(l) + bo,(1), Lyw = ev(l) — dv,(1)

with ¢>0, d>0, 4ad> (b - ¢)?, to obtain boundary conditions on w(z) at » = 1:

1 a b a b
— — W Ao L — | Agt0 — — g’ = Ao+ —lp ——0o'
e +(°+Ml) R Q+( ”L/h)(p A
1 c d ¢ d
= Wy — —— AW Ao+ —) At = g —— Ao+ —)o' .
12 I 0 +(0+/"2) 0 o Mztp +( o'l‘Mz)‘P

Therefore the process of solution for # — (w, v, p, ) can be summarized:
Solve the ODE

1

W + Bw=h@), for kiz)e L}0,1]
to obtain w(x) € H[0, 1] satisfying the boundary conditions

w0) =w'(0)=0 ater=0
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and the two conditions at & = 1
— Wy T (Paho+ @) AW — DAow' = 00,  Wuo— how + (Uado -+ A) ' =

for arbitrarily prescribed real numbers (o, 3).
To obtain the required function w(z) take the solution w,(®) of w" -~ 22w = k(»)
L

from the initial data w,(0) == w,(0) = 0, w,{0) = w, (0) = 1. Then we seek a solu-
tion (z) of the homogenecous differential equation w"” -~ 2w == 0 with

WO) =@ (0)=0 atw=0,
and further
— W (ot @) Aeth — Dl = &, W' — el -+ (o d) Ao’ = J

(where d, 5 are arbitrarily prescribed real numbers). Then w(®) = w,(@) -+ @z

will provide the required function in H#0,1], from which v(z) = Lw(r) — @(x)e

H2[0,1], and p = v(1), ¢ = v,(1), can then be found to obtain = (w,v,p, q)e D(4).
The general solution of the homogeneous linear differential equation

W' Bw=0, w0)=w(0)=0

is given by

o B | s B | 2o an % o |
w\x)_P[coshl/zmsm gw—smh —2—09(308 5 -+ @ sinh Ewsm —2—90

for real congtants P and . Now we must find constants P, @ (not both zero) so that
W), W'(1), W'(1), %" (1) satisty the two boundary conditions at » = 1, for arbitrary
constants &, f.

The two boundary conditions at x = 1 lead to two linear equations for the un-
knowns P and Q. It is sufficient to show that the determinant 4 of this linear system
is nonvanishing. Sinee 4 == A(4,) is an analytic function of V2, we need only prove
that A(J,) is not identically zero (for all 4, > 0), and then there exist positive num-
bers A, where A(4) 0.

T4 is also clear that the determinant A consists of a polynomial in powers of 1%,
with coefficients which are themselves polynomials in

(eosh V%ﬂ , sinh V%ﬂ , COS V%‘-’ , 8in V%)

If A(J) = 0, then the coefficient of 2% (and of each of the powers of 212y must
vanish identically.
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In the first equation (— ®” 4 ... = &) the highest power is 1¥%; and in the se-
cond equation (" - ... = f) the highest power is 132, The coeficient of A5 in A(4,)
can easily be computed to be (arguments V2 omitted)

ti[cosh sin — sinh cos]  u, sinh gin

.4/ 2 sinh sin oty [cosh sin + sinh cos]|’
s G

which equals (uy)/V/2 {sin?V/1,j2 — sinh2V/1 [2} = 0.

Hence A(4,) # 0 and there exists a value 40> 0 where A(4)s£0. Fix this
value of 4,. Now solve the boundary value equations at & = 1 to compute the
required P,Q (not both zero), and hence define the required solution w(z)=
= w,(») + W(x). As indicated earlier we now obtain « = (w, v, p, ¢) € D(4). There-
fore R(1,I— A) = J,.

From the Lumer-Phillips Theorem Wei conclude that the linear operator A is
the infinitesimal generator of a contraction semigroup 8(¢) on ¥,. LI

NoraTIoN. — In the real Hilbert space J¢r of finite energy states u = (w, v, p, q)
the dissipative operator

v

— Wenes
i 1
A= § —Wapa(1, 7 —Lyw
ﬂl (1, )—I-[u1 1
—1 1
—/Z—wm(l,t) _l__/,_L;sz

and the contraction semigroup S(¢) are called the Euler-Bernoulli feedback operators
for the dissipative boundary damping.

4. — Stabilization by feedback boundary damping.

In this section we prove our main result that feedback boundary damping en-
forcqs asymptotic stability of the Huler-Bernoulli dynamical system. That is,

limu(t) = 0

f—>00

for each solution w(f) = 8(¢)u, initiating at any state w, in the Hilbert space s
of all finite energy states.
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Recall that the finite energy states u e JCp are

, for we H20,1], ve I2[0,1], pe R, ge R with w(0) = w,(0) = 0.

= o g

The energy H[u] specifies the inner product and norm of % e JCp
1
. r
Blu] = 3wy wp = § ;= 3 [0° + waaldo 4 F{up®+- 19?1 -

0
The Euler-Bernoulli evolutionary ODE in 3, is

v

w:wmc

du 1 1
- e = — Wael{l, t — L
7 Aun i { y )+Ml 1 W

’
—1 1
—— W1, 1) + — Lyw
y U X Mo ?

for prescribed dissipative feedback laws at x =1

Liyw=—av -+ bv,, Lyw=cv— do,

for constants >0, d>0, 4ad> (b + c)o.

The domain of A is the dense linear subspace D(4)c J; defined by the usual
conditions on e Xy and the additional demands: we H0,1], v H?[0,1] and
2(0) = 2,(0) = 0, v(1) = p, v,(1) = ¢.

