
Divisors of Finite Character (*). 

KArL EGIL A ~ T  (Oslo, ~orway) 

(( Therefore, when one widens the realm of 
elements to that of ideals in a given ring, 
one sometimes gains and sometimes loses. 
One gets the impression that, generally spe- 
aking, the truth lies halfway: if the domain 
of integers in many eases is too narrow, the 
domain of ideals is in most cases too wide. ~ 

H~XMANN W ~ L  (in [45], p. 38). 

S u m m a r y .  - The present paper purports to show that divisors of ]inite character--also called 
t-ideals--are the natural buildiq~g blocks o] the general theory o] divisibility. Divisors o] ]inite 
character are here applied to a variety el di]]erent arithmetical topics as well as to sectional 
a~d ]u~ctioqval representatioq~ el ordered groups. 

l .  - I n t r o d u c t i o n  (1). 

I n  its mos t  general  and  pures t  form, the  s tudy  of the  not ion of divisibil i ty appears  

as a s t r ic t ly  mu]t ipl icat ive  theory ,  i n  spite of this ,  the  ma jo r i t y  of the  abs t r ac t  

invest igat ions concerning the  not ion o2 divisibi l i ty have  been carr ied out  wi th in  
the  se t t ing  of in tegra l  domains.  The t rad i t ion  of s tudying  divisibi l i ty proper t ies  

in rings or fields r a the r  t h a n  in monoids  or groups (2) goes back  to the  ear ly  days  

of algebraic  num ber  theory .  Dedekinds  ideal concept  is a r ing- theoret ic  concept  

and  not  a pure ly  mul t ip l ica t ive  one (al though it  t u rned  out la ter  t h a t  in the  classical 

case of algebraic  integers  his ideals may  be given a pure ly  mul t ip l icat ive  in te rpre ta -  

t ion  as <~ divisorial  ideals ~). Thus,  a somewhat  b lurr ing  and  i r re levant  addi t ive  

ingredient  was b rough t  into the  general  theory  of divisibi l i ty r igh t  f rom the  s tar t .  

The t rue  mul t ip l ica t ive  l ibera t ion came wi th  LORE~ZE~'S thesis  [33] in 1939. 

I t  is the  purpose  of the  presen t  pape r  to t r y  to revive  and  cont inue some of the  work  

(*) Entrato in Redazione il 29 aprile 1981; versione riveduta 1'1 dieembre 1982, 
(1) The work on the present paper was initiated while the author was visiting University 

of Western Ontario, Canada in December 1977. Thanks are especially due to professor G. 
TItI:ElcttI~ for assistance from his Grant A 7877 of the National Research Council of Canada. 

(2) The groups, rings and monoids considered in this paper are all commutative with 
cancellation laws. 
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of Lorenzen. I t  seems to us that  although his 1939 paper is widely cited it is rather 
poorly understood. Papers (and also several books such as [12], [18], [19] and [32]) 
which deal with divisors and multiplicative ideal theory are still being published 
without taking account o/ Lorenzen's most basic ideas. Their treatment of several 
topics is decidedly inferior to what can be extracted (admittedly~ sometimes with 
pain) from Lorenzen's work. Only JAPFA~])'S monograph [21] seems to us to do 
full justice to Lorenzen~s ideas. This is really a very fine book~ but it is written in a 
style and uses a terminology which may have prevented many from reading it who 
otherwise could have been attracted by its rich content. 

We shall let the present paper revolve around t h e  concept of a divis0rial ideal 
of finite ch~raeter~called t-ideals fbr short. Our main objective will be to present 
some of the evidence which points in favour of t-ideals as the building blocks of a 
general arithmetic. 

In fact, it is not far fetched to say that  the t-ideals represent ((the t ruth  that  
lies halfway )) which is alluded to in the above quotation of Hermann Weyl. This 
makes it somewhat hard to understand how the v-ideals (divisors in the terminology 
of BO~BAKI [12]) or even the ordinary Dedekind ideals (called d-ideals in the 
sequel) have survived in many multiplic~tive contexts where the t-ideals turn out 

to be superior. 
In the two last paragraphs of the present paper we shall also show that  the no- 

tion of a prime t-ideal and that  of a t-valuation seem to provide the best founda- 
tion for a coherent theory of both sectional and functional representation of ordered 
groups. This point of view will bring about ameliorations and precisions of earlier 
work of KEI~EL [25] and FLEISCttEI~ [17] on this topic. 

2.  - D i v i s o r s  a n d  t - i d e a l s .  

All ordered groups considered in this paper are supposed to be abelian and 
directed (filtered). The monoid G § of positive (integral) elements of the directed 
group G will be denoted by D. Conversely any monoid D with cancellation law gives 
rise to a directed factor group G/U--called the divisibility group of D--where G 
is the quotient group of D and U is the group of units in D. Equivalently we may 
regard the divisibility group as the group of fractional principal ideals ordered by 

inclusion. 
A directed group G is said to be ]actorial if it is isomorphic to an ordered direct 

sum of copies of Z (a free abelian group with pointwise order). Such a factorial 
group is written Z (x) for some set I and is interpreted as the set of all functions 
from I to Z, zero outside of a finite set--with pointwise addition and ordering. If  G 
is order-isomorphic to a subgroup of a factorial group we shall say that  G is a prd- 
factorial group. A unique faetorization domain (respectively a Krull domain) is an 
integral domain whose divisibility group is factorial (respectively pr6factoria.l). 

The situation of a pr6faetori~l group exhibits the original arithmetical content 
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of the concept  of a ((divisor)) and  a (( pr ime divisor ~). The divisors which are ad- 
joined in order  to achieve unique factor izat ion are conceived of as finite products  
(or sums) of the  canonical  generators  (the pr ime divisors) of the  free abelian group 

Z u). I t  is reasonabl% however~ to res t r ic t  the  use of the  t e rm (~ divisor ~) somewhat  

fur ther .  For  we are not  really in te res ted  in (( unnecessari ly big )) extensions with 
no definite ties between G and  Z (~). I t  tu rns  out t h a t  for a pr6factoriM group G we 
can always choose D = Z (~) in a unique minimal  way (i.e. such t h a t  D is contained 
in all factorial  groups conta ining d as an  ordered subgroup) - -namely  as the  group 
of f ract ional  t-ideMs o f  G. Thus the  t- ideMs--which we are now going to intro- 
d u c e ~ a p p e a r  as the  t rue  a r i thmet ica l  divisors. 

Le t  A denote  a bounded  subset of the  di rected group G (i.e. there  exists an ele- 
men t  g ~ d  such t ha t  g A c G  +~-D).  The set  

or equivalent ly  A~= D:(D:A) is t hen  the  divisorial ideal or the  v-ideal genera ted  
by  A. We define the  t-ideal genera ted  by  A as the  set- theoret ic  union of all the  

v-ideMs genera ted  by  finite subsets of A:  

A,  : U.h7%. 
27cA 

27 fin|f,e 

An impor t an t  technical  difference between v-ideMs and t-ideMs is given by  the  fact  

t ha t  the  t-generation is of finite charac ter  whereas the  v-generation is not.  The 
t-system forms the  unique coarsest  Lorenzen system in G. (As a general  source for 

definitions and results on ideal systems the  reader  is re fer red  to [2], [3], [21] or [33]. 
As to the  notion of a Lorenzen sys tem (r-system) as opposed to the  general  not ion 
of an ideM system (x-system) the  reader  is refer red  to [3], pp. 523-524.) 

I f  G is a GCD-group (~) (~- la t t i ce  ordered group) with the  g.c.d.-operation 
denoted by  A, the  definition of a t-ideM assumes a more appealing form as the  
conjmlct ion of the  two proper t ies  

1) D A t e  At;  

2) a, b E A~ ::> aAb ~ A~. 

As opposed to ord inary  d-ideMs, the  presence of a g.e.d, for two (or a finite 

number  of) elements is measured fMthfnlly in terms of t-ideMs: TWO elements a 

(3) In our arithmetical context we prefer the more suggestive term of a GCD-goup to 
that of a lattice ordered group or 1-group. This also achieves a uniform terminology which 
is in harmony with the already established notion of a GCD-domMn as well as the notion of a 
GCD-flmetor to be introduced in the next section. 
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and b have a g.e.d, if and only if the t-ideal generated by a and b is principal. Other. 
wise expressed: The divisibility group of a monoid D is a GCD-group if and only 
if D is t-Bezout (every finitely generated t-ideal is principal). Already at this elemen- 
tary level the advantage of t-ideals over d-ideals is hence clear (also apart from the 
fact tha t  d-ideals only make sense in the case of divisibility groups of integral 
domains). For a d-ideM (a, b) may fail to be principal also in case a and b have a 
g.c.d. For a d-ideal (a, b) to be principal it  is not only required that  a and b have a 
g.e.d., but tha t  this g.c.d, be a linear combination of a and b. Thus d-ideals bring 
in an extraneous additive condition which is alien to the purely multiplicative situa- 
tion at hand. 

3 .  - L o r e n z e n  g r o u p s .  

We shall now enter a subject which, in spite of being almost entirely neglected, 
seems to us to form the deepest and most interesting part  of the general theory of 
divisibility. 

Exploiting the original ideas of K~0~'ECI~E~, P~ti~EIr and especially K~LTLI, 
defined and used the so-called Kroneeker ]unction rings in order to study the arith- 
metic of integral domains. The main virtue of the extension process which leads 
from an integrally closed domain ~ to its Kroneeker function ring is the fact t h a t  
the latter is a Bezout domain (finitely generated &ideals are principal) and hence 
provide g.c.d.'s. This enables us to get a better grasp of the valuation overrings 
of R, establishing in Iparticular that  these are in one-to-one correspondence with 
the prime ideals of the corresponding function ring. 

The subject of the Kroneeker function rings was generalized, clarified and sim- 
plified by Lorenzen when he defined the purely multiplica.tive object of a ~ Lorenzen 
group ~, freeing the initial construction of a Kroneeker function ring from any inter- 
vention of an additive operation as well as from the Kroneckerian scheme of adjunc- 
tion of indeterminates. In spite of this face lift, however, the Kronecker function 
rings have also in their new disguise as Lorenzen groups remained a neglected and 
poorly understood area. The following presentation of this subject if offered in the 
hope of contributing to a better understanding of Lorenzen's ideas. We shall do 
this by stressing funetoriM properties as well as the universal role which is played 
by the t-system in this connection. 

The main way of motivating the introduction of Lorenzen groups is via the old 
problem of providing g.c.d.'s by a suitable extension process. 

Let ( / be  a directed group equipped with a (fractional) Lorenzen system x. We 
suppose that  G is (integrally) x-closed in the sense of [2] or [21]~ i.e. that  A~: A~c G + 
for any finite set A c G. To the given x-system we can associate another fractional 
ideal system in G which is denoted by x~ and which is determined by 

A~o-~ {c]cN~cA~oN~ for some finite 2Vc G} 
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whenever A is a finite subset of G. The x.-ideal generated by a (general) bounded 
subset B of (7 is then equal to the set-theoretic union of all the x.-ideals generated 

by finite subsets 0f B. 
The crucial property of the x.-system is tha t  the monoid of finitely generated 

x.-ideals (under x.-multiplication) satisfies the cancellation law and hence possesses 
a group of quotients A.(G)-~ A.  (see [21], pp. 41-42 for a proof). This group is 
m~de into an ordered group by putting A ~ / B ~ e  A + whenever A~or B.o and is as 
such called the Lorenzen x-group associated to (7. The main property of the Lorenzen 
x-group of G is that  it is a (TCD-group which contains (7 as an ordered subgroup. 
I t  provides the g.c.d.'s which may be missing in G and when the x-system is suitably 
chosen it does this in the most economical way. 

