Divisors of Finite Character (*).

Karr Eein AuBert (Oslo, Norway)

« Therefore, when one widens the realm of
elements to that of ideals in a given ring,
one sometimes gains and sometimes loses.
One gets the impression that, generally spe-
aking, the truth lies haliway: if the domain
of integers in many cases is too narrow, the
domain of ideals is in most cases too wide. »

Hermany WeYL (in [45], p. 38).

Summary. — The present paper purports o show that divisors of finite character—also called
t-ideals—are the natural building blocks of the gemeral theory of divisibility. Divisors of finite
character are here applied to a variety of different arithmetical topics as well as to sectional
and functional representation of ordered groups.

1. — Introduction ().

In its most general and purest form, the study of the notion of divisibility appears
as a strictly multiplicative theory. In spite of this, the majority of the abstract
investigations eoncerning the notion of divisibility have been carried out within
the setting of integral domains. The tradition of studying divisibility properties
in rings or fields rather than in monoids or groups (2) goes back to the early days
of algebraic number theory. Dedekinds ideal concept is a ring-theoretic concept
and not a purely multiplicative one (although it turned out later that in the clagsical
case of algebraic integers hig ideals may be given a purely multiplicative interpreta-
tion as «divisorial ideals »). Thus, a somewhat blurring and irrelevant additive
ingredient was brought into the general theory of divisibility right from the start.

The true multiplicative liberation came with LORENZEN’s thesis [33] in 1939.
It is the purpose of the present paper to try to revive and continue some of the work

(*) Entrato in Redazione il 29 aprile 1981; versione riveduta 1’1 dicembre 1982.

(}) The work on the present paper was initiated while the author was visiting University
of Western Ontario, Canada in December 1977. Thanks are especially due to professor G.
THiErRRIN for assistance from his Grant A 7877 of the National Research Council of Canada.

(®) The groups, rings and monoids considered in this paper are all commutative with
cancellation laws. ~ '
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of Lorenzen. It seems to us that although his 1939 paper is widely cited it is rather
poorly understood. Papers (and also several books such as [12], [18], [19] and [32])
which deal with divisors and multiplicative ideal theory are still being published
without taking account of Lorenzen’s most basic ideas. Their treatment of geveral
topics is decidedly inferior to what can be extracted (admittedly, sometimes with
pain) from Lorenzen’s work. Only JAFFARD’s monograph [21] seems to us to do
tull justice to Lorenzen’s ideas. This is really a very fine book, but it is written in a
style and uses a terminclogy which may have prevented many from reading it who
otherwise could have been attracted by its rich content.

We shall let the present paper revolve around the concept of a divisorial ideal
of finite character-—called {-ideals for short. Our main objective will be to present
gsome of the evidence whieh points in favour of {-ideals as the building blocks of a
general arithmetic.

In fact, it is not far fetehed to say that the ¢-ideals represent «the truth that
lies halfway » which is alluded to in the above quotation of Hermann Weyl. This
makes it somewhat hard to understand how the v-ideals (divisors in the terminology
of BOURBAKI[12]) or even the ordinary Dedekind ideals (called d-ideals in the
sequel) have survived in many multiplicative contexts where the f-ideals turn out
to be superior.

In the two last paragraphs of the present paper we shall also show that the no-
tion of a prime t-ideal and that of a ¢-valuation seem to provide the best founda-
tion for a coherent theory of both sectional and funetional representation of ordered
groups. This point of view will bring about ameliorations and precisions of earlier
work of Kuimer [25] and FLEISCHER [17] on this topic.

2, — Divisors and i-ideals.

All ordered groups considered in this paper are supposed to be abelian and
~directed (filtered). The monoid G* of positive (integral) elements of the directed
group G will be denoted by D. Conversely any monoid D with cancellation law gives
rise to a directed factor group G/U—called the divisibility group of D—where G
is. the quotient group of D and U is the group of units in D. HEquivalently we may
regard the divisibility group as the group of fractional principal ideals ordered by
inelusion. .

A directed group @ is said to be faciorial if it is isomorphic to an ordered direct
sum of copies of Z (a free abelian group with pointwise order). Such a factorial
group is written Z® for some set I and is interpreted as the set of all functions
from I to %, zero outside of a finite set—with pointwise addition and ordering. If &
is order-isomorphic to a subgroup of a factorial group we shall say that & is a pré-
factorial group. A unique factorization domain (respectively a Krull domain) is an
integral domain whose divisibility group is factorial (respectively préfactorial).

The situation of a préfactorial group exhibits the original arithmetical content
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of the concept of a «divisor» and a ¢prime divisor ». The divisors which are ad-
joined in order to achieve unique factorization are conceived of as finite produects
(or sums) of the canonical generators (the prime divisors) of the free abelian group
ZP. 1t is reasonable, however, to restrict the nuse of the term «divisor » somewhat
further. For we are not really interested in «unnecessarily big» extensions with
no definite ties between G and Z”. Tt turns out that for a préfactorial group G we
can always choose D = Z” in a unique minimal way (i.e. such that D is contained
in all factorial groups containing G as an ordered subgroup)—namely as the group
of fractional #-ideals of ¢. Thus the #-ideals—which we are now going to intro-
duce—appear as the true arithmetical divisors.

Let A denote a bounded subset of the directed group @ (i.e. there exists an ele-
ment g e G such that gA c " = D). The set '

= (a
AQa)( )

or equivalently 4,= D:(D:4) is then the divisorial ideal or the v-ideal generated

by A. We define the t-ideal generated by A as the set-theoretic union of all the

v-ideals generated by finite subsets of A: '

-At = U N’u .
Ncd
N finite

An important technical difference between »-ideals and {-ideals is given by the fact
that the #-generation is of finite character whereas the v-generation is not. The
t-system forms the unique coarsest Lorenzen system in G. (As a general source for
definitions and results on ideal systems the reader is referred to [2], [3], [21] or [33].
As to the notion of a Liorenzen system (r-system) as opposed to the general notion
of an ideal system (z-system) the reader is referred to [3], pp. $23-524.)

If G is a GCD-group (3) (== lattice ordered group) with the g.c.d.-operation
denoted by A, the definition of a ¢-ideal assumes a more appealing form as the
conjunction of the two properties

1) DA,c A
2) a,bed, = anbe A,.

As opposed to ordinary d-ideals, the presence of a g.c.d. for two (or a finite
number of) elements is measured faithfully in terms of t-ideals: Two elements a

(3) In our arithmetical context we prefer the more suggestive term of a GCD-goup to
that of a lattice ordered group or l-group. This also achieves a uniform terminology which
is in harmony with the already established notion of a GCD-domain as well as ‘che notion of a
GCD-functor to be introduced in the next section,
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and b have a g.c.d. if and only if the {-ideal generated by a and b is principal. Other-
wise expressed: The divisibility group of a monoid I} is a GCD-group if and only
if D is t-Bezout (every finitely generated ¢-ideal is principal). Already at this elemen-
tary level the advantage of ¢-ideals over d-ideals is henee clear (also apart from the
fact that d-ideals only make sense in the case of divisibility groups of integral
domains). For a d-ideal (&, b) may fail to be principal also in case a and b have a
g.c.d. For a d-ideal (a, b) to be prineipal it is not only required that a and b have a
g.c.d., but that this g.c.d. be a linear combination of ¢ and b, Thus d-ideals bring
in an extraneous additive condition which is alien to the purely multiplicative situa-
tion at hand.

3. — Lerenzen groups.

We shall now enter a subject which, in spite of being almost entively neglected,
seems to us to form the deepest and most interesting part of the general theory of
divisibility.

Exploiting the original ideas of KRONECKER, PRUFER and especially KRULL
defined and used the so-called Kronecker function rings in order to study the arith-
metic of integral domaing, The main virtue of the extension process which leads
from an integrally closed domain R to its Kronecker function ring is the fact that
the latter is a Bezout domain (finitely generated d-ideals are principal) and hence
provide g.c.d.’s. This enables us to get a better grasp of the valuation overrings
of R, establishing in ‘particular that these are in one-to-one correspondence with
the prime ideals of the corresponding funetion ring.

The subject of the Kronecker function rings was generalized, clarified and sim-
plified by Lorenzen when he defined the purely multiplicative object of a « Lorenzen
group », freeing the initial construction of a Kronecker function ring from any inter-
vention of an additive operation as well as from the Kroneckerian scheme of adjunc-
tion of indeterminates. In spite of this face lift, however, the Kronecker function
rings have also in their new disguise as Lorenzen groups remained a neglected and
poorly understood area. The following presentation of this subject if offered in the
hope of contributing to a better understanding of Lorenzen’s ideas. We shall do
this by stressing funetorial properties as well as the universal role which is played
by the {-system in this connection.

The main way of motivating the introduction of Lorenzen groups is via the old
problem of providing g.c.d.’s by a suitable extension process.

Let & be a directed group equipped with a (fractional) Lorenzen system z. We
suppose that @ is (integrally) a-closed in the sense of [2] or [21], L.e. that 4,: A,c G
for any finite set 4 ¢ G. To the given z-system we can associate another fractional
ideal system in G whieh is denoted by #, and which is determined by

Ay, = {o|eN,c A, 0N, for some finite N c G}
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whenever A is a finite subset of G. The x,-ideal generated by a (general) bounded
subset B of G is then equal to the set-theoretic union of all the x,-ideals generated
by finite subsets of B. .

The crucial property of the #,-system is that the monoid of finitely generated
z,-ideals (under x,-multiplication) satisfies the cancellation law and hence possesses
a group of quotients A,(§) = A, (see [21], pp. 41-42 for a proof). This group is
made into an ordered group by putting 4, /B, € Al whenever 4, c B, and is as
such called the Lorenzen x-group associated to G. The main property of the Lorenzen
@-group of G is that it is a GOD-group which contains G as an ordered subgroup.
It provides the g.c.d.’s which may be missing in ¢ and when the #-system is snitably
chosen it does this in the most economical way.

