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Summary. - A hybrid control syste~ is presented as consisting o/ an elastic beam linked to a 
rigid body, and the system is asymptotically stabilized through feedback boundary damping. 
Solutions o/the hybrid system are constructed that decay towards zero at nouexponential, even 
arbitrarily slow, decay rates. This feedback control analysis complements the authors' earlier 
report on the open-loop controllability o/ this same hybrid system, which is a simpli/ied 
model o/ a space.structure. 

1. - The hybrid system, an  elastic space-structure: mot ivat ion  and a summary  o f  
results.  

In a previous publication [5] the authors have analysed the controllability of 
a hybrid dynamical system consisting of a long elastic beam, clamped ut rest at one 
end and clamped (or linked) at the other and to a moveable rigid body upon which 
the boundary controllers are applied. Such a system provides a simple model for 
a large-scale space-structure, where the elastic beam is a long flexible mast (M),  

clamped at one end to a massive space-ship (S) (now at rest after completing some 
space maneuver), and fastened at  the other end to a rigid antenna (A) whereon the 
control is effected by means of gas-jets. The earlier paper treated the controllability 
of the system (M) -4- (A) using open-loop controllers, but in the current work we 
analyse the stabilization of this system by means of closed-loop controllers specified 
by feedback laws depending only on the state of a rigid body (A). The goal is the 
regulation of the system (M) + (A) towards some specified rest state--say, where 
(M) is represented by a line segment that  is orthogonM to the two segments (S) 
and (A) at its ends. 

The dynamical system (M) ~- (A) is regarded as a hybrid control system in that  
the elastic ~brat ions of the mast (M) are governed by a partial differential equation 
(the PDE of Euler-Bernoulli in linear elasticity theory), whereas the oscillations of 
the antenna (A) are described by ordinary differential equations (the ODE of Newton- 
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Euler in rigid body dynamics). The linkage of the control of the ODE to the boundary 
conditions of the PDE creates the hybrid system (M) q- (A). 

Assuming that  all motions and forces are restricted to a fixed plane, with x-axis 
normal to the space-ship (S).. and with all vibrations along the y-axis orthogonal to 
the x-axis, the authors have described the control dynamics of the hybrid system 
(M) @ (A). Namely, the Enler-Bernoulli PDE is 

w ~ @ w  ..... = 0  for w(x , t )  on O < x < l ,  t>O 

and the rigid-body ODE are 

#.,'d = - w~(1 ,  t) + A(t) on t > O .  

Kere w(x, t) is the transverse displacement of (M) sa, tisfying the Enler-Bernoulli 
PDE and the boundary conditions are: 

w(O, t) ~ 0,  w~(O, t) ~ 0 (damped at x = O) 

and 

w(1, t) =-- y( t ) ,  w.(1, t) -~ O(t) (linked at  x = 1), 

where y(t) and O(t) are the linear and angular displacements, respectively, of the 
rigid antenna (A). The Newton-Euler dynamics of the rigid body (A) are the two 
ODE, where w~(1, t) and -- w~(1, t) are the force and torque, respectively, that  (M) 
exerts on (A)--according to the classical linear theory of elasticity. Further, ]t(t) 
and f2(t) are the open-loop controlIers that  are applied to (A), and hence to the 
boundary conditions of (M). We have selected the physical units so that  the length 
of (M) is 17 and then the positive constants tt~ > 0, #~ > 0 pertain to the elastic and 
inertial properties of the hybrid system (M) q- (A). We refer to [5] for further de- 
scriptions of the physical structure (M) q- (A), and for the engineering significance 
of the various mathematical assumption and conclusions. 

The state of the system, at each time t>0,  is: 

w ( . ,  t), ~ ( . ,  t), y(t),  ~)(t), O(t), O(t) , 

tha t  is, two real lunetions (of appropriate smoothness) on O < x < l ,  and four real 
numbers. The control problem requires that  any prescribed initial state at t = 0 
be steered ~o the zero-state (or some pre-assigned target state) by selecting suitable 
open-loop controllers ]l(t)~/~(t) on some finite duration 0 < t < 2~. In the previous paper 
the authors constructed such open-loop controllers ]~(t), ]~(t) on any arbitrarily short 
duration T > O. Hence the entire hybrid system (M) + (A) is exactly controllable 
in arbitrarily short +Ames. ~oreover this exact control can be accomplished, in an 
engineering sense, by gas-jets o~cting on (A) alone. 
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In  this current  paper  we now demand  tha t  the  controllers J1, ]~ be specified through 
linear feedback laws utilizing only the  data  of the s ta te  (y, ~/, O~ O) of the rigid an- 
t enna  (A). In  cont ras t  to our earlier results the  decay towards rest  is only asymptot ic  
as t --> 0% ye t  the results may  be more practieM from an engineering viewpoint  since 
closed-loop controllers are employed.  

As previously,  we can incorporate  the  hybr id  dynamics  of ( M ) +  (A) into a 
single P D E  with ra the r  novel boundary  control.  Namely  use the  relations 
y(t) = w(1, t), O(t) = w.(1, t) to obta in  

wt t - l -w . . . .  = 0  for w(~,t) on 0 < ~ < 1 ,  t ) O ,  

w(O, t) =-- 0 ,  w~(O, t) ==_ 0 (clamped at  x = O) 

# twi t - -  w~..~ = ]1 (linked at  �9 = 1) 

We nex t  specify the  form of the  l inear feedback laws 

/1 = / ) l W ,  /~ = L2W (at ~ = 1) , 

where / i  1 and L2 are real  l inear functions of the four variables (y, ~, 0, 0). Only 
cer ta in  l inear functions L1 and L~ will be acceptable in tha t  t hey  inforce a dissipa- 
t ion of the energy of the  system, for example ]1 = -- Y = -- wt(1, t) and J~ = --  6 ---- 

= -- w~l(1, t). In  this way we utilize the  concept  of control  by  ]eedbaek boundary 
damping, which produces an asymptot ic  stabil ization of the  hybr id  system. 

In  the  nex t  section of this paper  we characterize the  dissipative feedback laws 
in te rms of t h e  sys tem energy E. In  the  subsequent  sections 3 and 4 we re in te rpre t  
the feedback control  dynamics as a contract ion semi-group in an infinite dimensional 
state-space, the  HAlbert space 5e~ of all finite energy states. In  this analysis the  
authors  benefi ted f rom informal  communicat ions with M. Slemrod. With in  this 
f ramework we are able to assert  and prove oar  main  Theorem 2 t h a t  each ini t ial  
s ta te  in J~F decays asymptot ical ly  to the  zero state.  We then  re tu rn  to  our original 
description of the  physical  control  sys tem of (M) + (A), with feedback boundary  
damping, and in te rpre t  our  Theorem 2 to demonst ra te  the  stabilization of this hybr id  
system of elastic structures.  In  the  last Section 5 we provide examples of solutions 
w(x~ t) t h a t  decay to zero at  a ra te  t ha t  is not  exponential ,  bu t  in fact  a t  an  arbi t rar i ly  
slow rate.  This result  is in contras t  to the  si tuat ion analysed by  Chert et.  M [9]~ 
where the  elastic mas t  is not  l inked to a boundary  mass. 

~u a briefer  proof of Theorem 2 is possible b y  referr ing to cer ta in  general  
results of semigroup theory  [7], our development ,  employing Liapounov functionMs, 
i l luminates the  geomet ry  of the  dynamics.  Fu r the r  benefits involve delicate proper- 
ties concerning the  smoothness of the  solutions and how this relates to the quan- 
t i t a t ive  decay rate.  
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2. - Energy dissipation and feedback boundary damping. 

Consider the Euler-Bernoull i  P D E  with boundary  control  

w t t §  . . . .  = 0  for w(x, t )  on 0 ~ x K 1 ,  t~>0 

w(0, t) ~ w~(0, t) ~- 0 (clamped s t  x = 0) 

# lw~- -  w~ = fl (linked a t  x = 1) 

with feedback boundary  control  given by  

71 = L~w = o:ly § fl~y + ylO § 310 

for real  constants  o:~,2, fil,2, yl.2, (~l,2-where L1 and _L~ are the  specified l inear diffe- 
rent ia l  operators on w, bu t  they  m a y  also be in te rpre ted  as real-valued functions 

on the  s ta te  (y, ~, 0, 0) of the  an t enna  (A). 
Each solution w(x, t) of this boundary  control  problem (suitably smooth as spe- 

cified in the  Proposi t ion asserted later) is likewise ~ solution of the  corresponding 
hybr id  control  problem described in Section 1, and  vice versa, provided we intro- 
duce y(t) = w(1, t), O(t) -= w~(1, t). Fo r  each such solution w(x, t), a t  each t ime t~>0, 

there  is the  corresponding s ta te  of the  hybr id  sys tem:  

w(. ,  t), w d ' ,  t), y(t) = w(1, t), ~(t), O(t) -~ w~(1, t), O(t) , 

and  we then  define the  energy of such a s ta te  

1 

0 

Clearly, the  energy E(t), which is a funct ional  of the  s ta te  of w(x, t), depends con- 

t inuously  on t>~ 0. 

!~E~L~. - The energy E(t), of a suitably smooth solution w(x~ t) on O < x < l ,  t>~O, 
has a derivative 

l~(t) ----- ~](t).L~w § O(t)L~w on t~>0 

80 

E(t)-  ~(o) =f[9(~)Llw + 6(~)L~w]&. 
0 
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I n  particular i] _L~w ---- O, L~w --  O, then 

F,(t) =_ ~ ( o ) .  

PROOF. - Compute the derivative dE/dt on t~>0 (with smoothness as specified 
by conditions i) and ii) of Section 3) 

1 

~(t) = f  Ew~v~ + w ~ w ~ ]  dx + t~w~w~ + t t~w~w~ , 
0 

the latter terms evaluated at x : 1, as usual. 

1 1 

0 0 

Then 

Integration by parts yields 

1 

= w ~ w ~ -  w~w3~= o+f~o . . . .  w~dx. 
0 

~(t) = w~,(1, t)w~dl, t ) -  w~,~(1, t)wt(1, t) 3- lulwtw~t q- tt~w, tw~tt . 

Hence, writing /;~,2(t) for /;~,2w(1, t), we find 

o r  

~(t) = wt(1, t)-Ldt) q- wry(l, t)JLdt) 

~(t)  -~- ~t(t)Zdt ) q- O(t)Zdt), 

as required. [] 

The conclusion of the lemma is understandable from the viewpoint ol classical 
mechanics, since the rate that  work is done on the system (M) q- (A) (in appro- 
priate units) is the product of linear velocity and force (or angular velocity and 
torque). 

DEFINITION. The linear feedback laws 

with real constant coefficients, are called dissipative in case 

9J51w -k &52w<0 

for all values of (y, ~, O, O) in R ~. The corresponding control is called feedback 
boundary damping. 
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COROLLARY. The linear ]unctions L~ and L~ define dissipative ]eedback laws i/  
and only if: 

L~w = -- a~t @ bO , L~w = c~t -  dO 

]or constants a > 0 ,  d > 0 ,  4ad>(b 4. c) 2. 

Pgoor..  - The dissipat ive condit ion asserts  tha t ,  for all real  values of the  four  

var iables  (y~ ~ 07 0) we find 

o r  

Fi r s t  assume t h a t  L~, L2 are dissipat ive.  I f  we set  0 = () = 0, then  we d e m a n d  

which is l inear  in y. Thus we conclude t h a t  ~ 1 =  O. 

to d e m a n d  

Again,  set  y = O =  O, to ob ta in  7 1 = 0 .  F r o m  0 = ~ = 0 ,  we ob ta in  ~ = 0 .  
Therefore  we conclude t h a t  the  quadra t ic  fo rm 

~ly~ + (a~ + #~)f~O + a~O~<O . 

I n  this case we conclude tha% 

#1<o~ ~ < o ,  and (a~+#~)2-4~la~<o. 

T o w  change no ta t ion  to  le t  

a = - ~ , a = - a~ , b = ~ , e = fl~ 

to ob ta in  the  requi red  resul t :  

L ~ w  = - -  a~) + bO , L ~ w  = @ - -  dO 

with  cons tan t  coefficients sat isfying 

a > 0  ~ d > 0  , 4ad>(b 4. o) 2. 