4 .  - T h e  GCD-functor. 

Let I denote the category of integrally closed directed groups. An object in 
this category is a directed (abelian) group (7 equipped with a Lorenzen system x 
such that  (7 is (integrally) x-closed. A morphism in I is a morphism of ideal systems 
9: ((7, x) --> (H, y) where (G, x) and (H, y ) e I  (see [3], p. 523 for the definition of a 

morphism of ideal systems). 
The category I contains in particular two distinguished full subcategories, cor- 

responding to the cases x ----- s defined by A ~ (7+A and x ~ t respectively: The 
category S of all s-closed (semi-closed) directed groups with orderpreselwing group 
homomorphisms as morphisms and the category (TCD of all (TCD-groups with 
homomorphisms of (TCD-groups us morphisms. The proof of these two facts is 
simple and we shall content ourselves by treating the ease which interests us most. 
(For an explanation of the term shadow ]u,nctor we refer the reader to [5], p. 39) : 

L ~ A .  - The t-shadow /unetor It  provides a ]ull embedding of the category o/ 
(TCD-groups into the category o/ integrally closed directed groups. 

PROOF. -- Obviously, any GCD-group is t-closed. I t  hence suffices to show that  

the natural map 

H o m ~ .  ((71, (7~) -+ I-Iota. (((71, t), ((7~, t)) 

is a surjection, i.e. any (t, t)-morphism of GCD-groups is really a homomorphism 
of GCD-groups. First  of all, any morphism ~: (G, x) -~ (H, y) between two Lorenzen 
systems (and hence in particular any (t, t)-morphism) is order preserving. For a>~b 
is equivalent to a e (b)~ which implies ~(a) e ~((b)~) c (~(b))y which in turn is equi- 
valent to ~(a)>~F(b). On the other hand ~((a, b)t) c (~(a), cf(b))t reduces to q~(aAb)>~ 
>~cf(a)Aq~(b). Since F(aAb)<~(a)A?(b) is a consequence of ~ being order preserving, 
it follows that  ~(aAb)= q~(a)A~(b) and ~ is a homomorphism of GCD-groups. 
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The following theorem could appropriately be termed (~ Main theorem el divi- 
sibility theory ~. I t  shows how the Lorenzen groups ~ct as ~ i v e r s a l  objects with 
respect to the basic arithmetical completion process of providing g.c.d?s. 

Tn3~o~E~r ~. - The passage from an x-dosed group (G, x) to its Lorenzen group 
A,(G) defines a faithful funetor from the category I onto the category ~CD such that 
(~CD appears as a full reflective subeategory of I - - i .e .  the indicated funetor is the left 
adjoint of the t-shadow functor. 

We shall call the functor alluded to here for the GCD-functor and denote it by A. 

P~OOF. - So far we have only defined how the functor A acts on the objects of I. 
If  ~: (G, x) --~ (H, y) is n morphism in I we define A(~) = q~ by putt ing 

A o) 

When we identify G with its group of principal ideals it is clear tha t  the restriction 
of q} to q is just ~ showing that  A is faithful. To verify ahat ~ is a homomorphism 
of (~CD-groups is routine and we content ourselves by showing that  ~ is a lattice 

homomorphism--the proof tha t  q~ is a group homomorphism being similar. We 
can assume tha t  the two given quotients have the same denominator and then we get 

r A~o-t- B~o w _ 

te o/ 

where A and B are finite subsets of G. That  A is compatible with composition is 
obvious. We have a commutative diagram 

As(G) ~ > A~(H) 

T T. 
(G,x) ~-> ( g , y )  

where the natural  inclusion maps ~ and T~ are an (xa, t)-morphism and a (yo, t)- 
morphism~ respectively. Since every  finitely generated t-ideal in A~(G) is principal 
it suffices to show that  7:~((e)t) is an xa-ideal in G whenever c ~ A~(G). I f  b~, ..., b. e 
E ~ ( ( e ) t )  and b e(b~, ...,b.)~o, v~(b) may be identified with the principal ideal it 
generates in G and hence 

,~(b) > (bl, ..., b~)~o--= ,~(bl) A... A ~(b~) > e 
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with respect to the order relation which is defined in A~(G). This entails b E ~((e) t )  
as required. (Since the G-system is coarser than the x-system this shows in par- 
tieular tha t  r ,  is an (x, t)-morphism.) 

By letting H be a (/CD-gronp and putt ing y = t, the diagram 4.2 gives rise to 
the following one. 

(A~(G), t) 

(Gx) ~ ~(/~,t) 

Here ~ and r~ are (x, t)-morphisms, whereas ~b is a homomorphism of GCD-groups, 
or equivalently a (t, t)-morphism. The diagram (4.3) exhibits the universM role of 
the Lorenzen group with respect to (x, t)-morphisms into ~CD-groups. For ~b is in 
fact uniquely determined by the formula 

(4.4) r  ..., am)~o~ 
�9 \(bl, , b~)~J= (~(a~)/\'"Aq~(a'~))(~(b~)A'"A~(b~))-~ 

which is just oa particular case of (4.1). We know already tha t  A is faithful, such 
tha t  the above remarks establish an injection 

(4.5) A: ~om, ((G, x), U ~ ) )  -~ Eomoo. (A~((~), B) .  

I t  remains to be shown that  this map is also a surjection, thereby proving that  A 
is the left-adjoint of the shadow funtor I t .  Let 0 e Homao~(A,(G),H) and put 

~-0o~.~. Since r~ is an (x,t)-morphism, the same is true of ?. Furthermore 
A(~)-~ 0, because there is just one extension of ~ to a (t, t)-morphism of A~(G) 
(given by the formula (4.4)). �9 

We want to specialize Theorem 1 in such a way as to obtain Lorenzen's main 
result on the groups A~(G) and to establish contact with Krull's researches on the 
Kronecker function rings. Both of these applications will stress the links with valua- 
tion theory. 

The natural generalization oi the classical notion of a valuation to the setting 
of ideal systems is the following one: By an x-valuation of a directed group G 
equipped with a Lorenzen system x we understand an (x, t)-morphism of G onto a 
totally ordered group F. (Note that  a totally ordered group is characterized by the 
fact tha t  s = t, i.e. it carries only one Lorenzen system (of finite character). We 
could hence equally well speak of an x-valuation as an (x, s)-morphism onto F.) 

In the case of the divisibility group of an integral domain, equipped with the 
d-system, the notion of a d-valuation is nothing but an ordinary Krull valuation. 
The condition tha t  inverse images of t-ideMs are d-ideals is in fact equivalent to 
the classical inequality v(a• ~>Min (v(a), v(b)). 
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COI~OLL~Y 1 (Lorenzen). - There is a bisection between the x-valuations o/ an 
x-closed group (7 and the t-valuations o] the corresponding Zorenzen group A~(G). Eur- 
thermore these t-valuations are in one-to-one correspondence with the prime t-ideals 
o] A~(G) +. (See [33], Satz 13 and  [2]],  Theorem 4, p. 49.) 

The first and main part of this corollary is nothing but a specialization of the 

biject ion (4.5) to the  case where H is a to ta l ly  ordered group. The correspondence 
between t-vMuations and pr ime t-ideMs is not  contained in Theorem :% but  is a 
ra the r  simple ma t t e r  to which we shall r e tu rn  later  in connect ion with t-localization. 
I t  is also a special case of Theorem 8. 

Among the  consequences of Corollary :t is the  fact  t h a t  a group G is x-closed 
if and only if G + is an intersect ion of x-valuat ion monoids. We shall have occasion 

to r e tu rn  to this  fact  in the  nex t  section (Corollary 2 of Theorem 2). t t e re  we 
specialize Corollary 1 one step fu r the r :  

COaOLLi~Y 2. - There is a bijection between the Kru~l valuations o] an integrally 
closed domain R and the Krull valuations o] its corresponding Kronecl~er ]unction ring. 

The  Kronecker  funct ion r ing K(R) alluded to here is the  canonical  one corres- 
ponding to the  d~-system. In  order to derive this corollary from the  .preceding one 
we first not ice t ha t  the  monoid Aa(G) +, where G is the  divisibil i ty group of R, is iso- 

morphic  to the  monoid of the  pr incipal  ~nd integral  d-ideals of K(/~). This allows 
us, in a mult ipl ieat ive context ,  to consider a Kronecker  funct ion ring as a special 
case of a Lorenzen group. Hav ing  established this identif ication it  remains only 

to  see t ha t  any  d-vMaation of K(R) is in fac t  a t-vMuation. This follows f rom the  
fact  t h a t  K(R) is a Bezout  domain,  since this  implies t h a t  finitely genera ted  d-ideals 

are t-ideMs. 

5. - Greatest  c o m m o n  div isors  and integral  c losure .  

The construct ion of the  GCD-functor A relies heavily on the  condition of integral  
closure (x-closure). We shall now give a result  which clarifies the  exact  relat ionship 

between integral  closure and the  embeddabi l i ty  in a GCD-group. For  this purpose 
we shall give a few prepara to ry  remarks.  

To any  morphism of Lorenzen systems ~: (G~, x~) --> (G2, x2) we can ~ssociate a 
map q} between the i r  respect ive monaids of ideals: 

(5.1) 

Jus t  as for the  functor  .4 it is a rout ine  ma t t e r  to ver i fy  t h a t  ~ is a morphism of 
monoids:  ~(A~oB~I ) = ~(A~)o~(B~I): A directed group equipped with a Lorenzen 
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system x is said to be regularly x-closed if the implication 

A~oC~ = B~oC, ~ A~ = B~ 

holds true for any finitely generated x-ideal C.. 
With the above notation and terminology we have the following obvious 

LEM!V~A. -- I] Ge i8 regularly x~-etosed and q~ is injeetive, then G~ is regularly x~-closed. 

With this in mind we can now prove the following 

T~o~E~I 2. - A direeted group G is x-closed i] and only iJ it can be considered as 
an ordered subgroup oJ a GCD-group in such a way that the resulting injection is an 
( x, t)-morphism. 

P~ooF. - That an x-closed group can be isomorphically (x, t)-injected into a 
GCD-group is part of the proof of Theorem 1 where it was established that  the 
canonical injection G--> A~(G) is an (x, t)-morphism. That this map identifies G 
with an ordered subgroup of A~(G) is clear. 

Assume next that  G sits as an ordered subgroup of the (TCD-group H in such a 
way that  AtN G is an x-ideal in G for all A c H .  The trace in 6, of the t-system 
in H (i.e. the family of all the sets A~(~ G) is then a Lorenzen system y in G 
which is coarser than the  given x-system. Furthermore, it is clear that  the map 
which is induced from the (y, t)-injeetion ~: q ->H is itself injective. This follows 
from the fact that  ~(A~) = A~ and A~ = A~ ~ G for alle A c (~. Since H is a (ICD- 
group and every finitely generated t-ideal is hence principal, it follows that  H is 
regularly t-closed. By the above lemma we infer that  (/is regularly y-closed, and hence 
x-closed, since the x-system is finer than the y-system (see [21], Theorem 1, p. 25). 

