Annali di Matematica pura ed applicata
(IV), Vol. CLV (1989), pp. 243-260

Quenching, Nonquenching, and Beyond Quenching for
Solution of Some Paraholic Equations ().

Howarp A. LEVINE

Summary. — In this paper we examine the first initial boundary value problem for w, = u,, +
+ el —wu) b, e> 0, >0, on (0, 1} X (0, co) from the point of view of dynamical systems.
We construct the set of stationary solutions, determine those which are stable, those which are
not and show that there are solutions with initial data arbitrarily close to unstable stationary
solutions which quench (reach one in finite time). We also examine the related problem
U = U, 01, > 0; w(0,%) = 0, u,(l,?) = (1 — u(l, 1))B. The set of stationary
solutions for this problem, and the dynamical behavior of solutions of the time dependent
problem are somewhat different.

1. — Introduction,

In this paper, we present some new results for an old problem first discussed
by KawarADA [8] and later by several authors [1-4,9-13]. We formulate the pro-
blem as in [9] since a simple scaling makes the problem as considered, in 1, 3,8,9,12]
equivalent to:

(A) Uy =AU+ e(l—u)y? O<o<l, 0<i<T
u(0,%) = u(l,1) =0 0<t<T
w(@, 0) == up(), wy<l 0ol

Here ¢, #> 0 and the interest is in solution of (A) taking valueg in [0,1) so that
#>0. In[2,3,9,12] uy(»r) =0 while Kawarada also focused his attention on
£>0, f=1.

Inspired by a result of [1] in which it was shown that for all ¢> 0, B>1, it is
possible to select initial values so that u quenches (reaches one in finite time) we
present here some old and new results that allow us to obtain a more complete under-
standing of the dynamical problem for all £¢> 0, >0 and (smooth) %, (o<1
on [0, 1)).

(*) Entrata in Redazione il 7 dicembre 1987.
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In {10], we considered a problem closely related to (A), namely

(B) " = u,, D<az<l, 0<t<T
w(0,1) =0 o<t<T
to(l, t) = &(1 — u(l, ))=8 0<t<T
u(@, 0) = ()  (#p<<1) I<egl

in the special case that u,=0. We showed that either u exists for all time and

lim w(x,t) = a_x

> - 00

where a_ is the smallest root of a(1 — @)= ¢ or else u(l, *) reaches one in finite
time (quenches) and u,(1, -) becomes infinite. Higher dimensional results were con-
sidered in [11].

In general, problems (A) and (B) are expected to have similar structure. How-
ever, there are certain differences in the sets of stationary solutions and consequently
in the behavior of the time dependent solutions. We shall also present some new
results for (B) here and compare them with those for (A).

Let us summarize our principal results when § = 1. First, a little history. It has
been shown [2, 12], that there is g > 0 such that if &> ¢ there is no stationary
solution of (A) and every solution of (A) must quench. Secondly, if 0 < e <&,
there are exactly two stationary solutions of (A), call them f (z, &) and f_(z, &) with
0<f_<f.<1on (0,1), and these coalesce to a single stationary solution if ¢ = &.
In this case, it was shown [2,12] that for 0 < e<e,, and 0<u,<f_ on [0,1] then
% —>f_ as t— 4+ oo, (This was shown for u#, =0, but it follows by comparison,
for other u,’s.)

In this paper, we complete the analysis by showing that there are u,’s in every
L., neighborhood of f, for which % quenches in a finite time while if f_<w,<f,
on (0,1) then 4 —f_ a8 ¢ - -+ oo.

This analysis is in the spirit of MATANO [14] for strongly orderpreserving (systems
of) equations.

Blow up to u, for (A) at quenching was established for § = 1 by Kawarada.
Acker and Kawohl extended this result to higher dimensional problems in a ball.
(See §4 for a brief discussion of their result.) In[18] we have improved their
result (1).

