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On the Propagation of Smoothness
for Semilinear Systems of Maxwell-Klein-Gordon Type (*).

ALBERTO PARMEGGIANI

Abstract. — We prove a Bony-type result about the propagation of Sobolev smoothness for a par-
ticular type of semilinear strictly hyperbolic system with an application to the Maxwell-
Klein-Gordon system.

Introduction.

The problem of propagation of singularities of solutions to semilinear strictly-hy-
perbolic equations, initiated by RAUCH in[7], for scalar equations of the form

P, (x, D)u=FG@, u,..,D" 2u), m=2,
was extended to general scalar equations of the type
P,(x, D)u=f, u,..,D" 'u), m=2

by BoNY in[4], using the machinery of paradifferential ecalculus.

In this paper we consider a particular type of semilinear system, which is here
said to be of Maxwell-Klein-Gordon type. This kind of system is a very special case of
a more general one: the two-speed system, introduced by RAUCH and REED in[8].
The problem they study there is the propagation of particular singularities associated
to a characteristic foliation of R'*” induced by the two different speeds of the system.
More precisely they prove the propagation of the conormality of the solution with re-
spect to a certain family of characteristic hypersurfaces. This means that particular
information about the differentiability of the solution with respect to a family of vec-
tor field tangent to the characteristic family on the initial hyperplane propagates in
the future with respect to the above foliation induced by the two speeds. (It is well

(*) Entrata in Redazione il 28 dicembre 1990.
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known that the conormality property is strictly stronger than a mere statement about
wavefronts, see[1]).

In this paper we consider instead the problem of propagation of smoothness and
prove a Bony-type result. This means that, given a conic neighborhood around a
given point of the null bicharacteristic, and given suitable Sobolev regularity of the
solution in the above neighborhood, the same regularity holds along the whole null
bicharacteristic.

Our approach is along the line of [2]: first a linear theorem is proved about propa-
gation of singularities (using those of BEALS and REED of [2] and HORMANDER, plues
the Lemma di Rauch (see for instance [3] for a general proof)) and secondly the theo-
rem about propagation of smoothness, by adapting the bootstrap argument of BEALS
and REED [2] to the present case.

Finally an application is given to the Maxwell-Klein-Gordon system which, choos-
ing the Lorentz gauge, assumes the form considered here.

We wish to thank MicHAEL BeALs for his advice.

Statement and proof.

DEFINITION. — A semilinear system is said to be of Maxwell-Klein-Gordon type if
it can be written under the form (P) below. '

Consider on R” = R x R* ! the following system:

(P) Pm(x’ D)Ay.-l— Q(y)(xy D)Ay= Yy,m—Z,m—l(x’ ¢’ l?ﬁqS’DZA)’ B= 07 1, '--,N'- 1 ’
P, (x,D)¢ + gp;_Q(x, D*¢, D*A)Q, (%, D) ¢ + f,, _»(2¢, D*$, D*A) = 0,

where v, m-2m-1s fm-2, fm—2€ C” in the arguments

x, ¢, A, D¢, D*¢, D*A

for || <sm -2, |8|<m-1; 4, ¢ eRY¥*L; P, (x, D) is a real smooth-coefficients
homogeneous strictly hyperbolic differential operator of order m =2, Q,(z, D),
Qu (@, D) are smooth-coefficients differential operator of order m —1. Here D =
=Dy, Dy, ...; Dy y).

REMARK 1. - The main result of this paper is still true if (P) is of the form:
P(ma D)A = Ym—z,m—l(x’ ¢’ Dﬁ¢, DaA) ’
M .
P,(x,D)¢ + leg_z(x, D*¢, D*A)Q, (%, D)¢ + f,, _,(x, D*¢, D*A) =0,
Py

where P(x, D) is an N X N system such that Qu,, (x, &) = principal part of det P(x, &)
is of real principal type (i.e. Qnm (%, £) is real and the Hamilton field Hy,  is non-van-



ALBERTO PARMEGGIANIL: On the propagation of smoothness, etc. 161

ishing and does not have the radial direction when @y, = 0), and I' is a null bicharae-
teristic. for both P, (x, D) and Qu,, (2, D). In fact Hérmander’s Theorem is still valid
for the system Pz, D), (see[9]). Here A=(4;,...,4y-1) and yYy-2m-1=

— 0 N -
= (Ym—.‘z,m—l, --'5}’m-'~2,m—1)-

REMARK 2. — The special role of ¢ in (P) is the appearance of D#4, |8 =m — 1. A
nonlinear term of type v, w2 m-1-%, £ = 1, would allow the operators @, to have
coefficients depending on D*¢, D*A, for |«|, |a'| <k — 1, and the result would re-
main true, but for the example considered below such coefficients and nonlinear
terms do not occur.