CO~OLL)~u 1. - A directed group (~ is x-closed i] and only iJ it can be considered 
as an ordered subgroup oJ a direct product o] totally ordered groups in such a way that 
the resulting injection is an (x, t)-morphism. 

This follows immediately from Theorem 2 together with the fact tha t  a (~CD- 
group can be isomorphically (t, t)-injeeted into a direct product of totally ordered 
groups (see paragraph 9) and tha t  the composition of an (x, t)-morphism and a 
(t,t)-morphism is an (x,t)-morphism. 

From this follows in turn 

CO~OLLAI~Y 2 (Lorenzen). - (~ is x-dosed iJ and only i] G + is an intersection o] 
x-valuation monoids. 

This is clear since a representation of 6 + as an intersection of x-valuation monoids 
v~l(F~+), where Fi is a totally ordered group and v~ is an x-valuation of ( / i n to  /~ 

2 1  - A n n a I i  di  Matemat ica  
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leads to an (x, t)-injection 

and vice versa. 

As another  consequence of Theorem 2 we note  the  following well-known result  

C0~OLLA~u 3. -- G iS semi-closed (s-closed) i] and only if it is an ordered subgroup 
o] some (tCD-group. 

This is a consequence of Theorem 2, s imply because the  notion of an order- 
preserving group homomorphism is the  same th ing as an (s, t)-morphism. 

The two following corollaries give specializations to the  cases x----t  and x ~ - d  
respectively.  

C0I~0LLA~Y 4. - -  G is regularly integrally closed (t-closed) i] and only i] it can be 
considered as an ordered subgroup o] a GCD-group in such a way that the resulting 
injection is a (t, t)-morphism. 

~ o t e  t ha t  the  notion of a (t, t)-morphism is the  same as what  is called a V-homo- 
morphism in [34], p. 5. When  Corollary 4 is applied to the  divisibility group of an 
n tegra l  domain it  gives the  Corollary 3.3 of [34], p. 8. 

C0]~OLLAIr 5. - An  integral domain is integrally closed i/ and only i] its divisi- 
bility group can be isomorph@ally (d, t)-injected into a GCD-group. 

This la t ter  corollary is not  surprising since the  reader  will have  no difficulty in 
showing t ha t  the  morphism condit ion ~(Ad)C (~(A))~ for an a rb i t r a ry  bounded  
set  A is equivalent  to the  familiar inequal i ty  ~ ( a - } - b ) > M i n  (q~(a), ~(b)) of a Krul l  
valuat ion (taking the  purely  mult ipl ieat ive condit ion for granted) .  Combining this 

observat ion wi th  Corollary 1 or 2, we get  the  usual  character iza t ion of an integrally 
closed domain as an intersect ion of valuat ion rings. 

6. - Regularly z-closed groups and Priifer groups. 

In  his fundamenta l  paper  [39], PEDFE~ considered two conditions on the  divi- 

sibility group of a domain, each of which is s t ronger  t h an  integral  closure. One of 
these is Prfifers condit ion F,  which b y  Krul l  was given the  name (~ ar i thmet isch 
b rauehbar  ~> or r a the r  (~ endlich ar i thmet isch brauchbar  ~. B0~-gBAKI ([12], p. 554) 
introduces this not ion only in the  case of v-ideals (divisors in his terminology) and 
then  speaks of an integral  domain as being <~ regularly integral ly closed ~>. The general  
not ion is the  one in t roduced  above as a regularly x-closed group. 

A slightly s t ronger  condit ion is offered by  the  following definition: (/ is said 
to be an x-Pri~fer group if the  finitely genera.ted x-ideals in 6t form ~ group ~nder  
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x-multiplication. ~or many Lorenzen systems ((7, x) there is no difference between 
the concepts of a regularly x-closed group and an x-Prfifer group. I t  is for instance 
well known tha t  in the case x ~ d, a Priifer domain may be characterized by either 
of these two properties. A more comprehensive result of this kind will be given in 
paragraph 10. Here we shall characterize the concepts of a regularly x-closed group 
and an x-Priifer group in terms of the map q) introduced in the preceding paragraphs. 

In the following theorem, G is an x-closed group, ~ denotes the canonical (x, t)- 
injection ((7, x)--> (A~((7),t) and q} is defined by qi(A~)---- (qJ(A~))t-= At  where A 
is any bounded set in G. If  there exists a family V of valuations ( ~  s-valuations) 
of the group (7 such tha t  for any bounded A c G, 

N 
v~V 

we say that  the given x-system is de]ined by a ]amily o] valuations. (See [21], p. 47 
and [19], p. 398.) 

T~EO~E~ 3. - The ]ollowing conditions are equivalent ]or an x-dosed group (7: 

1) (7 is regularly x-dosed. 

2) The map q5 is injective. 

3) The x-system in (7 is the trace o] the t-system in some (TCD-group which con- 
tains (t as an ordered subgroup. 

4) The x-system coincides with the xa-system in (7. 

5) The x-system is defined by a ]amily o] valuations. 

~urthermore the following two conditions are also equivalent 

6) G is an x-Pri~]er group. 

7) The map q5 is bijective. 

8) G is regularly x-dosed and every element o] A~((7) is o] the ]orm inf _~ ]or a 
suitable finite subset s of (7. 

I n  case the given x-system is additive~ all the above eight conditions are equivalent. 

We shall not go into any details with respect to the proof of this theorem since 
such a proof can be more or less extracted from [21] (especially from Proposition 7, 
p. 49, Theorem 5, p. 50 and Theorem 3, p. 55). The only statement in the theorem 
which really needs a proof, is the last one concerning additivity. This will follow, 
however, from Theorem 6 below. For further elaboration on the properties 5) and 6) 
in the case x = d, the reader should consult [19], p. 303 and Theorem 32.12, p. 402. 
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7. - Divisors revisited. The axiomatic  approach o f  Borevic-Shafarevic.  

We shall now indicate how t-ideals m a y  adv~ntagously be used in order  to pu t  

the  axiomatic in t roduct ion of divisors of Borevie-Shafarevic into a slightly different 
perspective.  This will lead to bo th  a generalizution and a sharpening of thei r  t re-  
a tment .  

Few in t roduc to ry  books on algebraic number  theory  take  the  t rouble to ex- 
plain the  not ion of a divisor properly.  Hasse in his classical (~ Zahlentheorie  ~) puts  
considerable emphasis on the  concept  of a divisor, bu t  wi thout  clarifying the  most  
fundamenta l  issues. A step towards such a clarification is t aken  by  Borevie-Sha- 
farevic in Chapter  3 (~ The theory  of divisibility ~) of thei r  book ~ ~ u m b e r  Theory  ~. 

Here  the  notion of ~! a theory  of divisors ~ is in t roduced axiomatical ly as a map 9 
form the  group of divisibility (7 of an integral  domain into a factorial  group D 
verifying the  following th ree  condit ions:  

(1) 9 is an isomorphism which identifies (~ with an ordered subgroup of D. 

(2) I f  9 ( a ) > b  and 9(b)>b  then  also 9(a:]=b)>b ('). 

(3) I f  a and b are elements in D such t h a t  

{geGIp(g)>a } -~ {geGIp(g)>5 } t hen  a ~- b .  

The  elements of D are called divisors and the  divisors of the  form 9(a) are said to 
be prineipa~ divisors. 

An equivalent  formulat ion of (3) is to say t h a t  any b e D is the  infimum of a 

finite number  of principal  divisors. Both  these formulat ions of (3) express our wish 
to leave out  ~ unnecessary ~ divisors--i .e,  to consider only minimal  factorial  ex- 

tensions of (7. By  unicity we mean  t h a t  if (D1, 91) and (D~, 92) are two theories of 
divisors for (7, t hen  there  exists an isomorphism between D~ and D2 which extends  

the  canonical  isomorphism between 91((7) and 92(G). 
The exposit ion of Borevic-Shafarevic is in spite of its vir tues still b lurred b y  

the  presence of the  addit ive operation.  The addit ive operat ion is i r re levant  for the  
general  t r ea tmen t  of divisors and should be discarded. Bu t  also in case one  insists 
on a r ing-theoret ic  t r ea tmen t ,  the  axiom (2) of Borevic-Shafarevic is redundant ,  

also noticed by  L. 8 K ~ A  in [43]. (An earlier axiomatic t r e a t m e n t  of divisors aS WaS 

due to K ~ L  ([29], p. 123), which is essentially equivalent  to the  one b y  Borevic- 
Shafarevie,  suffers f rom the  same redundancy.)  A significant forerunner  of SKTJ-LA'S 
purely  mul t iphcat ive  t r e a t m e n t  is CLIFFO~])'S paper  [13]. 

(4) Since we are here dealing with a divisibility group rather than with the multiplicative 
group of the given field of quotients it is more accurate to write (a), (b) and (a~b) instead 
of a, b and a:J=b. 



K~a~L E G ~  AU~A~T: Divisors o] finite character 339 

Our aim here  is to look at  the  axiomatic  in t roduct ion  of divisors in the  light of 
Lorenzen groups and  t-ideals. We then  define a theory o] divisors for G in the  general  

s i tuat ion where G is a directed group7 D is a factorial  group and the  map ~ satisfies 
the  above conditions (1) and (3) (thus discarding (2)). In  case D is replaced by  a 
6tCD-group we shall speak of a theory o/ quasi-divisors for (~. In  the  case where  G 
is the  divisibility group of an  integral  domain it  tu rns  out t h a t  (2) is in bo th  cases 
automat ical ly  fulfilled 7 due to the  fac t  t h a t  every  t-ideal in an in tegral  domain is a 

d-ideal. 
The  basic Urithmetical extension problem which we have t r ea t ed  so far  con- 

cerns the  embeddabi l i ty  of a directed group G into a GCD-group- - the  extension 

process which provides the  existence of greates t  common divisors. Corollary 3 of 
Theorem 2 exhibits s-closure as a necessary and sufficient condit ion for such an 
embeddabil i ty .  ( I t  is well known t h a t  s-closure m a y  also be character ized b y  the  
implication:  a ~ E ~+ for some integer  n ~> 1 ~ a ~ G +.) 

t towever  7 the  condit ion of s-closure does not  assure the  existence (and unici ty)  
of a minimal d~CD-extension given by  a t heo ry  of quasi-divisors for G. The re levant  
condit ion for this  involves t-ideals: 

T]t]~o~]~ 4 (K. GVDLAUGSSO~ [47]). - The directed group G has a theory of quasi- 
divisors if and only if G is a t-Pri~1er group. The group D of quasi-divisors of G is 
then uniquely determined as the Lorenzen t-group of G which in this case is isomorphic 
to the group of finitely generated (fractional) t-ideals of G. 