We claimed to have proved blow up for u, for (B) at quenching in [10]. How-
ever, we have found an error in our proof. We shall give a correct (and more general)
proof in §5. In[9], we proposed to consider what happens to solutions of (A)

(1) See Note added in Proof.
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beyond quenching. An appropriate model for such a study was considered by
Parirrps [17]. His problem in our formulation (and in one dimension) is:

(Ao) U, =k el—w)fyu<l) 0<az<l, 0<i<T
#(0,1) = u(1,t) =0 0<i< T
w(w, 0) = uy(®) U<l O<o<l

with #,<<1 at & == 0,1, 4<1,0< f <1 and where y{4] is the indicator function
of the set A. PHILLIPS proved global existence of solutions of weak (distribution)
solufions of such problems. Unfortunately, he was not able to prove uniqueness
of such solutions.

BANDLE and BRAUNER [4] also considered the behavior of (A) beyond quenching.
Their results are also incomplete in this regard. The lack of uniqueness makes it
difficult to study the problem beyond quenching. We shall make a few observations
about (Ay) and propose a few problems for it.

The plan of the paper is as follows: In the next section we characterize the sets
of stationary solutions for (A) and (B). In the third section we define and present
the stability and quenching results for these problems. In the fourth section, we
diseuss the blow up of #,: Finally, we propose some problems for (Ay).

We shall not discuss the question of local existence or continuation of (L*) solu-
tions of either (A) or (B) here. This was done in [10] for (B) and follows for (A) by
the same type of argument (or from more general considerations to be found in
standard treatises).

A word about notation. A solution of (A) with initial values w,(:), will be
written variously as wu(x, t; ¢, O), u(w, t; %), u(2, t; &) or, where no confusion can
oceur, as w(w, t). Similarly, if (A) has only one positive stationary solution, we will
write it as f(x; ¢). If there are more than one we will label them by the order of
their maximum values.

2. — Stationary solutions.

We begin with the study of classical stationary solutions. Some of the results
here are probably well known. (See [7] where the n dimensional version was studied
for n»>1.) We include them for completeness. Let

pluy=1—u)"F —oco<u<l.
Let f(x)(< 1) be a stationary solution of (A), C* on (0,1). Then f solves

(SA) 0 =f@) +ep(flr)) O<w<i
f0)=f1)=0.
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Then, since ¢ >0, we have f'<< 0, f> 0 on (0,1) and f has exactly one maximum
at e (0,1). Let ®'(u) = ¢(u), P(0) = 0. Then f also solves

(2.1) (@) + eD(f(w)) = eP(M)

where M = f(%). Since g(z) = f(1 — ) is also a solution of (SA) and of (2.1), we have

[

M

1
. T=1—%=—= |[DM)— D(n)]tdy =
(2.2) T=1-—2% v2£![() (m]dy

and therefore, f(x) = f(1 — #). (This also follows from [5].) Consequently, there is
exactly one solution of (SA) with f() = M. Thus, for O<w<}, f(#) is given by

()
(2.3) Ve = (D) — D) di

and by f(x) = f(1 — @) if § <# < 1 where M satisfies (2.2). It remains only to count
the solutions of (2.2), Define, for 0 < M < 1,

({11 — ) p=1,
(2.4) 0=0M)={ (1—@1—Me1) p>1,
(A— Myp-1—1) <1,

Then, solution of (2.2) is equivalent to the solution of the following (since O(M) is
strietly increasing on (0, 1)):
[]
(2.2,) e~ do =Ve8 0€(0, oo)
i
when f=1;

9 S
(2.26) (1 — 62)%<<ﬁ+1)/<ﬂ—1>)f(1 — ?)flA-A s = Vi; (B—1) 0€(0,1)
i}

when > 1; and
[

(2.25) {1+ 62)%((ﬁ+1)/(ﬁ—1>)f(1 -+ 52)5/(1"/5)636 = ]/g (1 ——ﬂ) H e (0, co)
0
for 0 < <1
Define intervals

0, 00) 0<f<1
e,y g1,
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constants
€
= =1
Voo e
(2.5) Ole, p) = A=Y
g|p—1
V—s— prl
and functions on Ig
6 N .
e""”fe“’da : p=1, 6el,

0
0

(2.6) G, p) =1 1 — 92)%((ﬂ+1)/(l3—1))f(1 — O.2)1‘31(1——1‘3)(10. f>1, 6elg
0

[7}
1+ 02)1}((ﬁ+1)l(ﬂ—1))f(1 + O.z)ﬁl(l—ﬁ_)do, 0<p<l, bBels.