On the  o ther  hand~ a n y  such choice of L ~  Z2 is clearly dissipative.  [] 

Similarly,  set  y = / )  = O, 
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For any  such dissipative laws we can define the energy decay-rate (for s tate  ~, 0): 

I~(t)l = - [pLow + OZ~w] = a9 ~ -  (b + 0)90 + dO s 

COROLLARY. - -  I] -- [pLow ~- 0Z2w] is a positive definite quadratic lorm in (9, 0), 
then _L~, s are called strictly dissipative Jeedbaek laws. This occurs ij and only if 

a > 0 ,  d >  0 ,  4 a d >  (b ~- c) 2 . 

RE~A~:.  - An expecially interesting case of feedback boundary  damping, by  
dissipative laws, is given by 

In this case 

9L~w + O/;.w = - Imp ~ + mO~], 

irrespective of the constant  b. [If, for simplicity of exposition~ we should take 
#~=/t~----1, b = 0, then  the  dissipative feedback boundary  damping reduces to 
- L l w - = -  Y, L2w = -  O, which is an  i l luminating special circumstance.] 

We shall characterize this case, among all possible dissipative laws~ through an 
extremal principle. For  all appropriate (a, b, e, d) the decay rate  is defined by 

Then define the (~least decay rate ~ for (a, b, c~ d) compatible with uni t  energy of 
the an tenna  (A) : 

Ea = 1 (/~,~2 + ,a~02) = 1 ,  

tha t  is R----R(a, b, e, d) is given by  

~A= I 

Under the fur ther  normalization (fixing the de terminant  of the quadratic-form for 
the decay-rate):  

A = 

- - (b  + c) 
a 

2 

- -  (b @ c) d 
2 

= # 1 # ~ ,  
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we claim t h a t  R = R(a, b, e, d) is max imized  only when  

L~w = - ~ 2  + bO , L2w = --  bf t - -  n O .  

The mot iva t ion  is the  wish to selcc~ the  p a r a m e t e r s  (a, b, c, d) so as to maximize  

the  decay r a t e - i n  t e rms  oi the  wors t  ease/?(a~ b, c, d). 
Note  t h a t  we can assume a >  0, d >  0, for otherwise,  say d = 0, we have  

(b @ e ) =  0 and  so the  leas t  decay  ra t e  /? = 0 which is t hen  e l imina ted  b y  the 
d e m a n d  A = / h / & .  F u r t h e r  note  t h a t  in the  Eucl idean p lane  wi th  coordinates 

9 = V(~/2)  ft, 0 = Vi~./2)O, the locus 

a _ , 90  + = ib + + [ -  v 2 + 0q const 

defines a fami ly  of s imilar  ellipses. !~ence the  po in t  on the  un i t  circle E~ = 1 (or 
92 @ 02 = 1) where  this  quadra t ic  fo rm is minimized,  lies on the  ellipse 

, d % a _2 (b + c) 9O ~ _ ~ o  = R /e  

which is inscr ibed in the  unig circle. 
I n  order to consider the  max imiza t ion  o f /~  = R(a, b, e~ d), among  the  dissipative 

laws under  the  normal iza t ion  of A =/~,#2~ we pe r fo rm a ro ta t ion  of coordinates 

(still called if, O) so t h a t  the  m a j o r  axis of the  ellipse now is horizontal .  T h a t  is~ the  

ellipse becomes  

& 9 2 +  a,02 = 2~/2, 

where A1 and 22 are  the  eigenvalues of the  m a t r i x  

--_(b + ~ )  ~, v ' ~ 2 .  ~,  1 
so A~22-- A = 1 .  

# 1 # 2  

~'ur ther  compute  the  area  of this ellipse to be  (zI2)(l~IV)~l&)= ~t~12. 
Now we choose (a, b, c, d) to maximize  the  area  of the  inscribed ellipse, and  this 

m a x i m u m  value  is achieved only for the  case where  the  ellipse is, in fact ,  the  uni t  

circle. Thus~ the  solution o! the  extrema.1 p rob lem occurs only for 

~R 
2 
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In  the extremal ease, the ellipse was the uni t  circle (even before rotation) so 

2a 2d 
- -1 . ,  - - . : 1 ,  ( b @ c ) = O .  

The corresponding extremal  feedback laws are 

L l w  = - t h f /  + bO , Law = - @ -  ~ 0  , 

as asserted. 
The motivat ion of the concept of dissipative feedback laws 

L~w = - -  a?) + bO , L a w  = c 9 - d O  

(a>~O,d>~O, 4ad>~(b-t-e)2), is the energy decay of any  corresponding solution 
w(x, t), namely 

.~(t) = 9 L l w  + OZ~w<O . 

In  such a ease /~(t) is nonincreasing, and we might  anticipate tha t  l im E ( t ) =  0, 

and fur ther  Jim w(x, t) = 0. The demonstrat ion of these results of asymptot ic  stabili ty 

const i tute the main theorem of this paper, and will be proved in subsequent sections. 

3. - Evolutionary dynamics for feedback damping. 

We shall interpret  the Euler-Bern0ulli PDE, with clamped and dissipative 
boundary  conditions, as an evolutionary ODE in an infinite dimensional tI i lbert  
Space. For  this purpose consider the PDE system 

~w ~v 
~t ' Ot 

Wzzz~ 

for the pair of real functions w(x, t), v(x, t) on 0 < x < l ,  t~> 0. In  order to make precise 
assertions concerning the differentiability of the solutions we shah assume: 

i) w(x, t) and  v(x, t) in class C 1 for O<x<~l, t>>.O. 

In  addit ion we shall assume that ,  for each fixed t>~ 0, 

(~z(., t), v(., t)) lies in H6[0, 1]• 1] .  

Here H~[0, 1] denotes the Sobolev-Hilbert Space of all real functions on O < x < l  
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w i t h  k- th  d e r i v a t i v e  in L~[O~ 1], as  usua l .  I n  th is  c o n n e c t i o n  we shal l  m a k e  t h e  as- 

s u m p t i o n  t h a t :  

ii) ~--~ (w(. ,  1), v ( . ,  t)):  [0, co) -> H~[O, 1] • 1] is a c o n t i n u o u s  m a p .  

F r o m  the se  two  a s s u m p t i o n s  i) a n d  ii) t h e r e  a rc  seve ra l  i m m e d i a t e  conclus ions  

a b o u t  t h e  r e g u l a r i t y  of t h e  so lu t ion  w(x~ t), v(x, t). N a m e l y  we conc lude :  

a re  each  c o n t i n u o u s  in  x, for  each  f ixed t > O .  Moreover~ s ince t he  H~-norm 

d o m i n a t e s  t h e  u n i f o r m  n o r m  on O < x < l ,  t he se  func t ions  a re  each  u n i f o r m l y  con- 
t i nuous  in t for  0 < x < l .  H e n c e  t h e y  a re  each  c o n t i n u o u s  in (x, t) on 0-<<x-<<l, t > 0 .  

2) w~ = v, wit = vt = - -  w . . . .  a re  c o n t i n u o u s  in  (x, t), a n d  w ~ t +  w . . . .  ---- 0 on 

0 < x < l ,  t > 0 .  

3) w ~  wt a n d  w * * =  v~ a re  c o n t i n u o u s  in  (x, t), so w t ~ =  w,t .  

Also v~  vt a n d  v t x = -  wx,~ ,  a re  c o n t i n u o u s  in  (x~ t)~ so v t ~ :  %~; 

4) wt~z = v~  so w t ~  = w~t~ = w ~  are c o n t i n u o u s  in  (x~ t). 

5) wtt~---- vt~ = - -  w . . . . .  ~ so w t t ~ =  writ---- w~t  a re  c o n t i n u o u s  in  (x~ t). 

Also w t ~  = v ~ , ,  so wt~- - - -  w ~  = w ~  a re  ~all con t i nuous  in  (x, t) on 

0 < x < l ~  t > 0 .  
I t  is t r u e  t h a t  a n y  so lu t ion  w(x~ t)~ v(x~ t) o~ t h e  P D E  b o u n d a r y  v a l u e  p r o b l e m ,  

which  satisfies cond i t i on  ii) m u s t  necessa r i ly  also sa t i s fy  i). ttowe-cer~ for  c l a r i t y  

we shal l  u sua l l y  d e m a n d  b o t h  i) a n d  ii). 
U n d e r  t he se  d i f f e ren t i ab i l i t y  a s s u m p t i o n s  i), ii)~ t h e  e n e r g y  ca lcu la t ions  of t h e  

p r e c e e d i n g  sec t ion  a r e  va l id .  W e  n e x t  use  t he se  concep t s  to  d e m o n s t r a t e  a f u n d a -  

m e n t a l  u n i q u e n e s s  resu l t .  

LE3~z)~. - Consider a solution w(x~ t), v(x~ ~) of the P D E  system on 0 < x < l ,  t > 0  

~w ~v 
- - - - - -  v ~t 

with the boundary conditions 

w(0,  t) = w~(o, 1) ~_ o a t  x = 0  

at  x = l ~  

where Ll~ Z~ are dissipative feedback laws. 
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Assume w(x, t), v(x, t) satis]y the regularity conditions i), ii). Then w(x, t), v(x, t) 
provide the unique solution (satis]ying i), ii)) of the PDE system with the given boundary 
conditions~ and agreeing with the initial data w(x, 0), v(x, 0). 

PROOF. - Because the boundary value problem is linear and homogeneous, i t  is 
sufficient to prove the result  for the ease of zero init ial  data.  

Then let w(x, O)~  O, v(x, O)-~ 0 and let E(t) be the energy of this solution, 

tha t  is, 
1 

w.~] dm@ �89 [/qwdl,  t) 2 +/z,w~,(1, t ) ' ] .  E(t )  = �89 Iv ~ + 
0 

In  this case we can calculate (recall # = wdl ,  t), O = w,~(1, t)) 

t 

/ ~ ( t ) -  E(O) : f [ j ] ~ z w  -}- OI~w] d~.  
0 

But  /~(0) ---- 0 and (/I~w -}- OI~w<<O, and hence E( t )<0  for t~>0. Thus B(t) _---- 0 
and  so v ( x , t ) = w d x ,  t ) - -O  on t>0 .  Since w(x ,O)- -O and wdx~t) - -O,  we con- 
clnde tha t  w(x, t) -~ 0 and v(x, t) = wt(x, t) -- O. [] 

Next we define an evolutionary ODE tha t  ' incorporates the dynamics of the 
Euler-Bernoulli PDE with the specified boundary  conditions. The clamped-end 
condition w(0, t) -- w~(0, t) -- 0 at  x = 0 will be incorporated into the specification 
of the s tate  space. To account for the feedback boundary  damping at  x ---- 1, namely,  

we introduce extra state components p(t), q(t) by  defining p ( t ) : v ( 1 ,  t), 
q(t) : v~(1, t) ( that  is, p(t) = ij(t) and q(t) = O(t) in the earlier notat ion describing 
the mechanical system). Then the feedback damping at  x = 1 becomes 

dq 
@ w~(1, t) + ~,lw, -d-i ~h~-~ : #5 = - w ~ ( 1 ,  t) + / ) ~ w ,  

where 

L l  w : - -  a p  s bq , I~ w = ep- dq 

are the dissipative feedback laws, as before. 
In  this way we are led formally to the infinite dimensional dynamical  system 

d~ dv dp Zw~ma, t) + Z z~w , dq 
dt dt dt #1 ~1 dt 

-I w~(x, t) + iL~w 
#~ I~ 
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or, the abs t rac t  evolut ionary ODE 

d~ 
- -  A u .  

dt 

Here the s tate  u = , in appropriate  Hilbert  space  JCF defined subsequently,  

and the linear opera:tot A, defined on the domail~ D ( A ) c  JC~, is given by :  

- -  " ~ J x x x x  

#1 

- - I  1 1 

In  more technical  detail  we define the  real t t i lber t  space of i in i te  ene~'gy states 

for feedback dynamics  by 

:% = (u  = (w, v, p,  q): w e / / 2 [ 0 ,  1], v e L~[0, 1], p ~ R,  q e R}  

with the supplementary  requirement  w ( 0 ) =  w~(0)= 0. The corresponding inner 

product  is specified by  

1 

0 

Then we can specify the  norm [luHF in terms oi the energy E(u)  of  a state u e Jev 

I t  should also be noted tha t  the norm in Je~ is equivalent  to the usual norm inheri ted 

from the  Sobolev-tI i lbert  space H~[0, 1] • 1] •  ~, since ]lullv ~ 0 implies tha t  

w -> 0 in the  C~-uniform norm. Also we note that ,  s tr ict ly speaking, the feedba.ek 

operators should now be wr i t ten  

05, ~ - -  - -  ap -1- bg , I~ ~ ---- cp - -  dq 

as bounded (finite-dimensioJaal) operators on the state u E Je~. But  we shall con- 
t iuue to denote these terms as I l w  and L~w, in conformity  with earlier notations.  
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The doinMn D(A) of the operator A is a linear subsloace of JCF, as defined by :  

u = (w, v, p, q) ~ D(A) 

in case ue~F so 

w ~ H~[O, 1] ,  v e/52[0, i] with w(0) = w~(0) = 0; 

but  fur ther  conditions are imposed by  Au  e JCr, 

v e H~[0, 1] ,  w ~  e L~[0, 1] with v(0) = %(0) ---- 0 

and an  addit ional  demand to match  the feedback dynamics  

v(1) = p ,  v~(1) = q.  