P~ooF. - F r o m  the  remarks  given at  the  b o t t o m  of p. 44 in [21J it  follows tha t  
any  minimal  GCD-extension D of ~ must  be the  Lorenzen x-group A~(6~) where x 
denotes the  ideal sys tem in G which is t he  t r a c e  (~ emprein te  ~>7 P. 52 in [21]) of the  
t-system in D. By  combining 1) and 3) of Theorem 3 it  follows t h a t  (~ is not  only 
x-closed (by the  fac t  t h a t  integral  closure is preserved by  t race  formation) bu t  also 
regularly x-closed. Using this together  with 6) and 8) of Theorem 3 we conclude 

t ha t  G is an x-Priifer group. This means t h a t  any  finitely genera ted  x-ideal is inver- 

tible and hence a v-ideal. Since x is of finite character ,  being the  t race  of the  t-system 
which is of finite character ,  it  follows tha t  every  x-ideal is a t-ideal i.e. x ~- t showing 
t ha t  t he  t race  of the  t-system in D is the  t-system in 6: D ~_ At(G). The elements 
of A~(~) are of the  form 

(7.1) (a~, . . . ,  a~)~o 
(b17 ...7 b~)~o" 

Since t ~ t a this quot ient  may  be identified with the  fract ional  t-ideal (al~ ... 7 am)t ~ 
o(b~...,b~)F 1. This identification is an isomorphism since the  formal  quotients  
(7.1) are multiplied in the  same way as the  corresponding fract ional  t-ideals. 

Conversely~ let  ~ be a t-Priifer group. Then  the  finitely genera ted  t-ideals of G 
form a GCD-group D in which G is injected by  the  isomorphism q~: a ---> (a)t. The 

t-ideal (a17 ...7 a~)t represents  the  infimum of the  p r i n c i p a l  ideals (a~)~ ...7 (as). This  
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expresses the  content  of axiom (3) in the  present  case and shows tha t  ~ defines a 
t heo ry  of quasi-divisors for G. 

A more suggestive reformulat ion of the  above theorem is perhaps  the  following 

CO]~0LL~u - The directed group G admits of a unique minimal GCD-extension 
i] and only i ]G  is a t-Pri~/er group and the extension is then given as the group o] all 
finitely generated t-ideals o] (I. 

The redundancy  of the  condit ion (2) in the  definition of Borevic-Shafarevic is 
clear f rom the  proof  of Theorem 4 where it was in par t icular  established t h a t  the  
given t race  of the  t-system in D coincides with the  t-system in G. In  the  ease of the  
divisibility group of an integral  domain this gives ~ s t rengthening of (2) since (2) 
simply expresses t h a t  t he  t race  of a pr incipal  t-ideal of D is a d-ideal in G. 

8. - Characterization o f  pr~faetorial groups. 

The preceding section shows how the  existence and unic i ty  of a minimal  GCD- 
extension depends f tmdamenta l ly  on the  t-system in the  given directed group. We 
shall indicate how the  possibility of a factorial  extension of a directed group G is 
also governed by  the  behaviour  of the  t-ideals in G. However ,  in contras t  to the  
GCD case the  case of factorial  extension introduces no discrimination between mi- 
nimal  and non-minimal  extensions : I f  a directed group m ay  at  all be embedded  in a 
factorial  group it  will also admit  of a minimal factorial  extension. 

T]x~o~E~ 5. - The ]ollowing properties are equivalent ]or a directed group G 

1) G has a theory o] divisors. 

2) (I has a unique theory o] divisors. 

3) ~ is prd]actorial. 

4) The t-ideals o] G ]orm a group under t-multiplication. 

5) G is t-_Pri~]er and satisfies the ascending chain condition /or integral t-ideals. 

6) G is t-closed and satisfies the ascending chain condition for integral t-ideals. 

7) There exists a Zorenzen system x such that G is x-closed and satisfies the 
ascending chain condition ]or integral xa-ideals. 

P~ooF. - 1 ~ 2: I f  ~ has a t heo ry  of divisors this is also a t heo ry  of quasi- 
divisors, the  unic i ty  of which was established in Theorem 4. 2 ~ 3: Obvious. 

3 ~ 4: This is just  one half of Theorem 5 in [21], p. 82 (al though 5affard uses a 
different terminology).  4 => 5: Clear since any  invert ible t-ideal is finitely gener- 
:ated, the  t-system being of finite character .  5 ~ 6: Obvious. 6 ~ 7: Obvious 
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since t ---- to. 7 ~ 3: If  G is x-closed it is also x~-closed and if every x- ideal is 
finitely generated this means that  G is completely integrally closed (Theorem 7, 
p. 29 in [21]) which in turn implies that  the v-ideMs of ~ form a group under v-mul- 
tiplication (Theorem 6, p. 29 in [21]). Since the a.e.c, for x~-ideals entails the a.c.c. 
for v-ideals it follows that  the GCD-group D is indeed factorial (Theorem 3, p. 8 
in [21]). To complete the circle of implications we need only to establish one more 
implication, say 5 ~ 1: This is an immediate consequence of the above Theorem 4 
in conjunction with Theorem 3, p. 8 in [21]. 

I f  the above theorem is ~pplied to the divisibility group of an integral domain 
it entails characterizations of Krull domains and suggests that  the relationship bet- 
ween t-ideMs and Krull domMns is to a considerable extent analogous to the rela- 
tionship between ordinary ideals (d-ideMs) and Dedekind domains. This is in par- 
ticular visible from the characterization 4 which puts Dedekind domains and Krnll 
domains on an equal footing in this respect. I t  is well known that  Dedekind domains 
are not only characterized by the fact the d-ideals form a group under usual d-mul- 
tiplication but also by the fact that  its integral ideals factorize (uniquely) into prime 
ideals. This prompted us to pose the following question at the end of the paper [3]: 
Is a Krull domain characterized by the fact that  any of its proper t-ideals can be 
written as a t-product of prime t-ideMs? Recently, K. GVDLAVGSSO~ [47] has 
proved that  the answer is affirmative. In fact, he proves quite generally tha t  a 
direted group is prefactorial if and only if its integral t-ideals decompose into pro- 
duets of prime t-ideMs. As in the case of d-ideals the unicity of such decompositions 
follows from the existence. 

9. - S-Local izat ion versus  the  K r u l l - K a p l a n s k y - J a f f a r d - O h m  theorem.  

In the preceding sections we have dealt with the relevance of t-ideals in connec- 
tion with the problem of restoring basic arithmetical properties (existence of gre- 
atest common divisors and unique Iactorization) by a suitable extension process. 

Another fundamental problem of the theory of divisibility concerns the decom- 
position of a divisibility relation into a conjunction of linear (total) ones. This issue 
has already been touched upon above in connection with the topic of Lorenzen 
groups (Corollaries 1 and 2 of Theorem 1 and Corollaries 1 and 2 of Theorem 2). 
In  ring theory this problem takes the form of writing an integrally closed (d-closed) 
domain as an intersection of valuation rings. The purely multiplicative problem 
consists in embedding a ~CD-group into a direct product of totally ordered groups- 
taking for grunted tha t  the embedding of a directed group into a GCD-group has 
already been clarified by Theorem 2 and its corollaries. 

In connection with this question some authors have advocated a point of view 
which may be said to be strictly opposite t o  the one which underlies the present 
paper. These authors have tried to solve problems concerning GCD-groups by reduc- 
ing them to ring theory via the so-called Krull-Kaplansky-Jaffard-Ohm theorem 
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(see in particular [34]). This theorem tells us tha t  any (/CD-group is order isomor- 
phic to the divisibility group of a suitably chosen Bezout domain. In this way the 
general theory of (/CD-gronps can profit from what is known about Bezout domains. 
This method can in particular be used in order to realize the embedding of a GCD- 
group into a direct product of totally ordered groups (a result which was first ob- 
tained by Lorenzen). For if G is a GCD-group which is the divisibility group of a 
Bezout domain /~ we can argue as follows: Being a Bezout domain, /~ is in par- 
ticular integrally closed (d-closed) and as such equal to an intersection of valuation 
rings V~ sitting in the quotient field of _~. If  F~ denotes the totally ordered divi- 
sibility group of V, then 

(9.1) (/ --> 1-~ I'~ 
o 

gives an embedding of the desired type. 
This is simple enough~ once the K-K-J-O-theorem has been proved. Still, it is 

fair to say that  this proof procedure succeeds--not because of its relevance for the 
problem at hand, but rather in spite of its irrelevance. I t  seems far fetched to use 
d-ideals~ d-closure and d-valuations in connection with this purely multiplicative 
problem, just because the sufficient amount of commutative algebra happens to 
be readily available in the d-case. The recipe should rather be to use the concept 
of a t-ideal which matches the multiplieative situation perfectly--and develop the 
relevant piece of commutative algebra in the t-case. In  fact, only the bare rudiments 
of a theory of t-localization is all tha t  is needed. This was already recognized by 
I~orenzen although he did  not develop any systematic theory of localization for 
ideal systems. The general globalizeotion formula for localization in ideal systems 
(see [4]) gives in the case x = t: 

(9.2) G+-~ N STIG+ 
8~ 

with 8~ = G + -  P~) running over all the complements of maximal (prime) t-ideals 
P~) in G +. 

Let us now elucidate the relationship between localization in GCD-groups and 
the t-shadow functor. 

Let G be a GCD-group with D ---- (7 + as its monoid of integral elements and let 8 
be a submonoid of D. According to the general procedure described in [4] we can, 
on the basis of the Lorenzen system (D, t), form the localized ideal system (8-1D, t~). 
This integral ideal system is a Lorenzen system and will hence define a fractional 
ideal system in G where the new order relation in G is having S-~D as its monoid 
of integral elements. I t  is easy to see tha t  the corresponding ordered group is iso- 
morphic to the factor group 

G/S-~ D ~ SD-1 
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and is hence again a GCD-group since S-~D n SD -~ is an 1-ideal (absolutely con- 
vex subgroup) of G. This fact can also be seen by explicitely computing the g.c.d.'s 
relative to the new (( localized ~ ordering, according to the formula 

(9.3) dl A d~ _ dls~A d~sl 
81 8 2 818~ 

Using (9.3) we also see tha t  the ts-system defined in S-1D is the same as the 
t-system in S-ID defined intrinsically in terms of the order relation given by (9.3). 
By (9.3) the ts-ideal S-~Ae (A c D) is a t-ideal in S-~D and for any t-ideal Be in 
S-1D we have Be----- S -1 (Bt (~ D) where Be N D is a t-ideal in D. 

The contents of these remarks may be summarized as follows: We have a 
localization procedure going on at two levels--one for GCD-groups and one for 
ideal systems (the t-system). These localization procedures are linked by the 
t-shadow functor in such a way that  we obtain an obvious commutative diagram. 

Let F~ denote the ordered group which is associated to the prdordering of G, 
given by specifying S~.~D as the monoid of integral elements. The injectivity of 
(9.1) then follows from (9.2) and the fact that  (9.1) is a morphism of GCD-groups 
follows from the map D - >  S-~D being a {t, t~)-morphism by construction (see [4]), 
together with the fullness of the t-shadow functor (see the IJemma of paragraph 4). 
Finally each F~ is totally ordered, due to the fact tha t  Sj. 1D is a t-local (prdordered) 
monoid in the sense that  it contains a unique maximal t-ideal M e -~ S~.IP~ ~ which 
in the associated ordered group simply consists of all elements > e. Since Mt is 
closed under intersection this means that  we have the imphcation a > e and b > e 
==> aAb > e and. this is characteristic of a GCD-group which is totally ordered. 

