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Quenching, Nonquenching, and Beyond Quenching for 
Solution of Some Parabolic Equations (*). 

HOWARD A. IzEVINE 

Summary.  - I n  this paper we examine the ]irst initial boundary value problem/or ~ = uzr -4- 
-1- e(1 -- u)-~, e > O, fl > O, on (0, 1) X (0, ~ )  ]rom the point o /v iew of dynamical systems. 
We construct the set o/stationary solutions, determine those which are stable, those which are 
not and show that there are solutions with initial data arbitrarily close to unstable stationary 
solutions which quench (reach one in ]inite time). We also examine the related problem 
% = u ~ ,  O < x <  1, t > O ;  u(O,t) = O, nz(1, t) = ~ ( l ~ u ( 1 ,  t))-~. The set o] stationary 
solutions ]or this problem, and the dynamical behavior o] solutions o] the time dependent 
problem are somewhat di]]erent. 

1 .  - I n t r o d u c t i o n .  

In this paper, we present some new results for an old problem first discussed 
by KAWAI~AI)A [8] and later by several authors [1-4, 9-13]. We formulate the pro- 
blem as in [9] since a simple scaling makes the problem as considered in [1, 3, 8, 9, 12] 
equivalent to: 

(A) u~ = u ~ §  O < x < l ,  O < ~ < T  

u(O, t )  = u(1 ,  t) = 0 O < t < T  

u(x, O) == u0(x), ~0< 1 O < x < l .  

Here e, fl > 0 and the interest is in solution of (A) taking values in [0, 1) so that  
u0>0. In [2,3,9,12] uo(x)~0 while Kawarada also focused his attention on 
e > O ,  fl---1. 

Inspired by a result of [ l ]  in which it was shown that  for all e > O, /~>~1, it is 
possible to select initial values so that  u quenches (reaches one in finite time) we 
present here some old, and new results that  allow us to obtain a more complete under- 
standing of the dynamical problem for all e > O, fl > 0 and (smooth) uo (no < 1 
on [0,1)). 

(*) Entra ta  in Redazione il 7 dicembre 1987. 
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This research was sponsored by the U.S. Air Force Office of Scientific Research, Air 

Forse Systems Command Grants 84-0252 and 88-0031. The United States Government is 
authorized to reproduce and distribute reprints for Governmental purposes not withstanding 
any copyright notation therein. 
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In [10], we considered a problem closely related to (A), namely 

u(O, t) = 0 

t )  = - u ( 1 ,  

u(~,, o) = Uo(X) (Uo< 1) 

0 < t < T  

0 < t <  T 

0 < t < T  

O < x < l  

in the  special case t h a t  uo ~ 0 .  We showed tha t  either u exists for all t ime and 

l im u(% t) = a_x 
t - ~  + co 

where a_ is the  smallest root  of a ( 1 -  a)~ = e or else u(1, �9 ) reaches one in finite 
t ime (quenches) and ~(1 ,  �9 ) becomes infinite. Higher  dimensional results were con- 

sidered in [11]. 
In  general, problems (A) and (B) are expected to have similar structure.  How- 

ever, there  are certain differences in the sets of s ta t ionary solutions and consequently 
in the  behavior  of the  t ime dependent  solutions. We shall also present  some new 
results for (B) here and compare them with those for (A). 

Le t  us summarize our  principal results when fl = 1. First,  a little history. I t  has 
been shown [2, 12], t h a t  there  is s0 > 0 such tha t  if e > so there  is no s ta t ionary 
solution of (A) and every  solution of (A) must  quench. Secondly, if 0 < e <  so, 
there are exact ly  two s ta t ionary solutions of (A), call t hem f+(x, e) and ]_(x, s) with 
0 < ] _ <  ] + <  1 on (0, 1), and these coalesce to  a single s ta t ionary solution if e = s0. 
In  this case, it was shown [2, 12] t h a t  for 0 < s<s0,  and 0 < u o < ] _  on [0, 1] then  
u ~ ]_ as t ~ - ~  ~ .  (This was shown for uo ~ 0, bu t  it follows by  comparison, 

for other  Uo'S.) 
In  this paper, we complete the  analysis by  showing tha t  there  are uo's in every  

L~ neighborhood of ]+ for which u quenches in a finite t ime while if ] _ <  uo< ]+ 

on (0, 1) then  u - + ] _  as t - +  ~- ~ .  
This analysis is in the  spirit of M.~TA~O [14] for strongly orderpreserving (systems 

of) equations. 
Blow up to ut for (A) at  quenching was established for fl = 1 by  Kawarada.  