(=]

Then the set of solutions of G(0, ) = Cle, B) on I is exactly the same as the set
of zeros of function .

(G0, 1) — C(e, 1)) =1, 6el,
H, ) =1 (1 — 62)~HODIE-D) (6, ) — C(e, f)) B>1, Oel,
‘ 1+ 95)-&((ﬁ+1)/(ﬁ—1))(g(9’ B)— Cls,B)) O0<p<l, Oel,
in Ig.

Clearly, G(0,1) = 0. From L’Hopital’s rule

G(0,1) = lim G(6,1) = 0

6 + oo

and for > 1, G(0,f) = 0 and
lim 6(0, §) = 0 .

6«1~

From a routine claculation, one easily sees that 9H/00(6, f) changes sign exactly
once in Iz and H,(0 +, 8) > 0 for f>1. Thus, for §>1, (2.2)s has zero, one or two
solutions accordingly as

(2.7.1) O(g, f) > max G(6, §)
felp

(2.7.2) O, B) = max G(0, B)
Oelp

(2.7.3) O(e, ) < max G(6, ) .

delp
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For the case § € (0, 1), the situation is somewhat more complicated. Here we have

G(Oa ﬂ) =0
while

lim G(6, §) = (1 —f)/(1 + B) .

fe~o00

In this case H(0,3) < 0 and

HG(Gy ﬂ) == (%) (1 ‘—i“ 62)5/(1*5)[1_://; . 0(8, ﬁ) ’\7_1—_6:]:___@] )

If

Ofe, ﬂ)<(:13[—~;—’§)

then H,> 0 on Iz, H(, p) - + oo as O — 4 co. Therefore (2.2); has exactly one

golution in this case.
If

2.8) Ole, B) > (i—'—;ﬁ) ,

then H can have at most two zeros on Ip.
To show that H(-, ) can sometimes have at least two zeros (which will be the
case if (2.7.3) holds), it suffices to show that G,(0,5) <0 for all 6> 1. We have
G, (0, f) = 0(L + g2) =B+~ Ff)

where, with m = 2g/(1 — f)
L) = 631 4 62)m/2D — (m 1)f(1 + o?ymitdo .
A single integration by parts yields O
L(O) = -1 + %)z — m ﬁl + gtyritdg
0

We see that for m = 1,
L) ~—~mInf (§ =+ o).

For m>2, we have that
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A second integration by parts yields
7]

m m{m — 2)
— fi—1 PAY Y 2\(m—2)/2 B 2\ {(m—4)/2
L(6) = 6(1 + 6% 16(1—1—6) ( 1 J.(l—}—a) Vitdg .
0
For 1 < m<«2, we have

'm—~1

i -+ consient (6 — o).

L) ~ — o

Finally, if 0 <m < 1,

==}

%%5?ﬁL+ﬂWWM<O.

0

L(#) — —

Thus, in all cases, @, is eventually negative if 0 < f < 1.
We have, for (2.25), one solution if

(2.8.1) 0< OB <l — B+ B)

or

(2.8.2) Cle, f) = max G0, f);
8elp

two solutions if

(2.8.3) 1—=8)/1 4+ p)< O, B) < nela}x G(p, )3
and no solutions if
(2.8.4) C(e, f) > max G(0, f) .

belp

THEOREM 2.1 A.

(i) If B>1, there is (f) > O such that (SA) has two positive stationary solutions
fi(cre)y f_(:y8) for 0 <e<e(B), ome solution if e = &(f) and none for
e>e(f). When 0 < f <1, there are two positive numbers &(B), e(f) with
0 < ey<< &(f) such that (SA) has ewactly one solution if 0 < e<e, or & = &(fB),
two solutions if &(B) < e<e(B) and none if e () (&(f) = 8(L— B)/(1 + §)?).

(ii) On any interval I = (,,e,) where M(-) =f(}, ) is a continuous function
of & which satisfies (2.2), f(z, €) is a continuous function of ¢ in the uni-
form morm. ’

(iii) On any interval I where M(-) is strictly increasing, f(x, +) is strictly increas-
ing for all x e (0,1). : ‘
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Before proving this, let us state the corresponding result for stationary solu-
tions of (B):

0 =" o<w<l1
(SB) 0) =0
F(1) = e(1 — f(1))-*.