Suppose we are given a solution (4, ¢) = ((4,), x=0,1,...,N —1; ¢) of (P). We
want to study the propagation of smoothness of the solution.

Notice that char (P,,) c char (P) and char (P,,) is foliated by bicharacteristic curves
of P,,. Let v, = (%9, &) € R*"\0 be a point of I', P,,(y,) = 0, I" the null bicharacteristic
of P,, through y,. Here H{, = H{.(R").

THEOREM A. — Suppose

i)%n-km<s+m—1$r+m~1<2(s+m—1)—(%n+m—1),m>2,

i) Vi, Ay, g€ Hiyl ™~ 1N H ™~ 1),
iii) Vi, 4,, ¢ e HIff ™~ 1%2(yy), some ¢ < min[l, 28 — %n - 7"],
w) (A, ¢) satisfies (P).
Then A,, ¢ Hy ™~ 1*<(I'), Yu=0,1,...,N - 1
THEOREM B. — Suppose
o 1 1 1
1) En<s$ §n+1 and 0 < e<s— En(305<1), m =2,
ll) VAU', Ap.? ¢EH1'3):W_1;
111) V‘U., A;u ¢EH§ﬂ+m_l+e(}’0):
iv) (4, ¢) satisfies (P).
Then A,, ¢ Hyf ™ '), Yu=0,1,...,N- 1
ProoF oF A. — We are going to use the Propagation Theorems of Beals-Reed ([2])
and Hérmander (see[1], [6] or [9]). Suppose first m = 2,

Consider A = (1 + |D|®)Y2e ¥1 ¢ (FT, being the set of pseudo-differential opera-
tors of order m and type (1, 0), see [6]. From now on all the pseudodifferential opera-
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tors used in the following will be supposed to be properly supported.) Then
APZ(x, D) = P2(w7 D)A + [A’ PZ(“/" D)] = PZ(x’ D)A + ([A, PZ(x’ D)]A_I)A’

AgpfaQu 2 (6§ Q. (%, DYA + p&[4, Q, (x, D)1+ [A, 0¢1Q,(x, D)),

and, by Rauch’s Lemma and our hypothesis, Afy(x, ¢, A) e Hf,, N Hyy(I"). Notice that:
(A, Py, D)IAT! + Zpo Q. (x, D) is a sum of pseudodifferential operators of order 1,

that off e Hid 1 N H,’,",f” L(I"), that [4, @, (x, D)] has order 0 and that, by the Commutator
Lemma in [2], we get that [A, ¢§]1Q, (x, D)¢ € Hioe N Hyy (I).
Therefore the 2nd equation in (P) reduces to an equation in Ag:

Py (@, D)Ag + ([A, Pa(x, D)1AT + Ep @, ¢, 4) Q, (x, D)) A¢ +

+ (;pﬁ(%, 8, A)po, . (@, D) A$ + gGM + Afy(x, ¢, A) =0

where py ,(x, D) is in ¥ 4; and G,, Afy e Hf, N Hy(I), all of this since (1/2)n +
+1<s<sr<2s—(1/2)n, and (A/2)n+1<s+1<sr+1<2s+1)—-(1/2)n+
+ 1) < 2(s + 1) — (1/2) » (so that we can use Rauch’s Lemma). Notice that now we have
the following hypothesis on A¢:

A¢e H{, N Hy(I')  and  A¢e Hyi *(vo).

Then we can apply the theorem of Beals-Reed to get A¢ € H;" °(I'). Now, since ¢ < 1,
¢ € Hi"*(I') and by standard pseudodifferential arguments ¢ e Hif 1.

Consider now the first equation in (P): the overall regularity of the arguments of
Yom-2m-1 18 Hbe N Hyt <) (again since e <1 and A, e Hi,J ' N Hy ' (IN) since
(1/2)n <sand r+ ¢ <r+(2s — (1/2)n — r) and Rauch’s Lemma applies, and since
we already have D?¢ e Hf, N Hli <(I).