Acker and Kawohl  extended this result  to higher dimensional problems in ~ ball. 
(See w 4 for a brief discussion of their  result.) In  [18] we have improved their  

result  (~). 
We claimed to have proved blow up for ut for (B) at  quenching in [10]. How- 

ever, we have found an error in our proof. We shall give a correct  (and more general) 
proof in w 5 .  I n  [9], we proposed to co~sider w h a t  happens to  solutions of (A) 

(1) See Note added in Proof. 
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beyond quenching. An appropriate model for such ~ study was considered by 
PHILLIPS [17]. His problem in our formulation (and in one dimension) is: 

(Aco) u~ : u ~ + e ( 1 - - u ) - t ~ Z ( u < l )  O < x < l ,  O < t < T  

u(O, t) = u(1,  t) : o o < t < T 

u(x, O) = Uo(X) uo<l  0 < x < 1 

with *to< 1 at x = O, 1, ~to<l, 0 </~ < 1 and where z[A] is the indicator flmction 
of the set A. PHILLIPS proved global existence of solutions of weak (distribution) 
solutions of such problems. Unfortunately, he was not able to prove uniqueness 
of such solutions. 

BANDLE and BRAUNER [4] MSO considered the behavior of (A) beyond quenching. 
Their results are also incomplete in this regard. The lack of uniqueness makes it 
difficult to study the problem beyond quenching. We shall make a few observations 
about (Ao) and propose a few problems for it. 

The plan of the paper is as follows: In the next section we characterize the sets 
of stationary solutions for (A) and (B). In the third section we define and present 
the stability and quenching results for these problems. In the fourth section, we 
discuss the b lowup of u~: Finally, we propose some problems for (Ao). 

We shall not discuss the question of local existence or continuation of (L ~) solu- 
tions of either (A) Or (B) here. This was done in [10] for (B) and follows for (A) by 
the same type of argument (or from more general considerations to be found in 
standard treatises). 

A word about notation. A solution of (A) with initial values u0('), will be 
written variously as u(x, ~; e, 0o), u(x, t; uo), u(x, t; e) or, where no confusion can 
occur, as u(x, t). Similarly, if (A) has only One positive stationary solution, we will 
write it as l(x; e). ]If there are more than one we will label them by the order of 
their maximum values. 

2. - S t a t i o n a r y  s o l u t i o n s .  

We begin with the study of classical stationary solutions. Some of the results 
here are probably well known. (See [7] where the n dimensional version was studied 
for n > 1.) We include them for completeness. Let 

9(~)--(l--u)-~ -- co<u<l. 

Let ](x)(< 1) be a stationary solution of (A), C 2 on (0, 1). Then I solves 

( s A )  o : / " ( x )  + ~ ( I ( ~ ) )  0 < x < 1 

1(0) : 1(1) : o .  
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Then, since ~o > 0, we have f '  < 0, ] > 0 on (0, 1) ~n4 ] has exactly one maximum 
at  ~ e  (0,1). Let  @ ' ( u ) =  ~(u), ~5(0)= 0. Then ] ~lso solves 

(2.i) �89 (]'(x))~ + ~r = ~q;(M) 

where M = ]@). Since g(x) = ](1 -- x) is also a solution of (SA) and of (2.1), we have 

(2.2) 
M 

= 1 

2 
0 

and therefore, ](x) =-- ] ( 1 -  x). (This also follows from [5].) Consequently, there is 
exactly one solution of (SA) with ] ( �89  M. Thus, for 0 < x < � 8 9  ](x) is given by 

(2.3) 

s(z) 
- r 

0 

a n d  by  ](x) = ](1 -- x) if �89 < x < 1 where M satisfies (2.2). I t  remains only to count 

the solutions of (2.2), Define, for 0 < M < 1, 

(2.4) o = o (~ )  = 

@(1 / (1 - -M)) )~  ~ = z ,  

(1  - -  (1 - -  M ) B - 1 )  �89 fl > 1 ,  

((1-  M)a-~-- 1)~ ~ < 1 .  

Then, solution of (2.2) is equivalent to the solution of the following (since 0(ll/) is 

strictly increasing on (0, 1)): 
0 

(2.20 ~-~'fe"~ = V~/s 
0 

when fl --- 1 ; 
0 

0 

when fl > !; and 
0 

0 

for O<fl<!. 
Define intervals 

(0, ~ )  

I ~ =  (0, 1) 

0 e (0, ~ )  

V~ (8 - 1 )  o e (o, 1) 

V~(I --~) oe(o, oo) 

o < ~ < l  

fl>l, 
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constants 

(2.5) 

and fuaetions on. I~ 

r  = 
Vi /5 = ! 