The equation that replaces (2.2) is clearly M(1 — M)f= e.

TarROREM 2.1 B.

(i) For every B> 0, there is &(f) > 0 such that (SB) has exactly two solutions
if 0<e<e(f), one solution if & = &(B) and no solutions if &> &(B).

(ii} This is the same as in the previous theorem.

(iii) On any interval Ic (0, e(f)(, of M(:) s strictly monotone increasing (de-
creasing) f(x, +) is also siricily monotone increasing (decreasing).

Theorem 2.1B is a simple consequence of the linearity of solutions of (SB).
To prove Theorem 2.1A we first establish (ii), (iii). The solutions satisfy (2.3)
on [0,}] and f(x, &) = f(L— @, ¢) on [},1]. It follows from (2.1) that

£(0) = (26@(M(2)))2:= (0, &)

and consequently, from standard arguments in ordinary differential equations that
(i) holds. For (iii) one observes that if M(s') < M(¢"), then, on [0, ],

flx,e") HERCS] i
[[o((e) — PE)L-vdy = V- 0f)-w < V& O(B)n = [[@(M(e") — Pl)]H
0 NN . P
However,
HERD f(x,8")
[1o(3) — Sn)T+an > [[S(M(e") — P)]*
G 0
and consequently
(x,8")
[to(aten) — nT-+an >0
HERS]

and the statement follows.

Finally, by similar reasoning, if M_(e) < M_(¢), if follows that f_(x, &) < folz, &)
on (0, 1).

The bifurcation diagrams are given below.
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| 1]

Classical Solutions

1 o
&(B) €
Fig. 1. — Bifurcation diagram for (SA) f>1 and for (8B) 0 < A< oo.

There remains the question of the existence of nonclassical solutions of (SA).
These must satisty '

1
(#) 0 =[1v'f + ep(pldo

for all p € C7(0,1). This definition precludes solutions which are one on a set of
positive measure. For these we must consider stationary solutions of (A,). By
taking a suitable sequence of ¢’s, we see that (%) holds if and only if

1 |
(2.9) f(e) = e[ @@, (i) dy
0

‘where

z1—y) O<o<y<l

2.10 Gz, y) =
- ) [y(l-w) 0<y<o<l
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\\

Line of Singular Solutions

Classical Solutions

3 i

&(8) 8(.,3) £

Fig. 2. — Bifurcation diagram for (SA) with 0< f< 1. lim g(f) = lim &(f) = 8.

g—>to po*

is the Green's funciion for — d*/da® with Dirichlet boundary conditions. From the
integral equation, yp(f(y)) and (1 — y)g(f(y)) are in Lj (0,1). Therefore f is abso-
lutely continuous and, whenever f(») <1,

1 *
(2.11) (o) = o[ (L — pgp(t)) dy — s [ve(i®)) dy -
® 0
Therefore, {’ is also absolutely continuous and wherever f(r) <1
(@) = — ep(f(@))
when f< 1. Thus f is concave down and [f=1]=0 or [f=1]= {a} where

a€(0,1). In the case [f=1]=0, f<1 on [0,1] and the solution of (%) is clas-

sical.

If [f = 1] = [a], we see from (2.1) that §>1 is not possible. A routine com-
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putation shows that

f(z)

(2.12,) f[(l —u)f 4 Piltdu 40_8_’5/3) O<z<a
0
and
© 40
(2.13,) f[u — w8 N2ty = —1—(_—8_—.-’/3’?) (1—w) a<z<l.
0
where, with
(2.14,) P, = V —5 hmf
(2.15,) ’3 lim f'(2

are the unique nonnegative and nonpositive roots of

(2.164) H(PY) = 40(_6j B,
(2.17,) vy =20 1 —a)
where
1
(2.18) H?) = f [(L— w)f 4 o2} du .
0

Since f' is continuous, P,= N,= 0, a ==1—a =4 and no solution is possible
unless

ie. £ = g(B) of Theorem 2.1A,

THEOREM 2.2 A. - If B>1 (A) cannot have any singular stationary solutions (in
the sense of distributions). If 0 < B <1, (A) has exactly one such solution when
e = g(f) given by

ooy &) =1 — (L= 20)0+P 0 <w<}

and by fi(#, &) = (1 — 1, &) if } <o<1.
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For singular stationary solutions of (A,), we must have

@) = ¢ @a, V) o(f(w) #1f <11y .