Under these circumstances we have demonstrated in Thecrem 1 that the dis-
sipative operator A generates a contraction semigroup S(¢) on ¥p. In the termi-
nology of our main Theorem 2, which will be demonstrated later in this section,

Hm S(t)u,= 0, for each wu,c Hy.

i—> o0

Our method involves the energy E[u]= }[u|2 as a Liapounov functional for
the evolutionary dynamics in Jz. But because ¥y is infinite dimensional we shall
need to modify the classical elementary techniques of stability theory to incor-
porate the methods of the LaSalle Invariance Principle [3]. Furthermore, at this
final stage of the theory, it will be necessary to assume that the feedback laws are
strietly dissipative—but these additional concepts and hypotheses will be discussed
in detail later.
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LeMMA 1. — Let u, € D(A2?) and consider the solution of the evolutionary ODE in JC5

w(®, 1)

v(z, 1)
w({t) = S{)u, = on >0,
p(t)

q(®)
Then u(t) € D(A?) for all 10, and further
i) w(w, t), v(x, 1) lie in class C* on 0], £0
and
if) ¢ = (w(+, 1), v(+, 1)) : [0, co) — H[0, 1] x H*[0, 1]

8 a continuous map.
Moreover, in accord with the earlier Proposition,

Wy =17, V= — Wagppa

so w(x,t) is a solution of the Euler-Bernoulli PDE

Wi+ Weoor =0 on O<u<l, >0,

with the boundary conditions

w(0,) =w,(0,7) =0 (clamped at z = 0)
and
W1, ) = Wean(l, t) + Ihw (dissipative feedback at boundary » =1).
PaWeii(1, 1) = — w,,(1, 8) + Lyw

Proor. — The semigroup 8(f) carries D(4) into D(4), and D(A4?) info D(4?2).
Hence, since wu,e D(432),

u(t) = S(t)u, lies in D(A?) for all i>0.

Recall the formulas

v(, 1)
- wmacnc:c(x5 t)
11 _ )
Au(t) = ﬁ;wxmc(ia Y+ /—;1131%0 with v € H2[0, 1], w e HY0,1]

——lwm(l, 1) + i—sz
M P2

2
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and
[— Wazaa(, 1)
!'— Vonaa( Ty )
1 1
Aryll)= —vmmLELw with we H[0,1], v e H¥0,1],

P

- i Von + }_ quj

s 223

for given dissipative feedback laws I, L,: Thus, for each ¢>0, w e H8[0,1] and
v € H0,1]. In addition

’W(O, 1) = wx(oy 1)=90 s wmww(o, t) = wmwm(oy t)=0 s

and v(0,1) =2,(0,1)=0.
Since u(f) and also Au(f) = AS(t)u,= S(t)(Au,) are solutions of the evolu-
tionary ODE in g,
dw

=" in H?
dv .
7 Wapns in L2
and
dv
&'t" =~ Wepae in H?
- (;t == Ve in 12,
Therefore we conclude that
ow v ov —w
ot 7 ot e

pointwise in 0<#<1, ¢>0. From these relations, and assuming the continuity of
the map ii), it easily follows that i) w(w, ?), v(w, t) are in C* in 0<o <1, 0.
There remains the demonstration of the continuity of the map
ii) ¢ — (w(, ), 0(-, ¥): [0, co) — H[0, 1] X H*[0, 1].
From the continuity of u(f), Au(t) = S(f)(4du), and A2u{t) = A28()uy= S(E)(A2u,)
we obtain continuous maps:
t = (w(-, %), v(-, 1)) : [0, co) — H2[0, 1] x L*[0, 1]
t = (0(+5 1), — Waagol*, 8)) 2 [0, 00) = H[O, 1] X L2[0, 1]
> (— Wageal "y )y — Vaveu(*, 1)) 2 [0, 00) — H?[0, 11X L2[0, 1].
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Clearly the integrals

1

1
1] 0

raex

1
both vary continuously with ¢>0. The only question involves f wk _dx, bub
0

this result follows from elementary calculus inequalities. In brief, write
Aw = wz, t -+ At) — w(z, t) (for fixed £>0). Since

lim Awepe, = 0 in 120, 1],
A0

it is not diffieult to show that

Lim AM]M)@ =0 in Lz[o’ 1.-' 9
A0

in fact, even under uniform eonvergence on 0<z<1, as 4f — 0.
We have proved that the map

t —w(-,1): [0, co) — H?[0, 1]
is continuous. In the same way we conclude that the map
t = o(+,?): [0y o0) = H*[0, 1]

is continuous. Therefore the map
ii) ¢ — (w(+, ?), o(+, 1)) : [0, c0) — H[0, 1] X H*[0, 1]

is eontinuous, as required.

The rest of the conclusions of the lemma then follow immediately from the
regularity assertions 1-3) and the Proposition occurring at the beginning of
Section 3. O

REMARK. — According to the Lemma before the Proposition of Section 3, w(x, )
and o, ) = w,(x, t) constitute the unique solution (with regularity conditions i),
ii)) of the Euler-Bernoulli PDE with the given boundary and initial data.

In addition, an extension of our arguments of Lemma 1 shows that if 4, € D(4™),
then w(w, ?) is in class C° in 0o <, 1>0. :

LyMMA 2. — Let 4y € D(A®) and consider the solution of the evolutionary ODE in Xy

w(xz, t)
v(z, 1)
u(t) = S{t)u,= on 1>0..
p(t)

q(?)
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Then the energy for u(t), and for Au(t), are each noninereasing on t>0. Furthermore,
the trajectory {u(t): >0} lies within a compact subset of JCy.

PrOOF. — Note that wu(f) = S@)u,e D(43%), and Au(t) = 8(#)(Aw,) € D(A?), are
both solutions of the evolutionary ODE, and they satisfy all the regularity specifi-
cations of the prior Lemma 1, and the Proposition of Section 3. Reeall that the energy

of the solution w(f) is
1

Blu(®) = § 03 =} [0+ uk]de + Fimp* + meg?],

9

and this has the derivative
B(u(®)) = o1, 1) Lyw -+ v,(1, t) Lyw <0

(because of the dissipative feedback laws Ly, L,). Thus H(u(f)) is nonincreasing on
£>0. But Au(f) is also a solution, and so its energy B(Awu(t)) is also nonincreasing
on t>0.

Sinee E(u(t)) is nonincreasing « = (w, v, p, ¢) is bounded in Je, for t>0. In par-
ticular, (-, ?) is bounded in H?[0, 1], v(+,?) is bounded in L0, 1], and (p(t), ¢(t))
is bounded in R® ‘We shall prove that w(-,?) and v(-, ) are also bounded in higher
Scbolev norms.