V~ - l f  
s / 5 ~ 1  

(2.6) ~(0,/5) = 

0 

e--~ /5 = 1 ,  0 e Ix 
0 

0 

0 

0 

(1 + 02)�89162 + a~)~/(~-~lda 0 < /5  < 1 ,  0 ff Ia .  
0 

Then the set of solutions of G(O,/5) = C(s,/5) on Ia is exactly the same as the set 
of zeros of function. 

I 
H(O, 

/5) = I 
t 

in Ia. 
Clearly, G(0, 1) = 0. From L'Hopital ' s  rule 

e~ 1 ) -  c(,, 1)) 
( 1 -  o2)-�89 l)/(fl-1))(G(o, ~) - c(~, ~)) 

(1-~- 02)--�89 G(O, /5)-- r /5)) 

/ 5 = 1 ,  Oelx 

/ 5 > 1 ,  0~I~  

0 < / 5 < 1 ,  OeIo 

g(O, 1) = lira G(O, 1) = 0 
0---.,. + co 

and for fl > 1, G(0, fl) 0 and  

lira G(O, /5) -~ 0. 
0 ~ - 1 -  

From a routin.e elaeulation, one easily sees tha t  ~H/~O(O,/5) changes sign exactly 
once in I~ and Ho(O -+,/5) > 0 for f l > l .  Thus, fo r /5>1 ,  (2.2)~ has zero, one or two 
solutions accordingly as 

(2.7.1) C(e,/5) > max  G(0,/5) 
0 el~ 

(2.7.2) C(e,/5) -~ max G(O,/5) 
Oela 

(2.7.3) ~(,,/5) < max G(0,/5).  
0 ~I~ 
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F o r  t he  case fl e (0, 1), t h e  s i t ua t ion  is s o m e w h a t  m o r e  compl ica ted .  H e r e  we h a v e  

6~(0,/3) = 0 

while 

l i m  G(O,/3) = (1 - - /3 ) / (1  -}- /3) .  
0.(-- r162 

I n  th is  case H(0 ,  t3) < 0 a n d  

I f  

1 - / 3  c(~,/3) <(~)  

t h e n  H can  h a v e  a t  m o s t  two  zeros on I~ .  
To  show t h a t  H(. ,  fi) can  s o m e t i m e s  h a v e  a t  leas t  two  zeros (which will be  t h e  

case if (2.7.3) holds) ,  i t  suffices to  show t h a t  Go(O ,/3) < 0 for  all 0 >> 1. W e  h a v e  

Go(0 ,/3) = 0(1 + 02)-~((~+1)/(~-1)L(0) 

where ,  wi th  m = 2/3/(1-/3) 

0 

L(o) = o- (1 + (m +  )f(1 + 
0 

3_ single i n t e g r a t i o n  b y  p a r t s  yields  

0 

/}(0) = 0-1(1 + 0~) " / ~ -  mr(1 + (~2)ml2-~dz. 
0 

W e  see t h a t  fo r  m ----- 1, 

L(O) ~ -- In 0 

F o r  m > 2 ,  we h a v e  t h a t  

L(O) <0-1(1 + 0~) '.:~ 
m--I 

(0 ~ + oo). 

0 m-1 
.,-1 

(m - -1)  
(0 -~ oo) .  

then H o > 0 on 18, H(O, fl) -~  ~- co as 0 -+ -{- oo. The re fo re  (2.2)8 has  e x a c t l y  one 

so lu t ion  in th is  case. 
I f  

(2 .s)  c(~, /3)  > ~ , 
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A second integration by  parts yields 

L(0) = 0-~(Z § 0~) '~" 
~b 

m - - 1  
0(] § 0~) (~--')/~ 

For 1 < m < 2, we hsve  

L(O) ~ - - - -  

Finally, if 0 < m < 1, 

L(O) -+ 

0 

m(m - -  2) f ( m - - 1 )  (1 § a~)(~-')/:da. 
0 

Ore-1 

m . - 1  
§ constant (0 ~ c~). 

r 

( m - - l )  ( 1 §  < o .  
0 

Thus, in all cases, G o is eventually negative if 0 < fl < 1. 
We have, for (2.2~), one solution if 

(2.s.1) 0 < c(~, ~) < (z - ~)/(1 + ~) 

O r  

(2.s.2) C(e, fi) = max  G(0, ~); 

two solutions if 

(2.8.3) 

and no solutions if 

(~ - t~)/(1 § ~) < C(~, #) < max G(p, ~); 
O~I~ 

(2.s.4) C(e, ~) > max  ~(0, ~) .  
OeI~ 

T~EO~EH 2.1 A. 