4. — The GCD-functor.

Let I denote the category of integrally closed directed groups. An object in
this category is a directed (abelian) group G equipped with a Lorenzen system x
such that G is (integrally) #-closed. A morphism in I is a morphism of ideal systems
@: (G, 2) - (H,y) where (G, «) and (H, y) €I (see[3], p. 523 for the definition of a
morphism of ideal systems).

The category I contains in particular two distinguished full subcategories, cor-
responding to the cases # = s defined by A, = G"A and v =1 respectively: The
category S of all s-closed (semi-closed) directed groups with orderpreserving group
homomorphisms as morphisms and the category GCOD of all GOD-groups with
homomorphisms of GOD-groups as morphisms. The proof of these two facts is
simple and we shall content onrselves by treating the case which interests us most.
(For an explanation of the term shadow functor we refer the reader to [5], p. 39):

TEMMA. — The t-shadow functor I, provides a full embedding of the category of
GOD-groups into the category. of integrally closed directed groups.

PrOOF. — Obviously, any GOD-group is ¢-closed. It hence suffices to show that
the natural map '

Homgey (Gh, &) — Hom, ((GH 1), (G, t))

is a surjection, i.e. any (¢,t)-morphism of GCD-groups is really a homomorphism
of GOD-groups. First of all, any morphism ¢: (¢, ) — (H, y) between two Lorenzen
systems (and hence in particular any (¢, t)-morphism) is order preserving. For a>b
is equivalent to @€ (b), which implies ¢(a) € @((b)s) C {(b)), Wwhich in turn is equi-
valent to g(a)>@(b). On the other hand ¢((a, b),) C (p(a), @(b)), reduces to gp(a/\b)>
>p(a) Ap(b). Since g(a\b)<g(a)\@(b) is a consequence of ¢ being order preserving,
it follows that o(aAb) = @(a)A@(b) and ¢ is a homomorphism of GOD-groups.
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The following theorem could appropriately be termed « Main theorem of divi-
stbility theory ». It shows how the Lorenzen groups act as universal obfects with
respeet to the basic arithmetical completion process of providing g.c.d.’s.

TuEOREM 1. — The passage from an w-closed group (G, x) to its Lorenzen group
AJG) defines a faithful functor from the category I onto the category GOD such that
GCD appears as a full reflective subcategory of I—i.e. the indicated funclor is the left
adjoint of the t-shadow functor.

We shall eall the functor alluded to here for the GOD-functor and denote it by A.

Proor. ~ So far we have only defined how the functor A acts on the objects of I.
If @: (G, 2) - (H,y) is a morphism in I we define A(p) = @ by putting

Amu) _ (pl4).

(1) 2 (Bm @B).

When we identify @ with its group of prineipal ideals it is clear that the restriction
of @ to ¢ is just ¢, showing that A is faithful. To verify ahat @ is a homomorphism
of GOD-groups is routine and we content ourselves by showing that @ is a lattice
homomorphism—the proof that @ is a group homomorphism being similar. We
can agsume that the two given quotients have the same denominator and then we get

o (fxp 2) — o (A ) (pa Y B)),, _

AR 0. @O
@A), (@A) @B). (A) (B)
= WO, @) o). ?\e.) e,

where 4 and B are finite subsets of . That A is compatible with composition is
obvions. We have a commutative diagram

A(G) —2> A,(H)
(4.2) ]\ Ar,

(&, #) —= (H,y)

where the natural inclusion maps 7, and 7, are an (%, t)-morphism and a (y,, t)-
morphism, respectively. Since every finitely generated t-ideal in 4.(G) is prinecipal
it suffices to show that r;‘((c)t) is an @,-ideal in @ whenever ¢ € A,(G). If by, ..., b, €
€7:'((¢)s) and b e (by, ..., b,)., 7.(b) may be identified with the principal ideal it
generates in ¢ and hence

To(0) = (Byy ooy bp)a, = Tulb) A ATalbn) >0

@
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with respect to the order relation which is defined in A4,(@). This entails b € 7*((c),)
as required. (Since the x,-system is coarser than the z-system this shows in par-
ticular that 7, is an (z,t)-morphism.)

By letting H be a GCD-group and putting y = ¢, the diagram 4.2 gives rise to
the following one.

A6, 1)

(4.3) / x

(G’ z) P (H, £)

Here ¢ and 7, are (z, t)-morphisms, whereas @ is a homomorphism of GCD-groups,
or equivalently a (f,¢)-morphism. The diagram (4.3) exhibits the universal role of
the Lorenzen group with respect to (z,¢)-morphisms into GCD-groups. For @ is in
fact nniquely determined by the formula '

(@.4) 0 ({2 80e) - (g ) 0I0)

which is just a particular case of (4.1). We know already that A is faithful, such
that the above remarks establish an injection

(4.5) A: Homy, (G, #), I,(H)) — Homep, (A.(G), H) .

It remains to be shown that this map is also a surjection, thereby proving that A
is the left-adjoint of the shadow funtor I,. Let 6 e Homgep, (A,(G), H) and put
¢ = fot,. Since 7, is an (w,?)-morphism, the same is true of ¢. Furthermore
A(p) = 0, because there is just one extension of ¢ to a (f,t)-morphism of A,(@)
(given by the formula (4.4)). m

We want to specialize Theorem 1 in such a way as to obtain Lorenzen’s main
result on the groups A.(G) and to establish contact with Xrull’s researches on the
Kronecker function rings. Both of these applications will stress the links with valna-
tion theory.

The natural generalization of the classical notion of a valuation to the setting
of ideal systems is the following one: By an z-valuation of a directed group ¢
equipped with a Lorenzen system x we nnderstand an (z,¢)-morphism of G onto a
totally ordered group I'. (Note that a totally ordered group is characterized by the
fact that s = ¢, i.e. it carries only one Lorenzen system (of finite character). We
could hence equally well speak of an z-valuation as an (x,s)-morphism onto I)

In the case of the divisibility group of an integral domain, equipped with the
d-system, the notfion of a d-valuation is nothing but an ordinary Krull valuation.
The condition that inverse images of t-ideals are d-ideals is in fact equivalent to
the classical inequality v(a-b)>Min (v(a), v(b)).
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CoroLLARY 1 (Lorenzen). — There is a bijection between the z-valuations of an
a-closed group @ and the t-valuations of the corresponding Lovenzen group A Q). Fur-
thermore these t-valuations are in one-to-one correspondence with the prime t-ideals
of A(G)*. (See[33], Satz 13 and [21], Theorem 4, p. 49.)

The first and main part of this corollary is nothing but a specialization of the
bijection (4.5) to the case where H is a totally ordered group. The correspondence
between t-valuations and prime ¢-ideals is not contained in Theorem 1, but is a
rather simple matter to which we shall return later in connection with i-localization.
It is also a special case of Theorem 8.

Among the consequences of Corollary 1 is the fact that a gronp ¢ is #-closed
if and only if G* is an intersection of xz-valuation monoids. We shall have oceasion
to return to this fact in the next section (Corollary 2 of Theorem 2). Here we
specialize Corollary 1 one step further:

COROLLARY 2. —~ There is a bijection between the Krull valuations of an integrally
closed domain R and the Krull valuations of its corresponding Kronecker function ring.

The Kronecker function ring K(R) alluded to here is the eanonical one corres-
ponding to the d,-system. In order to derive this corollary from the preceding cne
we first notice that the monoid A,(G)*, where @ is the divisibility group of R, is iso-
morphic to the monoid of the principal and integral d-ideals of K(R). This allows
us, in a multiplicative context, to consider a Kronecker funection ring as a special
cage of a Lorenzen group. Having established this identification it remains only
to see that any d-valuation of K(R) is in fact a ¢-valuation. This follows from the
fact that K(R) is a Bezout domain, since this implies that finitely generated d-ideals
are t-ideals.

5. — Greatest common divisors and integral closure.

The construction of the GOD-functor A relies heavily on the condition of integral
clogure (z-closure). We shall now give a result which elarifies the exact relationship
between integral closure and the embeddability in a GCUD-group. For this purpose
we shall give a few preparatory remarks.

To any morphism of Lorenzen systems g: (G4, #;) — (G5, %) We can associate a
map @ between their respective monoids of ideals:

(5.1) B(A,) = (p(A))e, (= (p(4a)s,) -

Just as for the functor A it is a routine matter to verify that @ is a morphism of
monoids: G(4, 0B, ) = P(4,)oD(B,). A directed group equipped with a Lorenzen
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system « is said to be regularly x-closed if the implication
A,00,= Byol,= A =B,

holds true for any finitely generated g-ideal C,.
With the above notation and terminology we have the following obvious

LEMMA. - If G, is regularly x,-closed and @ is injective, then Gy is reqularly x;-closed.

With this in mind we ean now prove the following

THEOREM 2. — A directed group G is x-closed if and only if it can be considered as
an ordered subgroup of a GCOD-group in such a way that the resulting injection is an
(@, t)-morphism.

Proor. - That an z-clogsed group can be isomorphically (z, t)-injected into a
GOD-group is part of the proof of Theorem 1 where it was established that the
canonical injection G — A,(G) is an (#,?)-morphism. That this map identifies ¢
with an ordered subgroup of A, (@) is clear.

Assume next that & sits as an ordered subgroup of the GCD-group H in such a
way that 4,N G is an z-ideal in @ for all A c H. The trace in @, of the t-system
in H (i.e. the family of all the sets A, @) is then a Lorenzen system y in &
which is coarser than the given w-gystem. Furthermore, it is clear that the map @
which is induced from the (y, t)-injection ¢: @ — H is itself injective. This follows
from the fact that @(4,) = 4, and 4,= 4,N G for alle A c@. Since H is a GOD-
group and every finitely generated ¢-ideal is hence principal, it follows that H is
regularly t-closed. By the abovelemma we infer that @ is regularly y-closed, and hence
#-closed, since the 2-system is finer than the y-system (see [21], Theorem 1, p. 25).