These conditions complete the sloecification of the linear subsloace D ( A ) c  JCr. 
Similar anMyses for the  domain of As: 

D(A 2) = {ueJ~F: ueD(A) and AueD(A)} ~ 

yield the prior conditions for u e D(A) and fur ther  

v e H~[0, 1 ] ,  w r H6[0, 1] 

v ( o ) = v ~ ( o ) = o ,  w . . . .  ( o ) = w  . . . . .  ( o ) = o  

and also a t  x = 1, 

1 ] 
- w .... (i) =-w~g~) +--L:w 

Fur ther  studies determine the domain of A ~+1 for n = 1, 2, 3, ... 

D(A '~+1) = {u e ~ :  u e D(A '~-1) and A u  e D(A~)} . 

Also define, as usual  

as a l inear subspace of JEF. 

D(-t~) = A D(A~) , 
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I t  is clear t ha t  D(A) is dense ill /E~, because H~[0, t]  is dense in H2[0, 1] (even 
accounting ~or the clamped conditions w(0) = w~(0) = 0) and also H2[0, 1] is dense 
in L2[0, 1] (even aecom~ting for the  arbi t rary  boundary  conditions for v and v. at  
x = 0 ~nd x = 1). We shall l~ter prove tha t  A is the infinitesimal generator of a 
strongly continuous semigroup S(t) on the Hilbert  space 5r From general con- 
siderations of semigroup theory  i t  then  will follows tha t  the solution u(t)-= S(t)Uo, 
from each init ial  uo~ D(A),  lies in D(A)  for e~eh t~>O; ~md u(t) has the derivative, 
in JgF-norm, 

lira 1 I u(t + A t ) - - u ( t ) ]  = Au(t)  = S(t)(Auo) , 
zlt-->O ~ L 

(of eottrse, At > 0 if t ---= 0). Fur thermore  D(A  ~) is dense in JCF, and S(t) carries 
D(A  ~) into itself for each t>~O and n = 1, 2, 3, .... 

The relation between the  solutions of the Euler-Bernoulli PDE (with feedback 
boundary  damping) and the  infinite dimensionM evohtt ionary ODE (~s solved by  
the semigroup S(t) generated by  A) is i l luminated in the  following Proposition. 

PROPOSITI0:N. -- JLet w(x, t), v(x, t) be rear functions on 0 < x < l ,  t > 0  where they 

satisfy 

i) w(x , t )  and v(x, t)  in class C 1 in (x,t), and 

if) t -> (w(', t), v( ' ,  t)): [0, ~ )  --> H6[0, 1] • 1] is a continuous map. 

Under these hypothese i)~ if) we further assume 

~w ~v 
~ t  - -  v ~ --~t ~ - - w ~ x  

and the boundary renditions hold 

and 

w ( o ,  t) = w~(o ,  t) - o ( a t  x = o)  

#1w,,(1, t) = w ~ ( 1 ,  t) + L , w  

, u ~ w ~ . ( 1 ,  t) - -  - -  w ~ ( 1 ,  t) + L~w ( ~ t  x = 1)  

for dissipative feedback laws L~,L~. 
Then u(t) = (w(., t)~ v(., t), p(t), q(t)), where p(t) = v(1, t), q(t) = v~(1, t), lies in 

D(A)  c ~ for eavh t>O;  and furthermore u(t) = S(t)u(O) is the solution of the evolu- 
tionary ODE 

du 
- - =  Au from u(O), 
dt 

in the sense that ~(t) is the semigroup with infinitesimal generator A,  as defined previously. 
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On the other han G under the hypotheses i), ii)~ assume that 

u(t) = (w(., t), v(., t), p(t), q(t)) = S(t)u(O) 

lies in D(A) ]or each t>~O, where S(t)uo is the solution of the evolutionary equation 
produced by the semigroup S(t). Then 

~W ~V 
~---[ = v ,  ~t w ..... 

and hence w(s, t), v(x, t) satisfy the Euler-Bernoulli PDE,  with clamped end at x - ~  0 
and feedback boundary damping at x = 1. 

RE~A~K. - The Proposi t ion asserts t ha t  a solution (w(x, t), v(x, t)) of the Euler- 
Bernoulli  PDE,  with feedback boundary  damping, produces a solution u(t) of the  
evolut ionary O D E - - a n d  vice versa. Of course, ra ther  special regular i ty  condi- 
tions i), if) are demanded  in each ease. The Proposi t ion does not  guarantee  the 
existence of such solutions~ bu t  t h ey  arc demons t ra ted  later.  

P~OOF. - The first assertion holds tha t  a sui tably smooth solution (w(x, t), v(x, t) = 
-~ wdx , t)) of the  Euler-Bernoull i  PDE~ with clamped end at  x = 0 and given feed- 
back boundary  damping at  x = 1~ provides a solution u(t) = (w(.~ t)~ v(.,  t), p(t), q(t)) 
of the evolut ionary ODE. 01early~ w(.~ t) ~H~[0~ 1]~ v(.~ t) ~H2(0~ 1] for all t>~0~ 
and w(O, t )~w~(O, t )=O,  v(O,t)~--v~(O,t)--=O; and then  set p( t ) -~v(1 ,  t), 
q(t) -~ v~(1, t). ]~ence we find tha t  u(t) ~ D(A) for all t~>0. 

We must  nex t  ver i fy  tha t  

dw 
N ~ _ _  v 
dt 

dv 
dt 

dp _ 1 w ~(~ ,  t) + ~1~'~ 
dt #1 #1 
dq 

_ i w~(l,t) +!L~w. 
dt #~ #~ 

(in H~-norm) 

(in L~-norm) 

Since w t =  v we find that~ for each t~>0~ 

lim~_>o w(x, t q- AtAt) - -w(x ,  t) 

with uniform convergence on 0 < x 4 1 .  
the l imits 

Aw~ v~ lira ~ - - -  ~ 0 ,  
At-+O 

- -  v(x~ t) - = 0 ,  

Similarly, uniform convergence holds for 

AW~.~ V~x l im At -~ 0 .  
At-~0 
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Therefor% 

SO 

1 

]iln ~ zJw z Z~Vx__ V~ 2 z J w ~ z  '#x~J ~ 
- - ~ - - v  -I- At -~- At d x = O ,  

At.-~O J 
0 

~W 
dt 

in the sense of the H f-n o rm .  

In  the  same way use the uni form convergence 

lim~t_~0 I'v(x' t + At)At ----v(x' t) + w . . . .  = 0 ,  

to 9rove that 

dv 

dt 
in the sense of the L2-norm. 

The last two equat ions of the  evolut ionary sys tem for u = (w, v ,p ,  q) are merely 
res ta tements  of the  feedback boundary  damping conditions for the  P D E.  Hence 

we obta in  du/dt -= Au.  
On the  other  hand,  assume t h a t  w(x, t), v(x, t) (satisfying i), ii)) and p(t) = v(l~ t), 

~(t) = v~(l, t) define the  5~-vMued funct ion u(t) = (w(.~ t), v(.,  t), p(t), q(t)) which 
lies in D(A) for each t>O.  Also assume that u(t) is a solution of the  evolut ionary 

equat ion in the sense 

SO 

u ( t )  - s(t)u(o), 

d% 

dt 

That is assume that for each t>O we have 

t im T [S(t @ A t ) u ( O )  - -  S(t)u(O)] = Xu(~), 
~t-->o A t  

with the  l imit  in the  Je~onorm. 
In  this case we obta in  

SO 

dw 
-- v ~ ill 2~f~-Jiornl 

dt 

in uniform and hence pointwise sense. 
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F rom the  second equat ion of du/dt = Au we compute  

o r  

d v  
dt - -  w ~  ~ in 2~2-11ornl 

1 

12  of 
0 

t + ~t) - -  v(x, t) 
At 

2 

+ ~  . . . .  (~,t) ~ = o .  

But  then,  for a subsequence At~--~ 0 we have pointwise convergence for almost  all 
0 < x < l ,  and so (recalling tha t  v(x, t) lies in the  class C 1) 

~V 

Hence  w(x, t), v(x, t) is a solution of the  Euler-Bernou]li  PDE.  The boundary  condi- 
t ions are also satisfied a t  x -~ 0 

w(0, t) ~ w~(0, t) ~ 0 (definition of 5r 

and the  feedback boundary  damping conditions at  x = 1 are explici t ly specified 
by  the  lust two equations of the  evolut ionary ODE. [] 

We now tu rn  to the  question of the existence of the  strongly continuous semi- 
group S(t) genera ted  by  A in the  Hi lber t  space Jr For  this purpose we first show 
tha t  the densely defined l inear operator  A is dissipative ( that  is, -- A is monotone).  

LEigMA. -- The linear operator A is dissipative in the sense 

<Au, u }<O,  for each u ~ D(A) .  

PEOOF. -- F rom the  definition of the  inner  product  in 8r 
1 

<Au, 

o § [w~(1,  t) § 2~lw]v(1, t) § [ -  w~.~(1, t) § ~w]v~(1, t). 

The integrat ion by  p~rts yields 

1 1 

v~w~]~o- v~w~dx-- +fv~w~dx § 
0 o 

§ [w~ -F 2hw]v(1, t) + [-  w~ + ~w]v~(1, t ) .  
Thus 

<Au, u> = -  v(1, t )Zlw + %(1, t ) L , w < 0 ,  

since Z1, Z2 are dissipative feedback laws. [] 
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l~E}L41~K. - -  It i8 interest ing to relate  the dissipative behavior  of A with the 
decrease in the energy of a solution ~e(t) = S(t)uo, for some Uo e D(A). Then,  the 

energy becomes 

_~(u(t)) = ~<u(t), u(t)>, 

SO 

and 

~(t) = �89 <.~u, u> + ~ <u, A~> 

~(t) = <Au, u> < 0 .  

We are now in a posit ion to prove that A is the  infinitesimal generator  of a 
s trongly continuous semigroup S(t) on Jet .  In  fact ,  we shall prove t h a t  S(t) is a 
contract ion semigronp in tha t  the  operator  norm 

!]S(t)ilp-<<l for M1 t > 0 .  

We follow the  Lamer-Phi l l ips  Theorem [6] which guarantees  the  existence of 
this contract ion semigroup S(t) provided three  conditions hold: 

1) D(A) is dense in age. 

2) The range -g(2oI-- A) = aev, for some real  20> 0. 

3) A is dissipative. 

We have  ah 'eady verified t h a t  D ( A ) =  Jev, and t h a t  the  l inear operator  A is 
dissipative. There  remains  only  the condit ion 

2) _R(20I-- A) = ~ r ,  for some real  20> 0. 

TttEOI~EI~ 1. Consider the real Hilbert space Je~ with the dissipative linear operator A,  
with domain D(A) dense in 3eF, as be]ore. Then A is the in]initesimal generator of a 
strongly continuous semigroup S(t) on Jg~, and S(t) is contractive 

![,S'(t)l~<z ]or all t >o .  

PI~OOF. - Wi th  reference to the  Lumer-Phil l ips  Theorem [6], and the  previous 

lemmas~ we need only ver i fy  t ha t  the  range 

R ( h I - -  A) = aeF ~ for some real  2o> 0 .  