(i) I] fl> l ,  there is s(fl) > 0 such that (SA) has two positive stationary solutions 
]+(', s), ]_(., ~) ]or 0 < s <  e(fl), one solution i] ~-= e(fl) and none ]or 
e > e(fl). When 0 < fi < 1, there are two positive numbers so(fl), s(fl) with 
0 < co< s(fl) such that (SA) has exactly one solution if 0 < s<eo or e ---- s(fl), 
two solutions i] eo(fl) ~ s < ~(fl) and none i] ~ > s(fl). (So(fl) -~ 8(1-- fl)/(1 + fl)~). 

(ii) On any interval I ~ - ( G ,  G)where  M ( . ) - - ] ( � 8 9  .) is a continuous ]unction 
o] e which satis]ies (2.2), ](x, e) is a continuous ]unction o] e in the uni- 
]orm norm. 

(iii) On any interval I where M( .  ) is strictly increasing, ](x, �9 ) is strictly increas- 
ing ]or all x ~ (0~ 1). 
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Before proving this, let us s ta te  the  corresponding result for s tat ionary solu- 

tions of (]3): 

0 = t"(x) 0 < x < 1 

(s13) ](o) = o 

t'(]-) = ~ ( ] - -  t (1)) -~.  

The equation tha t  replaces (2.2) is clearly M ( 1 -  M)z---- e. 

THI~ORE~ 2.1 13. 

(i) 7For every fl > O, there ks e(fl) > 0 such that ($13) has exactly two solutions 

i t 0 < e < e(fl), one solution i t  e = e(fl) and no solutions i t e > e(fl). 

(ii) This is the same as in the previous theorem. 

(iii) On any interval I c (0, e(fl)(, i t  M( . )  is strictly monotone increasing (de- 
creasing) t ( x , . )  is also strictly monotone increasing (decreasing). 

Theorem 2.113 is a simple consequence of the  linearity of solutions of ($13). 
To prove Theorem 2.1A we first establish (ii), (iii). The solutions satisfy (2.3) 

on [0, �89 and f(x, e) = ](1 -- x, e) on [�89 1]. I t  follows from (2.1) tha t  

t ' (o )  = r ( o ,  

and consequently, from standard arguments  in ordinary differential equations tha t  
(ii) holds. For  (iii) one observes tha t  if M ( e ' ) <  M(g'), then, on [0, �89 

fEr - q~(~)]i-~ d r 
0 

= V ~ .  c(fl).x < V ~  c(~)x = f [ ~ ( ~ ( ~ " ) )  - ~ ( ~ ) ] - ~ d ~ .  
0 

However,  

fEr - r >f[O(M(~") )  -- ~(n)]-~dn 
0 0 

and consequently 
~(~, ~,,) 

f[~(M(e")) -- ~(~)]-~ an > 0 
f(z,8') 

and the s ta tement  follows. 
Finally, b y  similar reasoning, if M_(e) < M+(e), if follows Chat f_(x, e) < f+(x, e) 

on (0, 1). 
The bifurcation diagrams are given below. 
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II/ll| 

! 

~(~) 

Fig. 1. - Bifurcation diagram for (SA) fl > 1 and for (SB) 0 < fl < oo. 

S 

There remains the  question of the  existence of nonclassical solutions of (SA). 
These must  satisfy 

1 

(,)  o =f[~" ! + e~(])~] sz 
0 

for all ~ e Co(O , 1). This definition precludes solutions which are one on a set of 
positive measure. For  these we must  consider s ta t ionary solutions of (A~). B y  
taking a suitable sequence of ~s~ we see tha t  ( , )  holds if and only if 

(2.9) 

where 

(2.10) 

1 

/(~) = ~fG(~, y)~(I(y)) dy 
0 

x(1 - -  y) O < x < y < l  

G ( x , y ) ~  y ( 1 - - x )  0 < y < x < l  
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I!/lI| 