COROLLARY 1. — A directed group & is x-closed if and only if it can be considered
as an ordered subgroup of a direct product of totally ordered grouwps in such a way that
the resulting injection is an (,t)-morphism. )

This follows immediately from Theorem 2 together with the fact that a GCD-
group can be isomorphically (¢,?¢)-injected into a direct product of totally ordered
groups (see paragraph 9) and that the composition of an (z,¢)-morphism and a
(t,t)-morphism is an (z,t)-morphigm.

From this follows in turn

CorOLLARY 2 (Lorenzen). — G is a-closed if and only if G is an intersection of
z-valuation monoids.

This is clear since a repregentation of G+ as an intersection of z-valuation monoids
v ('), where I'; is a totally ordered group and v, is an #-valuation of & into I

21 ~ Annali di Malematica



336 KARL BeiL AUBERT: Divisors of finite character

leads to an (=, ¢)-injection

and vice versa.
As another consequence of Theorem 2 we note the following well-known result

COROLLARY 3. — ¢ is semi-closed (s-closed) if and only if it ¢s an ordered subgroup
of some GCD-group.

This is a consequence of Theorem 2, simply because the notion of an order-
preserving group homomorphism is the same thing as an (s, #)-morphism.

The two following corollaries give specializations to the cases =% and 2 =d
respectively.

COROLLARY 4. — G 48 regularly integrally closed (i-closed) if and only if it can be
considered as an ordered subgroup of a QGOD-group in such & way that the resulting
wmnjection is o (I, ¢)-morphism.

Note that the notion of a (i, t)-morphism is the same as what is called a V-homo-
morphism in [34], p. 5. When Corollary 4 is applied to the divisibility group of an
ntegral domain it gives the Corollary 3.3 of [34], p. 8.

COROLLARY 5. — An integral domain is integrally closed if and only if its divisi-
bility group can be isomorphically (d,i)-injected into a GOD-growp.

This latter corollary is not surprising since the reader will have no difficulty in
showing that the morphism condition ¢(4,)c (p(4)), for an arbitrary bounded
set 4 is equivalent to the familiar inequality ¢(a 4 b)>Min (p(a), p(b)) of a Krull
valuation (taking the purely multiplicative condition for granted). Combining this
observation with Corollary 1 or 2, we get the usual characterization of an integrally
closed domain as an intersection of valuation rings.

6. — Regularly x-closed groups and Priifer groups.

In his fundamental paper [39], PRUFER considered two conditions on the divi-
sibility group of a domain, each of which is stronger than integral closure. One of
these is Priifers condition I, which by Krull was given the name ¢ arithmetisch
brauchbar » or rather «endlich arithmetisch brauchbar ». BoOURBAKTI ([12], p. 554)
introduces this notion only in the case of v-ideals (divisors in his terminology) and
then speaks of an integral domain as being « regularly integrally closed ». The general
notion is the one introduced above as a regularly z-closed group.

A slightly stronger condition is offered by the following definition: @& is said
to be an @-Priifer group if the finitely generated a-ideals in @ form a group under
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z-multiplication. For many Lorenzen systems (G, #) there is no difference between
the concepts of a regularly x-closed group and an az-Priifer group. It is for instance .
well known that in the case # = d, a Priifer domain may be characterized by either
of these two properties. A more comprehensive result of this kind will be given in
paragraph 10. Here we shall characterize the concepts of a regularly z-closed group
and an z-Priifer group in terms of the map @ introduced in the preceding paragraphs.

In the following theorem, G is an a-closed group, p denotes the eanonical (2, t)-
injection (G, z) — (4,(G),?) and @ is defined by D(4,) = (p(4,)),= 4, where 4
is any bounded set in G. If there exists a family V of valuations (= s-valuations)
of the group G such that for any bounded A c G,

4,= v (v(4)),)

vey

we say that the given z-system is defined by a family of valuations. (See [21], p. 47
and [19], p. 398.)

THEOREM 3. ~ The following conditions are equivalent for an x-closed group G:

1) G is regularly wx-closed.
2) The map D is injective.

3) The wx-system in G is the trace of the t-system in some GCD-group which con-
tains G as an ordered subgroup.

4) The x-system coincides with the x -system in G.

B) The x-system is defined by a family of valuations.

Furthermore the following two conditions are also equivalent
6) G is an x-Priifer group.
7) The map D is bijective.

8) G is }egularly x-closed and every element of A,(G) is of the form inf N for a
suitable finite subset N of G.

In case the given x-system is additive, all the above eight conditions are equivalent.

We shall not go into any details with respect to the proof of this theorem since
such a proof can be more or less extracted from [21] (especially from Proposition 7,
p. 49, Theorem 5, p. 50 and Theorem 3, p. 55). The only statement in the theorem
which really needs a proof, is the last one concerning additivity. This will follow,
however, from Theorem 6 below. For further elaboration on the properties 5) and 6)
in the case # = d, the reader should consult [19], p. 303 and Theorem 32.12, p. 402.
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7. — Divisors revisited. The axiomatic approach of Borevic-Shafarevic.

We shall now indicate how ¢-ideals may advantagously be used in order to put
the axiomatic introduction of divisors of Borevic-Shafarevic into a slightly different
perspective. This will lead to both a generalization and a sharpening of their tre-
atment.

Few introductory books on algebraic number theory take the trouble to ex-
plain the notion of a divisor properly. Hasse in his classical ¢« Zahlentheorie » puts
congiderable emphasis on the concept of a divisor, but without clarifying the most
fundamental issmes. A step towards such a clarification is taken by Borevie-Sha-
farevie in Chapter 3 (« The theory of divisibility ») of their book « Number Theory ».
Here the notion of ¢a theory of divisors» is introduced axiomatically as a map ¢
form the group of divisibility G of an integral domain into a factorial group D
verifying the following three conditions:

(1) ¢ is an isomorphism which identifies & with an ordered subgroup of D.
(2) If p(a)>b and ¢(b)>b then also ¢(a-tb)>d (%).
{3) If @ and b are elements in D such that

{ge@plg)>a} = {geGlp(g)>b} then a=05.

The elements of D are called divisors and the divisors of the form ¢(a) are said to
be principal divisors.

An equivalent formulation of (3) is to say that any d € D is the infimnm of a
finite number of principal divisors. Both these formmulations of (3) express our wish
to leave out «unnecessary » divisors—i.e. to consider only minimal factorial ex-
tensions of G. By wunicity we mean that if (D, ¢,) and (D, ¢,) are two theories of
divisors for @, then there exists an isomorphism between D, and D, which extends
the canonical isomorphism between ¢,(G) and ¢,(G).

The exposition of Borevie-Shafarevic is in spite of its virtues still blurred by
the presence of the additive operation. The additive operation is irrelevant for the
general treatment of divisors and should be discarded. But also in case one ingists
on a ring-theoretic treatment, the axiom (2) of Borevic-Shafarevic is redundant,
as was also noticed by L. SKuLA in [43]. (An earlier axiomatie treatment of divisors
due to KRULL ([29], p. 123), which is essentially equivalent to the one by Borevie-
Shafarevie, suffers from the same redundaney.) A significant forernnner of SKULA’S
purely multiplicative treatment is CLIFFORD’s paper [13].

(%) Since we are here dealing with a divisibility group rather than with the multiplicative
group of the given field of quotients it is more accurate to write (a), (b) and (a--b) instead
of a, b and ab.
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Our aim here is to look at the axiomatic introduction of divisors in the light of
Lorenzen groups and t-ideals. We then define a theory of divisors for ¢ in the general
sifuation where @ is a directed group, D is a factorial group and the map ¢ satisfies
the above conditions (1) and (3) (thus discarding (2)). In case D is replaced by a
GO0D-group we shall speak of a theory of quasi-divisors for ¢. In the case where G
is the divisibility group of an integral domain it turns out that (2) is in both cases
. automatically fulfilled, due to the fact that every ¢-ideal in an integral domain is a
d-ideal.

The basic arithmetical extension problem which we have treated so far con-
cerns the embeddability of a directed group @ into a GCD-group—the extension
process which provides the existence of greatest common divisors. Corollary 3 of
Theorem 2 exhibits s-closure as a necessary and sufficient condition for such an
embeddability. (It is well known that s-closure may also be characterized by the
implication: are G+ for some integer n>1 => a € G*.)

However, the condition of s-closure does not assure the existence (and unicity)
of a minimal GOD-extension given by a theory of quasi-divisors for . The relevant
condition for this involves f-ideals:

THEEOREM 4 (K. GUDLAUGSSON [47]). ~ The directed group G has a theory of quasi-
divisors if and only if G is & t-Priifer group. The group D of quasi-divisors of G is
then uniquely determined as the Lorenzen i-group of G which in this case is isbmorphic
to the group of finitely generated (fractional) t-ideals of G.