Since f is classical wherever f <1 [4, 16], it follows that there is, for every s> &,
2 unique stationary solution given by

1— 1 — /@) o<z<a
(2.19) flw) =

1 a<w<t

on [0, 31 and f(z) = f(1 — &) for z e [, 1] where

1 .(1—@’)_‘/2(1—@

(2.20) T30 p TLp Vearpr

THEOREM 2.3 A. - If 0 < B <1 and c>¢, then there is exactly one singular sta-
tionary solution of (Aw) which is given by (2.19), (2.20).
We designate this solution by f.(x; e).

3. — Quenching and nonquenching.

Suppose we have a solution of (A) which does not quench. Then

(3.1) P, 1) = [G(, y)uly, ) dy
0

is bounded in [0, 1] X [0, co) and
1 1
62)  Fuo,0) = 6@, y)uly, dy = — ula, 1) + ¢[6@,y)g(uly, ) dy -
0 o

H %,>0 also, then F,>0 and « increases to a solution of (%) of Section 2. (For
each & € (0, 1) there is a sequence {f,(x)}.>, with ¢,— + co such that F (=, t.(x)) -0,
otherwise there would be #», for which #(x,, f) is not bounded. Since u inecreases in
1 tl_i)ngo u(®, t) = f(») exists. Taking ¢ = {,(») and taking note of the monotone con-
vergence theorem, we see that f satisfies (2.9).)

THEOREM 3.1 A. — Suppose f>1.

(i) If ¢ > &(f), then every solution of (A) with 0<uy<<1 quenches.
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(i) If & = &(B) we have the following: (a) If uy(x)<f(w, £(B)) then u is a global
solution and Jim (@, 1) = f(z, (B)). (b) For every 6> 0, there ewists uy>0
with u,<1 and [ue(*)— f(*, &(B))[lz0 < & such that u quenches.

(iii) If &< &(f), we have the following: (a) If uy(x) <f.(®, &) and u, e 1[0, 1]
then u is global and t_l)ipw u(@, t) = f_(w, £). (b) For every 6> 0, there is
u(<< 1) with |ue(*) — f,(+, &) |0 << & such that u quenches.

Proor or THEOREM 3.1 A. — Recall that in this case all stationary solutions are
classical.

In order to prove (i}, we need only consider u,=0, since by comparison
u(®, t5 up)>u(x, t; 0) if 4,>0. In this case however, v = u,(z,t; 0) satisfies v = 0
forea=0,1,0<t<T and v>0 for t =0, 0 <z <1 and a linear parabolic equa-
tion and therefore v>0. Now suppose # does not quench. Then 7 = 4 oo and »
increases for each w, to a function w(x) as ¢ - -4 oo, Therefore, w must, by the
opening remarks of this section, be a stationary solution of (A) for ¢ > &(f). Since
there are none, we are done in this case.

We next prove (iii). (The proof of (ii) is easier and is omiftted.) To prove (iii)(a),
we observe that since 0<uy(x)<f, (x,¢), there is a number o> 0 such that
0<uo(@) < fi(w, & + 0) and [, (F, ¢+ 0) <[}, ). Let n(@) = f. (2, e+ ). Then,
for as long as both solutions exist, u(w, t; ue) <u(®, t; v,). However, uxz, 0; 9,) < 0
on (0,1). Therefore, by standard arguments u,(z,?; v)<0 and consequently
u(@, 1; vy) <V and u(w, t; v,) global. Therefore so is u(z, t; u,). Also Jim w(@, t; v,) =
= y(») exists and (1) <f.(},¢). By an argument similar to that used to prove
part (i), p(z) is a stationary solution. But then y(x) = f_(, ). Also by the argu-
ment in part (i), «(z, t; 0) exists globally and lim w(z, t; 0) = F(x), which must also
be a stationary solution. Since

u(, 3 0) <wul®, 15 uo) < ulw, t; v,)

it follows that F(x) = f_(z,¢) and lim w(w, t, o) = f_(x, €) pointwise as claimed.
To prove (iii) (b), we invoke Theorem. 2.1A. Given § >0 we choose >0 80
small that

[fi(+y e~ 0)— feles &) o < @

and note that f, (}, e — o) > f.(}, ¢).