\ 
�9 of Singular Solutions 

Classical Solutions 

z i ----- 

F ig .  2. - Bifurcation diagram for (SA) with 0 < fl < l. lira e o ( , 6  ) = lim e(fl) = 8. 
fl-~+o p~-r 

is the  Green's funct ion for - -  d~/dx ~ with Dirichlet  boundary  conditions. F r o m  the 
integral  equation,  y~(](y)) an4 (1 --  y)q~(f(y)) are in Z~oo(0, 1). Therefore ] is abso- 

lutely continuous and, whenever  ](x)< I, 

(~.n) l ' ( ~ )  = ~f(:L- ~)~(S(y))dy- ~fy~(S(y))dy, 
:v 0 

Therefore,  ]' is also absolutely continuous and wherever ] ( x ) <  1 

y(x )  = - e~(/(x)) 

when ] < 1 .  Thus ] is concave down and [ ] ~ - 1 ] = 0  or [ f = l ] - ~  {a} where 
a e (0, 1). In  the  case [] -~ 1] 0, ] < 1 on [0, 1] and the  solution of ( . )  is clas- 
sical. I f  [] = 1] = In], we see f rom (2.1) tha~ •>1  is not  possible. A rout ine corn- 
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putat ion shows t h s t  

(2.12o) 

and 

(2.23~) 

where, with 

(2.14a) 

(2.25~ 

f[(2 --u)~-~ § P~]-~du = 4CI(,s, l~) 2--f l  
0 

f[( 1 - -  u) 1-~ -t- N~]-�89 = 4C,(s, #) (1 --  x) 

: -~  
.P. = ~ l imfl(x) 

N~----- V i----- fl lim/'(x) 
w 

a < x < 2  . 

are the unique nonnegative snd  nonpositive roots of 

(2.26~ H(PD = 4c(~, ~___) a 2--f l  

(2.17a) H(N~) ----- 4C(s, fl) 2 - f l  0 - a )  

where 

(2.18) 
1 

//(~) =fl(1 u)'-~ + z,]-tdu. 
O 

Since ]' is continuous, Pa-~ Na = O, a ~ 1 -- ~ = �89 and no solution is possible 
unless 

r = 1 -B 

i.e. e = So(fl) of Theorem 2.1A. 

THEOR~,~ 2.2 A. - I1 f l > l  (A) cannot have any singular stationary solutions (in 
the sense o] distributions). 11 0 < f l <  1, (A) has exactly one such solution when 
s = eo(fl) given by 

:f,(~, eo) = 1 - -  (1 - -  2~)  21(1+'e) 0 < v < � 8 9  

~d. by l , (x,  So) = IS(1 - -  x, ~o) i t  �89 < x < 1. 



254 H . A .  LEVITE: Quenching, nonquenehing, and beyond quenching, etc. 

For  singular s ta t ionary solutions of (A~), we must  have 

1 

](x) --~ efG(x, y)qD(f(y))%If < 1] dy. 
0 

Since f is classical wherever f < 1 [4, 16], it follows tha t  there is, for every e>eo, 
a unique s tat ionary solution given by  

(2.19) 
i- (i- x/a) ~/(I+~) O<x<a 

f ( x ) =  i a < x < � 8 9  

on [0, �89 and f(x) = f(1 -- x) for x e [�89 1] where 

(2.20) a -- 
1 (1 --  ~) __ ]/2_2_2~ --  ~) 

2c(~,fl) (1 +~)  p' ~(~+ ~)~" 

Tm~Ol~E~ 2.3 A. - I f  0 < fl < i and e>~eo, then there is exaetly one singular sta- 
tionary solution of (A~) which is given by (2.19), (2.20). 

We designate this solution by ],(x; e). 

3. - Quenching and nonquenehing. 

Suppose we have a solution of (A) which does not  quench. Then 

I 

(3.1) F(x, t) -= f G(x, y)u(y, t)dy 
0 

is bounded in [0, 1] • [0, ~ )  and 

(3.2) 
1 1 

F~(~, t) = ] e ( ~ ,  y)u~(y, t)dy = - u(~, t) + e~a(~, y)~o(u(y, t))dy. 
0 0 

I f  ut>~0 also, then  F , > 0  and u increases to a solution of (*) el Section 2. (For 
each x e (0, 1) there is a sequence {t~( )},=1 with t~-+ + such tha t  F,(x, t.(x)) -+0, 
otherwise there would be Xo for which F(xo, t) is not  bounded. Since u increases in 
t, ~im u(x, t) = f(x) exists. Taking t = t.(x) and taking note of the monotone con- 

vergence theorem, we see tha t  f satisfies (2.9).) 

T ~ O R E ~  3.1A. - Suppose fi>~l. 