One of the features of the duahty between prime t-ideals and prime 1-ideals in 
GCD-groups is tha t  the localization with respect to a prime t-ideal is order iso- 
morphic to the factor group with respect to the dual prime 1-ideal. Alternatively 
one may therefore obtain the embedding (9.1) by replacing (9.2) by the fact that  
the intersection of all prime/-ideals in a GCD-group reduces to the identity element 
and tha t  any factor group modulo a prime 1-ideal is totally ordered. I t  seems to 
us, however, tha t  the method of localization may have a n  advantage because of 
its broader perspective. This will come up again in connection with sheaf rep- 
resentation. 

10. - Additive ideal systems and a counterexample  of  Dieudonn& 

The relative strength between the notions of an x-closed group, a regularly 
x-closed group and an x-Priifer group has been touched upon in paragraph 6. For 
the t-system we have already noticed tha t  a t-closed group and a regularly t-cl0sed 
group is one and the same thing, simply due to the fact that  the t-system is the 
coarsest Lorenzen system (of finite character) which exists in a directed group--and 
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hence t = ta. Theorem 5 shows tha t  ~ t-closed ~) is even equivalent to (( t-Priifer ~) in 
the  presence of the ascending chain condition for integral  t-ideals. However, it was 
shown by L0~E~ZEZ~ (in [33], p. 551) tha t  there exist directed groups which are 
t-closed~ but  which are not  t-Prfifer groups. DIEVI)o~z~]~, (in [16]), sharpened this 
result by  showing t h a t  there is a distinction between these two notions also within 
the  more restr icted realm of divisibility groups of integral  domMns. 

Oar interest  in this question comes from the general theory  of additive ideal 
systems (see [3]). As we see it, it  is in the  light of the  below Theorem 6 t h a t  the 
counterexamples of Lorenzen and  Dieudonn6 acquire some additional interest  by 
exhibiting the  reason for the  existence of these examples- -namely  the lack of 
addit ivi ty.  

Theorem 6 will generalize a result of Priifer to the  effect t ha t  a regularly d-closed 
domain is a Priifer domain. Our proof will closely follow the proof of this result 
as given in [21], pp. 26-28. In  this generali ty the  theorem was first proved by 
H. Bn~ LO~E~zEz~ in [9]. 

LE~-~fA 1. - G is an x-Pri~]er group i] and only i] every x-ideal with two generators 

is invertible. 

P~oor .  - Assume tha t  we have shown t h a t  any  x-ideM with less t han  n + 1 
generators is invertible and let A~ = (a~, ..., a,~+~)~ with n ~> 2. We then  have finitely 
generated x-ideMs B~, C~ and  D .  such tha t  

( lo .1)  (a~, ..., a~ )~oB~=  (e) 

( lo .2)  (a~, . . . ,  a .+~).or  = (e) 

( lo .3)  (al, a,+~)~oD~= (e). 

By put t ing  E .  =-a~B.oD~ + a.+~C.oD., a computation,  using an easy consequence 
of the  cont inui ty  axiom for ideM systems (see [2]) as well as the equations (10.1-3), 
shows t h a t  A~oE~-~ (e) as desired. (See [21], p. 27 for details in the case x = d.) 

L]~z~A 2. - Let (G, x) be an additive Lorenzen system and assume that G is x-closed. 

G will then be an x-Pri~]er group i/  and only i] a ~ (e, a~)~ for all a ~ G. 

P~ooF. - We are here mainly interested in proving the ~ if ~-part. (The proof 
of the ~ only if ~-part is contained in the proof of Theorem 6.) By Lemma 1 it suf- 
fices to show tha t  any  x-ideal of the form (b, e). is invertible. Since (b, e), = (b).o 
o(e, c/bL it  is in tu rn  sufficient to show tha t  (e, a)~ is invertible for any  a ~ G. From 
the assumption a e (e, a2)~ it follows by  addi t iv i ty  t h a t  

( l o .4 )  (g, a %  = (a, a %  
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for suitable g e G +. In  particular a e (g, a2), which by additivity gives 

(10.5) (g, a), = (g, ha~)~ 

for some h e G +. Putt ing A~ ~- (ga-% hLo(e, a)~ ~ (ga-~,g, h, ah)~ it will be sufficient 
to show tha t  A~-= G +. From (10.5) we infer tha t  

(i0.6) (ga-% e)~ = (ga -i,  ha), 

which entails e e (ga -~, ha)~c A~ showing tha t  G+c A~. I t  remains to be shown that  
ga -~ and ha belong to G + since this will give A~c G +. We get g(e, a)~-~ (g, ga)~t 
c (g, a)~ = (g, ha~)~c (g, a~)~:  (a, a~), : a(e, a)~ using (10.4) and (10.5) as well ac 
the fact that  g and h are integral elements of G. From g(e, a)~ca(e, aL we get 
ga-~e (Y+ since G is x-closed. Together with (10.6) this also yields ha e G +. 

T]~EOlCE~ 6. - A n y  regularly x-dosed group is an x-_Pri~/er group provided that 
the given fractional x-system is additive. 

P~ooP. - By Lemma 2 it is sufficient to show tha t  the property of regular 
x-closure implies that  a e (e, a~)~ for all a e G. We have 

(a)~o(e, a)~ = (a, a~)~c (e, a2)~o(e, a)~ 

and (a)~c (e, a~)~ results by cancellation (noting that  cancellation with respect to 
equalities is equivalent to cancellation with respect to inclusions). 

In  [16] DIEVDo~z~ gives an example of an integral domain which is regularly 
t-closed but not t-Priifer (regularly integrally closed but not pseudo-Priifer in B o ~ -  
]3AKI's terminology [12]~ p. 554 and 561). When this is combined with the above 
Theorem 6 we get the following 

Colr162165 1. - There exists an integral domain where the divisorial ideals o] ]inite 
character do not /orm an additive ideal system. 

A sharpening of this result is the following 

COrOLLArY 2. - There exists a t-closed divisibility group where no x~-system is 
additive. 

P~ooF. - I f  the directed group G is t-closed it is x-closed for any Lorenzen 
system x in G. I f  an xa-system in G were additive for some x it would follow from 
Theorem 6 tha t  G is xa-Priffer~ hence also t-Prfifer (according to [21]~ Theorem 1, 
p. 25) contradicting Theorem 6. 

A more explicit result in the same direction is the following corollary which 
exhibits an abundance of non-additive ideal systems. 
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CO~0LLA~Y 3. - The s~-system in a GCD-group G is additive i] and only i/ G is 
totally ordered. 

PEOOF. - If G is totally ordered, all ideal systems in G coincide with the s-system 
which is additive. Assume conversely that  G is a GCD-group which is not totally 
ordered. There then exist strictly positive elements a, b e G + such that  nab = e. 
This entails (a, b)t = (e) and (a, b),o~ (e). The latter fact follows from a result of 
LOEENZEN ([33], p. 538) and shows that  (a, b).,~ cannot be invertible since it as such 
would be a t-ideal, contradicting (a, b),o~= (a, b)t. 

11. - Sheaf  representat ion  over  the  t - s p e c t r u m .  

Among the most important types of ordered groups are on the one hand the 
multiplieative groups arising from the theory of divisibility (divisibility groups, 
groups of ideals, groups of divisors, Lorenzen groups, etc.), and on the other hand 
additive groups of real-valued functions. Although these two types of ordered 
abelian groups arise in different contexts, the preceding paragraphs have shown 
that  there is a common meeting ground for them within the theory of divisibility. 
In fact, the most satisfactory arithmetical situations arise exactly when either the 
divisibility group itself or a suitable group of ideals form a nice function-group like 
an additive group of integer-valued functions vanishing outside of finite sets. 

Viewing factorial and prefactorial groups from the point of view of a functional 
representation of these groups over the family of  prime t-ideals, this suggests a 
more general representation theory for ordered groups which closely parallels the 
well-known sectional representation of commutative rings. 

We shall here content ourselves by  giving the full sectional representation of 
the integral part  of a GCD-group. This also accomplishes a sectional representation 
of a semi-closed group via the embedding into its Lorenzen s-group. 

Let  D -- G + denote the monoid of integral (positive) elements of a GCD-group G. 
By the t-spectrum of D, denoted by X - ~  SpeetD (or SpectG), we understand the 
family of all prime t-ideals of D, equipped with the usual spectral topology where 
the basic open sets are given by the sets of the form D(a) = (Pt]a r Pt}. Whenever 
S is a submonoid of D we can form the usual monoid of quotients S-1D with 
D c S-1D c G. As explained earlier the monoid S-ID induces a preorder in G, 
and it is the restriction of this preorder to S-1D which will be considered 
in the sequel. This makes S-1D into a preordered GCD-monoid according to (9.3). 
The particular ease where S is of the form S~ =  {e,a ,a  ~,...} gives rise to a 
presheaf of preordered GCD-monoids over Spect D. For D(b) c D(a) is by the Krull- 
Stone theorem for x-idea.Is ([2], Theorem 12) equivalent to b e x/~. By putting 
b"= ga this gives rise to a well-defined homomorphism of GCD-monoids 

(p~: S~iD -§ S~-iD 
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b 0 ( $  a where q~(d/a TM) ----- dg'~/bm'L Obviously ~o ~% --  ~ whenever  D(c) c D(b) c D(a). In  

this w a y  the  assignment D(a) --> S-~D defines a presheaf  of GCD-monoids on the  
basis (D(a), a e D )  and  hence determines a presheaf  Tx on X ---- Spec~D. In  much  
the  same way ~s for commuta t ive  rings we can prove the  following 

Tm~olcE~ 7. - The preshea/ Tx is a shea]. I n  particular there is an isomorphism 
o] GCD-monoids D ~_ F ( X ,  Tx). Furthermore the stalk o] Tz  at Pt  is isomorphic to 
the totally preordered monoid S-~D where S - ~  D \ P t .  

P~ooF. - As usual  one must  ver i fy  t h a t  t he  presheaf  Tx satisfies the  two defining 
propert ies  of a sheaf. These two propert ies  correspond, respectively,  to the  injec- 

t iv i ty  and the  sur ject ivi ty  of the  na tura l  m~p D---> F(X ,  Tx). The in ject iv i ty  is 

obvious in this case, since we operute within a group where cancellation is available. 
Le t  us show the  surject ivi ty,  i.e. t h a t  any  global section of the  given presheaf  comes 
f rom an  e lement  in D. By  the  (quasi) compactness  of X ([2], p. 35) the  problem 
reduces to  the  following one: Given a finite covering of X b y  basic open sets 
X = D(al) L) D(a~) L) ... u D(a~) and  given a corresponding family of elements st 
e S-~D such t ha t  s~ and sj have the  same <~ restr ic t ion >> to D(a~) n D(aj) = D(a~aj)--we 
want  to exhibi t  an e lement  d e D whose <(restriction ~> to D(a~) is s~. 

Since we are dealing with ~ finite covering we can adjust  the  representa t ion of s~ 
as a quot ient  in such a way t h a t  the  exponent  in the  denominator  is independent  

o f  i, i.e. st-~ dt/a~ for all i. The  fact  t h a t  st and sj b y  the  presheaf  restr ict ion maps 
are mapped  onto the  sume element  in S=-~aD gives rise to the  equations 

(11.1) a~di---- a~dj. 

Using the  equal i ty  D(a?) ~ D(a~) and the  fact  t h a t  t he  sets D(at) form a covering 
of X we deduce the  iden t i ty  

n . . .  a n  ~ a n a n (a~, , ~)~ ( ~A...A k)----D 

which simply means t ha t  

(11.2) a~A...Aa~ : e .  