For  this purpose assign an  a rb i t r a ry  e lement  

= (~o, % @, a) ~ Jg~ and  seek u = (w, v ,p ,  q) e D(A) so (2ol- -  A ) u  = 
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o r  

1 1 1 ] 

We shall solve this differential  sys tem for u = (w, v, p, q), where 20 > 0 is specified 
later.  F rom the  first two equations el iminate v to write 

ddw 

and note  t ha t  h(x) = y~ § ~o~ e Z~[0, 1]. We seek a solution w(x) ~ Hd[O, 1] with 
with w(0) = we(0) : 0. Then  we shall define v(x) = how(x) --  q~(x) e H~[0, 1] with 

v(0) = v~(0)=  0 and  v ( 1 ) = p ,  v~(1)~-q.  Thus the  first two equations in the  
system are satisfied, and  the  last two also hold (while de te rming  p = v(1), q = v~(1)) 
provided  at x = 1, 

and 

Tha t  is, replace 

1 1 L ~ w  o~ 2o P - - - -  w ~ - -  -~ 

p = v (1 )  = ~ o w ( 1 )  - -  ~ ( 1 ) ,  q = v~(1)  = J o w ' ( 1 ) -  q ' ( 1 )  

and  

Llw = --  av(1) § bye(l) ,  L~w = v v ( 1 ) -  dye(l) 

with a~>0, d~>0, 4ad>~(b § e) 2, to obta in  boundary  conditions on w(x) a t  x = 1: 

1 w ~ +  ~o+ ~ow--b~ow ' =  ~ + ~o+ ~ - - ~  
#1 #1 

- - w ~ - -  e-- )~ow + o §  ),ow' o d , 

Therefore  the  process of solution for u = (w, v, p, q) can be summarized:  
Solve the  ODE 

w" + .~w = h(x), for h(x) e L~[0, 1] 

to obta in  w ( x ) e / / 4 [ 0 ,  1] satisfying the  boundary  conditions 

w(O)=w'(O)=O a t x = O  
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and  the  two conditions at  x = i 

--  w ~  ~- (/~;to + a ).~oW- b )~oW'= ~ w ~ - -  e;tow § (tt~;to-F d) ; tow'=  fi 

for arb i t rar i ly  prescribed real numbers  (e, fl). 
To obta in  the required funct ion w(x) take  the solution %(x) of w"' @ A~w : h(x) 

f rom the  ini t ial  da ta  %(0) = w'~(0) = 0, w~(0) = w~(0) = 1. Then  we seek a solu- 
t ion ~(x) of the  homogeneous differential  equat ion w"'q-  2o~w = 0 wi th  

~ 2 ( o ) = ~ ' ( o ) = o  a t x = o ,  

and fu r the r  

- ~2 '~' -~ (~  ;~o + a ) ; . ~ v -  b;to~2'= ~,  ~"--  c,?o~ + (#~ ;~o § d ) ~ o 5 ' =  fi 

(where ~, ,~ are arbi t rar i ly  prescribed real numbers) .  Then  w ( x ) =  % ( x ) @  ~dv(x) 
will provide  the  required funct ion  in H~[0, 1], f rom which v(x) = ;toW(p) -- o2(x)E 
H~[0, 1], and  p = v(1), q = v~(1), can t h en  be found to obta in  u = (w, v, p~ q) e D(A).  

The general  solution of the  homogeneous l inear differential  equat ion 

w " +  ;t]w = o ,  w(o) = w'(o) = o 

is given by  

[ V ;~ ~(x) = P  c o s h [ ~ x s m } / ~ -  cos @Q sin ~-x x - -  stun [ ~  x x sinh x 

for real  constants  P and Q. Now we must  find constants  B, Q (not bo th  zero) so tha t  
@(1), ~'(1), ~"(1), @"(1) satisfy the  two boundary  conditions at  x = 1, for a rb i t ra ry  

constants  ~, ft. 
The  two boundary  conditions at  x = 1 lead to two l inear equations for the  un- 

knowns B and Q. I t  is sufficient to show tha t  the  de te rminan t  A of this l inear sys tem 
is nonvanishing.  Since fl ----= d(;t0) is an analyt ic  funct ion of V / ~  we need only prove 
tha t  d(;t0) is not  identical ly zero (for all ;to > 0), and then  there  exist  posit ive num- 

bers ,~o where A(~0) ~ 0. 
I t  is also clear t ha t  the  de te rminan t  A consists of a polynomial  in powers of ~1/~ "~l} ' 

with coefficients which are themselves polynomials in 

, , c o s  , s n[T} 

I f  A(2o)=--0, t hen  the  coefficient of -o~I/~ (and of each of the  vowers_ of .~m~o , must  

vanish identically.  
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In  the first equation (-- ~ "  + ... = a) the highest power is -'o~/~', and in the se- 
cond equation (~" + ... = fi) the highest power is -oP/2. The eoefieient of ~/~ in zJ(~o) 
can easily be computed to be (arguments V'~o/2 omitted) 

ff~[eosh sin --  sinh cos] 

#o ~/2 sinh sin 

ff~ sinh sin 

#--& [cosh sin ~- sinh cos] 

which equals (ff~ff~)/V:i {s in2v '~d /2  -- s i n h ~ V ~ }  ~ 0. 
Hence zJ(~o)~0 ~nd there exists a value ~ o > 0  where z3(~o)~a0. F ix  this 

value o2 ]o. ~Tow solve the boundary  value equations at  x----1 to compute the 
required P , Q  (not both zero), and hence define the required solution w(m)---- 
= w~(m) + ,3(~). As indicated e~rlier we now obtain u ---- (w~ v, p ,  q) ~ D(A) .  There- 
fore ~(~oI-- A) ---- ~ .  

From the  Lumer-Phillips Theorem we I conclude tha t  the lineal" operator A is 
the infinitesimal generator of ~ contraction semigroup S(t) on 3~s. [] 

NO~iTION. - In  the real Hilbert  space ~ of finite energy states u = (w, v~ p,  if) 

the dissipative operator 

A = 

\ - -  W ce;~ cer162 

/ 
if2 #2 / 

and the contraction semigToup S(t) are called the ]~uler-Bernou]li feedback operators 
for the dissipative boundary  damping.  

4. - Stabilization by feedback boundary damping. 

In  this section we prove our main result tha t  feedback boundary  damping en- 
forces asymptot ic  s tabil i ty of the Euler-Bernoulli dynamical  system. That  is~ 

lira u(t) = 0 
t---> o o  

for each solution u(t) = S(t)uo ini t iat ing at  a, ny  state uo in the Hilbert  space ;EF 
of all finite energy states. 
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l~ecall t h a t  the  finite energy  s ta tes  u e Jr are  

for w e H2[0, ! ] ,  v e L2[0, 1], p e R,  q e R wi th  w(0) = w~(0) : 0 .  

The energy  E[u] specifies the  inner  p roduc t  and  no rm of u ~ JOy 

1 

0 

The Euler-Bernoul l i  evo lu t ionary  ODE in JOy is 

dt 

- -  W x x w ~  

i l  1 

/ - - ]  , 1 
~ - - 2  w ~ l ,  t) -[- :~Z2w 
X kq #2 

for prescr ibed dissipat ive feedback  laws a t  m = 1 

L l w  ~ -- av ~ bv~ , .L,w -~ ev --  dv.  

for cons tan t s  a > 0 ,  d > 0 ,  4 a d > ( b  ~ v) ~. 

The domain  Of A is the  dense l inear  snbspace  D ( A ) c  JOy defined b y  the  usual  
condit ions on u e JCz and  the  addi t iona l  demands :  w e Hd[0~ 1], v e H~[0~ 1] and  

~ ( o )  = v . ( o )  = o ,  v ( 1 )  = ~ ,  % ( 1 )  = q. 

Under  these  c i rcumstances  we have  d e m o n s t r a t e d  in Theo rem 1 t h a t  the  dis- 
s ipa t ive  opera tor  A genera tes  a cont rac t ion  semigroup S(t) on Jr I n  the  te rmi-  
nology of our ma in  Theorem 2~ which will be  demons t r a t ed  la ter  in this section~ 

l im S(t)uo ~ 0 ,  for each uo e Jr 

Our m e t h o d  involves the  energy  E[u]  ~ 1 ,2 ~[tuh~ as a L iapounov  func t iona l  for 
the  evolu t ionary  dynamics  in 3E~. Bu t  because 5r is infinite d imensional  we shall 
need to modi fy  the  classical e l e m e n t a r y  techniques  of s tab i l i ty  t heo ry  to incor- 
toorate the  me thods  of the  IJaSalle I n v a r i a n c e  Pr inciple  [3]. l~urthermore,  a t  this  
final s tage of the  theory ,  i t  will be  necessary to assume t h a t  the  feedback  laws are  
s t r ic t ly  d i s s i p a t i v e - - b u t  these  addi t iona l  concepts  and  hypotheses  will be  discussed 
in deta i l  later .  
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L ] ~ A  1. - _Let Uo ~ D(A  2) and consider the solution o] the evolutionary O D E  in ~ v  

,,\ 
u(t)= s(t)u0 ~ p(t) ] on t>O. 

\ q(t) / 

Then u(t) E D(A  ~) ]or all t>O, and ]urther 

i) w(x, t)~ v(x, t) lie in class C ~ on 0 < x < l ~  t > 0  

and 

ii) t --> (w(.,  t), v( . ,  t)): [0, oo) --> H~[O, 1] xH4[O, 1] 

is a continuous map. 
Moreover, in accord with the earlier Proposition, 

W t ~  V , V t ~  - -  Wxmxx 

so w(x, t) is a solution o] the Euler-Bernoulli P D E  

wtt~- w ~ =  0 on O < x < ] .  

with the boundary conditions 

w(O, t) - w~(O, t) =- o 

and 

t>O 

(c lamped a t  x = O) 

(diss ipat ive f eedback  a t  b o u n d a r y  x = 1 ) .  

Hence ,  s ince uo e D(A2), 

u(t)  = s ( t ) u o  

Recal l  t he  fo rmulas  

(~ v(x,t) \ 
--~w .... (x,, lt) 

\ - -1  w~(1, t) + Ls~w 

wi th  v e H2[O, 1], w e H~[O, 1] 

lies in  D(A 2) for  all t~>O. 

P~ooF.  - The  semigrou  p S(t) carr ies  D(A) i n to  D(A),  and  D(A 2) in to  D(A2). 
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a n d  

~ u ( t ) - -  

-- w . . . .  (x, t) 

--v . . . .  ( x , t )  

l 
t 1 

with w ~H6[O, 1], v eH~[O, 1],  

for given dissipative feedback laws ]~, L2: Thus, for each t>O, w aHG[0, 1] and 
v e H4[0, 1]. In  addi t ion 

w(o, t) = w.(O, t) _= o ,  w ..... (o, t) =_ w . . . . .  (o, t) _-- o ,  

a n d  v(0, t) -~ v~(0, t) =-- 0 .  

Since u(t) and also Au(t)-----AS(t)uo--:  S(t)(Auo) are 
tionary ODE in ~Ev, 

dw 
- -  ~ -  v in H 2 
dt 

dv 
dt - -  w ..... in  L ~ 

and 
d v  
- -  ~ - -  w ~ x .  in H ~ 
dt 

dt 

solutions of the evolu- 

Therefore we conclude that 

~w ~v 
~t ~ ~t 

pointwise in O~x<l, ~>0. From these relations, and assuming the continuity of 
the mal~ if), it easily follows that i) w(x, t), v(x, t) are in C I in O~x~l, t~O. 

There remains the  demonstrat ion of the cont inui ty  of the malo 

if) t -+ (w(', t), v(., t)): [0, c~) -+//6[0, 1] • 1]. 