(i) I f  e >  e(fi), then every solution of (A) with 0-<<uo<l quenches. 
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(ii) I] s ----- s(fi) we have the ]ollowing: (a) I] uo(x)<~ ](x, s(fl)) then u is a global 
solution and ~li+m u(x, t ) =  ](x, s(fl)). (b) For every (~ > O, there exists uo>~O 

with u o < l  and UUo(.)--](., s(fl))llL~< ~ such that u quenches. 

(iii) I /  e < ~(fl), we have the ]oUowing: (a) 1I uo(x) < ]+(x, e) and Uo~ 01[0, 1] 
then u is global and t l im u(x, t ) =  f_(x, s). (b) _~or every (~ > O, there is 

Uo(< 1) with ][Uo(')- ]+(', e ) ] l ~ <  (~ sueh that u quenches. 

P~ooF OF THEO]~E~ 3.1 A. - Recall tha t  in this case all s tat ionary solutions are 
classical. 

In  order to prove (i), we need only consider u o -  0, since by  comparison 
u(x, t; Uo)>~u(x,t; 0) if u0~>0. In  this case however, v -~  ut(x, t;  0) satisfies v = 0 
for x ---- O, 1, 0 < t < T a~d v > 0 for t = O, 0 < x < 1 and a linear parabolic equa- 
tion and therefore v >~ 0. Now suppose u does not  quench. Then T = ~- ~ and u 
increases for each x, to a function w(x) as t - + - b  ~ .  Therefore, w must,  by  the 
opening remarks of this section, be a stat ionary solution of (A) for s > s(fl). Since 
there are none, we are done in this case. 

We next  prove (iii). (The proof of (ii) is easier and is omitted.) To prove (iii)(a), 
we observe t ha t  since O<uo(x) < ]+(x, e), there is a number a >  0 such tha t  
0<Uo(X) < ]+(x, e -~ a) and ]+(5, s ~- a) < ]+(�89 e). Let  Co(X) : ]+(x, e + a). Then, 
for as long as both solutions exist, u(x, t; uo)<u(x, t; %). However, u~(x, O; % ) <  0 
on (0,1). Therefore, by  s tandard arguments u~(x,t;vo)<~O and consequently 
u(x, t; vo)<vo and u(x, t; %) global. Therefore so is u(x, t; Uo). Also l imu (x ,  t; % ) :  

----~p(x) exists and ~ ( 1 ) <  ]+(5, e). By an argument  similar to tha t  used to prove 
part  (i), ~p(x) is a s tat ionary solution. But  then yJ(x) = / _ ( x ,  e). Also by the argu- 
ment  in part  (i), u(x, t; 0) exists globally and l im u(x, t; 0) =/~(x) ,  which must  ~lso 

be a s tat ionary solution. Since 

u(x, t; 0)<u(x,  t; Uo)<<. u(x, t; %) 

it  follows tha t  /~(x) ----- ]_(x, e) and t im u(x, t, Uo)=/_(x ,  s) pointwise as claimed. 

To prove (iii)(b), we invoke Theorem 2.1A. Given 8 > 0 we choose a > 0 so 
small t h a t  

Ill+(', ~ -  ~ ) -  l+(', ~)II.o < a 

and note that L(5,  ~ -  ~) > ]+(5, ~). 
We now set uo(x)= ]+ (x , e - - a )  and observe tha t  for u(x, t ,  uo) we have 

u~(x, 0; uo) > 0 on (0, 1). Again we find tha t  ut(x, t; uo) > 0 on the existence interval 
wherever ut exists. Thus, if this u does not  quench, T = -~ cr and u(x, t) -+ w(x), 
a solution of (2.1) which must  be a s tat ionary solution of (A) with w(5 ) > ]+(�89 e). 
However, this is not  possible unless w is a weak stat ionary solution. Since for f l > l ,  
there are none, u must  quench. 
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Tm~EFO~E 3.2 A. - Zet 0 ~ fl ~ 1. 

(i) I] e ~ so, then, statements (i), (if) and (iii) o] the preceding hold in this case 
accordingly as ~ > s(fi), e = s(fi) and so < s < e(fl). 

(if) I] e ~- So, we have the ]otlowing: (a) I f  uo < ]~ and Uo ~ C 1, then u is global 
and lira u(x, t) ~- f_(x~ Co). (b) There exist (smooth) initial values ]or which 

t-->oo 

u quenques. 

(iii) I f  O ~ s < So, we have the ]oUowing: (a) I] O<uo< ],(x, so), then u caner 
quench, even in iu]inite time and tli+m u(x, t ) =  ](x~ e). (b) There exist 

(smooth) initial values uo~ 1 ]or which u quenches. 