PrROOF. — From the remarks given at the bottom of p. 44 in [21] it follows that
any minimal GCD-extension D of & must be the Lorenzen x-group A,(G) where x
denotes the ideal system in G which is the trace (« empreinte», p. 52 in [21]) of the
t-system in D. By combining 1) and 3) of Theorem 3 it follows that @ is not only
z-closed (by the fact that integral closure is preserved by trace formation) but also
regularly x-closed. Using this together with 6) and 8) of Theorem 3 we conclude
that @ is an #-Priifer group. This means that any finitely generated x-ideal is inver-
tible and hence a v-ideal. Since « is of finite character, being the trace of the ¢-system
which is of finite character, it follows that every w-ideal is a t-ideal i.e. # = ¢ showing
that the trace of the {-system in D is the t-system in G: D~ A,(G). The elements
of A,(G) are of the form ,

(@yy oeey Qm)ey

(7.1) (B s bu)e

Since ¢ = ¢, this quotient may be identified with the fractional i-ideal (a,, ..., @)
o(byy ..., by)e*. This identification is an isomorphism since the formal quotients
(7.1) are multiplied in the same way as the corresponding fractional ¢-ideals.
Conversely, let & be a {-Priifer group. Then the finitely generated i-ideals of &
form a GCD-group D in which @ is injected by the isomorphism ¢@: a — (a),. The
t-ideal (ay, ..., a,), represents the infimum of the principal ideals (a,), ..., (a,). This
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expresses the content of axiom (3) in the present case and shows that ¢ defines a
theory of quasi-divisors for @.
A more suggestive reformulation of the above theorem is perhaps the following

COROLLARY. — The directed group G admits of a unique minimal GCD-extension
if and only if @ is a t-Priifer group and the ewtension is then given as the group of all
finitely generated t-ideals of G.

The redundancy of the condition (2) in the definition of Borevic-Shafarevic is
clear from the proof of Theorem 4 where it was in particular established that the
given trace of the {-system in D coincides with the #-system in G. In the case of the
divisibility group of an integral domain this gives a strengthening of (2) since (2)
simply expresses that the trace of a principal ¢-ideal of I} is a d-ideal in @.

8. — Characterization of préfactorial groups.

The preceding section shows how the existence and unicity of a minimal GOD-
extension depends fundamentally on the {-system in the given directed gromp. We
shall indicate how the possibility of a factorial extension of a directed group @ is
also governed by the behaviour of the t-ideals in . However, in contrast to the
@GCD case the case of factorial extension introduces no discrimination between mi-
nimal and non-minimal extensions: If a directed group may at all be embeddedin a
factorial group it will also admit of a minimal factorial extengion.

THEOREM 5. — The following properties are equivalent for a directed group G
1) @ has a theory of divisors.
2) @ has o unique theory of divisors.
3) G is préfactorial.
4) The t-ideals of G form a group under t-multiplication.
5) G is t-Priifer and satisfies the ascending chain condition for integral i-ideals.
6) G is t-closed and satisfies the ascending chain condition for integral t-ideals.
7) There exists a Lorenzen system x such that G is x-closed and satisfies the

ascending chain condition for integral x_ -ideals.

PrOOF. ~ 1 = 2: If @ has a theory of divisors this is also a theory of quasi-
divisors, the unicity of which was established in Theorem 4. 2 = 3: Obvious.
3 => 4: This is just one half of Theorem 5 in [21], p. 82 (although Jaffard uses a
different terminology). 4 = 5: Clear since any invertible t-ideal is finitely gener-
‘ated, the ¢-system being of finite character. 5 = 6: Obvious. 6 = 7: Obvious
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since t =1¢,. 7=>3: If @ is z-closed it is also z-closed and if every x-ideal is
finitely generated this means that G is completely integrally closed (Theorem 7,
P. 29 in [21]) which in turn implies that the v-ideals of G form a group under v-mul-
tiplication (Theorem 6, p. 29 in [21]). Since the a.c.c. for « -ideals entails the a.c.c.
for v-ideals it follows that the GCD-group D is indeed factorial (Theorem 3, p. 8
in [21]). To complete the circle of implications we need only to establish one more
implication, say 5 = 1: This is an immediate consequence of the above Theorem 4
in conjunction with Theorem 3, p. 8 in[21].

If the above theorem is applied to the divisibility group of an integral domain
it entails characterizations of Krull domains and suggests that the relationship bet-
ween t-ideals and Krull domains is to a considerable extent analogous to the rela-
tionship between ordinary ideals (d-ideals) and Dedekind domains. This is in par-
ticular visible from the characterization 4 which puts Dedekind domains and Krull
domaing on an equal footing in this respect. It is well known that Dedekind domains
are not only characterized by the faet the d-ideals form a group under usual d-mmul-
tiplication but also by the fact that its integral ideals factorize (uniquely) into prime
ideals. This prompted us to pose the following question at the end of the paper [3]:
Is a Krull domain characterized by the fact that any of its proper i-ideals can be
written as a ¢-product of prime #-ideals? Recently, K. GUDLAUGSSON [47] has
proved that the answer is affirmative. In fact, he proves quite generally that a
direted group is préfactorial if and only if its integral ¢-ideals decompose into pro-
ducts of prime ¢-ideals. As in the case of d-ideals the unicity of such decompositions
follows from the existence,

9. — i-Localization versus the Krull-Kaplansky-Jaffard-Ohm theorem.

In the preceding sections we have dealt with the relevance of ¢-ideals in connec-
tion with the problem of restoring basic arithmetical properties (existence of gre-
atest common divisors and unique factorization) by a suitable extension process.

Another fundamental problem of the thecry of divisibility concerns the decom-
position of a divisibility relation into a conjunction of linear (total) ones. This issue
has already been touched upon above in connection with the topic of Lorenzen
groups (Corollaries 1 and 2 of Theorem 1 and Corollaries 1 and 2 of Theorem 2).
In ring theory this problem takes the form of writing an integrally closed (d-closed)
domain as an intersection of valuation rings. The purely multiplicative problem
consists in embedding a GCD-group into a direet product of totally ordered groups-
taking for granted that the embedding of a directed group into a GOD-group has
already been clarified by Theorem 2 and its corollaries.

In connection with this question some authors have advocated a point of view
which may be said to be strictly opposite to the one which underlies the present
paper. These authors have tried to solve problems concerning G0D-groups by reduc-
ing them to ring theory via the so-called Krull-Kaplansky-Jaffard-Ohm theorem
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(see in particular [34]). This theorem tells us that any GCD-group is order isomor-
phic to the divisibility group of a suitably chosen Bezont domain. In this way the
general theory of GCD-groups can profit from what is known about Bezout domains,
This method can in particular be used in order to realize the embedding of a GCD-
group into a direet product of totally ordered groups (a result which was first ob-
tained by Lorenzen). For if & is a GUD-group which is the divisibility group of a
Bezout domain R we can argue as follows: Being a Bezout domain, R isin par-
ticular integrally closed (d-closed) and as such equal to an intersection of valuation
rings V, sitting in the quotient field of R. If I', denotes the totally ordered divi-
sibility group of V, then '

(9.1) G—~1]T;

gives an embedding of the desired type.

This is simple enough, once the K-K-J-O-theorem has been proved. Still, it is
fair to say that this proof procedure succeeds—not because of its relevance for the
problem at hand, but rather in spite of its irrelevance. It seems far fetched to use
d-ideals, d-closure and d-valuations in connection with this purely multiplicative
problem, just because the sufficient amount of commutative algebra happens to
be readily available in the d-case. The recipe should rather be to use the concept
of a i-ideal which matches the multiplicative situation perfectly—and develop the
relevant piece of commutative algebra in the #-case. In fact, only the bare rudiments
of a theory of ¢-localization is all that is needed. This was already recognized by
Lorenzen although he did not develop any systematic theory of localization for
ideal systems. The general globalization formmla for localization in ideal systems
(see [4]) gives in the case » = i:

(9.2) G+ = 86
Si

with §;= G*— P{” running over all the complements of maximal (prime) t-ideals
PYin @*.

Let us now elucidate the relationship between localization in GCD-groups and
the ¢-shadow functor.

Let @ be a GCD-group with D = G as its monoid of integral elements and let S
be a submonoid of D. According to the general procedure described in [4] we can,
on the basis of the Lorenzen gystem (D), t), form the localized ideal system (S-1.D, t,).
This integral ideal system is a Lorenzen system and will hence define a fractional
ideal system in @ where the new order relation in & is having §-!'D as its monoid
of integral elements. It is easy to see that the corresponding ordered group is iso-
morphic to the factor group

G/8-1D N 8D
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and is henee again a GCD-group since 8—*D N 8Dt is an 1-ideal (absolutely con-
vex subgroup) of G. This fact can also be seen by explicitely computing the g.c.d.’s
relative to the new «localized » ordering, according to the formula

dy  dy  d8,\dy8
9:9) 2R
Using (9.3) we also see that the f-system defined in 871D is the same as the
t-system in §~1D defined intrinsically in terms of the order relation given by (9.3).
By (9.3) the t,-ideal 84, (4 c D) is a ¢-ideal in §~*D and for any t-ideal B, in
S-1D we have B,= 8! (B,N D) where B,N D i3 a t-ideal in D.

The contents of these remarks may be summarized as follows: We have a
localization procedure going on at two levels—one for GOD-groups and one for
ideal systems (the t-system). These localization procedures are linked by the
t-shadow functor in such a way that we obtain an obvious commutative diagram.

Let I'; denote the ordered group which is associated to the préordering of G,
given by specifying 87D as the monoid of integral elements. The injectivity of
(9.1) then follows from (9.2) and the fact that (9.1) is a morphism of GOD-groups
follows from the map D — 81D being a (¢, {;)-morphism by construction (see[4]),
together with the fullness of the #-shadow functor (see the Lemma of paragraph 4).
Finally each I; is totally ordered, due to the fact that 87'D is a ¢-local (préordered)
monoid in the sense that it contains a unique maximal ¢-ideal M,= 87* P! which
in the associated ordered group simply consists of all elements > e. Since M, is
closed under intersection this means that we have the implication a > ¢ and b > ¢ =~
= aAb> ¢ and this is characteristic of a GOD-group which is totally ordered.