Prom the  cont i~ni ty  of u(t), Au( t )  = S(t)(Auo), and A2u(t)  ~ A~S( t )uo = ~(t)(A2uo) 

we obtain continuous maps:  

t -~ (w( . ,  t), ~( . ,  t)) : [o, ~ )  ~ ~ [ o ,  1] • Z~[o, ~] 

t -~ (v(. ,  t ) , -  ~ . . . .  ( . ,  t)): [o, ~ )  --, H~[O, 1] x z~[o, 1] 

t -+ (--  w . . . .  ( . ,  t ) , - -  v . . . .  ( . ,  t)): io, ~ )  -+H~[O, 1]x2;~[o,  1 ] .  
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Clearly the integrals 
1 1 

f [~  + w~ + ~]d~ and f [ ~ +  ~ .... + w~ ..... ]d~ 
0 0 

1 

both vary  continuously with t~>0. The only question involves f w ~ d x ,  but  
0 

this result follows from elementary calculus inequalities. In  brief~ write 
Aw = w(x~ t @ At) -- w(x, t) (for fixed t~> 0). Since 

lira Aw . . . .  = 0 in  L'2[O, 1] 
At-~O 

i t  is not  difficult to show tha t  

lira Aw~** = 0 in s 1] 
At-.-~O 

in fact,  even under  uniform convergence on 0~<x~<l, as z l t ->0 .  
We have proved tha t  the  map 

t --+ w( . ,  t): [o, ~) -+//~[o, 1] 

is continuous. In  the same way we conclude tha t  the map 

t -+ v( . ,  t): [o, ~ )  ---> Hffo,  1] 

is continuous. Therefore the map 

if) t --> (w(., t), v(., t)): [0, c~) -->//6[0, 1] • 1] 

is continuous, as required. 
The rest of the conclusions of the lemma then  follow immediately from the 

regulari ty assertions 1-5) and the Proposition occurring a t  the beginning of 
Section 3. O 

I~.~x~K. - According to the ]Serums before the Proposition of Section 3, w(x, t) 
and v(x, t ) -~ wt(x, t) const i tute  the unique solution (with regulari ty conditions i), 
if)) of the Euler-Bernoulli PDE with the given boundary  and init ial  data.  

In addition, an extension of our arguments  of Lemma 1 shows tha t  if uo ~/)(A~),  
then  w(x,t)  is in class C ~ in O<~x<l, t>~O. 

LE~MA 2. -- .Let Uo ~ D(A ~) and consider the solution o] the evolutionary ODE in Jr 

/ w ( x ,  t ) \  

~(t) = ~ ( t ) U o = / p ( t )  / on t > o . .  
! 

\ ~(t) / 
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Phen the energy ]or u(t), and ]or Au(t), are each nonincreasing on t>~O. Furthermore, 
the trajectory {u(t): t~>0} lies within a compact subset o] Jg~. 

PIr - Note t h a t  u(t) = S(t)uo~ D(A~), and Au(t) : S(t)(Auo)~D(A~), are 
both  solutions oi the evolutionary ODE, and  they  satisfy all the regulari ty specifi- 
cations of ~he prior Lemma 1, and the Proposition of Section 3. ~eeM1 tha t  the energy 
of ~he solution u(t) is 

1 

0 

and this has the derivative 

~(u(t)) = vO, ~)Aw + v~(~, t)Z~w<O 

(bec~mse of the dissipative feedback laws L~  LJ .  Thus B(u(t)) is nonincreasing on 
t>O. But  Au(t) is ~lso a solution, and so its energy B(Au(t)) is also nonincreasing 
on t~O. 

Since E(u(t)) is nonincre~sing u = (w, v, p, q) is bounded in JCr for t~>O. In  pur- 
tieul~r, w(., t) is bounded in H2[0, 1], v(., t) is bounded in )52[0, 1], ~nd (p(t), q(t)) 
is bounded in R< We shall prove tha t  w(., t) ~nd v(-, t) ~re also bounded in higher 
Sobolev norms. 

Recall  t ha t  the solution Au(t) is given by 

i i  ~ v(x, ~) 1 
- -  w .... (% t) 

1 § i ~(~)(Auo) : Au(t) ---- - -  w~x,/1, ~) -- L~,w 
' 1 [ ~ 1  

! 

t) § 1 Z w] 1 I~2 Wzx~ ~ ~ l.t-~z 
I 

so tha t  the energy oi Au(t) can be computed 

1 

0 

1 

Since is bounded on 0, we conolude t ato?WL  +  : ldx is  lso bounded. 

Since fv~ dx is bounded for all t~>0~ and since v(O,t)~v~(O,t)~O~ we find 
0 1 

t ha t  v( ' ,  t) is bounded in the H~-norm. Since f w ~ d x  is bounded for all t~>O, we 
o 

find tha t  ma.x [w~(x, t)[ is bounded (just as in the calculus a rgument  in the proof 
0~<~<1 

of prior Lemma 1). Therefore w(., t) is bounded in the norm of H~[O, 1], for all t~>O. 
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From the well-known /~ellich's Lelnma [1] we conclude tha t  the t ra jectory 
{u(t)It>O } c JCp lies within a compact subset of H2[O, 1]XL:[O, 1 ] x R  2. But  Jr 
is ~ closed subset of H~[O, 1] • 1] x R  2, and Mso has the norm ][uI[v equivalent  
to the induced norm. ]~ence we conclude tha t  {u(t): t>O} lies within a compact 
subset of ;Er. That  is, the JEF-closure of {u(t): t~>O} is a compact subset of Jr [] 

Rn~L~m~. - Since D ( A  ~) is dense in JE~, every uo~ Jr determines a solution 
u(t) = S(t)Uo along which the energy is nonincreasing. 

LE~iMA 3. - Zet  uo E D ( A  ~) and consider the solution u(t) = S(t)uo of the evolu- 
tionary ODE in ~ .  

Assume  now: 

1) E(u(t))  is constant on t>O an~ 

2) the ]eedback laws ~ ,  L~ are str ict ly dissipative, 

L~w -= --  av -4- bv~ , L~w = c v -  dv~ 

with a > O, d > O, 4ad > (b -4- c) 2. 
Then u ( t ) ~ 0  on t>0 .  

P~oo~. - Since u(t) = S( t )u  o e D(A3),  we note tha t  IAu(t) -~ S(t)(Auo) ~ D ( A  ~) is 
solution of the  evolutionary ODE, and it  satisfies the regulari ty conditions of 

the prior I~emm~ 1. 
Reca, ll tha~t solution u(t) and Au(t )  are given by 

w(x, t)\ 
I v(x, t) l 

u(t)= X p(t) ] 
\ q(t) / 

with w(x, t)~ H~[0~ 1] w(O, t) -~ w~(0, t) ~ 0 (and v eZ~[0, 1]) and  Mso 

/ v(x, t) \ 

X #2  ' ft.2 l 

with v(x, t) e H2[O, 1], v(O, t) ~ v.(O, t) -- 0 and in addition,  p(t) = v(1, t), 
q(t) = v~(1, t). (and  w . . . .  e ~ [ 0 ,  1]). 
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Since 2~(u(t)) is constant ,  

~)(u(t)) = v(1, t ) L l w  @ v~(1, t )L2w =-- O . 

But  J5~ and  L~ ~re strictly dissipative feedback laws, so 

v(1, t) ~ 0 ,  v~(1, t) =- 0 ,  

and hence L~w ==- 0, L. .w-~ 0 on : t>0.  Therefore  p(t) -~ 0, q(t) =---0 for all t > 0 .  
Fur the rmore  the  last two components  of the  evolu t ionary  ODE du/dt = A u  

assert  that 

dp 

dq 

so we conclude t ha t  

w~(1, t) - o ,  w,~(1, ~) ~_ 0 .  

I n  summary,  an  analysis of the  solution Au(t)  shows tha t  (see Proposi t ion in 

Sect ion 3) 

i) v(09, t) and - - w  . . . .  (x,t) are in C 1 for 0 <x ~< l ,  t>~0 

ii) t -+v ( . ,  t): [0, oo) ->Hal0,  1] is continuous.  

l~oreover, 

~) t = - -  W a x x x  ~ - -  W x ~ a t  = - -  V x x ~ a  

so v(x, t) is ~ solution of the  Euler-]3ernoulli P D E  

v~- [ -v  . . . .  = 0  on 0 < x < l ,  t>~0. 

The bounda ry  conditions for v(x, t) are 

v~(0, t) =- O, v**(1, t) =-- 0 ,  v(O, t) = 0 , 

and  the  ext ra  condit ions 

v~,~(1, t) = 0 

~(1, t ) ~ o ,  v ~ ( 1 , ~ ) ~ o .  

A S I D E .  - -  The regular i ty  of w(x, t) and v(x, t) follow from the  prior L e m m a  1, 
and the  earlier Proposi t ion and listed propert ies  a t  the beginning of Section 3, as 
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appl ied to u(t) ~ D(A ~) and  Au(t) e D(A~). I n  par t icular ,  besides the  proper t ies  1-5) 
of Section 3 for w(x, t) we fu r the r  no te  t ha t  

v(x, t)~ C 2 in 0 < x < l ,  t > 0  

Vfx  ~ ~ Vxtx, ~ Vxx t a n d  v t t  x ~ Vtx  t ~ v x t  t 

are  cont inuous in (x, t) for 0 < x < l ,  t > 0 .  

We re tu rn  to the  t h e m e  of the  proof  which analyzes the  solution v(x, t) of the  
Euler-Bernoull i  P D E ,  wi th  the  six bounda ry  conditions a t  x = 0 and  x = 1. I t  is 

known b y  the  t to lmgren  Uniqueness Theorem [4] t h a t  a n y  such solution mus t  vanish  
identical ly,  t h a t  is, 

v(x,t)=--O on O < x < l ,  t > O .  

Bu t  this  means  t h a t  
t 

w(x, t) = w(x, o) +fv(x, ~)d~ = w(x, o) 
0 

is independen t  of t. F u r t h e r  

implies t h a t  w . . . .  (x, 0 ) -  0 so t h a t  w(x, 0) is a cubic po lynomia l  in x. t towever ,  

w(0, 0) ---- w~(0, 0) = 0 and  w~(1, 0) = w ~ ( 1 ,  0) = 0. This implies t h a t  w(x, O) ~ O, 
and  therefore  

w ( x , t ) = O ,  v (x , t )=O on 0 < x < l ,  t > 0 .  

Since we have  a l ready  demons t r a t ed  t h a t  p( t )= q(t)= O, we conclude t h a t  
u(t) ~ 0  on t > 0 ,  as required.  [] 

I~E~L~K. -- I t  is only necessary  to assume l~(u(t))~ 0 on an  open in terval ,  
f rom which the  conclusion u(t) =-- 0 on t ~> 0 t hen  follows. We are now in a posi t ion 
to s t a te  and  p rove  our ma in  Theorem 2. 

T]~iEO~E~ 2. - Consider the real Hilbert space JC~. o/all states u = 
energy, ]or the Euler-Bernoulli evolutionary ODE, 

d ~  
-- Au -= 

dt 

v(x, t) t - -  w . . . .  ( x ,  t )  

1 t) + !Llw t,~ w~( l' ttl 

#2 

i ) with finite 
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with strictly dissipative /eedbact~ laws _L~, L2. get #(t) be the contraction semigroup 
generated by A in Jr as be/ore. 

Then, /or each Uo E JCp the solutio~ u(t) = #(t)Uo tends asymptotically towards the 
origin as t--> ~ that is, 

lira u(~) - -  0 in ,3g~. 

P~ooF. - We first prove the  required result  for an initial  s ta te  uo GD(A~), t ha t  

is~ we shall show tha t  the  solution 

\ q(t) / 

approaches the  origin in J~F, as t --~ ~ .  La te r  we shall no te  tha~ this special ease is 

sufficient to prove the  general  ease asserted in the  Theorem. 
The energy of this solution is 

and 

~(u(t)) = ~ !l~(t)llg<~(~o) for an t > o  

d , 

Therefore  E(u(t)) is nonincreasing and 

limE(u(t)) -- Eoo 

exists for some l imit  E~ > 0. In  geometr ic  terms,  u(t) approaches the  sphere of radius 
(2E~.) 1/~, centered at  the  origin of the I t i lber t  Space 5g~. We seek to prove tha t  

E~-~  0, which would imply tha t  l ira u(t) = O. 

Suppose E ~ >  0 and  seek a contradict ion.  Since uoe D(A ~) c D(Aa)~ the  tra-  
jec tory  {u(t): t>0}  lies in a compact  subset of 3e~, according to L e m m a  2. We now 

consider the  posi t ive l imit  (or w-limit) set of u0, 

~O(Uo) - N U u ( t ) ,  
~>0  t~>v 

where the  closure of the  fu tu re  t r a jec to ry  {m u(t)} is within 3Cr. Then  o)(Uo) is a 
t~>v 

connected compact  nonempty  subset of JeF. Fu r the rmore  the set co(uo) lies on the  
energy sphere 2~ = E~,  t ha t  is, E ( u ~ ) =  E~ for each point  u~ ~ ~(Uo). 
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Take a point  u ~  (o(uo) so 

limu(tk) = ur 
k--~ oo 

for some increasing sequence of t imes t~--> c~. We shall prove tha t  the solution 

uc.(t) -~ S(t)u~ lies always in D(A~) .  