Pu t t i ng  d -~  dlA.. .Adk and using (11.1) and (11.2) we get  

a~d a~(dlA...Adk) ~- a~dlA. . .Aa~d k nd 

This shows t ha t  d = d/e ---- dt/a~ = st when compared in S-[~D and thus  proves t h a t  
d e D gives rise to the  given section s e F (X ,  Tx). 
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The verification of the isomorphism ~ S-~ID ~_ S-~D is routine and may be 
left to the reader. (Here S = D \ P t  and the inductive limit is taken with respect 
to all a ~ 2~.) 

By replacing each stalk S-1D in the sheaf Tz by the group G equipped with 
the preordering which is induced by choosing S-1D as the monoid of integral ele- 

m e n t s - w e  can easily extend the above sheaf representation from D to G. In  fact, 

any element g e G may be written uniquely in the form g = g+(g-)-* where g+ ----- gVe 
and g - =  g-lVe both belong to D = G +. The section s~ corresponding to g i s  then 
defined by 

s~(Pt) = sg+ (Pt)(sg-(Pt))-l " 

This will indeed be a section if we extend the definition of the topology on the 
disjoint union of the stalks by declaring all sets which may be written as a union 
of sets of the form 

(sg(P~)[P~+ D(a)} 

as open. 

We have thus obtained a sheaf representation of a GCD-group in terms of a sheaf 
which is built up of totally preordered groups as stalks. From there on we can 
easily go one step further  by passing from the preorder to the associated order in o 
each stalk~ i.e. to pass from (/ to the (totally) ordered factorgroup Gs = G/SS -1 
and redefine the sections accordingly. We may formulate this as 

COI~OLL~u 1. - Every (ordered) GCD-group G may be represented as the GCD- 
group o] all sections in ashea] of totally ordered groups over the quasi-compact space 
Spec~ G. 

IJet us also give a more special corollary concerning representations by (( real- 
valued ~> sections. ]~y a real group we shall understand an ordered subgroup of the 
ordered additive group of real numbers. We shall fur ther  say that  a GCD-group G 
is regular if every prime t-ideal in G + is maximal. 

C0~O~LA~u 2. - Any regular GCD-group G is isomorphic to the GCD-group o] 
all sections in ashea] o] real groups over the quasi-compact space Spec~ G. 

According to Theorem 7 and earlier remarks the stalk at Pc is isomorphic to 
the factor group G~H~, = G/SS -1 where H e is the prime 1-ideal corresponding to 
P~. I f  every prime t-ideM of G is maximM~ it will also be minimal, ttenc% each Hp 

will be maximal and the corresponding factor group will be totally ordered and 
archimedian~ thus a real group. 

Corollary 1 gives a sharpening of the purely algebraic embedding (9.]) of a GCD- 
group into a direct product of totally ordered groups. Using a language which 
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corresponds to the one which we used in connection with divisors we may say that  
the (~ principal sections ~) corresponding to the image of G in the general and (( discon- 
tinuous ~) representation 

of paragraph 9 are here characterized (selected) as the continuous ones with respect 
to the topological restrictions imposed by the given sheaf. 

The above approach seems to give the simplest and most general  access to a 
full sectional representation of GCD-groups by means of totally ordered groups. 
I t  is based on a Grothendieck approach in terms of localization rather than on a 
Gelfand-like approach in terms of factor formation. The sheaf-representation of 
various classes of lattice ordered groups and rings has been extensively studied by 
KLAVS K ~ E L  ([10], [24] and E25]) who has preferred to use a Gelfand-type of 
approach. As far as we can see this seems to have some slight disadvantages in the 
case of GCD-groups : (1) I t  is less simple than the approach in terms of locMization. 
(2) I t  is less general in the sense that  it requires extra conditions on the given GCD- 
group in order to obtain a full representation over a quasi-compact space. (3) The 
stalks are not in general totally ordered and hence less simple and appealing. This 
latter disadvantage may be compensated for in Keimels approach by passing to the 
subspace of minimM prime 1-ideMs which is in addition Hausdorff and zero-dimen- 
sional (but generally not compact). We shM1 return to a somewhat closer comparison 
with Keimels approach in the next paragraph. 

In a sense, locMization and factor formation are dual procedures. In  ring theory 
the (~ self-duM ~) case (where /~p ~ t t /P for M1 prime ideals P) is represented by the 
class of yon Neumann regular rings. In  this case the two representation procedures 
coincide as far as the stMks are concerned~ The classical representation theory of 
Boolean rings may thus be considered from either point of view, although it is the 
Grothendieck approach which allows us to extend Stone's theory to general com- 
mutative rings. A similar advantage of the approach in terms of localization also 
prevMls in the case of GCD-groups. These groups bear in fact a considerable resem- 
blance to regular rings in that  they exhibit a similar duality, although this duality 
for GCD-groups involves two different ideal systems rather than one. We have M- 
ready alluded to the bijection between the prime t-ideMs and the prime 1-ideMs 
of a GCD-group and the correspondence which it induces between localization with 
respect to a prime t-ideM and the factor formation with respect to the corresponding 
prime 1-ideM. One aspect of this duality which is of particular relevance to func- 
tional and sectional representation of GCD-groups is the fact that  the (~ semi- 
simplicity ~) for the 1-system (the Krull-Stone theorem [2], p. 17 applied to the 
zero-ideal) corresponds to the globMization formula (9.2) for the t-system. (In terms 
of our notation the bijeetion between prime t-ideMs and prime 1-ideals is given by 
P t -~  He-~ SS -1 where S--~ G + -  Pt.  See remarks at the end of paragraph 9.) 

We shall now further clarify the relative virtues of the different candidates for a 
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notion of ~ (( spectrum ~) for a partially ordered group. As we have indicated, the 
prime t-ideals ~re superior to the prime 1-ideals even in the case of GOD-groups 

although this is more visible in connection with sectionul representation than in 
the functional case. We shall next show that  the applicability of the prime t-spec- 
t rum for a sectional representation of partially ordered groups, which are not neces- 
sarily GOD-groups, is in a certuin precise sense limited to the Prfifer groups. For 
integrally closed groups which are not Prfifer groups one preferably passes to a 
spectrum consisting of x-valuations. Again it is the GOD-functor and Lorenzens 
theorem (Corollary 1 of Theorem 1) which gives the clue to this insight. Thus it is 
the concept of ~n x-valuation which turns out to have the widest scope when it 
comes to the problem of picking the points of the representation space. 

DEFInitIOn. - The topological space Specval~ G (called the x-valuation spectrum 
of G) consists of all (equivalence classes of) x-valuations of an x-closed group G 
with the sets D(a) = {v]v(a) = e, a ~ G +} as basic open sets. (The notion of equi- 
valence oi x-valuations extends in an obvious way the usual notion of equivalence 
between Krull-valuations.) 

For every x-closed group G we have a commututive diagram 

(11.3) 
Spec val~ (A~(G)) ~-~ Spec~ (A~(G)) 

Spec val~G ~ ~ Spec~ G 

where ~ is the restriction map related to Lorenzens theorem (Corollary i of The- 
orem 1), ~ is the map P~-~ _P~n G and y is the map v--> v-~((Im v)+\{e}). Fi- 
nally fl is just the specialization of ~ to the case x ---- t. 

By Lorenzens theorem, ~ is a bijection. This bijection is obviously continuous, 
but seemingly not in general u homeomorphism. I t  follows from the following the- 
orem, however, that  ~ is surely a homeomorphism when G is an x-Priifer group. 
This theorem a4so shows that  fl is a homeomorphism for any t-closed group G. The 
maps ~ ~nd ~ are both continuous but in general not bijective. If  they are bijee- 
t ire they are also homeomorphisms. More precisely: 

Tn-EOIr 8. - The /ollowing conditions are equivalent ]or an x-closed group G. 

1) G is an x-Prefer group. 

2) Every localization at a prime x-ideal o] G + yields an x-valuation monoid in G. 

3) The map y: Spec val~ G ~ Spe% G is a (surjective) homeomorphism. 

4) The map ~: Specs (A~(G)) -+ Spec~ G is a (surjective) homeomorphism. 

P~ooF. - We first show that  1) and 2) are equivalent. If G is x-Prfifer i~ is clear 
tha t  G is also x~-Priifer where S is the complement of a prime x-ideal P~ in D ~- G +. 
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I t  is sufficient to  observe t ha t  the  equal i ty  A~oB~ = D entails the  equal i ty  A~o 

oB~ ~ S-~D. (We have quite generally tha t  S-~(A~oB~) = S-~A~oS-~B~ where the  
la t te r  o denotes the  xz-multiplication. ) In  order  to establish the  implication 1 ~ 2 

it is hence sufficient to  show th a t  an x-local and x-Priifer mofioid is an x-valuat ion 
monoid (observing t h a t  S-~D is an x~-local monoid in the  sense t h a t  t he  set S-~P.  
of all non-units  of S-~D forms a maximal  x~-ideal of S-~D). The  fac t  t h a t  S-~D 
produces a to ta l  order  in G is p roved  in the  case x = d in Proposi t ion 4~ p. 67 in [21] 
and  this proof carries over to the  general  case wi thout  change. By  an x-valuation 
monoid in G we unders t and  a set of the  form v-~(F +) where v: G --> F is an x-valua- 
t ion of G, (see Corollary 2 of Theorem 2). I n  the  present  s i tuat ion the  canonical  
map v : G ~ G/SS -~ ~- F will in fac t  be an x-valuat ion with S-~D as cor responding  
valuat ion monoid.  For  if {a~ ..., a.} c S-ZD~ the re  exists an e lement  s e S such 
t h a t  s{a~, ..., a . } c D  and  hence also s(a~, ..., a . }~cD since D is (by definition) an 
x-ideal i n  G. Thus {a~, ..., a~}~c S-~D and  v-~(F +) is an x-ideal in G. By  (~ transla- 

t ion )) it  follows t ha t  inverse images of principal  ideals in F are x-ideals in G. Since 

the  given x-system is supposed to be of finite charac te r  we Conclude t h a t  v-~(At) 
is an x-ideal in G for any  bounded  set A c F. 

In  order  to show t h a t  2 ~ 1 it  is (according to I~emma 1 in pa ragraph  10) 
enough to  prove  t h a t  every  x-ideal of the  form (a~ b)~ is invertible.  By  the  fact  t h a t  
eve ry  localization at  a pr ime x-ideal gives rise to a to ta l  order~ we must  have 

( a ) ~ c  (b)~ or (b)~c(a)~ . 

This entails easily t h a t  

= 

which by  the  globalization formula of [4] gives 

(ab). = (a).o(b)~= (a, b)~o((a)~(~ (b)~) . 