Recall that the solution Awu(t) iz given by

@, 1)

S@

s

1 1.
)\A/M/o) — .A.’ifi(t) = ""wmmz<17 i) —i_ ;Ll/w
1

H

1
—— Wye{l, )—{— sz
S

2

s0 that the energy of Au(f) can be computed

1

A 1 2 1 1 2
A — L L T Bay = 27 .
B(Au(t)) = flwwwmmT Vo] di0 5 [Ml Wage P X b} s Wes 4 s 20
0

i

L\l»-i

Since E(A( wu(t ))) is bounded on ¢ 0, we conclude that f [w2, ., - 2, 1dx is also bounded.

fEonod

Since ffvg dr is bounded for all ¢{>90, and smce 2(0, ¢) = 2,(0,%) =0, we find

that »(-,¢) is bounded in the H2-norm. Since f w? dw is bounded for all i>0, we

find that max [0.elt, £)] 18 bounded (just as in *he caleulus argument in the proof
of prior Lemma 1). Therefore w(-, t) is bounded in the norm of H4[0, 1}, for all £>0.
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From the well-known Rellich’s Lemma [1] we conclude that the trajectory
{u(t)[t>0} c ¥y lies within a compact subset of H?[0,1]xL0,1]xR2 But I,
is a closed subset of I3[0, 1]x L0, 1] x R? and also has the norm |u[y equivalent
to the induced norm. Hence we conclude that {u(f): >0} lies within a compact
subset of J&;. That is, the J,-closure of {u(t): {0} is a compact subset of J¥y: O

REMARK. ~ Since D(A?) is dense in J,, every u,c 3¢, determines a solution
u(t) = S(t)u, along which the energy is nonincreasing.

LeMMA 3. — Let uoe D(43%) and consider the solution w(t) = S(t)uy of the evoly-
tionary ODE in Xp.
Assume now:

1) B(u(t)) is constant on t>0 and

2) the feedback laws L., L, are strictly dissipative,
Liw=—av+ b, Lw=c—dy,

with a >0, d> 0, 4ad > (b + ¢)2.
Then u(t)=0 on t>0.

Proor. — Since u(t) = S(?)u, € D(43), we note that fAu(t) = S({E)(Au,) € D{A?) is
a solution of the evolutionary ODE, and it satisfies the regularity conditions of
the prior Lemma 1. :

Recall that solution u(¢) and Awu(t) are given by
w(z, 1)
(1w, 1)
p(t)
q(®)

l

with w(w,t) € H*[0,1] w(0,?) = w,(0,) =0 (and ve L[0,1]) and also

vz, 1)

1 } 1
1

10,1, 1)+ = Ly
Ha M2

with  o(x, t) € H0,1], 0(0,1) =,(0,f)=0 and in addition,  p(t) = »(1, t),
9(f) = v.(1, 7). (and w,e.. € L0, 1]).
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Since H(u(t)) is constant,
B(u@®) = o1, ) Lyw + v,(1, 1) Lyw =0 .
But L, and I, ave stricily dissipative feedback laws, so
o(1,8) =0, 2,(1,H=0,
and hence Lyw=190, Law=190 on ;t>0. Therefore p(f) =0, q(f) =0 for all {>0.

Furthermore the last two components of the evolutionary ODE du/dt = Au
assert that

d
0L — 0 (1,1) + Luw

d
MZE% = — We(1, ¥) + Lyw

80 we conclude that

Wl L, 8y =0, Wy, (1,5 =0.

i

In summary, an analysis of the seclution Awu(f) shows that (see Proposition in
Section 3)

i) o(w, 1) and — W, 1) are in O for O<w<l, 150

i) ¢ —w(, ¥): [0, co) — H[0, 1] is continuous.

Moreover,

V== — Waggs » = Wypgat == ~— Vpora
50 v(x, 1) is a solution of the Euler-Bernoulli PDE
Vys + Vaawe = 0 on O0gegl, 1>0.

The boundary conditions for o(x, t) are

i
=]

00, 0)=0, 0.0,0)=0, 0L, =0, 1)
and the exfra conditions

o1, ) =0, 01,8 =0.

Il

ASIDE. ~ The regularity of w(z, ) and v(x, t) follow from the prior Lemma 1,
and the earlier Proposition and listed properties at the beginning of Section 3, as
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applied to u(t) € D(A?) and Au(t) e D(4?). In particular, besides the properties 1-5)
of Section 3 for w(z, t) we further note that

v(z, t) € O* in 0g<e<gl, >0

Utmm: /Dxtaaz /Uocact a’nd ’Uttw: /Utavtz Q;astt

are continuous in (z, t) for O<o <1, 1>0.

We return to the theme of the proof which analyzes the solution v(x, ) of the
Euler-Bernoulli PDE, with the six boundary conditions at # = 0 and # = 1. It is
known by the Holmgren Uniqueness Theorem [4] that any such solution must vanish
identically, that is,

v(w, 1) =0 on O<e<gl, t>0.

But this means that

13

w(a, 1) = w(@, 0) +[o(@, 7) dv = w(@, 0)
0
is independent of 3. Further
Wi + Woswe = 0

implies that w,...(2, 0) =0 so that w(z, 0) is a cubic polynomial in z. However,
w(0, 0) = w,(0, 0) = 0 and we,(1, 0) = w,.,(1, 0) = 0. This implies that w(x, 0) =0,
and therefore

ww,t) =0, vxt)=0 on 0o, 0.

Since we have already demonstrated that p(f) = gq(f) =0, we conclude that
#(t) =0 on {>0, as required. O

REMARK. — It is only necessary to assume E(u(t)) =0 on an open interval,
from which the conclusion u(f) =0 on ¢>0 then follows. We are now in a position
to state and prove our main Theorem 2.

THEOREM 2. — Consider the real Hilbert space Jy of all states u =
energy, for the Euler-Bernoulli evolutionary ODE,

with finite

s e 8

(@, 1)
- wmxz(xy t)

au 1 1
—— o i == — Warspe 1,1 “—‘.L
= Au ﬂlw (1, )-I-M1 10

1 1
—— w1, 1 — L,w
o Wal 15 1) + T
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with strictly dissipative feedback laws L,, L,. Let S(i) be the contraction semigroup
generated by A in Xy, as before.