By hypothesis we have A, € Hy[" 1+¢(yy) and therefore, by Hérmander’s Theorem,
we get A, e Hyt '+ e(D).

This concludes the proof in the case m = 2.

If m > 2 consider A~™~?A™~2¢; then we get that the second equation in (P)
becomes:

(P (2, DYA™™ " P)A™ " 2¢ +

+ 2 ol -2 (@ D*¢, D*A)Q, (@, DYA™ "~ P)A™ "2 g + f, 5 (x, D*¢, D*A) =0
123

Then we are back in the case where the principal part has order 2, and we can apply
the same procedure as before since the Propagation Theorem of Beals and Reed is
valid for strictly hyperbolic pseudodifferential equations.

(We remark that char (P,,) = char (P,, A~ ~?) and that when P,, (y,) = 0 we have
Hp g-m-n= 1+ |g|)"™"92Hp | so Hp ,-m-» and Hp, have the same orbits
through v,.) This concludes the proof of A. ™
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Proor oF B. — As before suppose first that m = 2. Then, proceeding the same way
as above, we get:

ApeHp,, A, eHEFY, u=0,1,..,N—1, ofx, ¢, A) e His', Afy(x, ¢, A) e Hi,

then we can apply the second Propagation Theorem of Beals-Reed getting
A¢ e Hy *(I'), since we are assuming A¢ € Hyl *(yo).
Again it follows that ¢ € HS' ' *<(I"). Now

1 < < _1
2n<s\s+e s+(s 2%),

then, by Rauch’s Lemma, we have v, o 1€ Hf, N Hy *(I') (since s < (1/2)n + 1, then
e <1, so that A, e Hy *(I).

Then by Hoérmander’s Theorem we obtain A, e Hi ' () Yu=0,1,...,N—1,
since by hypothesis A, € Hi" '+ < (v).

This concludes the proof in the case m = 2. If m > 2 we can apply the same trick
as above to get the result. This concludes the proof of B. m

Now we are ready to state the following Bony-type theorem:

THEOREM C. - Suppose (1/2)n +m —1<o<7<2—(1/2)n+m—1) and 4,,
¢ € Hi N Hiyy(vo), VYu, where P, (y,) =0 and (4,9) is a solution to (P). If I is
a null bickaracteristic for P,(x, D) through y,, then A,, ¢eHp. N HLT),
Yu=01,..,N-1 m=2.

ProoF. — We are going to use the bootstrap ideas as in [2]. Suppose first that A4,,
¢ € Hij. N Hiy(yg) where (1/2)n +m < o< (1/2)n + m + 1. Then by Theorem A, if
¢y =min {1, r — ¢} (notice that in this case

51Smin[1,2a—(—;—n+m—1)—c}=min[1,c—%n—m+1]=

= min {1, 8 — %n] = min{l, 2s — %n - 7'}
if e=s+m—1, r=s), we have that A,, ¢ e Hip N Hy (), Vu
If t—0os1 we are done. Suppose t—o>1, then by hypothesis A,,
¢eHi NHE ' 2(y,) where now ¢ =1, 0<eg=min{l,r—(c+ 1)} and &<
<min{l, 2s - (1/2)n —7}; now c=s+m -1, r=s+ 1. But &,=7— (¢ + 1) since
t—(c+1) <1, for we have

T—(c+1)<2c—(a+1)—(—;—n+m—1)=o——(—;—n+M)Sl

by assumption.
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Since we have ¢; = 1 and 4,, ¢ € Hi;. N Hg' ' (I'), then by Theorem A, we get A,
¢ € Hie N Hyi '+ =2() = Hi,, N Hey (I).

This concludes the proof when (1/2)n +m < o< (1/2)n +m + 1.

Suppose now (1/2n + m + 1 <o< (1/2m + m + 2.

As before: A,, ¢ € Hi NV Hi ('), where &g =min{l, - ¢} > 0;if r— o<1 we
are done; if r — ¢ > 1, we have 4,, ¢ € Hi. N H3 1 %% (y,), &z = min {1, 7 — (¢ + 1)} > 0,
thus A,, ¢ € Hg N H“”“‘(F) {notice that ¢y =1). If r — (¢ + 1) <1 we are done, so
suppose T—(c+1)>1 so that c+2<7<2—((1/2)n+m—1), (I, since
s> (1/2)n +m + 1), and v — (s + 2) > 0; now we have that A,, ¢ € Hg, N Hi 2 5 (y),
where es=min{l, 1 — (¢ +2)} <min {1, 2s—(1/2)n — r} withoc=s+m - L, r=s+ 2
and e =7 — (¢ + 2) because 7 — (¢ + 2) < 1, for we have

T—(c+2)<26—(%7&+’m—1)—(a+2)=a—(%’n+m+l)S1,

by assumption.