We now set wuy(x) =f_(#,¢— o) and observe that for w(z,?, u,) we have
(@, 05 up) > 0 on (0,1). Again we find that u,(x, ¢; 4,) > 0 on the existence interval
wherever u, exists. Thus, if this » does not quench, 7 = - oo and u(z, t) — w(x),
a solution of (2.1) which must be a stationary solution of (A) with w(}) > f,(}, e).
However, this is not possible unless w is a weak stationary solution. Since for §>1,
there are none, 4 must quench.
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THEREFORE 3.2 A. — Let 0 < g <1.

(1) If &> &g, then statements (i), (ii) end (iii) of the preceding hold in this case
accordingly as &> &(f), ¢ = &(f) and &< & < ¢(B).

(i) If & = &, we have the following: () If u,<<f, and w,e CY then u is global
and lim u(@, t) = f_(«, &). (b) There exist (smooth) initial values for which
% quengues.

(iii) If 0 <& <&, we have the following: (a) If 0<u,< f,(x, &), then u canot
quench, even in infinite time ond tygwu(m, 1) = f(»,&). (b) There exist
{(smooth) initial values uy<<1 for which u quenches.

ProoF oF THEOREM 3.2 A. - (i) Suppose &> ¢. If ¢<e(f) and u,= 0, then
% == u{x, {; 0) must quench. To see this, since u,>0, we note that if % did not
quench, even in infinite time, then w would approach a classical stationary solu-
tion of (A) which is impossible. If u reached one in infinite time, it would have to
approach a stationary solution of the form f,(-, &) as ¢ — oo (i.e. a stationary solu-
tion taking the value 1 at a single point) since (v — )u.(x,?) > 0 for x4 } and
all £>0. However, no such weak stationary solutions exist when &> ¢,. For
0 < uy<<1, the finite time quenching follows by comparison. This proves the
statement (i) of Theorem 3.1A for thig case.

Next we prove (iii) of Theorem 3.1A for this case. (The proof of (ii) is similar
and is omitted.) The proof of (a) is exactly the same if 0 < f << 1 as for §>1. The
proof of (b) follows as before, except we must rule out the possibility of infinite time
quenching. This we do as above, since the choice of uy(= f (x, ¢ — 0)) again yields
(@ — 3)u,> 0 for » =~ 1.

The proof of the theorem when ¢ = ¢ is exactly like the case for which ¢ < g
and is omitted.

To prove (iii) (¢), we choose v,= f (%, y) where &<y << &(f) and y is so close
to & that w,<v, on (0,1). Therefore, by comparison,

w(@, t5 &, 0) <ulw, 15 & o) <u(®, £ &, vo) .

However, with oz, 1) = ulz, t; &, v,), and w = v,, we have w(0,?) = w(l,t) = 0,
w(z, 0) < 0 and thus w(x, t) < 0. Therefore v(z,t} cannot quench, even in infinite
time, and v(z, t) - f(z, ¢), the only stationary solution of (A) in this case. Also
u({w, t; &, 0) increases to f(w, &).
To prove (b) we let
1

Bty = |ulw, t)p(w) do

where y is the first (Dirichlet) eigenfunction for — d2/dx?, Then

F'(t)>— n*F + e(l — F)6=Q(F).
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We choose u,(®) so close to one that F(0) > r, where r, is the largest root of @ in
(— oo, 1). Then F'(t)> 0, Q(F(f)) cannot change sign and

- f i,
Q(o)”

F(0)

for all ¢ in the existence interval. Therefore # quenches.
For problem (B) we have '

THEOREM 3.2 B. — If 0 << f < oo, then (i), (ii) and (iii) of Theorem 3.1A also hold
for solutions of (SB) where now &(f) is as in Theorem 2.1B.

4. — Blow up of u, at quenching.