Then, for each uoe Xy the solution w(l) = S(t)u, tends asympiotically fowards the
origin as t — oo, thal is,

lim#{f) =0 in XK.

i— o0

PRrOOF. — We first prove the required result for an initial state u, e D(4”), that
is, we shall show that the solution

w(z, t)

A

v(, t)
()
q(t)

approaches the origin in J¢r, as { — co. Later we shall note that this special case is
sufficient to prove the general case asserted in the Theorem.
The energy of this solution is

B(u(t)) = ¥ |u®)|2<B(u) for all 1>0
and

— B{u{)) = »(1, 1) Lyw -+ 0,(1, 1) Lyw <0 .

Therefore E(u(f)) is nonincreasing and

lim B(u(t)) = Fe
>0

exists for some limit B_>0. In geometric terms, u(f) approaches the sphere of radius
(2H_)Y2, centered at the origin of the Hilbert Space J¢r. We seek to prove that
B, = 0, which would imply that lim u(f) = 0.

Suppose B> 0 and seek a contradiction. Since wu,€ D(A”)c D(4%), the tra-
jectory {u(f): i>0} lies in a compact subset of Jex, according to Lemma 2. We now
consider the positive limit (or w-limit) set of u,,

w{ty) = ﬂ U“(t)y

>0 ix=t

where the closure of the future trajectory {{J «(i)} is within Jp. Then w(u,) is a
t=r
connected compact nonempty subset of JCr. Furthermore the set w(u,) lies on the

energy sphere E = H_, that is, H(u,) = B, for each point %, € w(u).



W. LitTMAN - L. MARKUS: Stabilization of a hybrid system, efc. 311

Take a point u_ € w(u,) 80

lm u(ty) = Yeo ,

fpm> 00

for some increasing sequence of times f, — co. We shall prove that the solution
u, (t) = S{)u, lies always in D(4™).

Note that Au(t)e D(A”) describes a trajectory {Au(l): >0} which itself lies
within some compaet subset of ¥y, and so Au(tki) converges in JCr for some sub-
sequence of times #, —> co. Since A is a closed operator, we kunow [6] that
%, € D(4) and

Aulty) — Au,, in Kp.

Repeat this argument, with further subsequences (now denoted simply as %) to
find that

Au,e D(A) and A?u(f) — Azu, .

Similarly u,e D(43) with A3u(t,) — A%u,, ete. Hence the results of Lemma 2
and Lemma 3 apply to the solution u (f) = S(#)u, < .D(4”) on >0.
Under the supposition that E, > 0, we can examine the two alternative cases:

@) either E(um(t)) eventually decreases to B, — & (for some positive ¢ > 0) or

b) E(u,(t)) is constant on all ¢>0.

In the first case @) E(u,(t))<E,— ¢ for all suitably large ¢, say for t> T.. But
since u(l;) — 4., and sinee [8(f)] <1, we find that eventually B(u())<ZFH,— /2.
This is impossible from the definition of Emzlti_ygo E(u(t)). In the second case b)
E(um(t)) is constant. But then Lemma 3 asserts that u.(f) =0 so B(u,) = E_= 0.
Again this conclusion contradicts the supposition that F_> 0. Hence in each of
the alternative cases we obtain a contradiction, and therefore we have proved that
EB,=0.
Because Jim B(u(t)) = Jim § |u(})|; = 0, we conclude that

limu(t) =0 on ¥,
t—>o0
a8 required for u,e D(A™).

Finally turn to the general case for an arbitrary initial state #, € $&z. We must
prove that () = S(t)4, tends to the origin in J6,. Pick any &> 0 and consider
the e-sphere about the origin in J¢,. We shall show that 4(¢) eventually enters, and
thereafter remains, within this chosen s-sphere.



312 W. LittMAN - L. MARKUS: Stabilization of a hybrid system, ete.

Since D(A%) is dense in ¥y, take some point u, € D(A™) with
o — wo |5 << &/3 .
Since |8(t)] <1 for all >0, we caleulate that
18— w)ls = 140) — u()]s< s/3  for 0.
But for some time T, < co we know that
lu)|r<<ef3 onit=T,.
Then certainly
4@ e < 2e/3<e for t>T,.
In this way we conclude that

lim 4(t

t—> 00

)==0 in Xg,

/

as required for each @, 3. O

As a last topic in this section 4 let us re-interpret Theorem 2 for the Euler-
Bernoulli PDE with strictly dissipative feedback boundary damping.

CorOLLARY. — Uonsider the Euler-Bernoulli PDE
Wiy + Wagee = 0 for w(w, 1) on O<o<l, >0

with the boundary conditions

w(0,1) = w,(0,8) =0 (clamped at v = 0)
and
w1, 8) = wu,(l, t) -+ Lyw (feedback boundary demping at © =1),
faWap(1, 1) == — w,,(1, 1) + L,w
for strictly dissipative feedback laws Iy, L,, as before.

Give initial data for w(z, 0) and v(@, 0) = w,(x, 0) satisfying the conditions of D(4*),
that is

w(w, 0) e HY0,1], oz, 0) € H0,1],
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with
w(0, 0) = w(0,0) = 0, (0, 0) — 1,(0, 0) = 0

and also

1 1
- ’L"Jmmx(l7 O) = ;wa‘ma,(:[? O) _l_ ‘;/L—Lllw
1 1

1

2 2

Then there exists a solution w(xz,t), v(x, 1) = w(x, t) of this boundary-initial value
problem so that

i) w(z, t) and v(z, 1) are in class O on 0<a <1, t>0

ii) t — (w(-, 1), v(, ) : [0, co) — H[0, 1] X H*[0, 1] is a continuous map.

Moreover w(w, t) is the unique solution of this boundary-initial value problem satisfying
the regularity conditions i), ii).
Furthermore this unique solution decays asympiotically to zero,

limw(z, t) =0, limw,w,t) =0

{00 {—> 00
with each convergence uniform on 0<w<1.

The proof of the Corollary follows directly from Theorem 2, and the prior
Lemma 1, in view of the Proposition of Section 3 relating the solutions of the Huler-
Bernoulli PDE with the corresponding solutions of the ecorresponding evolutionary
ODE in the Hilbert space ;.