Note  tha t  A u ( t ) ~ D ( A  ~) describes a t ra jec tory  {Au(t): t>0}  which itself lies 
within some compact  subset of ~F,  and so Au(t~J converges in ~F for some sub- 
sequence of t imes t~ -~  ~ .  Since A is a closed operator~ we know [6] t ha t  

u~ ~ D(A) and 

Au(tk,) -+ Au~ in ;E~. 

Repea t  this argument ,  with fur ther  subsequences (now denoted simply as tT~) to 
find that 

Au~ ~ D(A ) and  A ~u(t~) --> A ~u~ . 

Similarly uo~ED(A 3) with A3u(t~)--->A3u~, etc. Hence  the  results of Lem m a  2 
and I~emma 3 apply  to the  solution u~( t )=  S(t)u~e_D(A ~) on t > 0 .  

Under  the  supposition t ha t  E~ > 0, we can examine the  two al ternat ive cases: 

a) e i ther  E(u~(t)) eventual ly  decreases to / i7~-  e (for some positive e > 0) or 

b) E(u~(t)) is cons tant  on all t > 0 .  

In  the  first case a) E ( u ~ ( t ) ) < E ~ - - e  for all sui tably large t, say for t > T , .  Bu t  
since u(tk)-->u~, and  since I[ S(t) I[ < l ,  we find tha t  eventual ly  E ( u ( t ) ) < ~ - - e / 2 .  
This is impossible f rom the  definition of E~-~  l imE(u( t ) ) .  In  the  second case b) 

E(u~(t)) is constant .  But  then  L em m a  3 asserts t ha t  u~(t) -~ 0 so E(u~) = E~ = 0. 
Again this conclusion contradicts  the  supposit ion tha t  E~ > 0. Hence  in each of 
the  a l te rnat !ve  c~ses we obtain a contradict ion,  and therefore  we have proved tha t  
E ~ = 0 .  

Because Jim E(u(t)) = lira �89 Ilu(t)]l~ = o, we conclude tha t  
t--> co t--> co 

lira u(t) = 0 on ~ F ,  
t -->co 

a s  required  for Uo e D(A~). 
Final ly  tu rn  to the general  case for an a rb i t ra ry  initial  s ta te  ~o e 5eF. We must  

prove t ha t  ~ ( t ) :  S(t)d0 tends  to the  origin in ;EF. Pick  any  e > 0 and consider 
the  s-sphere about  the  origin in ~ .  We shall show tha t  ~(t) eventual ly  enters,  and 
thereaf ter  remains,  within this chosen e-sphere. 
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Since D(A ~ is dense in ~ v ,  t ake  some poin t  u. ~ D(A ~) wi th  

] lgo-  u.]l~ < ~f3. 

Since ]S(t)[ ~, ~<1 for all t > 0 ,  we calculate  that 

:l~(t)(a0- u0)I1~ = ila(t) - u(t)I1~ < ci3 

B a t  Yor some t i m e  T < co we know t h a t  

llu(t)![~<~i3 on t>~m:. 

Then  cer ta in ly  

I n  this w a y  we conclude t h a t  

l ira 4(t) = 0 
~---> o o  

a.s required  for each /70~ JCF. [] 

for t ~ 0 .  

for t >  To. 

in ~ ,  

~l'wt~(1, ~) -- w ~ ( 1 ,  t) -~ L lw  (feedback boundary damping at x -~ 1) ,  

]or strictly dissipative ]eedback laws .LI, L~, as be]ore. 
Give initial data ]or w(x, O) and v(x, O) : wt(x, 9) satis]ying the conditions o] D(A~)~ 

that is 

w(x, o) e H~[0, 1 ] ,  v(x, o) e H~[0, 1 ] ,  

and  

As ~ last  topic in this section 4 !el  us re - in te rpre t  Theorem 2 for the  Euler-  

Bernoull i  P D E  wi th  s t r ic t ly  dissipat ive feedback  bounda.ry damping.  

COROLLAau -- Consider the Euler-Bernoulli P D E  

w~t ~-w . . . .  -~0  for w(x, t )  on 0 < x < l ,  t > 0  

with the boundary conditions 

w(0, t) =-- w~(O, t) =- 0 (clamped at x = O) 
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with 

w(O, o) = w~(O, o) = o ,  v(O, o) = v~(O, o) = o 

w . . . .  ( O , O ) = w  . . . . .  ( 0 , 0 ) = 0  (at x = O )  

and also 

1 [ ~" [ 
1 

1 

/4 #2 

Then there exists a solution w(x, t), v(x, t) =- wt(x, t) o] this boundary-initial value 
problem so that 

i) w(x~ t) and v(x, t) are in class C 1 on 0~<x<l ,  t>~0 

if) t --> (w(',  t), v(., t)): [0, c~) --> H~[O, 1] xH~[O, 1] is a continuous map. 

Moreover w(x, t) is the unique solution o] this boundary-~nitiat value problem satis]ying 
the regularity conditions i), if). 

Furthermore this unique solution decays asymptotically to zero, 

lira w(x, t) ----- 0 ,  l im w~(x, t) -= 0 
t - + c o  t--~-c~ 

with each convergence uniJorm on 0 4 x < 1 .  

The proof of the Corollary follows directly from Theorem 2, ~nd the prior 
Lemma 1, in view of the Proposition of Section 3 relating the Solutions of the Euler- 
Bernoulli PDE with  the corresponding solutions of the corresponding evolutionary 
ODE in the  Hilbert  space J ~ .  

I f  we fur ther  assume tha t  the initial s tate  w(x, 0), v(x, 0) satisfies the conditions 
of D(As), then  we fur ther  conclude 

lira v(x, t) = 0 ,  lira v~(x, t) = 0 ,  
t--.-, oo t--.-, co 

uniformly on 0 < - v < l .  The conditions for u = e Je~ to lie in D(A)) are all 

those conditions already obtained for D(A~), and in addltion 

v ~ t t610,  1 ] ,  w e Hs[0, 1] 

with 

v . . . .  ( 0 ) = v  . . . . .  ( o ) = 0  ( a t x = 0 )  
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and 

#i #i 

1 1 
- v  ....... (1) = - - v d n  + - z ~ v .  

#o. #~_ 

Of course, if we t ake  the  corresponding ini t ia l  s ta te  Uo a D(A~), t hen  w(x, t), 
v(x, t) are in class C ~ on O < x < t ,  t>O and  higher  order  der iva t ives  also decay  to 
zero as t -+ co. I n  par t icular ,  i t  is ev iden t  t h a t  w(x, t), v(x, t) and  the i r  x-der ivat ives  

of order 4, 8, 12, 16, etc. as well as the i r  t -der ivat ives  of all o r d e r s - - a r e  in class C ~ 
in (x, t) on 0 < x < l ,  t~>0. The in t e rmed ia t e  order der ivat ives  can be shown to be  

cont inuous b y  rout ine  a rguments  involving general ized derivat ives.  

F ina l ly  we fu r the r  r e in t e rp re t  the  s tab i l i ty  Theorem 2 in t e rms  of our original 
control  p rob lem for t he  elastic n ~ s t  (M) and  the  rigid a n t e n n a  (A), as described 

in Sect ion 1 of this  paper .  
Consider the  control  s y s t em  for the  elastic m a s t  (M) 

w t ~ -  w . . . .  = 0 s w(x,t) on O < x < l ,  t>O 

and  for the  rigid a n t e n n a  (A) 

wi th  s t r ic t ly  dissipat ive feedback  bounda ry  damping  

L~w . . . . .  a~) }-b6, Lo.w=q)--dO a > O ,  d > O ,  t a d > ( b + e ) ~ .  

Assume the  bounda ry  condit ions,  as usual,  

and 

w(O, t) - -  w~(O, t) ~ 0 (clamped a t  x = O) 

w ( 1 ,  t) ~ y ( t ) ,  w~(1 ,  t) - O(t) ( l inked a t  a = 1 ) .  

Give a, ny  initiM s ta te  for 

w( . ,  t), v( . ,  t) --= w~(. ,  t), y(t), ?)(t), O(t), O(t) 

sat isfying the  ini t ial  condit ions ior D(A~); t h a t  is, w(x, 0), v(x, O) as in the  preceed- 

ing Corollary and  the  addi t ional  conditions 

w(1, O) = y(O), w~(1, O) = 0(0),  v(], O) = ~(0),  v~(1, O) = 0(0).  
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Then there exists a solution of the feedback control system (M) -k (A) (unique 
within the regularity specified in the Corollary), and furthermore 

lira w(x, t) --- 0 ,  lira y(t) = 0 ,  lira O(t) = 0 .  
t---> ~ t - *  oo t---> z o  

If we further demand that  the initial data satisfy the conditions of D(A3), then 

lim wt(x, t) = 0,  lira ~)(t) = 0,  lira O(t) : 0 .  
t - > c o  t - ->co  t - - > c o  

I t  is of interest to examine the rate of decay towards zero for w(x, t) in this 
asymptotically stable feedback system. Since the differential equations involved 
are all linear with constant coefficients, it might seem plausible to suppose that  this 
decay rate is uniformly exponential. However, this is definitely not the case. In  
fact, there exist such solutions w(x, t) which approach towards zero more slowly than 
any preassigned function. In the next  section of this paper we clarify these que- 
stions by some unusual examples. 

5. - Decay  rate under feedback boundary damping.  Nonexponent ia l  and s low decay. 

In this final section we shall examine the rate of decay of a solution w(x, $) of 
the Euler-Bernoulli PDE, under dissipative feedback boundary damping. Since 
the dynamical system is described by linear differential equations with constant 
coefficients it  might seem plausible to suppose that  the asymptotic decay of w(x, t) 
is uniformly exponential. This is definitely not the ease, and we shall demonstrate 
this lack of uniform exponential decay by means of a sequence of examples {w.(x, t)} 
with decay rates slower than any preassigned exponential function. In fact, our 
method will construct examples u~(t)-----S(t)uo, in ;E~ with arbitrarily slow decay 
towards zero. 

In order to make our constructions as explicit and as transparent as possible, 
we shall set the mass constants #1 =/z~ = 1, and choose the special, but  typical 
feedback laws 

Llw = - w~(1, t ) ,  Law = - w~,(1, t ) ,  

which are strictly dissipative in the sense of the definitions of Section 2, and of 
Theorem 2 of Section 4. 

Thus consider the Eu]er-Bernoulli PDE 

w t t + w  .... = 0  for w(x,t) on O < x ~ l ,  t~>O 
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w i t h  t h e  b o u n d a r y  cond i t i ons  

~, (o ,  t) ~ w~(O, t) ~_ o 

a n d  

wtt(1, t) = w~,~(1, t) - -  wt(1, t) 

w~t,(1, t) = - -  w~(1,  t) - -  w~t(1, t) 

( c l amped  a t  x = 0) 

(d i s s ipa t ive  d a m p i n g  a t  x - - 1 ) .  

for  T(x) sa t i s fy ing  t h e  c o r r e s p o n d i n g  O D E  

N ~ ( x ) -  s'~(x) = o ,  

w i t h  b o u n d a r y  cond i t ions  

~ ( o )  = ~ '~(o)  = o .  