One of the features of the duality between prime f-ideals and prime 1-ideals in
GOD-groups is that the localization with respect to a prime i-ideal is order iso-
morphic to the factor group with respect to the dual prime 1-ideal. Alternatively
one may therefore obtain the embedding (9.1) by replacing (9.2) by the fact that
the intersection of all prime 1-ideals in a GCD-group reduces to the identity element
and that any factor group modulo a prime 1-ideal is totally ordered. It seems to
us, however, that the method of localization may have an advantage because of
its broader perspective. This will come up again in connection with sheaf rep-
resentation.

10. — Additive ideal systems and a counterexample of Dieudonné.

The relative strength between the notions of an z-closed group, a regularly
@-closed group and an o-Priifer group has been touched upen in paragraph 6. For
the -system we have already noticed that a t-closed group and a regularly ¢-closed
group is one and the same thing, simply due to the fact that the f-system is the
coarsest Lorenzen system (of finife character) which exists in a directed group—and
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hence t =t,. Theorem 5 shows that «{-closed » is even equivalent to «i-Priifer » in
the presence of the ascending chain condition for integral i-ideals. However, it was
shown by LoRENzEN (in [33], p. 551) that there exist directed groups which are
{-closed, but which are not ¢-Priifer groups. DIEUDONNE, (in [16]), sharpened this
result by showing that there is a distinetion between these two notions also within
the more restricted realm of divigibility groups of integral domains.

Our interest in this question comes from the general theory of additive ideal
systems (see [3]). As we see it, it i3 in the light of the below Theorem 6 that the
counterexamples of Lorenzen and Dieudonné acquire some additional interest by
exhibiting the reason for the existence of these examples—namely the lack of
additivity.

Theorem 6 will generalize a result of Priifer to the effect that a regularly d-closed
domain is a Priifer domain. Our proof will closely follow the proof of thig resnlt
as given in [21], pp. 26-28. In this generality the theorem wag first proved by
H. BIE LORENTZEN in [9].

LEMMA 1. — G is an x-Priifer group if and only if every x-ideal with two generators
is invertible.

ProOF. — Assume that we have shown that any wz-ideal with less than » 1
generators is invertible and let 4, = (a,, ..., @,.;), With n>2. We then have finitely
generated x-ideals B,, 0, and D, such that

(10.1) (@1y ooy B)e0 By = (€)
(10.2) ((12, ey an-:—l)aaoaw = (o)
(10.3) (G1y @nir)ao Dy = (6) .

By putting E,= a,B.,0D,+ a,,,C.,0D,, a computation, using an easy consequence
of the continuity axiom for ideal systems (see [2]) as well as the equations (10.1-3),
shows that 4,0E,= (¢) as desired. (See[21], p. 27 for details in the case » = d.)

LemyA 2. — Let (G, @) be an additive Lorenzen system and assume that O is o-closed.
G will then be an x-Priifer growp if and only if a € (e, a?), for all a € G.

PROOF. — We are here mainly interested in proving the «if »-part. (The proof
of the «only if »-part is contained in the proof of Theorem 6.) By Lemma 1 it suf-
fices to show that any z-ideal of the form (b, ¢), is invertible. Since (b, ¢), == (b).0
o(e, ¢/b), it is in turn sufficient to show that (e, a), is invertible for any a € G. From
the agsumption a € (¢, a?), it follows by additivity that

(10.4) (g, 6%z = (a, @*),
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for suitable ge GF. In particular @ c (g, a?), which by additivity gives
(10.5) (97 a)e= (9, haz)m

for some A € @+, Putting 4,= (ga~1, h).o(e, a), = (ga, g, b, ah), it will be sufficient
to show that 4,= G. From (10.5) we infer that

(10.6) (9o, €)s= (g0, ha),

which entails ¢ € (ga~?, ha),C .4, showing that G*c 4,. It remains to be shown that
ga~t and ha belong to GV since this will give 4,c GT. We get g(e, a), = (¢, ga),
c (g, @)= (g, ha?),C (g, %), = (a, a*), = a(e, @), using (10.4) and (10.5) as well ac
the fact that ¢ and % are integral elements of G. From g(e, a),C ale, a), we get
ga—le GF since @ is x-closed. Together with (10.6) this also yields ha e G7.

THEOREM 6. — Any regularly x-closed growp is an x-Priifer group provided that
the given fractional x-system is additive.

Proo¥. — By Lemma 2 it is sufficient to show that the property of regular
z-closure implies that a € (e, a?), for all a € G. We have

(a)xo(ea a‘)m: (a/y a/z)xc (67 az)mo(ea a)m

and (a),C (¢, 0?), results by cancellation (noting that cancellation with respect to
-equalities is equivalent to cancellation with respect to inclusions).

In [16] DIEUDONNE gives an example of an integral domain which is regularly
t-closed but not ¢-Priifer (regularly integrally closed but not pseudo-Priifer in BoUR-
BAKT’S terminology [12], p. 554 and 561). When this is combined with the above
Theorem 6 we get the following

COROLLARY 1. — There exists an integral domain where the divisorial ideals of finite
character do not form an additive ideal system.

A sharpening of this result is the following

COROLLARY 2. ~ There ewists a i-closed divisibility group where no x,-system is
additive.

Proor. — If the directed group @ is ¢-closed it is a-closed for any Lorenzen
system zin @. If an x,-system in @ were additive for some « it would follow from
- Theorem 6 that @ is z,-Priifer, hence also i-Priifer (accordlng to [21], Theorem 1,
p. 25) contradicting Theorem 6.

A more explicit result in the same direction is the following corollary which
exhibits an abundance of non-additive ideal systems.
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COROLLARY 3. — The s,-system in a GCD-group G is additive if and only if @ is
totally ordered.

Proor. — If @ is totally ordered, all ideal systems in @ coincide with the s-system
which is additive. Assume conversely that ¢ is a GCD-group which is not totally
ordered. There then exist strictly positive elements a, b € @ such that aAb = e.
This entails (a, b),= (¢) and (a, b), 7 (¢). The latter fact follows from a result of
LorENZEN ([33], p. 538) and shows that (a, b),, cannot be invertible since it as such
would be a {-ideal, contradicting (a, b),,7 (a, b),.

11. — Sheaf representation over the {-spectrum.

Ameng the most important types of ordered groups are on the one hand the
multiplicative groups arising from the theory of divisibility (divisibility groups,
groups of ideals, groups of divisors, Lorenzen groups, etc.), and on the other hand
additive groups of real-valued functions. Although these two types of ordered
abelian groups arise in different contexts, the preceding paragraphs have shown
that there is a common meeting ground for them within the theory of divisibility.
In fact, the most satisfactory arithmetical situations arise exactly when either the
divisibility group itself or a suitable group of ideals form a nice funetion-group like
an additive group of integer-valued functions vanishing outside of finite sets.

Viewing factorial and prefactorial groups from the point of view of a funetional
representation of these groups over the family of prime t-ideals, this suggests a
more general representation theory for ordered groups which closely parallels the
well-known sectional representation of commutative rings.

We shall here content ourselves by giving the full sectional representation of
the integral part of a GCD-group. This also accomplishes a sectional representation
of a semi-closed group via the embedding into its Lorenzen s-group.

Let D = G denote the monoid of integral (positive) elements of a GCD-group G.
By the t-spectrum of D, denoted by X = Spec,.D (or Spec, G), we understand the
family of all prime #-ideals of D, equipped with the usual spectral topology where
the basic open sets are given by the sets of the form D(a) = {P,|a ¢ P,}. Whenever
8 is a submonoid of D we can form the usual monoid of quotients §-1.D with
DcS1Dc@. As explained earlier the monoid 81D induces a preorder in @,
and it is the restriction of this preorder to S-1D which will be considered
in the sequel. This makes S~1D into a preordered GCD-monoid according to (9.3).
The particular case where § is of the form 8,= {¢, 0,02 ...} gives rise to a
presheaf of preordered GCD-monoids over Spec, D. For D(b) c D(a) is by the Krull-
Stone theorem for #-ideals ([2], Theorem 12) equivalent to be+/(a). By putting
b" = ga this gives rise to a well-defined homomorphism of GCD-monoids

@i 8;'D — 8, D
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where @f(d/a™) = dg™/b™". Obviously ¢log;= ¢? whenever D(c)c D(b)C D(a). In
this way the assignment D(a) — 8;*D defines a presheaf of GCD-monoids on the
basis {D(a), @ € D} and hence determines a presheaf T, on X = Spec,D. In much
the same way as for commutative rings we can prove the following

THEOREM 7. — The presheaf Tx is a sheaf. In particular there is an isomorphism
of GCD-monoids D~ I'(X, Ty). Furthermore the stalk of Tx at P, is isomorphic to
the totally preordered monoid 8—*D where 8 = DN\ P,.

ProoF. — As usual one must verify that the presheaf Ty satisfies the two defining
properties of a sheaf. These two properties correspond, respectively, to the injec-
tivity and the surjectivity of the natural map D — I'(X, Ty). The injectivity is
obvious in this case, since we operate within a group where cancellation is available,
Let us show the surjectivity, i.e. that any global section of the given presheaf comes
from an element in D. By the (quasi) compactness of X ([2], p. 35) the problem
reduces to the following one: Given a finite covering of X by basic open sets
X = D(a,) U D(a,) U ... U D(a;) and given a corresponding family of elements s,€
€ 871D such that s, and s, have the same ¢restriction » to D(a;) N D(a;) = D(a,a;,)—we
want to exhibit an element d €D whose «restriction» to D(a,) is s,.

Since we are dealing with a finite covering we can adjust the representation of s;
as a quotient in such a way that the exponent in the denominator is independent
of 4, i.e. s;,=d,/a} for all i. The fact that s; and s; by the presheaf restriction maps
are mapped onto the same element in S;1 D gives rise to the equations

agay

(11.1) ard, = ad,.