In his original paper, Kawarada showed that when « quenched (in our sense)
then u, became unbounded at the quenching point. He considered only the case
f =1 and %,==0. In[9], we suggested that his result (and proof) should extend
to higher dimensional problems, Indeed, recently, in [1], it has been shown that
when (0, 1) is replaced by the » ball and the discussion is restricted to radial solu-
tions with radially decreasing initial values such that w,(r, 0)> 0, then for solutions
which quench at » = 0, %, blows up at r = 0. Their proof did not follow the lines
of Kawarada’s. Rather, they examined the differential equation satisfied by
v =.(1 — %)bu,. They show that v,>A,.v where A4, is the radial Laplacian. Their
arguments seem fto require that the quenching point be isolated.

Although their result provides a partial answer to the problem we proposed, the
last word in this problem has yet to be said. For example, it is easy to write down
simple problems for which gquenching takes place on a continuum. (Consider
#,= Au - (1l — u)~" in the annulus 1<r<2, with u=0 on r=1, » =2 and
u(r, 0, 0) = 0 for ¢ sufficiently large.) Nor is the question answered in an n ball
when the data is not radial (or when it is, when it is not radially decreasing). In [18]
we have recently obtained an improvement of the blow up result for w, of [1] (%).

For problem (B), the blow up of u; at » = 1 was claimed by us in [10]. However,
the proof of Corollary 2.7, where this elaim was made, is not correct. The equation
at the top of page 1145 should read (with I = ¢ and u,=0),

4 :
wa, 0) = 26, 1, g(u(l, 0)) - [6(@, 15 t— )¢/ (w1, 7)) uadn
where

Glwy y5 1) = 2 3 exp (— A1) sin (A,@) sin (A,y)

n=1

and A,= 31 (2n— 1)z
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We prove

THEOREM 4.1. — Let u;(m)>0, uz(w),>0 on [0, 1] and suppose u, a solution of (B)
with w(®, 0) = (%) quenches at time T'. Then the quenching ocours at x =1 and u,(1, 1)
blows up as t approaches T from below.

PROOF. — By the arguments of [10] it follows that w, > 0, u, > 0 in (0, 1) x (0, T)
so that quenching cannot occur on [0, 1) % (0, T).
From the representation formula for the solution, we have, for ¢t < T,

1 0
a

(4.1) u(®, ) = J Gz, y; t)uoly) dy - | Glx, 1; ¢ — n)p(u(l, n)) dy ,

0

and consequently, after differentiating and integrating by parts we find that for
I<t< T, 0<2<],

1 1
(4.2)  ugo, 1) :J.Gt(xy Y3 Du(y) dy — Ef'a% [G(z, 15t —n)]e(u(l, n) dn =
0 9

4

1
=J. {(@, ¥3 Du(y) dy + G(w, 1; t)p(u(l, 0)) + efG(w, 15t —n)e' (u(@, n) w1, n)dy.
4]

]

We let @ — 1~ in this last expression and use the (assumed) continuity of «, on
[0,1]1x(0, T). Since u,>0, ¢'>0, we have, for <t < T, >0 and fixed

ws(1, 1) > Oy +- 502[‘}9(“(1’ t) — p(u(l, 0))]

where
i

Ov= int [ [64(1, y; fymly)dy] + ep(u(, 0)) int [6(1,1; 1)
st Tl g st T

and
C, = inf G(1,1,%)

sIKT

are positive constants. The result now follows from (4.3).

5. — Beyond quenching.

As we remarked in the introduction, the study of (A.) is inhibited by the lack
of a uniqueness theorem. However, we conjecture the following: Suppose u,>0
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in the region where u <<1. If the solutions of (A ) with these properties guench
and f>1, or 0 < <1 and ¢ <¢g, then

lmu(z,t) =1 xe(0,1);

i—>co

or else if 0 <f <1 and e>¢, then

Lim w(x, 1) = f(z; &)

f—co

where f, is given in Theorem 2.3A. If §>1, the first limit is obtained in finite time
(complete quenching).

Acknowledgement. — The author thanks the referee for a number of valuable
comments.

REFERENCES

[11 A. Acker - B. KawonL, Remarks on quenching, Nonlinear Analysis - TMA (to appear).