Therefore A,, ¢ € Hi N Hi2 (") = Hy, N H ().

Similarly, in the case (1/2)n + m —1+k<o<(1/2)n+m—-1+k+1,keN, we
get up to A,, ¢ € Hp, N Hit ¥ o+1(y,), where ¢,y = min {1, 7 — (¢ + k)} S min {1, 2s -
-(1/2)n—~7r} with c=s+m—1and r=s+k and ., =17 — (c + k) since

T—(c+k)<20~(—;—n+m—l)~(c+k)=a—(%n+m+k—1)S1

by assumption.
Again by Theorem A we can conclude

A

7

¢EHﬁ,cﬂH"+k+€"“(P), V[.L=O, 1’“"%_1‘

It is left to treat the case (1/2)n+m —1< o< (1/2)n + m:seto=s+m—lande =
=r-gthene=7r—c<o—-(1/2n+m—1)=s—(1/2)n <1 so that we have

A

o ¢EH8+m lan+m—1+s(-),0) with 8<S—>-;—’}’L.b

Then, by Theorem B, we get A4,, ¢ HiyS ™ 'NH ™ 17 <(I), ie.

A

@

¢e Hi . NHLHT), Vu=0,1,...,N~1.

This conciudes the proof of Theorem C. =

COROLLARY 1. — Suppose ¢: R"— C with ¢ = ¢' +i¢* and suppose A,, ¢
(p=0,...,m~1;i=1,2) satisfy the hypotheses of Theorems A, B, C. Then the con-
clusions of A, B, C are still true.
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Applications.

As an application of Theorem C we study the propagation of smoothness of sol-
utions to the coupled Maxwell-Klein-Gordon (MKG) system in the Lorentz gauge
(see[10] for the notations):

Fo" = v
(MKG) “Fv=0,

(@ +1iA"@Q, +iA)¢ =0,
where v, = (i/2)($3, ¢ — ¢9,¢) + A, |¢|% (Here n = 4).

Notice that the equation *F,,;* = 0 says that there exists a potential A, such that
F,=9,A,—0,A,.

Moreover (MKG) is invariant under the transformations

T: (A, 9= (4, + 9,9, ¢ %¢), ¢ R'>R.

Under the Lorentz-gauge condition 3“4, = 0 (we are using Einstein’s summation con-
vention with respect to »,, = diag(—1, 1, ..., 1)) we get from (MKG) to

D4, =y, #=0123,
(MKGL) { SRR

¢ — 21A%3, ¢+ A*A, =0
and T: ((4,), §)~> (A, + 3,9), e *¢) preserves this syétem provided that Tp = 0.
We now split the system (MKGL) into real and imaginary part so that we are in

position to use Theorem C. Writing A! = Re(4), A% = Im (4), ¢' = Re(¢), ¢ = Im(¢),
since [1 is a real operator, we get the following system (here N = 2n):

DA =¢'9,8" - ¢*9,¢' + AL [4®,  1=0123,

OAZ=AZ|¢]?2, ©=0,1,23,

O¢' + 2(4%38,¢* + A% 3, 4" + (A*A] -~ A% AN ¢ — 24" AZ¢%) =0,

[g* — 2(A™3,¢' — A™*9, )+ (AMA; —A*AD ¢ + 24 A? ¢$)=0.

(MKGL1)

Now, splitting the action of the gauge-transformation 7T into real and imaginary
part, we see that 7T is of the form

Tr: (A}, A2); ¢, ¢*) > (A} + 3,0, AZ; ¢ cos ¢ + ¢sing, ¢Pcosp — ¢' sing)

so that, since Cp =0, Ty preserves (MKGL1) if and only if 7 preserves
(MKGL).

From now on we will think of the action of T on (MKGL) as the equivalent action
of T on (MKGL1).