Using the equality D(a?) = D(a;) and the fact that the sets D(a,;) form a covering
of X we deduce the identity

(a7, ..., o), = (aiA...N\@}) = D
which simply means that
(11.2) ) ‘ AN ANaG=¢.
Putting d = d,A...Ad, and using (11.1) and (11.2) we get
ald = al(d A A = ald N Ndd, =ald AN Najd, = (a] \...Aaj)d, = d, .

This shows that d = d/e = d,/a} = s, when compared in S;:D and thus proves that
d e D gives rise to the given section s e I'(X, Ty).
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The verification of the isomorphism lim 8'D~ 87D is routine and may be
left to the reader. (Here 8§ = D\ P, and the inductive limit is taken with respect
to all a ¢ P,.)

By replacing each stalk 8~'D in the sheaf Tx by the group G equipped with
the preordering which is induced by choosing §-*D as the monoid of integral ele-
ments—we can easily extend the above sheaf representation from D to G. In fact,
any element g € G may be written uniquely in the form ¢ = g*(¢~)~* where g+ = gVe
and g~= g~1Ve both belong to D = G*. The section s, corresponding to ¢ is then
defined by

This will indeed be a section if we extend the definition of the topology on the
disjoint union of the stalks by declaring all sets which may be written as a union
of sets of the form

{8:(P1)|P.€ D(a)}

as open.

We have thus obtained a sheaf representation of a GOD-group in terms of a sheaf
which is built up of totally preordered groups as stalks., From there on we can
easily go one step further by passing from the preorder to the associated order in-
each stalk, i.e. to pass from & to the (totally) ordered factorgroup @,= G/SS-!
and redefine the sections accordingly. We may formulate this as

COROLLARY 1. — Ewery (ordered) GCD-group G may be represented as the GCD-
group of all sections in & sheaf of totally ordered groups over the quasi-compact space
Spec, G.

Let us also give a more special corollary concerning representations by «real-
valued » sections. By a real group we shall understand an ordered subgroup of the
ordered additive group of real numbers. We shall further say that a GCD-group @
is regular if every prime i¢-ideal in GV is maximal.

COROLLARY 2. — Any regular GCD-group G is isomorphic to the GCD-group of
all sections in a sheaf of real groups over the quasi-compact space Spec, .

According to Theorem 7 and earlier remarks the stalk at P, is isomorphic to
the factor group G/H,= G/88-! where H, is the prime 1-ideal ecorresponding to
P;. If every prime t-ideal of G is maximal, it will also be minimal. Hence, each H,
will be maximal and the corresponding factor group will be totally ordered and
archimedian, thus a real group.

Corollary 1 gives a sharpening of the purely algebraic embedding (9.1) of a GCD-
group into a direet product of totally ordered groups. Using a language which
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corresponds to the one which we used in connection with divisors we may say that
the «principal sections » corresponding to the image of & in the general and « discon-
tinuous » representation

of paragraph 9 are here characterized (selected) as the continuous ones with respect
to the topological restrictions imposed by the given sheaf.

The above approach seems to give the simplest and most general access to a
full sectional representation of GCD-groups by means of totally ordered groups.
It is based on a Grothendieck approach in terms of localization rather than on a
Gelfand-like approach in terms of factor formation. The gheaf-representation of
varions classes of lattice ordered groups and rings has been extensively studied by
Kravs KemeL ([10], [24] and [25]) who has preferred to use a Gelfand-type of
approach. As far as we can see this seems to have some slight disadvantages in the
case of GOD-groups: (1) It is less simple than the approach in terms of localization.
(2) It is less general in the sense that it requires extra conditions on the given GCD-
group in order to obtain a full representation over a quasi-compact space. (3) The
stalks are not in general totally ordered and hence less simple and appealing. This
Iatter disadvantage may be compensated for in Keimels approach by passing to the
subspace of minimal prime 1-ideals which is in addition Hausdorff and zero-dimen-
sional (but generally not compact). We shall return to a somewhat closer comparison
with Keimels approach in the next paragraph.

In a sense, localization and factor formation are dual procedures. In ring theory
the «self-dual» case (where R,~ R/P for all prime ideals P) is represented by the
class of von Neumann regular rings. In this case the two representation procedures
coincide as far as the stalks are concerned. The classical representation theory of
Boolean rings may thus be considered from either point of view, although it is the
Grothendieck approach which allows us to extend Stone’s theory to general com-
mutative rings. A similar advantage of the approaéh in terms of localization also
prevails in the case of GCD-groups. These groups bear in fact a considerable resem-
blance to regular rings in that they exhibit a similar duality, although this duality
for GOD-groups involves two different ideal systems rather than one. We have al-
ready alluded to the bijection between the prime {-ideals and the prime 1-ideals
of a GOD-group and the correspondence which it induces between localization with
respect to a prime ¢-ideal and the factor formation with respect to the corresponding
prime 1l-ideal. Ome aspect of this duality which is of particular relevance to fune-
~ tional and sectional representation of GCD-groups is the fact that the «semi-
simplicity » for the 1-system (the Krull-Stone theorem [2], p. 17 applied to the
zero-ideal) corresponds to the globalization formula (9.2) for the f-system. (In terms
of our notation the bijection between prime f-ideals and prime 1-ideals is given by
P,— Hp= 88— where 8§ = G*— P,. See remarks at the end of paragraph 9.)

We shall now further clarify the relative virtues of the different candidates for a
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notion of a «spectrum » for a partially ordered group. As we have indicated, the
prime t-ideals are superior to the prime 1-ideals even in the case of GOD-groups
although this is more visible in connection with sectional representation than in
the functional case. We ghall next show that the applicability of the prime t-spec-
trum for a sectional representation of partially ordered groups, whieh are not neces-
sarily GOD-groups, is in a certain precise sense limited to the Priifer groups. For
integrally closed groups which are not Priifer groups one preferably passes to a
spectrum consisting of a-valuations. Again it is the GCD-functor and Lorenzens
theorem (Corollary 1 of Theorem 1) which gives the clue to this insight. Thus it is
the concept of an z-valuation which turns out to have the widest scope when it
comes to the problem of picking the points of the representation space.

DErFINITION. — The topological space Specval, @ (called the z-valuation spectrum
of @) consists of all (equivalence classes of) z-valuations of an z-closed group @
with the sets D{(a) = {v|v(a) = ¢, a € G"} as basic open sets. (The notion of equi-
valence of a-valuations extends in an obvious way the usual notion of equivalence
between Krull-valuations.)

For every z-closed group G we have a commutative diagram

Spec val, (4.(@)) -2 Spec, (4.(@)
(11.3) =} s}

Specval, @ —X»s Spec, @G

where o is the restriction map related to Lorenzens theorem (Corollary 1 of The-
orem 1), ¢ is the map P,—~ P,N G and y is the map v — v 1((Im o)™\ {e}). Fi-
nally § is just the specialization of y to the case x ==t.

By Lorenzens theorem, « is a bijection. This bijection is obviously continuous,
but seemingly not in general a homeomorphism. It follows from the following the-
orem, however, that « is surely a homeomorphism when & is an x-Prifer group.
This theorem also shows that g is a homeomorphism for any z-closed group @. The
maps ¢ and § are both continuous but in general not bijective. If they are bijec-
tive they are also homeomorphisms. More precisely:

THREOREM 8. — The following conditions are equivalent for an x-closed group G.
1) & is an x-Prifer group.
2) Every localization at a prime z-ideal of G yields an ®-valuation monoid in G-.
3) The map y: Spec val, @ — Spec, G is a (surjective) homeomorphism.
4) The map d: Spec, (4.,(G)) — Spee, G is a (surjective) homeomorphism.

PROOF. —~ We first show that 1) and 2) are equivalent. If G is x-Priifer it is clear
that @ is also @,-Priifer where 8 is the complement of a prime z-ideal P, in D = G,
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It is sufficient to observe that the equality A,oB,= D entails the equality 4,0
oB, = §'D. (We have quite generally that §-*(4,0B,) = §-4,087'B, where the
latter o denotes the z,-multiplication.) In order to establish the implication 1 = 2
it is hence sufficient to show that an a2-local and z-Prifer monoid is an z-valuation
monoid (observing that S-1D is an x,-local monoid in the sense that the set S—1P,
of all non-units of §—*D forms a maximal z-ideal of 8§-1D). The fact that §-*D
produces a total order in G is proved in the case # = d in Proposition 4, p. 67 in [21]
and this proof carries over to the general case without change. By an a-valuation
monoid in G we understand a set of the form v-2(I™") where v: @ — I' is an z-valua-
tion of @, (see Corcllary 2 of Theorem 2). In the present situation the canonical
map ¢: G >G/8S8™t =I" will in fact be an z-valuation with S—*D as corresponding-
valuation monoid. For if {a,, ..., a,} c 81D, there exists an element se S such
that s{a, ..., a,} C D and hence also s{ay, ..., @,},C D since D i3 (by definition) an
@-ideal in G. Thus {ay, ..., @,}.C §~*D and v(I'") is an #-ideal in G. By «transla-
tion » it follows that inverse images of principal ideals in I" are x-ideals in @. Since
the given z-system is supposed to be of finite character we conclude that v-%(4,)
is an z-ideal in @ for any bounded set A c I

In order to show that 2 =1 it is (according to Lemma 1 in paragrapb 10)
enough to prove that every a-ideal of the form (a, b), is invertible. By the fact that
every localization at a prime z-ideal gives rise to a total order, we must have

This entails easily that
8((a)eo(B).) = 87*((a, b)oo ((@)e N (B).))
which by the globalization formula of [4] gives |
*(ab), = (a)e0(b)e = (8, b)ao((a)a N (B).) -

Since a principal x-ideal is invertible, it follows that (a, b), is invertible.