P~ooF oF Tm~o~v,~ 3 .2A.  - (i) Suppose s ~ e o .  I f  s < z ( f l )  and u o ~ 0 ,  then  
u - ~  u(x, t; 0) must  quench. To see this, since ut>~0, we note  tha t  i i u  did not  
quench, even ia infinite time, t hen  u would approach a classical s ta t ionary solu- 
t ion of (A) which is impossible. I f  u reached one in infinite time, it  woul4 have to 
approach ~ s ta t ionary  solution of the lorm ]~(., so) as t -+ ~ (i.e. a s ta t ionary solu- 
tion taking the  value 1 at  u single point) since ( x -  �89 t ) ~  0 for x ve �89 and 
all t ~ 0. However,  no such weak s ta t ionary solutions exist when s ~ so. For  
0 ~ u o ~ l ,  the finite t ime quenching follows by  comparison. This proves the  
s ta tement  (i) os Theorem 3.1A for this case. 

~ e x t  we prove (iii) of Theorem 3.1A for this case. (The proof of (if) is similar 
and is omitted.)  The proof of (a) is exact ly  the same if 0 ~ fl ~ 1 ~s for fl~>l. The 
proof of (b) follows as before, except  we must  rule out  the  possibility of infinite t ime 
quenching. This we do as above, since the  choice of Uo(= ]+(x~ ~ -- a)) again yields 
( x -  �89 > 0 for x # �89 

The proof of the  theorem when e ~ eo is exact ly  like the case for which e ~ so 
and is omitted. 

To prove  Off)(a), we choose Vo ~-]+(x, ~) where Co< y < e(fl) and ~ is so close 
to eo t ha t  uo<vo on (0, 1). Therefore, by  comparison, 

u(x, t; e, O)<u(x, t; ~, uo)<qz(x, t; ~, re) �9 

However ,  with v ( x , t ) :  u(x , t ;  s, vo), and w - ~  vt, we have w ( O , t ) =  w(1, t ) :  0, 
w(x, 0) ~ 0 an4 thus w(x, t) ~ 0. Therefore v(x, t) cannot  quench, even in infinite 
t ime, and v(x, t ) -+ ](x, e), t he  only s ta t ionary solution of (A) in this ease. Also 
u(x, t; e, 0) increases to  ](x, e). 

To prove  (b) we let 
1 

~(t) = f u(x, t) ~(x) dx 
0 

where ~ is the  first (Dirichlet) eigenfunction for -- d2/dx ~. Then 

F(t) t > -  =~_~ + ~(1-  .F)-~ =-Q(.F). 
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We choose Uo(X) so close to one tha t  F ( 0 ) >  r~ where r~ is the largest root  of Q in 
(-- ~ ,  1). Then .F ' ( t )>  0, Q(F(t)) cannot  change sign and 

1 

c~ > f ~ )  t 
~,(o) 

for all t in the  existence interval.  Therefore u quenches. 
For  problem (B) we have 

Tn~ol~E~ 3.2 B. - I] 0 < fi < c~, then (i), (ii) and (iii) o] :Theorem 3.1A also hold 
]or solutions of (SB) where now e(fi) is as in Theorem 2.1B. 

4. - B l o  w up o f  ut a t  quenching .  

In  his original paper, Kawarada  showed tha t  when u quenched (in our sense) 
then ut became unbounded at  the quenching point. He  considered only the ease 

fl ---- l and Uo---- 0. In [9], we suggested tha t  his result  (and proof) should extend 
to  higher dimensional problems, Indeed,  recently,  in [1], it has been shown tha t  
when (0, 1) is replaced by  the n ball and the discussion is restricted to radial solu- 
tions wi th  radially decreasing initial values such tha t  u~(r, 0)>~ 0, then  for solutions 
which quench at  r ---- 0, u~ blows up at  r ~- 0. Their  proof did not  follow the lines 
of Kawarada 's .  Rather ,  they  examined the differential equat ion satisfied by  
v - - - - (1 - -u )Zu , .  T h e y  show tha t  v , > A , v  where A, is the radial Laplacian. Their  
arguments  seem to require tha t  the quenching point  be isolated. 