This  d e m a n d  p roduces  t h e  m o s t  g e n e r a l  so lu t ion  

T(x)  = A(cosh  ) . ~ -  cos 2x) + B(s inh  ) ~ -  s in itx) 

for  t h e  c o m p l e x  p a r a m e t e r  A = # -]- iv a n d  c o m p l e x  coefficients  A, B. T h e  r e l a t i on  

b e t w e e n  ~ a n d  s is specif ied s ~ = Ad~ a n d  we shal l  choose  

L a t e r  we  shal l  l e t  w(x, t) = R e  11)@, t) to  o b t a i n  a r ea l  so lu t ion  of t h e  rea l  l inear  

b o u n d a r y  v a l u e  p r o b l e m .  
T h e  r e m a i n i n g  two  b o u n d a r y  cond i t ions  a t  x --~ I will  i m p o s e  a d e t e r m i n a n t a l  

d e m a n d  on ,~, in  o rde r  t h a t  n o n t r i v i a l  c o n s t a n t s  A, B can  be  found .  I n  m o r e  deta i l ,  
t h e  two  b o u n d a r y  cond i t ions  a t  w = 1 y i e ld  t h e  l inea r  h o m o g e n e o u s  equa t ions  

for  A~ B :  

A { - -  As(sinh Z - -  sin 2) - -  s2(cosh A - -  cos J~) q- is(cosh )~ - -  cos ).)} q- 

-}- B{ - -  A-'(cosh ;t q- cos ~) - -  s~(sinh A - -  sin ~) q- is(s inh ~ - -  sin Z)} = 0 

~ ( x ,  t) = e x p  [ is t]T(x)  (s = ~ § i~) 

W e  seek  s m o o t h  solut ions  w(x, t) (also def in ing solut ions  u ( t ) =  S(t)uoeD(A ~) of 

t h e  e v o l u t i o n a r y  O D E  in JCs), w i t h  s low d e c a y  r a t e  g o v e r n e d  b y  exp  [--  zt], for  
sma l l  pos i t i ve  T > 0. T h a t  is, we  f i rs t  f ind  c o m p l e x - v M u e d  solu t ions  of t h e  f o r m  
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and 

A{~2(cosh 2 -+- cos A) -- s22(sinh 2 + sin 4) + is2 (sinh 2 + sin 2)} + 

+ B{A2(sinh 2 + sin 4) -- s~2(eosh 2 -- cos 4) d- is2(cosh 2 -- cos 4)} = 0 .  

The determinan~ A(2) of these two l inear equations is (upon set t ing s = 2~): 

A(2) = (-- 224s ~ + 2is24 @ 2s~2 ~ -- 2is2 ~) sinh 2 cos 2 -+- 

d- (-- 2s42 + ~is~2 § 42 ~) eosh 2 cos 2 + 

@ (-- 2s222 q- 2is2~ - 22's ~ q- 2is2') cosh 2 sin 2 -J- 2 ( 2 9 -  2is2 ~) q- 0(2 ~) . 

Here  the  last  t e rm 0(2 5) consists of a polynomial  of degree 5 in 2, wi th  coefficients 
t ha t  are complex polynomials in (cos 2, sin 2 ) - - t h a t  is, these are t r igonometr ic  
polynomials of gn explicit  format .  

Our program then  consists in solving the  t ranscendenta l  equat ion 

A(a) = o 

for roots 2~-----/z.-k iv~ with a .  = #~ -- v2 ~ oo and  ~ = 2/z~v. xa 0. In  : terms ol 
the geomet ry  of the  complex plane~ we seek roots 2. tha t  lie in the open first qua- 
dz'ant with /z~ -+ -4- c~, and r~ Na 0, so tha t  2~ lies below any  pregssigned hyperbola  
#~ v~ = eonst  > 0. La te r  we in te rpre t  these constraints  with respect  to the decay 
ra te  for w(x, t ) ~  :Re ~(w,  t) (in te rms of the  H2-norm, and the  corresponding 
Jes-norm, and also for o ther  significant norms). 

In  order  to solve A(2) = 0 for roots 2~, we simplify the  expression for this de- 
t e rminan t  by  se t t ing 

eosh 2 e~ ~ e -z e~ ~ e -~ --  2 , sinh 2 - -  2 ' 

and collect terms in power of 2 to obta in:  

A(2) = -- ea[2s(2 + 1) cos 2 -1- k s sin 2 -- q~(2)] -k [Q.(2) e -~ -k Q.(2)],  

where the Q(2) are polynomials of the indicated degree in the complex variable 2, 
with coefficients t ha t  are explicit  t r igonometr ic  polynomials in sin 2, cos 4. 

We shah seek complex solutions 2~ for 

A(2) = 0 

in the  strip S along the  posit ive real axis: 

s = = + iv: l s l > l o ,  I 1<1}, 
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wherein cos2l<10,  [sin2[<10 and  e-~-->0 as 4--> co. Define the analyt ic  func- 
tions G(4) and ~0(2) in the strip S by:  

Then 

sin 2 e-e,A (4) 
(r = cos 2 ~ 4 q- ~t ' 2~(, ~ + ~ ) r  -- (~(2). 

7~(2~) -- 28(2e-~_4_ I) [G(20. e ~ -1- G(A)] d- }a(2.--d- 1) -- 0 ~ , 

that is~ 

cons~ 
~ for [ ; . I - ~  in S.  

We first solve G(A) = 0, and  then  s tudy  the perturbat ions caused by the te rm 
~(4), for large [2[ in the strip S. E lementa ry  analysis shows tha t  there is a sequence 
of real positive roots ~ of 

sin Z 
~(2) = cos 4 q 

2 + 1  

namely  ~ with  

- - 0 ,  or (g q - . l ) = - - t a n 4 ,  

k \2 n~ "X 0 f o r n ~ 0 , 1 ~ 2 ,  3 , . . . , .  

~r there are only these real roots since 

](2 + 1) cos 2 + sin 2!~--= [(# + 1)~+ ~ +  1] sinh2v + v2 cos~# + 

+ [(tt + 1 )  eostt + sin/t]'~ + 2v sinhv coshv ~ 2v s inh#  coshv ~ 0 for v # O .  

Since 

4~'(2) ~- - - s i n  2-l~ (2 q -1)cos  2 - - s i n  2__ _ sinZ q- 0 ( ~ )  
(2 § 1) ~ 

we find t h ~  

l im / " !G (4~)~ = 1 ,  
~b'r CO 

and the roots ~ are all simple - -  a t  least for all sufficiently large n. ~{ence we anti- 
cipate t ha t  p~rturbation techniques will be effective in locating roots 2. of G(2) -- ~(2) 
neoJrby to ~ .  

Around each complex point  ~ we construct a circle C~ ol radius/~----  n -a/~, so 
tha t  the disk 12 -- ~1-<</~ Hes within the strip S. We shall prove the existence ol a 
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zero 4~ = #~ + iv~ of the analyt ic  funct ion G ( 4 ) -  9(4) within each such disk, a t  
least for all sui tably large n. In  such a ease 

7g 

and so T~=  2#~r~-~0  as as n - +  c% [note: v~<O is impossible since this would 
imply the existence of a solution w(x, t) of the  P D E  whose energy fails to decay 
towards zero- -as  will be re-emphasized later]. 

At  the center  ~. of the  circle C.  we have 

G(i:) = o, 

and we now seek a lower bound for [G(A) I on C~ in order to apply  l~ouch6's Theorem. 
As no ted  before 

and hence 

lira [G'(4) + sin ~] = 0 ,  

l~eG'(~)> 1 in the  disk 14--I .1<n-3/~ 

for n even--o therwise  t ~ e G ' ( A ) < - - !  2 "  

Consider G(1) at  some point  I on 0~ and join i to the center  i~ by  a radial  
segment 

Then  

SO 

4 = i ~ + r ( I - i ~ )  f o r 0 < r < l .  

1 

G(i) - o(L) =fa'(a(r))- ( I -  I.) dr 
0 

1 

0 

Therefore  there  is a complex constant  

I 

r =fo'(,~(r)) dr, 
0 

t ha t  lies in the  closed convex hull of the  value set {G'(~(r))}, see [2]. Since 

for M1 ~ e 0~. 
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Our es t ima tes  show t h a t  on the  circle Ca, for all su i t ab ly  l~rge n, 

iG().)i> 1 n-~I~ and  !~()~)l< const 

SO 

The Theo rem  of l~oueh6 now guaran tees  ~he exis tence of a root  3.. = / ~  -F iv. wi th in  

the  disk IA-- ~ ] < / 7 .  for the  equa t ion  

~(~) = ~(A) 

or equally well for the  d e t e r m i n a n t a l  equat ion  

- -  A(~) = e~.~(~ § 1 ) [G(~ ) -  ~(A)] = 0 .  

We shall  use these  roots g~ = # . - F  iv. of A(2) ~- 0, wi th  

# . - -  @ n ~  ~ 0 , 0 <  v~ <~ n -3]~ 

80 

a~ = M - -  v~ --~ c~ and  ~ = 2#~v~ N 0 as n -+ c~. 

Fo r  such complex  roots  X~ we h~ve the  desired complex  solutions of the  Euler-  

Bernoull i  P D E ,  wi th  the  prescr ibed dissipat ive bounda ry  conditions,  

~/l?~(w, ~) = ex9 [--  T~t] [cos a~t -}- i sin a ~ t ] ~ ( w )  

(s~ = as + iv~ so s~ = ~ ---- #~ - -  v~ -[- 2 i # . ~ ) ,  where  

T~(x) = A. (cosh  A~x --  cos A.x) -~ B~(sinh 2~x --  sin ~ x )  

wi th  

As : it. -~- iv., z~ = 2#~v. ~ 0, as = #~ -- v~ -+ ~ .  

The complex constants (A~, B~)#(O, O) can be normalized, up to ratio, in any 
convenient manner. Since ~l).(z, t) is a nontrivial solution of the boundary value 

problem, 

Re ~2~(x, t) = exp [--  T~t][cos a~ t (ge  T,~) - -  sin a . t ( I m  ~ ) ]  ~ 0 , 

for otherwise we ob ta in  the  contradic t ion 

ReT~(x)--- - - ImT~(z)x)--- -0  and  T~(z)------ 0 on 0 < ~ < i .  
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~ e x t  we analyse the  rates of decay of the real solutions of the  P D E  boundary  
value problem 

w~(x, t) = R e  q ~ ( x ,  t ) ,  

and of the corresponding solution of the evolut ionary ODE 

uo(t) = 

where v~(x, t) = 3w~/3t, p~(t) = v~(1, t), 

< w.(x ,  t ) \  

v~(x, t) | 
po(t) I ] = ~(tlu~(o) 

q~(t) / 

q~(t) = (~v./3x)(1, t) are defined as u s u a l  
Suppressing the index n, we write the  real solution of the  boundary  value problem 

�9 w (x ,  t) = I C e ' S ( x ,  t) ~ 0 

SO 

w(x, t) = cxp [ -  ~t][(cos a t ) ~ ( x )  - (sin a t ) ~ ( x ) ]  

(where ~(z) = ~(x) + i~h~)). 
Direct  computat ions  yield 

wt = - -  v exp [-- Tt] [(cos a t ) ~ ( x )  --  (sin at)k~(x)] A- 

-~ a exp [-- ~t][(-- sin at)kU~(x) -- (cos at) k~ (x)] 

and  

%~ = exp [-- ~:t] [(cos at)T~(x)  --  (sin a t )~ ' (x ) ]  

so the  corresponding energy is 

~(t) -~ exp [-- 2~t] [~  cos 2at ~- ~ cos at -~ fl~ sin 2at -~ fi~ sin at -~ ~o] 

for real  constants  ~ ,  g~ ~ fl~, fl~ ~ ~o. 
On a period of durat ion 2g/a we le t  

M -~ max [~2 cos 2at + ~1 COS at + /~2 sin 2at  + /~1 sin at + ~0] 
0<t<2zqct 

so tha t  a t  a discrete periodic set of t imes t~ S co 

.~(t~) = M exp [-- 2~t~]. 
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Moreover, since E(t)> 0 is nonincreasing~ we conclude tha t  for each t~>0 

E(t) > M exp [-- 2~t~]>~ M exp [-- 2~(t -}- 2a/a)] 

where &~_~<t<t~ on the  t.axis. Similarly, ( M e x p  [-- 4z~-/a]) exp [-- 2~:t]<E(t)< 
< M exp [4zv/a] exp [-- 2zt]. But  as n -+ 0% r~,x.a 0 and  am -+ c~ 

exp [- 4=~Io'.]/I. 

We conclude tha t ,  for each e > 0, the energy, of w~(x, t) for all large n satis- 

fies bounds 

(1-- s)M~ exp [-- 2%t]<E,~(t)<(1 @ s)M~ exp [-- 2%t] on t > 0 ,  

and  has the exponential  decay rate  

~_,ooliml%lnE~(t) = 2 T , , .  

Hence, for each prescribed positive decay rate  ~ > 0, there exists ~ = n(@) so tha t  
the exponential  decay ra te  2T~< ~ for all sui tably large n > g .  In  this sense the 
sequence of real solutions {w.(x, t)} of the given boundary  value problem displays 
arbitrari ly slow exponential  decay rates~ and so the  Euler-Bernoulli semigroup S(t) 
cannot  have a fixed positive exponential  decay rate,  uniformly on the s tate  space 3EF. 