By agsuming 2) we see that the map y has an inverse, as constructed in the first
part of the proof. In fact, ¥ is then a homeomorphism because the basic open sets
in the two topologies correspond to each other as follows:

{o]o(a) = e} > {y(v)|a ¢ y(0); .

That 3) implies 2) is obvious. From the implication 1 = 3 and the fact that a
GOD-group is always a i-Priifer group it follows that there is a bijection between
the {-valuations and the prime #-ideals in such a group. This establishes of course
that § is a homeomorphism for any x-closed group G. It follows that y is bijective
if and only if ¢ is bijective. This shows in particular that 4 = 1 (since the bijec-

22 ~ Annali di Matematica
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tivity of y implies 1)). On the other hand if & is an 2-Priifer group (i.e. y is bijec-
tive) then 4 will be bijective. More precisely, it follows in conjunction with the
equivalence of 6) and 7) in Theorem 3 that § and the map @ of that theorem are
inverses of each other when @ is restricted to Speec,@. From this we can infer
that a basic open set D(a) = {P,|a ¢ P} c Spec, A(G) by 6 corresponds to an open
set in Spec,G. For ac @' this is obvious since then 8(D(a)) = {P,la¢ P.}. In
case a € A(G)™\G" we can prove that

(11.4) 5(D(@) = {P.)(a) N G ¢ P}
or equivalently
(11.5) a¢ P <=>(a)N GT¢OP,).

Since a € P, = (a) N GTc P, G the implication <= in (11.5) is clear. Conversely,
since @ is the inverse of § it follows that the t¢-ideal in A,(G) which is generated
from (a) N G* is (a). If (a) N GTc P,N G" we therefore obtain a & P, as desired.

Since the right-hand side of (11.4) is evidently a union of bagic open gets in
Spee, @ it follows that § is an open map and this completes the proof of the the-

orem,. |

It is clear from the above proof that the mere bijectivity of either of the maps y
or ¢ is sufficient to assure that & is an a-Priifer group. In case of ¢ the bicontinuity
follows immediately from the bijectivity whereas our proof of the openness of §
relies on Theorem 3.

We spell out two special cases.

COROLLARY 1. — An integrally closed domain R is a Priifer domain if and only
if the map 0 induces a homeomorphism between the prime spectra of R and its Kronecker

funetion ring K(R).

(See Corollary 2 of Theorem 1 and succeeding remarks.)

COROLLARY 2. — A t-closed group G is a t-Priifer group if and only if the map 0
gives a homeomorphism between the prime t-spectra of G and its Lorenzen t-group.

We shall say that a subgroup G of a GCD-group D, as on p. 12-13 is dense
if the axiom (3) of «a theory of quasi-divisors» is satisfied. As a joint corollary

of Theorems 7 and 8 we get

COROLLARY 3. — Every x-Priifer group G may be represented as a dense subgroup
of the GOD-group of all sections in a sheaf of totally ordered groups over the quasi-
compact space Spec, G.
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In fact, the axiom (3) of paragraph 8 amounts to the condition that any ele-
ment in the GOD-group is an infimum of a finite number of elements of the given
dense subgroup. In the case of a pair @ —> A4,(G) the latter denseness property is
by Theorem 3 equivalent to G being an a-Prifer group.

In all the cases where the map « (in the commutative diagram (11.3)) is a homeo-
morphism we obtain a sheaf representation of the group & over Spec val, G, simply
by restricting the full sectional representation of A.,(@) to G. In case of an arbitrary
a-closed group we can obtain the same type of representation by transferring the
topology of Spec val, (A.(G)) to Speec val,G via the bijection «. It seems reason-
able to conjecture that « is a homeomorphism if and only if & is an z-Priifer group.
When trying to prove that « is an open map one encounters a problem which is
analogous to the one in connection with the openness of 4. By the very definition
of the GCD-functor (see (4.4)) we get

(11.6) oc(D (1]4;“)) = afv € Spec val; (A,(F))|o{a) A ... Av(@n)[0(B)A ... Av(b) ]2 = €}
where A, = (a1, ..., ¥n)s,C (b1y evvy Dn)a,= Bl

Without any further hypothesis it is not clear how the set (11.6) can be written
as a union of basic open sets D(a) Cc Spec val, G with a e G*. If ¢ is an a-Priifer
group, however, we know that an element in A,(G)" may be identified with an
integral and finitely generated wx-ideal C,= (e, ..., ¢,), (i.e. with all ¢,e G*). In
this case

a(D(C,)) = {veSpec val, Go(e) ... Av(e,) = ¢} =
= D(e)U...UD(c)

and « is hence an open map.

Although this seems to reconfirin that the openness of « depends on the z-Priifer
condition we have not been able to prove the converse: « is open =@ is an 2-Priifer
group.

12, - Germinal ideals and real representations.

We shall now relate the material of the preceding paragraph to Keimel’'s sec-
tional representation theory for GCD-groups. His approach is based on the notion
of a germinal 1-ideal which in a purely algebraic form imitates the analytical no-
tion of an ideal of vanishing germs at a given point. Without using Keimels general
machinery this notion will quickly lead us to a quite satisfactory sectional represen-
tation theorem for regular GCD-groups with a formal unit (bearing in fact a consid-
erable resemblance to Stone’s representation theorem for Boolean algebras).



354 KARL EeiL AUBERT: Divisors of finite character

The 1-ideals of a GOD-group form an ideal gystem with respect to the « mul-
tiplication » aob = |a|A|b]. Let Spec; G denote the family of prime 1-ideals P equip-
ped with the spectral topology where the basic open sets are given by E(a) =
= {P & 8pec, Gla ¢ P}. (For simplicity we are dropping the subscript 1 in the prime
1-ideals, thereby also avoiding any confusion with ¢-ideals.) For any subset A c G,
E(A) denotes the open set {P|4 ¢ P} = | E(a).

acd

We now fix P € Spec, G and let U denote an open neighbourhood of P, We put

0,=NQ and 0,=U0,

QeU

(where the latter union is taken over all open neighbourhoods U of P).

The set O, is an 1-ideal contained in P which is called the germinal 1-ideal
agsociated with P. A sheaf of GCD-groups may now be defined over Spec, @ by
choosing G/0, as the stalk corresponding to P. Every element g e @ will give rise
to a «section» ¢ in the disjoint union F of these stalks by putting

g(P) =49p

where g, denotes the residue class in /0, to which g belongs. This induces a projec-
tion map z: F' — Spec, @ by putting n(§(P)) = P. In order to make (Spec, @, F, x)
into a sheaf of GCD-groups we equip F' with the finest topology making all the
maps § continuous.

An alternative approach, leading to the same sheaf, is to start out with the
presheaf U — G/0, = G(U) where every inclusion ¥V c U gives rise to a canonical
homomorphism of GCD-groups /0, — G/0,.

In case @ has a formal unit (i.e. an element « such that {u}, = G) Keimel proves
that the map g — § gives an isomorphism of & onto the GCD-group I'(Spec, G, I)
consisting of all glebal sections of F. As already indicated, this sectional representa-
tion has the disadvantage that the stalks need not be totally ordered. A natural
condition which assures thig is the condition that every prime 1-ideal is identical
with its associated germinal 1-ideal: P = O,. This condition is in turn equivalent
to the condition that every prime 1-ideal is maximal. This equivalence results from
the fact that 0, equals the intersection of all (minimal) prime 1-ideals contained
in P (see Proposition 6.6 in [25]).

Whereas our approach yields quasi-compactness of the bage space and total
crder of the stalks for general GCD-grozfps, the corresponding properties are ob-
tained in Keimels approach only when ¢ has a formal unit and the germinal 1-ideal
which is associated to a prime 1-ideal is itself prime. (See Theorem 10.6.2 in [10]
and its corollaries.) For regular GOD-groups the two approaches give sectional repre-
sentations which bear a certain resemblance to each other in that they both have
real groups as stalks. But apart from this there are marked differences, stemming
above all from the different topological properties of Spec, G and Spec, G.
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It should be noted, however, that Keimel is able to dispense with the condition
that 0, is a prime 1-ideal and still obtain a sheaf representation with totally ordered
stalks. This is done by restricting the given sheaf to Spec min, G consisting of the
minimal prime 1-ideals with the subspace topology induced from Spec;@. For a
minimal prime 1-ideal is always identical with its associated germinal 1-ideal and
the stalk is hence totally ordered. It seems, however, that the restrietion to
Spec min; G further damages the fullness of the representation. Without a formal
unit Keimel can only claim that sections with quasi-compact support on Spec, G
come from elements in G. When restricting the sheaf to Speec min, & even this
is no longer true.

Although this is somewhat of a digression from the main theme of the present
paper we shall close these considerations on sheaf representation of GCD-groups
by proving the following rather specialized representation theorem (which in spirit
comes close to Stones topological representation of Boolean algebras).

THEOREM 9. — Every regular GOD-group with a formal unit is isomorphic to the
GOD-group of all sections in a sheaf of real groups over a totally disconnected, compact
Hausdorff space.

Proor. — We shall give a direct proof of this theorem which is based on the
notion of a germinal 1-ideal but which avoids any use of the material in Chapter 10
of [10]. In particular we shall avoid the use of Keimel's «standard construction »
(10.4.7, p. 212 in [10]) and the succeeding main theorem 10.6.2. Instead we shall
base the proof on the consideration of the presheaf L, defined over the space
Y = Spec, G by the assignment U — G/0,= G(U) and combine this with the use of
NAKANO’s chinese remainder theorem for 1-ideals [36].

Let us first verify the tdpological properties of Spee, @ announced in the theo-
rem. A formal unit is an (integral) element % in @ such that {u}, = G. It is easily
seen that the existence of a formal unit in G is equivalent to the quasi-compactness
of Spec, ¢ (see p. 16 in[25]). The Hausdorff property is likewise an immediate
consequence of the fact that there exists no inclusion relation between two different
prime 1-ideals in @. That Spec, G is totally disconnected results from the fact that
the basic open sets U,= E(a) are also closed. In fact, for any @ and at=e.a =
= {b||b|A|a] = ¢} we have the relations

Ba)VUEHEa Y=Y and Ea)NEa")=20.