Although their  result  provides a part ial  answer to the problem we proposed, the 
last word in this problem ha s ye t  to be said.  For  examp!e ~ it  is easy to write down 
simple problems for which quenching takes place on a continuum. (Consider 
u t =  flu d - e ( Z -  u) -# in the annulus 1 < r < 2, with u----0 on r = 1, r----2 and 
u(r, 0, 0)----0 for e sufficiently large.) Nor is the question answered in an n ball 
when the  data  is not  radial  (or when �9 it is, when it  is not  radially decreasing). In  [18] 
we have recent ly  ob t a ined  an improvement  of the blow up result for ut of [1] (~). 

For  problem (B), the blow up of ut at x ---- I was claimed b y  us in [10]. However,  
the proof of Corollary 2.7, where this claim was made, is not  correct. The equation 
at  the top of page 1]A5 should read (with /~ = s a~d Uo ~-0), 

t 

~,(x, t) = ~G(~, 1, t)~(u(1, o)) +IV(x ,  1; t -  v)~'(u(1, v))u~d~ 
o 

where 

G(x, y; t) = 2 ~ exp (-- ~ t )  sin (Lx) sin (,~y) 

and ,~ = ~ (2n -- :t)~. 
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We prove 

! # 

TBE0]~EI~ 4.1. - Let uo(x)~>0 , uo(x)>O on [0, i] and suppose ~, a solution o/ (B) 
with u(x, O) ~ uo(x) quenches at time T. Then the quenching occurs at x = 1 and ut(1, t) 
blows up as t approaches T / t o m  below. 

l~]~ooP. - By  the arguments of [10] it follows that u~ > 0, u, > 0 in (0, 1) x (0, T) 
so that  quenching csnnot occur on [0, 1 )x  (0, T). 

From the representstio~ formuls for %he solution, we have, for t < T, 

(4.1) 
1 0 

f u(x, ~) = j G ( x ,  y; t)uo(y)dy + ~ G(x, 1; t - -  fl)~(u(1, ~)) dn, 
0 O 

and consequently, after differentiating and integrating by  parts we find that  for 
O < t < T ,  O < x < l ,  

1 1 

f (4.2) u~(x, t) -~ G,(x, y; t )%(y)  dy - -  ~ [G(x, 1; t --  fl)]~(u(1, ~)) d~ = 

0 0 

1 

=fa,(~, y; t)Uo(y) dy + ~(x, 1; t)v(u(1, o)) + ~f~(~, 1; t--~)~'(u(1, ~))u,(1, ~)d~. 
0 O 

We let x ~-> 1- in this last expression and use the (assumed) continuity of u~ on 
[0 ,1 ix(0 ,  l ) .  Since u ,>0 ,  ~ '>0 ,  we h~ve, for ~ < t <  T, ~ >  0 ~u4 fixed 

where 

~n4 

u,(1, t )> 01 ~- ~O~[?(u(1, t)) -- ?(u(1, 0))] 

1 

inf [G(1, 1 ; t)] 

C~ = inf G(1, 1, t) 
~<~<T 

are positive constants. The result now follows from (4.3). 

5. - Beyond quenching.  

As we remarked in the introduction~ the study of (A~) is inhibited by  the lack 
of ~ uniqueness theorem. However, we conjecture the following: Suppose u t>0  
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in  t he  region where  u < 1. I f  t he  solut ions of (A~) wi th  these  p roper t i e s  quench  

and fl>l, or 0 < fl < 1 and e < So, then 

l ira u(x, t) = 1 x ~ (0, 1) ; 

or else if 0 < fl < 1 a n4  ~>so, t h e n  

l i m u ( x ,  t) = ],(x; s) 
t'--> c o  

where  1, is g iven  in  T h e o r e m  2.3A. I f  fl > 1, the  first l imi t  is ob tMned  in  finite t i m e  

(complete  quenching) .  
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.STote added in Proo/. 

Recentty D]~NG and L E v I ~ ,  by using Lemma 4.1 of F~IED~IAN an4 McLEoD ( indiana 
J. Math., 24 (1985), pp. 425-447) and [5], have been able to show that  u~ blows up when u 
quenches for a much wider class of initial  data than considered in [1] as well as for convex 
regions (in one or more dimensions). 

They also show (in one or more dimensions) that  if the special domain is convex, the 
set of quenching points is a compact sv_bset of that  domain. 

Recently Guo [19], has shown that if fi > 0 than (A) can have at most a finite number of 
quenching points. In view of our remark in w 4, this result fails in more than one dimension. 

He has also shown that if fi ~ 3, then near a quenching point a e (0, 1), 

lira [l -- u(x, t)] (T- -  t) -~ = (e/y) ~ 
~-->T- 

uniformly for Ix-- a]2~e(T - t) for any c >  0 where y = I/(fl -~ 1). 