RElW~K. -- As another  and  different measure of the rate  of decay of a solution 
w~(x, t) we can consider ]lw~(x, t)II = sup ]w~(x,t)] and then  define 

0~<x~<l 

1~.~(~) = sup []w~(.:,, ~)ii ,  ~,~(~) = inf  ilw~(x, t)li 
[$--1,t+1] [ t - - l , t+ l ]  

and consider n large so t ha t  the period 2=/a~ is much less than  1. Wi th  the  earlier 
expression for w(x, t), i t  is e lementary  to demonstra te  t ha t  there are constants 
0 d r y <  R~ so t h a t  2~( t )dR~ exp [---c~t], r.(t)>r~exp [ - - % t ]  and  

r~exp [-- T~t]<i[w.(x, ~)iI<R~ exp [-- % t ] ,  for all t>~0. 

IIenceforth we consider only the energy norms for the solutions w(x~ t). 
We now re~urn to the construction o2 a solution w(x, t) o2 the Euler-Bernoulli 

boundary value problem with an arbitrarily slow decay rate. %Ve shall consider the 

real sohtions~ for n = I, 2, 3, ... 

w~(x, t) - -  e x p  [ -  ~ . t ]  [ (cos ~ . t ) T . ~ ( x )  - (sin ~ .  t ) T . , ( x ) ]  
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where ~ T2 > Tk > ...--> 0, and a s - > - ~  c~, as before. Each such solution defines 
a continuous function 

u~(t) = s(t) u~(o) / p~(t) / t -~ uo(.): EO, ~ )  ~ ~ ,  

\ / 
\ q~(t) / 

which is a solution of the corresponding evolutionary ODE in the finite-energy 
Hilbert  space Jgs. Cleurly the energy norm of u~(t) is 

[2E(~o(t))],/~ = lu.(t)It~. 

According to the exponential  decay r~te tha t  we have alregdy established~ 

[�89 [-- w~t]<I]u , ( t ) l l s<exp[ -  7:~t] on o < t <  

(after discarding g finite initial set of these u~(t), and multiplication of each u~(t) 

be a suitable scaling constant ,  and then  making the corresponding not~tionsl  too- 
dific~tions). 

LEivs - ~et  {z.(t)} be a sequence o] continuous ]unctions 

t ~z~(.):  [o, ~ )  - + ~  

]or some real Banach space 55. 

A s s u m e  ]or each n = 1~ 2~ 3, ... the norms 

I[z~(t)[] on 0 < t <  

satisfy 

�89 exp ~-  ~.t]< llz.(t)]l <exp [ -  ~=.tl 

/or ~'~ > v~ > v~ > ... -->0. 

.Let ~f(t) be a real continuous ]unction on 0 < t < ~ positive and strictly decreasing so 

y~(O) = 1 ,  lira F(t) = 0 ,  
b-~ r  

Then  there exists a subsequenee {z~(t)} so 

~(t) = ~ ~ ( t )  (constants o<  ~ < 1 )  
I c = 1 1 ~  . 
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is continuous 

t ~ z ( ' ) :  [0, co) - ~ 2 , .  

Moreover ]]z(~k)il > ~o(t~) at some sequence oJ times t~ -> ~ .  

P~ooF. - The proof consists in a construction of z(t) by choices of {w.~}, {a~}, 
and intervals JQ, which contain the t imes t~, e Ik. 

S T A a E 1 . -  Take hi>l,  compact  interval  l~c[O, ~) ,  and positive constant  
a ~ = l  so t h a t :  

1 

and 

3 7 
1--5. < il,,,(t)ii < Td oa z , .  

[Take the t ime ~ when ~o(~) = 1/10. Then select n~ so tha t  

']z..(td 11 > ~exp [-- r .  tl] > 1--0" 

Since  l im  liz.~(t)it = O, we can f ind a later compact interval 11 whereon  
~--*-. o o  

T6 < l]z~,,(t)li < ~ .  

SmAGE 2. - T a k e  n~ > nl,  compact  interval  13 c [0, oo) af ter  /1 (following and 
disjoint from Id ,  and  positive constant  0 < a 2 < l  so t ha t :  

1 1 
i) IIz.,(t)i] <72~.~ 100 on 12 

1 1 
ii) ~o(t) < 2 ! 100 on Is 

and 

3 7 
iii) 1-~ ..<a2 ilz~,(t)[1 < 10---0 on I1 W 13. 

[Firs t  choose Is so i) and ii) hold, then  choose n~ so exp [-- ~ t ]  is <( sui tably fiat ~) 
out  to I3, then  choose a~ so iii) holds.] 
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STAGE 3. -- Take h a >  n~, compact  interval  I~c [0, oo] af ter  12, ~nd positive 
constant  0 < a~ < 1 so tha t :  

i) []z.,,(t) 

ii) F ( t ) < - - - -  

1 1 
+ ~. Ilz,g ~) li < 3-~. 100~ on Z~ 

1 1 
on I3 

3! 1000 

and 

3 7 
iii) ~ <as[ I z . , ( t ) ] [<lO0- - - -  ,. _ oft I~w I .  w G .  

Continue this selection process to stage l. 
Take n~>  nz-1, compact  in terva l  I~c  [0, oo) a f te r  I~-1~ and positive cons tant  

0 < a ~ < l  so t h a t :  

~-1 la~ I 1 1 
i) ~ 1  ~z~(t)[<l~lO---7 on I ,  

i 1 
ii) y~(t) < l-! 10 ---5 on I~ 

and 

3 7 
iii) ~ <<. a~Ilz.,(t)[ ] < ~-~ on 1 1 U 1 2 U . . . U I z .  

Then  define 

co a 

I t  is clear t ha t  this series is uni formly  absolutely convergent  on 0 < t  < 0% so the  
:B-value funct ion z(t) is cont inuous as required.  

We now show t h a t  

tlz(t) ll >~(t) o n / 1  u Is u . . . ,  

and in part icular ,  this inequal i ty  holds a t  the  midpoint  t~ of I ~  Clearly on the  
interval L 

az 1 3  1 1  

We mnst  show tha t  the  consideration of the  infinitely m a n y  other  te rms in the  
series for z(t) does not  des t roy the  force of this inequali ty.  
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~ 7 o w  o n  I~ w e  ] ~ o t e  

Bu~ 

I 
a~ a~ [ . 

[[z(t) l] > ~. b~,(~)II - -  ~ ~. z,,,o(t) 
I k#l  

t i 1 (e~ch l > l / ,  Z z~(t) < z-~ lo  - ~  

and 

< § § 
~>~ (5 4- 1)! ! 0  ~+1 (~.+ 2)! 10 '+~ 

~ ! ] 1 7 ~ _L__4_,. .  < 
< (~ 4- 1) !  j~o~+~ " 1 + 1-6 ' l o o  

i 8 1 1 

(5 - [ -1 / !  ~ <  Z! 10 ~" 

! 3 i I i • I .I 

[iz(~)[I ~ ~! ]0 ,  5 !10  ~ Z! 10, - -  ~! i-d~ > ~~ " 

I n  p~rticulur~ nt  t h e  m i d p o i n t  t~ os I~ we h a v e  

T[z(t~)I] > ~(t,) ~or ~ = 1, 2, 3, . . . .  [] 

CO]~OLLA~Y. - ~ o r  each positive z > 0 

b(t)I[ > exp [ -  ~t] 

at a sequence o] times t kS  oo. Hence the exponentia5 decay rate 

lirn log I[z(t)[] <~: .  
t-"-> cw~ 

(Ziapunov exponent) 

There/ore the Liapunov exponent is zero, 

l im log LLz(~) w .  0 . 

THEOI~E~{ 3. - Consider the Hilbert space JCv o] all states u = 
for the _EuSer-Bernoulli evolutionary O D E ,  

d u  m = ~ u =  
dt 

I v(x, t) \ 

- - w  . . . .  (x, t) i 

w~=(l~ t) - -  u,~(:l, t) I 

with ]inite energy~ 
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with the strictly dissipative ]eedback laws 

L ~ w  = - w , ( 1 ,  t ) ,  L ~ w  = - w ~ ( 1 ,  t) 

(and mass constants tt~ tt2 set equal to 1). Zet S(t) be the contraction semigroup generated 

by A in Je~ as be]ore. 
Then~ there exist solutions u(t) with arbitrarily slow decay towards zero. I n  more 

detail~ let yJ(t) be a real continuous ]unction on O<t < ~ ,  positive and strictly de- 

creasing so 

~(0) = 1 ,  lira ~v(t) - -  O. 
t---> 

Then there exists an initial state Uo ~ JCF and corresponding solution 

so that 

u(t)=S(t)uo o~  o < t < ~ ,  

Hu(t) II~ > v,(t) 

at some sequence oJ times t~ S ~ .  

PROOF. - Consider  t he  sequence  of solut ions of t he  Euler -Bernoul l i  b o u n d a r y  va lue  

p r o b l e m :  

w.(x, t) -= exp [--  ~ t ]  [(cos a. t )W~(x)  -- (sin a~ t )~ .1(x) ] ,  

w h e r e  ~i > v~ > vk > ... --> 0, a n d  aN--> 0% as before.  E a c h  such so lu t ion  defines a 
con t inuous  f u n c t i o n  

= 

= p.(t) ] 

\ q.(t) I 

(for v~-= 8w./St, p~(t) = v.(1, t), q~(t) = (Sv./Sx)(1, t)) 

t ~ u,~(.): [0, ~ )  ---> E ~ ,  

which  is a so lu t ion  of t he  e vo l u t i ona ry  O D E  

du 
d--[ = A u  in  ~ .  
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Fur the rmore ,  since w.'~ O, 

rescMing of u~(t), that 

Then~ as in the  preceeding l e mma ,  

k ~ l  /tl. 

we can assume,  a f te r  a convenien t  r enumber ing  and  

on O<t  < oo. 

on O ~ t <  oo, 

where  

@7r 
U 0 ~ k=l ~. u,~(0) in ;E~. 

Consider the  cont inuous curve  S(t)uo in JCt., and  the  cont inuous curve  

in J ~ ,  on 0 < t  < co. l~ow the pa r t i a l  sums converge absolu te ly  

hr Ctk 

V, u,,o(t) ~ u(t)  , 
ic = l rv  . 

un i fo rmly  on O < t <  ~ ,  since ]lu~(t)II < 1 .  Also, for each t>O, 

u(t) 

t t ence ,  for each t>~O, since l]S(t)]l < 1 ,  

lira ~ ~k .w~  ~ u ~ ( ~ )  = ~(t)u0. 

flu(t~)ll > ,p(t~) 

for some sequence of t imes  tk --~ oo. 
I t  remMns to demos t r a t e  t h a t  u(t) is a solution of the  evolu t ionary  ODE,  t h a t  is, 

we m u s t  p rove  t h a t  

u(t) = S(t)  Uo 

Moreover  

for some sui tsb le  subsequenee {u~(t)}, and  cons tan t s  O <  a~<~l, is a cont inuous 

func t ion  

t -+  u ( . ) :  [0, oo) -+ ~ .  
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Therefore ~ (ak/k!)u~(t) converges in ;E~ to S(t)u. and also 
k = l  

conclude that 

u(t )=S(t )Uo for a l l O < t < ~ ,  

to u(t). Thus we 

and the  Theorem is proved.  [] 

R E ~ K .  - Each solution u,~(t) is real-analyt ic  on 0 < t < c% tha t  is, u~(t) is given 
by  an absolutely convergent  power series in t ,  with coefficients in ;E~. Fur ther ,  

k = l  

converges absolutely uni formly  on 0 < t  < c~, bu t  the  behavior  for complex values 
of t is no t  apparent .  

moreover  the  corresponding components  

\ q(t) / 

are not  guaranteed  to be smooth in  x on O~<x~<l. Certainly w(x, t) lies in H~[O, 1] 
for each t>~O, bu t  we canilot be assured tha t  w~,  w ~ ,  or w . . . .  (x, t) are continuous 
in (x, t), wi thout  fur ther  investigations on the  na ture  of the  convergence of the 
series for u(t). In  part icular,  i t  seems likely tha t  one might  require be t t e r  quanti-  
t a t ive  es t imates  for ~ = 2 t t~  . given by,  

and 

0 < ~<~-a /2  for all large integers n .  

We do not  pursue these questions fur ther  a t  this t ime. 

For  a nonconst ruct ive  proof of an absract ion of Theorem 3, see [17]. 
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