Hence, in order for the notion of smoothness of the solution to (MKGL) to make
sense, T must preserve the regularity.
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So we have the following

DEFINITION. — T is acceptable if, given A*, ¢'e Hg N Ha(y), i = 1,2 then A,
¢'"e Hg N Hiy(y), i = 1,2 where (A4,), ¢') = T(((A,), $)). (v can be either (xy, &) or I,
a null bicharacteristic of 0).

Then

LEMMA 1. — Suppose A, ¢' € Hi N Hiy(y), i = 1,2 and define, for (%, &) e,
S={pe HF ' N HE (2o, &); Op = 0, ¢ real valued},
where (1/2)n < ¢ <7< 20— (1/2)n. Then
T,: (A, $) (A, +8,0), e *¢)

is acceptable Vg € 8.

PROOF. — Since (1/2n<o+1<7+1<2:—-(1/2m+1<2(c+1)—-(1/2)n, we
have

(e ™)V e HF YN HE Y (ay, &) cHpe N Hiy (%, &), =12
s0 that
(A/.L+a‘u¢)i7 (e—i?¢)iEH1%anrgl(x0’£0) Vfl.=0, 17---’7?’—1; i=1,2.

This concludes the proof of the Lemma if y = (g, &). If y = I' it suffices to notice that,
by Hérmander’s Theorem and by ¢ € 8, ¢ € Hg ' N HEF 1 (). This concludes the proof
of Lemma 1. =

REMARK 3. — The hypothesis A;, ¢* e Hg, N Hy (%o, &), i =1,2 implies that 4,,
¢ e Hie N Hyy (2, &) if and only if A,, ¢ e Hfj N Hy (g, —&) if and only if

Al ¢eHp N HE (o, &) N Hi(w, —%), i=1,2.

Henece the conclusion of the foregoing Lemma 1 is still true in the case where v, is
replaced by yy = (%, &) and I replaced by I., for any ¢e8.=
={pe HEI* N HE (xy, &) NVHE (g, —); Op = 0, ¢ real valued} = S, ¢ being real
valued.

REMARK 4. — Suppose

ve= 24,3 3,8 + 34, + A4
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(ie. allow A, to be complex). Then a nontrivial solution to (MKGL) is given by
A@ =5 —e ), g@) =20 + we Y

where &¢, =0, |2|®= |w|?; z,weC, £ R". (Notice that &*A, = 0).

REMARK 5. — Consider the following equation (satisfied by the imaginary part of 4)
(*) ' Ou = |¢|%u
on R", suppose ¢e H*(R") where s>mn/2+1 and that there exists a solution
ue H*(R™) to (+) with compactly supported initial data. We have
$eCq(R, H " VER"~ 1)) cCo(R, LER" 1)) NCeu (R, L= (R"™ 1))

(Cyg is the space of continuous functions vanishing at infinity) since s — 1/2 > ((n —
—1)/2) + 1. Take ¢ such that 1/2=1/g + 1/(n — 1) ie. ¢ = @n — 2)/(n — 3). (Recall
that # — 1 = 3 is the interesting case for (MKGL).)

By Sobolev’s Lemma we have:

%at ' (&, O|F = J Syult, x) ult, x) da =

Rn—l
1/te — 1) (n—3)/(@n -2)
= [ulguds < pul ([ 161720 [ luge -2 vas <

< Gl NIl on -2 V2] < Collgllzon -2 e[

since 4(f, )e L?NL> implies ¢, -)eL® 2 (Here u'= G;u, Vu) and || =
=|-|L2@n-1).) Hence, by Gronwall’s inequality, we conclude that
. . .
', 9 < ' 0, M exp | 2 [ s s -
0
Therefore we can say that if in (MKGL1) A is satisfying the same hypotheses as the
above u, and A is real initially (47 = 0, 8,42 = 0, say at time ¢ = 0), then it must be
real locally in later times (by the previous argument and the fact that A2 satisfies an
equation of the form (+)).

We can now state the following

' THEOREM. — Suppose (4, ¢) is a solution to (MKGL) such that, for i = 1,2, A;,
¢' e Hi. N Hiy(vo), where 1/2)n +1<o<7<20—((1/2)n + 1).

Then A,, ¢ € Hy. N Hyy (') N Hy (I'), and
T,(4, ) e Ho NHL (T NHL(TL),  Vpes.
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Proor. — It is just an application of Theorem C, Corollary 1 and Lemma 1
to (MKGL1) followed by Remark 3. m
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