If we further assume that the initial state w(w, 0), v(z, 0) satisfies the conditions
of D(A3), then we further conclude

limo(w, 1) = 0, limov,w,t) =0,

t->c0 ) {—+co
w
uniformly on 0<#<1. The conditions for u = ; e ¥#r to lie in D(43) are all
q

those conditions already obtained for D(42), and in addition
ve H8[0,1], we HYO,1]
with
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and
Y 1
e Ogane(1) = (1) b — Ly (at 2 = 1)
1551 M1
1 1
- La,mc/w(i) = "—@xm(l) + '—‘.Lz’l) .
Mo Ha

Of course, if we take the corresponding initial state w, € D(4A%), then w(w,t),
v(w, t) are in class 0% on 0<o <1, t>0 and higher order derivatives also decay to
zero as t — oo. In particular, it is evident that w(w, 1), v(x, ¢) and their x-derivatives
of order 4, 8, 12, 16, cte. ag well as their ¢-derivatives of all orders—are in clags C!
in {(m 1) on 0<ow<], 0. The intermediate order derivatives can be shown to be
continuous by routine arguments involving generalized derivatives.

Finally we further reinterpret the stability Theorem 2 in terms of our original
control problem for the elastic mast (M) and the rigid antenna (4), as deseribed
in Seetion 1 of this paper.

Congider the control system for the elastic mast (M)

Wi+ Wapge = 0 for w(x,?) on O<ogl, >0
and for the rigid antenna (4)
¥ = Wepo(L, 1) + Ly el = — wau(l, 0) + Lyw ,
with strietly dissipative feedback boundary damping
Low=—ay +b), Lw=cy—dl a>0, d>0, dad> b+ 0)?.
Assume the boundary conditions, as usual,
w(0, 1) = w,(0,1) =0 (clamped at & = 0)
and
w(l, =y, w,(1,?t)=0({) (linked at #=1).
Give any initial state for
w(y 1)y 0", 1) = wi(+, 1), y(B), Y(8), 0(8), 6(2)

satisfying the initial conditions for D(42); that is, w(w, 0), v(w, 0) as in the preceed-
ing Corollary and the additional conditions

w(l, 0) = y(0), w,(1,0)=0(0), o(1,0)=4g0), »ll,0)=06(0).
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Then there exists a solution of the feedback control system (M) - (4) (unique
within the regularity specified in the Corollary), and furthermore

limw(z,t) =0, limy@) =0, lm6(#) =0.

{—oco t—> oo t— oo

If we further demand that the initial data satisfy the conditions of D(A2), then

limwy(z,t) =0, lim#{#) =0, limf{¢) =0.

t—co t—>co t—>co

It is of interest to examine the rate of decay towards zero for w(x,?) in this
asymptotically stable feedback system. Since the differential equations involved
are all linear with constant coefficients, it might seem plausible to suppose that this
decay rate is uniformly exponential. However, this is definitely not the case. In
fact, there exist such solutions w(x, t) which approach towards zero more slowly than
any preassigned function. In the next section of this paper we clarify these que-
stions by some unusual examples.

5. — Decay rate under feedback boundary damping. Nonexponential and slow decay.

In this final section we shall examine the rate of decay of a solution w(w, {) of
the Euler-Bernoulli PDE, under dissipative feedback boundary damping. Since
the dynamical system is described by linear differential equations with constant
coefficients it might seem plausible to suppose that the asymptotic decay of w(z, )
is uniformly exponential. This is definitely not the case, and we shall demonstrate
this lack of uniform exponential decay by means of a sequence of examples {w,(x, 1)}
with decay rates slower than any preassigned exponential function. In fact, our
method will construct examples u,(¢) = S(t)uy, in J& with arbitrarily slow decay
towards zero. :

In order to make our constructions as explicit and as transparent as possible,
we shall set the mass constants g, = y,=1, and chooge the Special, but typical
feedback laws

Liw=—w,1,1), Lw=—w,dl,1)),

which are strictly dissipative in the sense of the definitions of Section 2, and of
Theorem 2 of Section 4.
Thus consider the Euler-Bernoulli PDE

Wis - Wopee = 0 for w(z, t) on O<w<l, >0
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with the boundary conditions
w(0, 1) = w,(0,7) =0 (clamped at x = 0)
and
We(1y 1) = We(l, 1) — w,(1, 1) (dissipative damping at @ =1).

Wars{ly 1) = — wau(l, 1) — wy(1, 8)

We seek smooth solutions w{w,t) (also defining solutions u(f) = S(t)u,€ D(4®) of
the evolutionary ODE in J), with slow decay rate governed by exp[— ], for
small positive v > 0. That is, we first find complex-valued solutions of the form

W(e, t) = exp [4st]P(x) (s =0+ i1)

for W(x) satisfying the corresponding ODE

mem(w) - SzT(w) =90 9

with boundary conditions
Y(0) = ¥,0)=0.

This demand produces the most general solution
Y(x) = A({cosh Az — cos Ax) + B(sinh Az — sin Ax)

for the complex parameter 4 = u + @ and complex coefficients 4, B. The relation
between A and s ig specified s2= 4%, and we shall choose

s=A* or o=pu*—9*, T=2Zu.

Later we shall let w(z, f) = Re W(w, {) to obtain a real solution of fthe real linear
boundary value problem.

The remaining two boundary conditions at # == 1 will impose a determinantal
demand on 1, in order that nontrivial constants A, B can be found. In more detail,
the two boundary conditions at # = 1 yield the linear homogeneous eqgunations
for 4, B:

A{~ 23(sinh 2 — sin 1) — s*(cosh A — cos 1) + is(cosh 2 — cos A)} +
-+ B{~ 2*(cosh A + cos 1) — s*(sinh A — sin A) - is(sinh 4 — sin MNp=0
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and

A{A¥cosh A + cos A) — s*A(sinh A - sin 1) + isd (sinh 4 + sin A+
-+ B{A*sinh A 4 sin 4) — s*A(cosh 1 — cos 1) +- isi(cosh A — cos A)} = 0.