[2] A. AcCKER - W. WALTER, On the global existence of solutions of parabolic equations with
a singular nonlinear term, Nonlinear Analysis, TMA, 2 (1978), pp. 499-504.

[3] A. AckER - W. WALTER, The quenching problem for monlinear parabolic equations,
Lecture Notes in Mathematics, 564, Springer-Verlag, New York, 1976.

[4] C. BANDLE - C.-M. BRAUNER, Singular perturbation method in a parabolic problem with
free boundary, in Proc. BAIL IVih Conference, Novosibirsk, Boole Press, Dublin 1987.

[5] B. Gipas - WEI-MinG N1 - L. NIRENBERG, Symmelry and related properties via the maxi-
mum principle, Comm. Math. Phys., 68 (1979).

[6] M. W. HirscH, Differential equations and convergence almost everywhere strongly mono-
tone flows, Contemp. Math., 17, A.M.8., Providence, R.I., 1983, pp. 267-285.

[7] D.D. Josern - T. 8. LUNDGREN, Quasilinear Dirichlet problems driven by positive sources,
Arch. Rat. Mech. Anal., 49 (1973), pp. 241-269.

[8] H. KawAraDA, On solutions of initial boundary value problem for u, = w,, -+ 1/(1 — u),
RIMS Kyoto Univ., 10 (1975), pp. 729-736.

(9] H.A. LuviNg, The phenomenon of quenching: a survey, in Trends in the Theory and
Practice of Nonlinear Analysis, V. LAXsHMIKANTHAM (ed.), Elsevier Science Publ., North
Holland, 1985, pp. 275-286.

[10] H.A. LuviNg, The quenching of solutions of linear parabolic and hyperbolic equations
with nonlinear boundary conditions, SIAM J. Math. Anal., 14 (1983), pp. 1139-1153.

[11] H. A. LEVINE - G. M. LIEBERMAN, Quenching of solutions of parabolic equations with
nonlinear boundary conditions in several dimensions, J. Reine Ang. Math., 345 (1983),
pp. 23-38.

[12] H. A. LeviNg - J. T. MoNTGOMERY, The quenching of solutions of seme nonlinear para-
bolic problems, SIAM J. Math. Anal., 11 (1980), pp. 842-847.

[13] G. M. LIEBERMAN, Quenching of solutions of evolution equations, Proc. Centre Math. Anal.
Aust. Nat. Univ., 8 (1984), pp. 151-157,



260

H. A, LeviNe: Quenching, nonquenching, and beyond quenching, eto.

[14]
[15]
(16]
[17]

[18]
[19]

H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equaiions,
Pub. Res Inst. Mat. Sei., 15 (1979), pp. 401-454.

H. Maravo, Existence of nontrivial unstable sets for equilibrium of strongly order preserving
systems, J. Fac. Sei. U. Tokyo Se. IA, 3¢ (1984), pp. 645-673.

D. PuiLrips, Huistence of solulions lo a gquenching problem, Appl. Anal., 24 (1987),
pp. 353-364.

R. A. SyarH, On a hyperbolic quenching problem in several dimensions, SIAM J. Math.
Anal. (in press).

Kune DeExG - H. A. LEVINE, On the blow up of u, al quenching, Proc. AM.S. (in press).
Gro Jowe-SEExXG, On the gquenching behavior of a semilinear parabolic equation, JMAA
(in press).

Note added in Proof.

Recently DENG and LEvVINE, by using Lemma 4.1 of Friepman and McLrop (Indiana

J. Math., 24 (1985), pp. 425-447) and [5], have been able to show that u, blows up when u
quenches for a much wider class of initial data than considered in [1] as well as for convex
regions (in one or more dimensions).

They also show (in one or more dimensions) that if the special domain is convex, the
set of quenching points is a compact subset of that domain.

Recently Guo [19], has shown that if 8> 0 than (A) can have at most a finite number of
guenching points. In view of our remark in § 4, this result fails in more than one dimension.

He has also shown that if >3, then near a quenching point a € (0, 1),

lim [1—w(w, )] (T — )77 = (g/p)?

g

uniformly for [z — a]2<e¢(T— 1) for any ¢ > 0 where y = 1/(f + 1).