This follows from the fact that exactly one of the two relations ae P or a‘tc P
holds for each ae@.

We shall next verify that the presheaf L, is a sheaf. Hence, let {U,} with
a€Ac@ be a covering of Y by basic open sets and let the family {g.e G(U.)|ae A}
be selected in such a way that for.each pair of elements a,be A the presheaf
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images of g, and g, in G(U,N U,) are equal. We must show that there exists a
unique g€ @ = G(Y) whose image in G(U,) is g, for all ae A,
Since the unicity is obvious let us pass to the existence. Consider the diagram

G(U,) G(U,)
o« g
G0, + O
@ ly P
AU, N U,

The two «exterior » maps o and y are ordinary presheaf maps whereas the ¢inner »
maps o, f,y are eanonical maps induced on the factor groups by the inclusions
0y, 0y,C Op,+ 0, C Oy, . The crucial point is that the regularity condition in
the theorem (every prime 1-ideal is maximal) assures that also O, ., cO, + O,
such that y becomes the identity map. In fact, when this latter inclusion is inter-
preted in the spectral topolegy of Y it simply amounts to the inclusion U,n U,c
cU,N U, which is trivially true since U, and U, are closed sets.

By the compactness of ¥ we can select a subcovering {U,} of {U,} with be B
for some finite subset B of 4. We now apply Nakano’s chinese remainder theorem
for 1-ideals [36] to the finite families {0,} and {g,}. Actually, by the initial
compatibility condition on the g,’s we have g, = g,(mod 0y, ,,) which by the iden-
tity Oy, 0y, = Oy, -+ 0y, amounts to

=9, (mOd (Oub+ Ovn))
for all b, ce B. By Nakano’s theorem there exists a ge @ such that
(12.1) g=g,(mod 0,).

This means that ¢ is mapped onto g, for all b€ B by the given presheaf maps
G(Y) - G(U,). We now claim that

(12.2) g=4g, (mod Op)
for all ae 4. Since 0, C Oy, (12.1) gives

(12.3) o  g=g,(m0d Oy, p)
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Combining (12.3) with the initiél condition g, = g, (mod O, .,) we obtain
(12.4) g=4g, (mod Oy ;)

for all be B. ~
Using (12.4) together with O, = ) Oy, We get (12.2) as desired. This finishes
beB

the proof that L, is a sheaf and that we hence have an isomorphism of GCD-groups
G=I'Y, L,).

For the remaining part of the theorem we observe that the very definition of a
direet limit gives "

—

where 0, is the germinal 1-ideal belonging to P and the limit is taken over all spec-
tral (basic) open neighbourhoods-of P. Since P is a minimal prime 1-ideal it follows

that 0,= ) @ = P and the stalk at P of the sheaf L, will hence be isomorphic
QcP }
to the totally ordered group G/P. Since P is a maximal 1-ideal of G this stalk will

be order isomorphic to a subgroup of the group of real numbers and this completes
the proof of the theorem. m '

This paper deals with basic arithmetical questions linked to the notion of a
t-ideal. - With respect to this perspective, one may say that our considerations on
germinal 1-ideals and the associated sheaf representation are somewhat marginal.
Prime 1-ideals are, however, intimately linked to the prime t-ideals and it is essential
to be able to play on both of these types of objects and the duality between them.
It should also be noted that the crux of the preceding proof (i.e. the chinese re-
mainder theorem of Nakano) has a distinetly arithmetical origin. Nakano’s theorem
arose directly out of considerations by KruLL [30] and RIBENBOIM [42] concerning
approximation theorems in valuation theory. (For a more general treatment of
the relationship between sheaf representations and chinese remainder theorems see
CORNISH [14].)

Theorem 9 deals with real sectional representation of GCD-groups. Let us now
turn to real fumetional representation of (partially) ordered groups. The literature
on this topic iy somewhat confusing and difficult to penetrate. There seems to be a
need for a comprehensive exposition which surveys the whole field and which clari-
fies the interrelations between the different approaches and the different underlying
assumptions. A comparison is made difficult by the fact that different authors have
different candidates as to the objects which are chosen ag the points of the representa-
tion space (i.e. the points making up the domain of definition for the representing
functions). We shall now show that a neat exposition of the topic of real fune-
tional representation of ordered groups is achieved by the use of the Lorenzen
t-group and the GOD-functor. This is really nothing more than applying the lan-
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guage of the present paper in order to give a more clear exposition of the main
content of an interesting but rather cryptic paper by I. FLEISCHER [17].

THEOREM 10. — A completely integrally closed group G (= {e}) with an archimedian
element (strong umit) is order isomorphic to a separating group of continuous real-
valued functions on a compact (Hausdorff) space.

ProoF. — We recall that an archimedian element of @ is an element % > ¢ such
that for every g € @ there exists n>>1 with u»>g¢. Since @ is completely integrally
closed, it can be embedded (order-isomorphically) in its group of v-ideals G*. This
latter group is a GOD-group such that its t-system has a Lorenzen system x as its
trace on @, making ¢ regularly 2-closed. & is an ordered subgroup of G = A,()
which in turn is an ordered subgroup of G*. The trace of the f-system in G* is the
t-system in G which in turn induces the w-system in @ as its trace. (Examples 1°
and 2° p. 52 in [21] and Theorern 3 above.) The fact that the group G* is lattice-
complete implies that all its v-ideals are principal and hence form a group isomorphic
to G*. This entails that G* is completely integrally closed, a property which transfers
to its ordered subgroup G. Thus G appears as a completely integrally closed GCD-
group with the same archimedian element as ¢ (sinee any element of G is dominated
by an element of G).

It is known that for a GCD-group with an archimedian element the condition
of complete integral closure amounts to the property that the intersection of its
maximal 1-ideals reduces to the identity element (or equivalently to the fact that
its monoid of integral elements is equal to the intersection of all the ¢-valuation
monoids arising from localization at minimal prime i-ideals). A short proof of the
part of this result which interests us here runs as follows: For any GOD-group H
with an archimedian element % > ¢ we can to each prime 1-ideal P, select a maximal
1-ideal M, containing P; (which is itself prime due to the presence of «). This gives
rise to obvious homomorphisms of GOD-groups

H-% J1H/P,- [[H/M,

iel i€l

where @ = {g;};.; is known to be injective. Assume now that H is completely
integrally closed and that Ker (yogp) = {¢}. Since Ker (pog) is an 1-ideal we can
agsume @ € Ker (yop) with ¢ > ¢ and we must then have a*<w for a certain n>1,
because of the complete integral closure. In view of the fact that ¢ is an isomorphism
and H/P, is totally ordered, this entails ¢, (a)"> g;(%) for some 4. Since @,(u) is
an archimedian element in H/P; it follows that ¢,(u) ¢ M, and hence that (p,op,(a))"
is strictly positive in HjM,. From this we infer that y,op,(a) is different from the
identity element in H/M,, contradicting that a € Ker (pogp).

Once the «strong 1-semisimplicity » has been proved, the functional representa-
tion of G over the set Speemin,G (or equivalently over the set Spec max, (), re-
sults immediately since G/P; is a real group for any maximal 1-ideal P,. Endowing
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the set Spec min,G with the coarsest topology making all the representing func-
tions continuous, we clearly obtain a representation of G which has the properties
announced in the theorem.

It remains to be seen how the representation of @ induces the desired represen-
tation of G via ineclusion and how the representation space may be described in
terms of entities in G. It is convenient to do the latter part first: We know already
that the maps « and § in the diagram (11.3) are bijections («x is a bijection because
of Lorenzeng theorem and f§ is a bijection since a GOD-group is a ¢-Priifer group).
These two bijections induee the bijections

(12.5) Spec max val, @ — Spec max val,@ — Spec min, ¢

where the left hand side denotes the set of all maximal ¢-valuation monoids of G—or
equivalently the set of all real-valued ¢-valuations of G. We thus only transport
the above-mentioned weak topology of the right-hand side of (12.5) to the left-hand
side, which indeed consists of a family of objects directly attached to @.

We must finally show that the restriction of the representation from G to G
retains the property of point-separation. Assume hence that §(v,) = §(v,) for oy,
v,€Spec max val, ¢ and all ge@. This means that v,(g) = v,(g) for all ge@.
By the Lorenzen theorem, v; and v, are uniquely extendible to v; = o(v,) and
v, = «(v,) € Spec max val, G (using the notation of (11.3)). Thus v;(h) = vs(h) or
h(vy) = h(v;) for all h e G. This means that v; = v, and hence v, = v, as desired. m

At first sight, the reader will probably have some difficulty in recognizing the
above proof as a precision of Fleischers proof, which hardly contains more than
hints. But if one observes that his group @ occurring at the bottom of page 261
of [17] is nothing but our group G = A,(G) and that the « maximal closed semi-
groups » in the second paragraph of page 262 coincide with our maximal {-valuation
monoids, one sees that the spirit of our proof is in fact quite close to Fleischers proof-
suggestions—although we make a much more explicit use of our heritage from
Lorenzen. Another exposition of Fleischers work has been given by P. RIBENBOIM
in[41]. As to the origin of Theorem 10, it goes back to more analytical work of
YosipA and STONE and a later paper by Ky FAN [31]. The present neat formulation
seems to be due to Fleischer. RiBENBoIM [41] (Theorem 11, p. 75) gives reference
to JAFFARD [22] for a similar result, but this reference does not seem to be quite
accurate. Theorem 10 occurs also, essentially, as a corollary of a more complicated
and more general representation theory given in [38].
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