The determinant A4(A) of these two linear equations is (upon setting § == A%):

A() = (— 2482 + 24sA* + 282 A% — 2is)?) sinh 4 cos 4 +-
4 (— 2s%4 |- 4is®A + 445) cosh A cos A
+ (— 25222 - 2isA%— 24%s* 4 2ist) cosh A sin A - 2(2 — 2is4) - O(/) .

Here the last term O(4°) consists of a polynomial of degree 5 in A, with coefficients
that are complex polynomials in (cos 4, sin A)—that is, these are trigonometric
polynomials of an explicit format.

Our program then consists in solving the transcendental equation

AA) =0

for 1o0ts A, = p, - ., With o,= 2 — 2 - oo and 7,= 2u,», X0. In "terms of
the geometry of the complex plane, we seek roots A, that lie in the open first qua-
drant with g, —> -4 oo, and », N0, so that 1, lies below any preassigned hyperbola
Hovy = const > 0. Later we interpret these constraints with respect to the decay
rate for w(z, {) = Re W(x,?) (in terms of the H2norm, and the corresponding
Jez-norm, and also for other significant norms).

In order to solve A(A) = 0 for roots A,, we simplify the expression for this de-
terminant by setting
eh - gA eh— g=4

sinh 4 =

cosh 2 = 5 5

and collect terms in power of 1 to obtain:

A(2) = — € [2(A + 1) cos A - 2° sin 2 — ()] + [@o(4) 67" + Qo(A)] ,
where the @(1) are polynomials of the indicated degree in the complex variable 4,

with coefficients that are explicit trigonometric polynomials in sin A, cos A.
‘We shall seek complex solutions A, for

AA) =0
in the strip S along the positive real axis:

8= {A=p+i:|u]>10, p|<1},
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wherein [eos 4]<10, |sin A|<10 and ¢*—0 as . -> co. Define the analytic fune-
tions G(A) and ¢(1) in the strip § by:

sin A &2 A(A)

#(A) = cos 1 + i1 ) = p{d) — G(}).
Then
o* (1) 1
97/\;“)— (/1+1) [@e{2) e7% - Q{4 )]Tﬂ A1) O(ﬁ)v
that is,

.

We first solve G{1) = 0, and then study the perturbations caused by the term
@(A), for large |A| in the sirip 8. Elementary analyms shows that there is a sequence
of real positive roots 4, of

sin A

AF1

G(l) = cos A =0, or (A+1)=—tani,

namely 4, with

gin—(g+ nn)]\ 0 form=20,1,2,3,..,.
L

Moreover there are only these real roots gince

(A +1)eos A + sin A2 = [(u 4 1)+ »2+ 1] sinh2y 4 »2 cos?u +
4 [(u + 1) cos g - sin g2+ 2y sinh v coshy > 2y sinh g coshy >0  for »5£0.

Since

(A +1)cos A —sin A

Gi(;ﬁ) = ——SIn A -+ (2. —+ ])2

:-sin)u+0(%),

we find that

and the roots 1, are all simple — at least for all sufficiently large n. Hence we anti-
cipate that perturbation techniques will be effective in locating roots 1, of G(4) — ¢(4)
nearby to 7,.

Around each complex point 1, we construct a circle 0, of radius B, = n¥ 2, 80
that the disk |2 — 7,] <R, lies within the strip 8. We shall prove the existence of a
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Zer0 Ap = W, i, of the analytic function G(4)— ¢(A) within each such disk, at
least for all suitably large #. In such a case

7
n—>— -+ Am 0 < v, <n3e
Iu 2 y

and 80 7,= 24,7, =0 as as n — oo, [note: »,<0 is impossible since this would
imply the existence of a solution w(x,t) of the PDE whose energy fails to decay
towards zero—as will be re-emphasized later].

At the center 1, of the circle (0, we have

G(d,) = 0,

and we now seek a lower bound for |G(4)| on 0, in order to apply Rouché’s Theorem.
As noted before

lim [((2) + sin 4] = 0,

A—>co
and hence

Re G'(A)>1 in the disk |[A— A,|<n¥2

for n even—otherwise Re G'(1)<—

1
E‘-
Consider G(1) at some point 1 on @, and join 4 to the center 1, by a radial
segment

A=X.+r(l—1,) for 0<r<1.

Then

MY

Therefore there is & complex constant

1

y = f G'(Ar)) ar

0

that lies in the closed convex hull of the value set {G'(A(r))}, see [2]. Since
[Rey|>%, |G(D)] = [y|B.> im0

for all ie(,.
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Our estimates show that on the circle C,, for all suitably large n,

const
n2

|6(A)| >

DO b=

n#  and  |e(l)<

’

30
1G] > lp(A)] -

The Theorem of Rouché now guarantees the existence of a root ,= u, | 9, within
the disk |A— 7,|]<R, for the equation

or equally well for the determinantal equation
— A() = ¢ 2°(A + 1)[EA) — p(2)] = 0.
We shall use these roots A,= u,- w, of A(1) =0, with

/"n_(g—l“'nn) =0, 0 <y, <32

80

On=pr—v:—>o00 and 7,= 24, N0 a8 % —> oo,

For such complex roots 1, we have the desired complex solutions of the Euler-
Bernoulli PDE, with the prescribed dissipative boundary conditions,

W, (w, 1) = exp [— 7.ti[€08 0,¢ 5 ¢ sin 0,117, ()
($n= 0, 97, 80 8, = 22 = p} — v} + 2iu,v,), Where
Y x) = A,(cosh A,z — cos A,x) + B,(sinh 4,2 — sin 4,2)
with

/’{fn:ﬂn_l‘i’}n7 Tnzzﬂnvn\oa O‘n:[ﬁz'_'pﬁéoo'

The complex eonstants (4,, B,) 7~ (0,0) can be normalized, up to ratio, in any
convenient manner. Since W,(w,?) is a nontrivial solution of the boundary value
problem,