Since a pr incipal  x-ideal is invertible,  i t  follows t h a t  (a, b)~ is invertible.  
By  assuming 2) we see t ha t  the  map ~ has an inverse, as const ructed in the  first 

pa r t  of the  proof. I n  fact ,  7 is t h e n  a homeomorphism because the  basic open sets 

in the  two topologies correspond to each other  as follows: 

{ lv(a) = 

Tha t  3) implies 2) is obvious. F r o m  the  implication 1 :=> 3 and the  fact  t h a t  a 
GCD-group is always a t-Priifer group it  follows t h a t  there  is a bijection between 
the  t-valuations and the  pr ime t-ideals in such a group. This establishes of course 
t h a t  fl is a homeomorphism for any  x-closed group G. I t  follows t h a t  7 is bi jective 
if and  only if ~ is bijective. This shows in par t icular  t h a t  4 ~ 1 (since the  bijec- 

2 2  - Anna~i  di  Ma~ematica 
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t i v i ty  of y implies 1)). On the  o ther  h a n d  if G is an  x-Priifer  group (i.e. y is bijec- 

t i re )  t h e n  (~ will be  bijective.  More precisely, i t  follows in conjunct ion wi th  the  
equivalence of 6) and  7) in Theorem 3 t h a t  ~ and  the  m a p  ~5 of t h a t  t heorem are 

inverses of each  o ther  when  ~b is res t r ic ted  to Spec~ G. F r o m  this we can  infer  

t h a t  a basic open set  D(a)-~ {Ptla@Pt} c SpectA(G) by  ~ corresponds to an  open 

set  in Spe% G. Fo r  a e G + this  is obvious since t h e n  ~(D(a)) -~ {P~la @/~}. I n  

case a e A(G)+\G + we can p rove  t h a t  

(]_]..4) ~(D(a)) = {P~l(a) n ~§ r ~ }  

or equiva len t ly  

(11.5) a ~/)~ r (a) n G + r ~P~). 

Since a ~ P t  ~ (a) n G + c lPt n G + the  implicat ion ~ in (11.5) is clear. Conversely,  

since ~5 is the  inverse  of ~ it  follows t h a t  the  t-ideal in At(G) which is genera ted  

f rom ( a ) n  G + is (a). I f  ( a ) ~  G+c  P t (~  G + we therefore  obta in  a e P t  as desired. 

Since the  r igh t -hand  side of (11.4) is ev iden t ly  a union of basic open sets in 

Spe% G i t  follows t h a t  ~ is an  open m a p  and  this completes  the  proof  of the  the-  

orem. ,, 

I t  is clear f rom the  above  proof  t h a t  the  mere  b i jec t iv i ty  of e i ther  of the  maps  y 

or ~ is sufficient to  assure t h a t  G is an  x-t)rfifer group. I n  case of y the  b icont inui ty  

follows immedia te ly  f rom the  b i jec t iv i ty  whereas  our proof  of the  openness  of 

relies on Theo rem  3. 

We spell out  two special  cases. 

CO~OLLA]r165 1. - An integrally closed domain t~ is a Pri~]er domain i] and only 
i] the map (~ induces a homeomorphism between the prime spectra o] R and its Kronecker 
]unction ring K(R). 

(See Corollary 2 of Theo rem 1 and  succeeding remarks . )  

COrOLLArY 2. - A t-dosed group G is a t-Prefer group i] and only i] the map 
gives a homeomorphism between the prime t-spectra o] G and its Zorenzen t-group. 

We shall  say t h a t  n subgroup G of a GCD-group D, as on p. 12-13 is dense 
if the  ax iom (3) of (( ~ t h e o r y  of quasi-divisors ~ is satisfied. As a joint  corol lary 
of Theorems  7 and  8 we get  

CO~OL]~A~Y 3. - Every x-_Pri~]er group G may be represented as a dense subgroup 
o] the GCD-group o] all sections in a shea] o] totally ordered groups over the quasi- 
compact space Spe% G. 
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In  fact ,  the  axiom (3) of paragraph  8 amounts  to the  condit ion t h a t  an y  ele- 

ment  in the  GCD-group is  an inf imum of a finite number  of elements of the  given 
dense subgroup. I n  the  case of a pair  G-~  A~(G) the  la t ter  denseness p rope r ty  is 
by  Theorem 3 equivalent  to G being an x,Pri ifer  group. 

I n  all the  cases where the  map ~ (in the  commuta t ive  diagram (11.3)) is a homeo- 

morphism we obtain a sheaf representa t ion  of the  group (/ over Spec val~ G, simply 
by  restr ic t ing the  full sectional representa t ion  of A~(G) to G. In  case of an a rb i t ra ry  

x-closed group we can obtain the  same type  of representa t ion  by  t ransferr ing the  
topology of Spec val~ (A~(G)) to Spec val~ G via the  bijection ~. I t  seems reason- 
able to conjecture  t h a t  ~ is a homeomorphism if and  only if G is an x-Priifer group. 

When  t ry ing  to prove  t ha t  g is an open map one encounters  a problem which is  
analogous to the  one in connect ion with the  openness of & By  the  v e ry  definition 
of the  GCD-funetor (see (4.4)) we get  

(11.6) g ( D ( ~ : ) ) ~  ~(v eSpecval~(A~(G))[v(a~)A.../\v(am)[v(b~)A.../\v(b~)]-~--= e} 

where A~ = (ax, ..., am)~oc (b~, ..., b~)~ = B~. 
Without  any  fu r the r  hypothesis  it  is not  clear how the  set (11.6) can be wri t ten  

as a union of basic open sets D(a)c  Spec val~ G with a e G +. I f  G is an x-Priifer 
group, however,  we know t h a t  an element  in A~(G) + m ay  be identified with an 
integral  and  finitely genera ted  x-ideal C~ = (c~, ...,cb)~ (i.e. with all v~ e G+). In  
this case 

~(D(C~)) = (v e Spec val~ Olv(cl)A...Av(c ) = e} : 

= D(cl) U ... tJ D(ck) 

and  ~ is hence an open map. 

Al though this seems to  reconfirm th a t  the  openness of ~ depends on the  x-Priifer 
condit ion we have not  been able to prove the  converse:  ~ is open ~ G is an x-Priifer 
group. 

12. - Germinal  ideals and real representations.  

We shall now relate  the  mater ia l  of the  preceding paragraph  to Keimel 's  sec- 
t ional  representa t ion  theo ry  for GCD-groups. His approach is based on the  not ion 

of a germinal  1-ideal which in a purely  algebraic form imitates the  analyt ica l  no- 
t ion of an ideal of vanishing germs at  a given point.  Wi thou t  using Keimels general  
machinery  this not ion will quickly lead us to a quite sat isfactory sectional represen- 
ta t ion  theorem for regular  GCD-groups with a formal  uni t  (bearing in fac t  a consid- 
erable resemblance to Stone 's  representa t ion  theorem for Boolean algebras). 
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The 1-ideals of a GCD-group form an ideal system with respect to the <~ mul- 
tiplication )) aob = laIA ]hi. Let Spec~ G denote the family of prime 1-ideMs P equip- 
ped with the spectral topology where the basic open sets are given by E(a)= 
= {P ~ Spec~ Gla ~ P}. (For simplicity we are dropping the subscript 1 in the prime 
1-ideals, thereby also avoiding any confusion with t-ideals.) For any subset A c G, 
E(A) denotes the open set {PIA r P} = [.J E(a). 

aeA 

We now fix P e Spec~ G and let U denote an open neighbourhood of P. We put 

O ~ = A Q  and o . = U o ~  
QeU 

(where the latter union is taken over all open neighbonrhoods U of P). 
The set 0p is an /-ideal contMned in P which is called the germinal 1-ideal 

associated with P. A sheaf of GCD-groups may now be defined over Spec~ G by 
choosing G/O, as the stalk corresponding to P. Every element g e G will give rise 
to a ((section ~) ~ in the disjoint union F of these stalks by putt ing 

O(P) = g. 

where gp denotes the residue class in G/Op to which g belongs. This induces a projec- 
tion map z:  _F -+ Specl G by putt ing ~(~(P)) ---- P. In order to make (Specl G,/~, ~) 
into a sheaf of GCD-groups we equip _F with the finest topology making all the 
maps ~ continuous. 

An alternative approach, leading to the same sheaf, is to start  out with the 
presheaf U ~ G/O~ ---- G(U) where every inclusion V c U gives rise to a canonicM 
homomorphism of GCD-groups G/O~---> G/O V. 

In  case G has a formal unit (i.e. an element u such that  (u}l -~ G) Keimel proves 
that  the map g ~ ~ gives an isomorphism of G onto the GCD-gronp F(Specl G,/~) 
consisting of all global sections of F. As already indicated, this sectional representa- 
tion has the disadvantage that  the stalks need not be totally ordered. A natural 
condition which assures this is the condition that  every prime 1-ideal is identical 
with its associated germinal 1-ideah _P ---- 0 , .  This condition is in turn equivalent 
to the condition tha t  every prime 1-ideM is maximal. This equivalence results from 
the fact tha t  0p equals the intersection of all (minimal) prime 1-ideals contained 
in P (see Proposition 6.6 in [25]). 

Whereas our approach yields quasi-compactness of the base space and total 
order of the stalks for general GCD-grou'ps, the corresponding properties are ob- 
tMned in Keimels approach only when G has a formal unit and the germinal 1-ideM 
which is associated to a prime 1-ideM is itself prime. (See Theorem 10.6.2 in [10] 
and its corollaries.) For regular GCD-groups the two approaches give sectional repre- 
sentations which bear a certain resemblance to each other in that  they both have 
real groups as stalks. But apart from this there are marked differences, stemming 
above all from the different topological properties of Spec~ G and Spec~ G. 
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I t  should be noted~ however~ that  Keimel is able to dispense with the condition 
that  Op is a prime 1-ideal and still obtain a sheaf representation with totally ordered 
stalks. This is done by restricting the given sheaf to Spec min~ G consisting of the 
minimal prime 1-ideals with the subspace topology induced from Spec~ G. For a 
minimal prime 1-ideal is always identical with its associated germinal 1-ideal and 
the stalk is hence totally ordered. I t  seems~ however~ that  the restriction to 
Spec min~ G further damages the fullness of the representation. Without a formal 
unit Keimel can only claim that  sections with quasi-compact support on Specl G 
come from elements in G. When restricting the sheaf to Spee min~ G even this 
is no longer true. 

Although this is somewhat of a digression from the main theme of the present 
paper we shall close these considerations on sheaf representation of GCD-groups 
by proving the following rather specialized representation theorem (which in spirit 
comes close to Stones topological representation of Boolean algebras). 

Tn-EO~E~ 9. - Every regular GCD-group with a ]ormal unit is isomorphic to the 
GCD-group o/all  sections in ashea] o] real groups over a totall~y disconnected~ compact 
Hausdor]] space. 

P~ooF. - We shall give a direct proof of this theorem which is based on the 
notion of a germinal 1-ideal but which avoids any use of the material in Chapter 10 
of [10]. In  particular we shall avoid the use of Keimel's (( standard construction ~) 
(10.4.7, p. 212 in [10]) and the succeeding main theorem 10.6.2. Instead we shall 
base the proof on the consideration of the presheaf Lr defined over the space 

= Specl G by the assignment U --> G/Os = G(U) and combine this with the use of 
:NAKA~O'S chinese remainder theorem for 1-ideals [36]. 

Let us first verify the topological properties of Spec~ G announced in the theo- 
rem. A formal unit is an (integral) element u in G such that  {u}~ = G. I t  is easily 
seen that  the existence of a formal unit in G is equivalent to the quasi-compactness 
of Spec~ G (see p. 16 in [25]). The Hausdorff property is likewise an immediate 
consequence of the fact that  there exists no inclusion relation between two different 
prime 1-ideals in G. That Spec~ ff is  totally disconnected results from the fact that  
the basic open sets U~ = E(a) are also closed. In fact~ for any a and a •  e:a 
= {b[IbIAia] = e} we have the relations 

E(a) W E(a l) -= Y and E(a) ~ E(a • = O . 