ReW,(z, 1) = exp [— 7,t)[cos 0, t(Re ¥,) — sin 0, {(Im ¥,)] = 0,

for otherwise we obtain the contradiction

ReV, () =Im ¥, (2)2) =0 and P,(#)=0 on 0<o<].
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Next we analyse the rates of decay of the real solutions of the PDE boundary
value problem

wy(2, 1) = Re W, (z, 1),
and of the corresponding solution of the evolutionary ODE

w,(, 1)
V(@ 1)
Un(t) = = S(t)un«))
Da(t)
(%)
where v,(®, 1) = cw,[0t, p.(t) = v.(1, 1), ¢u(t) = (0v,/0x)(1,t) are defined as usual.
Suppressing the index n, we write the real solution of the boundary value problem
wiz, 1) = ReW(w, ) £ 0
50
w(z, 1) = exp [— 7t][(cos ot) ¥, (%) — (sin of) ¥, (x)]

(where P(z) = Py(») + i¥Pi(x)).
Direct eomputations yield

w, == — 7 exp[— 1t][(cos ot) ¥, (») — (sin ot} ¥, (®)] +

+ o exp [— ©t][(— sin ot) ¥ (%) — (cos ot) ¥, ()]
and

w,, = exp [— t][(cos ot) ¥y (w) — (sin ot) ¥, ()]
8o the corresponding energy is
B(t) = exp [— 27t] [, 008 20T 4 oy €08 ot -+ f, 8in 20¢ + (4 8in of 4 o)

for real constants oy, o, fay P1y 0.
On a period of duration 2x/c we let

M = max [o, €08 20T -} o4 €08 6t -+ [, 8in 201 -+ fy sin of -+ o]
0<t<2n/o

so that at a discrete periodic set of times #, 7 co

B(t,) = Mexp[— 27t,].
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Moreover, since H(¢) > 0 is nonincreasing, we conclude that for each 1>0
Bt)> M exp [— 21, 1> M exp [— 27(t - 2m/0)]

where f, ,<t<t, on the f-axis. Similarly, (M exp [— 4n1/0]) exp [— 21¢]<H({) <
< M exp [4nr/o] exp [— 27t]. But as n — oo, 7,40 and o, —> oo

exp [— dmr,fo.] 71 .

We conclude that, for each &> 0, the energy of w,(x, ) for all large = satis-
fies bounds

(I — )M, exp[— 21, 0]1< B, () <(1 + &) M, exp [— 27,1] on >0,
and has the exponential decay rate

i;m B.(0)

[

lim

{—co

= 27, .

Hence, for each prescribed positive decay rate £ > 0, there exists 7% = n(f) so that
the exponential decay rate 2v,<< % for all suitably large n>7. In this sense the
sequence of real solutions {w,(x,?)} of the given boundary value problem displays
arbitrarily slow exponential decay rates, and so the Euler-Bernoulli semigroup S(t)
cannot have a fixed positive exponential decay rate, uniformly on the state space ¥r.

REMARK. ~ As another and different measure of the rate of deeay of a solution
waiw, 1) we can consider [w,(w,?)]| = sup jw.(z,?)| and then define
o<l

R4 = sup lw, (e, 1), (1) = inf |wa(z, 1)]
[4—~1,t+1] [t—1,8-+11
and consider » large so that the period 2m/o, is much less than 1. With the earlier
expression for w{z,t), it is elementary to demonstrate that there are constants
0<r,< R, so that RB,0)<R, exp[— 7,t], 7.()>7, exp [— 7.1] and

P OXP [— Tobl< [wa(®, 1) | <Rn.exp[— 7,t], for all 1>0.

Heneceforth we consider only the energy norms for the solutions w(w, 7).

We now reburn to the construction of a solution w(w,t) of the Euler-Bernoulli
boundary value problem with an arbitrarily slow decay rate. We shall consider the
real solutions, for n =1,2,3, ...,

Wa(w, 1) = exp [— 7,11 [(c08 0, 8) Pp{w) — (8in 0, 7) ¥r()]
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where 7,> 7,> 7, > ... > 0, and ¢, —> + oo, as before. Hach such solution defines
a continuous function

w,(mz, 1)

Va2, 1)
Uy (t) = S(#) u,(0) = ) t > w,(*): [0, c0) = Iy,
Palt) .

qa(t)

which is & solution of the corresponding evolutionary ODE in the finite-energy
Hilbert space J¢;. Clearly the energy norm of u,(?) is

[2B(un(®) ]2 = |ua(t) |5 -
According to the exponential decay rate that we have already established,
Y exp[— 7,8]< [ua(0)]p<exp[— 7,8] on 0<t< oo

(after discarding a finite initial set of these w,(t), and multiplication of each u.(?)
be a suitable scaling constant, and then making the corresponding notational mo-
difications).

LumMA. — Let {2,(t)} be a sequence of continuous fumctions
T —2,(*): [0y 00) > B

for some real Banach space 3.
Asswme for each n =1,2,3, ... the norms

[2.8)] om 0<t<< o0
satisfy

L exp [— 7.t]< |2a() ] <exp [— 7,1]

for ©y> 1> 7,> ... = 0.
Let (t) be a real continuous function on 0<t < oo, positive and strictly decreasing so

p(0) =1, limyp{) =0,

{-»c0
Then there exists o subsequence {z, (t)} so

20
2(%) .—_7;1 k—’;zﬂk(t) (constants 0 < a,<1)
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is continuous
t—>2(-): [0, co) > FB.
Moreover |2(t.)] > w(t,) at some sequence of times t, — oo.

Proor. — The proof consists in a construction of 2(f) by choices of {r,,k}, {an},
and intervals I,, which contain the times ¥, € I,.

STAGE 1. — Take m,>1, compact interval I,c [0, oo), and positive constant
@, =1 so that:

1 -
QP(t) < 1‘6 on Il
and

3 A
10 < l2a,(®) | < T I.
[Take the time # when g(f,) = 1/10. Then select n; so that

exp | r?]>3
D [— 0] > 25 -

DO et

len, (B >

Since lim s ()] = 0, we ean find a later compact interval I, whereon

STAGE 2. — Take m,> ny, compact interval I,c [0, co) after I, (following and
disjoint from 1), and positive constant 0 < a,<1 so that:

D len®l < 37755 O T
e, 11
i) p{f) < 57100 on I,
and
ii13<"’t<7 nl, Ul
) 100 \alzllznz\ )“ == 100 o 1 2«

[First choose I, so i) and ii) hold, then choose n, 80 exp [— 7, ] is «suitably flat»
out to I,, then choose a, so iii) holds.]
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StacE 3. — Take n,> n,, compact interval I,c [0, co] after I,, and positive
constant 0 < a,<1 so that:

- I oL 1
i) Jon®] + 2 el < 537005 o0 Do
1 1
.. 1 1 T
0 v <zi7500 01
and
' 7

Lo 8 T '
iii) 1006 \a3\]znz(t)l[<1000 on LULUI,

Continue this selection process to stage I.
Take n,> n,—;, compact interval I,c [0, co) after I,_,, and positive constant
0 < a,<1 so that:

IZta, 11
i ol - 1
D2, k!z"k(t)|<u T
.. 11
11) 'l/)(t) < l—i i—o—-z on Il
and
.3 T
111) l_O—l <G;“Z’nl(t)”\1—0—i on IIUIZU... UI;.
Then define

S

2(t) = 121

T2,(t)  on 0<i< oo.