This follows from the fact tha t  exactly one of the two relations a ~ P or aZc P 
holds for each a e G. 

We shall next verify that  the presheaf L r is a sheaf. Henee~ let {U~} with 
a e]A c G be a covering of Y by basic open sets and let the family {g~e G( U~)la ~ A} 
be selected in such a way that  for each pair of elements a, b e A  the presheaf 
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images of g~ and gs in G( U, (~ Us) are equal. We must show that  there exists a 
unique g e G = G(Y) whose image in G(U~) is g~ for all a e A. 

Since the unicity is obvious let us pass to the existence. Consider the diagram 

e(u. )  G(U~) 

G(U n Us) 

The two <( exterior ~ maps ~ ~nd ~ are ordinary presheaf maps whereas the <~ inner ~ 
maps ~, fl, ~ are canonical maps induced on the factor groups by the inclusions 
0~ ,  0~ c 0 u ~ - 0 ~ o c 0 ~ o ~  . The crucial point is that  the regularity condition in 
the theorem (every prime /-ideal is maximal) assures that  also 0u~n~ c 0 u , +  0u~ 
such tha t  7 becomes the identity map. In  fact, when this latter inclusion is inter- 
preted in the spectral topology of :F i t simply amounts to the inclusion U~ n Ub c 
c U~n Ub which is trivially true since U~ and Ub are closed sets. 

By the compactness of Y we can select a subcovering (Ub} of (U~} with b e B 
for some finite subset B of A. We now apply ~akano's  chinese remainder theorem 
for 1-ideals [36] to the finite families { 0 J  and (gb}. Actually, by the initial 
compatibility condition on the g~'s we have gb ~ g~(mod 0 ~ o )  which by the iden- 
t i ty  0~ ~o : 0~-~ 0~o amounts to 

g~ ~ go (rood (0~ + 0~o)) 

for all b, c e B. By Nakano's theorem there exists a g e G such that  

(12.1) g --= g~ (rood 0~) . 

This means that  g is mapped onto gs for all b E B by the given preshcaf maps 
G(Y) -~ G(Us). We now claim that  

(12.2) g ~- g~ (rood 0~o) 

for all a e A .  Since 0u c0~one ~ (12.1) gives 

(12.3) . . . . .  g ~- gb (rood 0 ~ b ) :  
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Combining (12.3) with the initial condition g ~  gb (rood 0~o~) we obtain 

(12.4) g ~ g~ (mod 0~o~) 

for all b ~ B. 
Using (12.4) together with 0 ~  [70eo~u~ we get (12.2) as desired. This finishes 

the proof tha t  L r is a sheaf and tha t  we hence have an isomorphism of GCD-groups 
~--/"(Y, LD. 

For the remaining part  of the theorem we observe that  the very definition of a 
direct limit gives 

lira G/Oz = G/O~ 

where Op is the germinal 1-ideal belonging to P and the limit is taken over all spec- 
tral  (basic) open neighbourhoods o f  P. Since P is a minimal prime 1-ideal it follows 

tha t  0~ = t2 Q = P and the stalk at P of the sheaf L r will hence be isomorphic 
QcP 

to the totally ordered group GiP. Since P is a maximal 1-ideal of G this stalk wil 1 
be order isomorphic to a subgroup of the group of real numbers and this completes 
the proof of the theorem, m 

This paper deals with basic arithmetical questions linked to the notion of a 
t-ideal.  With respect to this perspective, one may say thug our considerations on 
germinal 1-ideals and the associated sheaf representation are somewhat marginal. 
Prime/-ideals are, however, intimately linked to the prime t-ideals and it is essential 
to be able to piny on both of these types of objects and the duality between them. 
I t  should also be noted tha t  the crux of the preceding proof (i.e. the chinese re- 
mainder theorem of l~akano) has a distinctly arithmetical origin. 5Takano's theorem 
arose" directly out of considerations by KBUL~ [30] and RIBENBOI)f [42] concerning 
approximation theorems in valuation theory. (For a more general treatment of 
the relationship between sheaf representations and chinese remainder theorems see 
COBN~S~ [:[4].) 

Theorem 9 deals with real sectional representation of GCD-groups. Let us now 
turn to real ]~netional representation of (partially) ordered groups. The literature 
on this topic is somewhat confusing and difficult to penetrate. There seems to be a 
need for a comprehensive exposition which surveys the whole field and which clari- 
fies the interrelations between the different approaches and the different underlying 
assumptions. A comparison is made difficult by the fact that  different authors have 
different candidates as to the objects which are chosen as the points of the representa- 
tion space (i.e. the points making up the domain of definition for the representing 
functions), We shall now show tha t  a neat exposition of the topic of real func- 
tional representation of ordered groups is achieved by the use of the:Lorenzen 
t-gr0up and the GCD-functor: This is really nothing more th~n applying the lan- 
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guage of the  present  paper  in order to give a more clear exposition of the  main 
content  of an interes t ing bu t  ra the r  crypt ic  paper  by  I. FLE~SC~Ea [17]. 

Tm~o~E~ 10. - A completely integrally closed group G (:/: (e}) with an archimedian 
element (strong unit) is order isomorphic to a separating group o] continuous real- 
valued ]unctions on a compact (Hausdor]]) space. 

PaooF.  - We recall t h a t  an archimedian e lement  of G is an element  u > e such 
t ha t  for eve ry  g s G the re  exists n ~ l  with u'~>g. Since G is completely integral ly 
closed, it  can be embedded  (order-isomorphically) in its group of v-ideals G*. This 
la t te r  group is a GCD-group such t h a t  its t -system has a Lorenzen system x as its 
t race on G, making G regular ly x-closed. ~ is an ordered subgroup of G ---- A~(G) 
which in tu rn  is an ordered subgroup of G*. The t race  of the  t-system in G* is t he  
t-system in G which in tu rn  induces the  x-system in G as its trace.  (Examples 1 ~ 
and  2 ~ p. 52 in [21] and  Theore~h 3 above.) The fact  t h a t  the  group G* is lattice- 
complete implies t h a t  all its v-ideals are principal  and hence form a group isomorphic 

to G*. This entails t h a t  G* is completely integrally closed, a p rope r ty  which t ransfers  
to its ordered  subgroup G. Thus G appears as a completely integral ly closed GCD- 
group with the  same archimedian e lement  as G (since any  element  of G is dominated 
by  an e lement  of G). 

I t  is known t h a t  for a GCD-group with an archimedian element  the  condition 
of complete integral  closure amounts  to the  p roper ty  t h a t  the  intersect ion of its 
maximal  1-ideals reduces to the  iden t i ty  e lement  (or equivalent ly  to the  fact  t h a t  
its monoid of integral  elements is equal  to the  intersect ion of all the  t-valuation 
monoids arising f rom localization at  minimal  pr ime t-ideals). A short  proof of the  

pa r t  of this resul t  which interests  us here  rnns as follows: For  any  GCD-group H 
with an archimedian e lement  u > e we can to each pr ime 1-ideal P~ select a maximal  
1-ideal M / c o n t a i n i n g  P~ (which is itself pr ime due to the  presence of u). This gives 

rise to obvious homomorphisms of GCD-groups 

i~s i e I  

where ~ ~ (~}~x is known to be injective. Assume now tha t  H is completely 
integral ly closed and  t h a t  Ker  ( ~ o ? ) r  (e}. Since Ker  (Fo~) is an  1-ideal we can 
assume a e Ker  (~o~) with a > e and we must  t hen  have an~u for a cer ta in  n~>l~ 
because of the  complete integral  closure. In  view of the  fac t  t ha t  ~ is an isomorphism 
and  H/P~ is total ly  ordered,  this entails ~ (a )"  > ?~(u) for some i. Since ~i(u) is 
an archimedian element  in H/P~ it follows tha t  ~ (u )  ~ M~ and hence tha t  ( ~ o ~ ( a ) )  ~ 
is s~rictly posit ive in H/M~. F ro m  this we infer t h a t  ~ o ~ ( a )  is different f rom the  
iden t i ty  e lement  in H/M~, contradict ing t h a t  a E Ker  (Fo~). 

Once the  <~ strong 1-semisimplicity ~> has been proved,  the  funct ional  representa-  
t ion of G over  the  set Spec min~G (or equivalent ly  over the  set Spec max~G), re- 
sults immedia te ly  since G/P~ is a real group for any  m ~ x i m a l / - i d e a l  P~. Endowing 
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the set Spec mint G with the coarsest topology making all the representing func- 
tions continuous, we clearly obtain a representation of G which has the properties 
announced in the theorem. 

I t  remains to be seen how the representation of G induces the desired represen- 
tation of G via inclusion and how the representation space may be described in 
terms of entities in G. I t  is convenient to do the latter part first: We know already 
tha t  the maps ~ and fl in the diagram (11.3) are bijections (e is a bijection because 
of Lorenzens theorem and fl is a bijection since a GOD-group is a t-Priifer group). 
These two bijections induce the bijeetions 

(12.5) Spec max val, G -~ Spec m~x val~ G -~ Spec mint 

where the left hand side denotes the set of all maximal t-valuation monoids of G--or 
equivalently the set of all real-valued t-valuations of G. We thus only transport 
the above-mentioned weak topology of the right-hand side of (12.5) to the left-hand 
side, which indeed consists of a family of objects directly attached to G. 

We must finally show that  the restriction of the representation from G to G 

• V retains the pro'perty of point-separation. Assume hence tha t  g(vl)-=-g(~) for vl, 
v~ESpecmaxval~G and all g e G .  This means tha t  v~(g)-=v2(g) for all g e G .  
By the Lorenzen theorem, vi and v2 are uniquely extendible to v~ ~ ~-1(vl) and 

t 
v'~ ----- ~-~(%) e Spec max val~ G (using the notation of (11.3)). Thus v~(h) = v~(h) or 

! ! 

~(v'~) = ~(v'~) for all h e G. This means tha t  v~ : v~ and hence v~ = v~ as desired. [] 

At first sight, the reader will probably have some difficulty in recognizing the 
above proof as a precision of Fleisehers proof, which hardly contains more than 
hints, But if one observes that  his group G Occurring at the bottom of  page 261 
of [17] is nothing but our group G ~-A~(G) and that  the <~ maximal closed semi- 
groups ~> in the second paragraph of page 262 coincide with our maximal t-valuation 
monoids, one sees that  the spirit of our proof is in fact quite close to Fleisehers proof- 
suggestions--although we make a much more explicit use of our heri tage from 
Lorenzen. Another exposition of Fleischers work has been given by P. RI~E~BOI~ 
in [41]. As to the origin of Theorem 10, it goes back to more analytical work of 
u and STONE and a l~ter paper by KY FAN [31]. The present neat formulation 
seems to be due to Fleischer. RIBE~BOI~ [41] (Theorem 11~ p. 75) gives reference 
to JAFFA~D [22] for a similar result, but this reference does not seem to be quite 
accurate. Theorem 10 occurs also, essentially, as a corollary of a more complicated 
and more general representation theory given in [38], 
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