Eol

1t is eclear that this series is uniformly absolutely convergent on 0<t<< co, 850 the
$B-value function z(¢) is continuous as required.
We now show that

2@ >y on LUILU..,

and in particular, this inequality holds at the midpoint ¢, of I, COlearly on the
interval I,

FACNOI

We must show that the consideration of the infinitely many other terms in the
series for z(f) does not destroy the force of this inequality.
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Now on I, we note

1 By Oy .
#100> F lan®l — 3 z_-,z”k@)“
But
< || Oy i1

k§<'l ]j—'zn (t) Z“—Oﬁ 'IGBJG]J. Z/i
and
— 1| Ay ',,‘E 1 7 1 7
& e S niem T ey o T

1 7 S i 8 14
(1)l 1oth [HH" —OT'"]<(Z—{—1)!1OZ+1 RTETIE

Hence on I,

s = _3_ i l 1 11 < (i
W=ditw nw nie n YW
In particular, at the midpoint ¢, of I, we have

12(8)] > w(t;,) for 1=1,2,3,... 0

COROLLARY. — For cach positive v >0
J2(8)] > exp [— vt]

at a sequence of times i, 7 oo. Hence the exponentiol decay rate (Liapunov exponent)

lim itlog le®)|| <7

i>o0
Therefore the Liapunov exponent is zero,

.1 |

lim j=log 2(8){| = 0.

Dwl?

w
THEOREM 3. — Oonsider the Hilbert space XKp of all states u = Y1 with finite energy,
for the Huler-Bernoulli evolutionary ODIE, z
v{a, 1)
a v Waga(1, 7) — we(1, 1)

— Weal1, 1) — wae(1, 7)
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with the sirictly dissipative feedback laws

Liw=—w(1,t), Lw=—w.Q1,t1)

(and mass constants [, ps set equal to 1). Let S(2) be the contraction semigroup generated
by A in &£y, as before.

Then, there ewist solutions w(t) with arbitrarily slow decay towards zero. In more
detail, let y(t) be a real continuwous function on 0<t < oo, positive and strictly de-
creasing so

0y =1, limy{E) =0.

o0
Then there exists an initial state u,€ Ky and corresponding solution
wl{t) = St)u, on 0<E<< o,
so that
lu(®) ]z > w(t)
at some sequence of timest, 7 oo.

ProoF. — Consider the sequence of solutions of the Euler-Bernoulli boundary value
problem:

W@, 1) == exp [— v, 1] [(C08 6, 8) Wop(w) — (sin 0, 8) Fs(2)]

where 7;> 7> 13> ... -0, and ¢, > oo, as before. Hach such golution defines a
continuous funection

W@, )
v, (2, 1)
Pa(t)
qx(?)

Un(t) = S(t) un(0) =

(for v, = Cw,[0t, Palt) = va(1,1), qa.(t) = (Cv.[om)(1, 1))

b= () [0, 00) = Ky,

which is a solution of the evolutionary ODE

dw

Zﬁ:Au in X, .
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Furthermore, sinee 7,N0, we can assume, after a convenient renumbering and
rescaling of u,(t), that

rexp— 7.t]< [u. () [r<exp[— 7o0] on 0<i< 0.

Then, as in the preceeding lemma,

2 Ay,
u{t) :kzl%—’;u,,k(z) on 0<t< oo,

for some suitable subsequence {unk(t)}, and constants 0 <a,<1, is a countinuous
funetion

¢ = u(+): [0y 00) = Ky .
Moreover

i) > ()
for some sequence of times #, — oo.

It remains to demostrate that u(f) is a solution of the evolutionary ODE, that is,
we must prove that

where

2 a .
o == 21 klj u, (0) in XKy,

Consider the continuous curve S(f)u, in ¥, and the continuous curve wu(f)
in ¥z, on 0<i < co. Now the partial sums converge absolutely

uniformly on 0<#<C oo, sinece ||u,(¢)||<1. Also, for each 1>0,

N g, N“ic, ¥ g,
(Zf: )—EM = 2 1t

k=1

Hence, for each >0, since |8(t)| <1,

¥ oa,
lim 3 —tu, (1) = S(t)u, .
Neoo E=1 B! TF
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Therefore E(ak/k!)unk(t) converges in ¥, to S(t)u, and alsoc to w(t). Thus we
k=1
conclude that

u(t) = S(t)u, for all 0<i < oo,

and the Theorem is proved. [

REMARK. — Bach solution u,(f) is real-analytic on 0 <t < oo, that is, u,(f) is given
by an absolutely convergent power series in f,- with coefficients in J,. Further,

oo

O
ot — t
ult) = 3 Pt

converges absolutely uniformly on 0<? < oo, but the behavior for complex values
of ¢ is not apparent.
Moreover the corresponding components

w(w, t)
(@, 1)
»(t)
q(?)
are not guaranteed to be smooth in # on 0<#<1. Certainly w(z, t) lies in H2[0, 1]
for each $>0, but we cannot be assured that w,,, w,.,, OF Wee.(®, f) are continuous
in (1), without further investigations on the nature of the convergence of the

series for u(f). In particular, it seems likely that one might require better quanti-
tative estimates for v, = 2u,», given by,

—0

and

0<p,<n32 for all large integers n .

We do not pursue these questions further at this time.
For a nonconstructive proof of an absraction of Theorem 3, see [17].
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