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On the Propagation of Smoothness 
for Semilinear Systems of Maxwell-Klein-Gordon Type (*). 

ALBERTO PARMEGGIANI 

Abstract. - We prove a Bony-type result about the propagation of Sobolev smoothness for a par- 
ticular type of semilinear strictly hyperbolic system with an application to the Maxwell- 
Klein-Gordon system. 

In troduct ion .  

The problem of propagation of singularities of solutions to semilinear strictly-hy- 
perbolic equations, initiated by RAUCH in [7], for scalar equations of the form 

pm(x ,D)u  =f(x,  u , . . . , D m - 2 u ) ,  m~>2, 

was extended to general scalar equations of the type 

P m ( x , D ) u = f ( x , u , . . . , D m - l u ) ,  m>~2 

by BONY in [4], using the machinery of paradifferential calculus. 
In this paper we consider a particular type of semilinear system, which is here 

said to be of Maxwell-Klein-Gordon type. This kind of system is ave ry  special case of 
a more general one: the two-speed system, introduced by RAUCH and REED in [8]. 
The problem they study there is the propagation of particular singularities associated 
to a characteristic foliation of R 1+~ induced by the two different speeds of the system. 
More precisely they prove the propagation of the conormality of the solution with re- 
spect to a certain family of characteristic hypersurfaces. This means that particular 
information about the differentiability of the solution with respect to a family of vec- 
tor field tangent to the characteristic family on the initial hyperplane propagates in 
the future with respect to the above foliation induced by the two speeds. (It is well 
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known that the conormality property is strictly stronger than a mere statement about 
wavefronts, see [1]). 

In this paper we consider instead the problem of propagation of smoothness and 
prove a Bony-type result. This means that, given a conic neighborhood around a 
given point of the null bicharacteristic, and given suitable Sobolev regularity of the 
solution in the above neighborhood, the same regularity holds along the whole null 
bicharacteristic. 

Our approach is along the line of [2]: first a linear theorem is proved about propa- 
gation of singularities (using those of BEALS and REED of [2] and HORMANDER, plues 
the Lemma di Rauch (see for instance [3] for a general proof)) and secondly the theo- 
rem about propagation of smoothness, by adapting the bootstrap argument of BEALS 
and REED [2] to the present case. 

Finally an application is given to the Maxwell-Klein-Gordon system which, choos- 
ing the Lorentz gauge, assumes the form considered here. 

We wish to thank MICHAEL BEALS for his advice. 

S t a t e m e n t  a n d  proof .  

DEFINITION. - A semilinear system is said to be of Maxwell-Klein-Gordon type if  
it can be written under the form (P) below. 

Consider on R n = R • R n- i the following system: 

IPm(x'D)A~+Q(~)(x'D)A~:'~':~2'm-I(x'r162 D)r ~ = 0 , 1 , . . . , N - I ,  
(P) 

[P~(x, D)r + ~ _ 2 ( x ,  D r D A)Q~(x, +fm-2(X, D~r D ~A) = O, 

,~ C | in the arguments where r~ ,~-2 ,~-  1, ~ - 2 ,  f~ -2  �9 

x, r D~r D~r D~A 

for I~1 ~< m - 2, I~l ~< m - 1; (A, r eRN+I; Pro(x,  D)  is a real smooth-coefficients 
homogeneous strictly hyperbolic differential operator of order m i> 2, Q~,(x, D), 
Q(~) (x, D) are smooth-coefficients differential operator of order m -  1. Here D = 
= (Do, D1,  . . . ,  D ~ - i ) .  

REMARK 1. - The main result of this paper is still true if (P) is of the form: 

P(x, D)A = ~%M_~.m_ 1 (X, r D~r D~A), 

P,~(x, D)r + ~ l t :~_2(x ,  D~r D~A)Q~,(x, D)r + fm_2(x, D~r D~A) = O, 

where P(x, D) is an N x N system such that QNm (x, ~) = principal part of detP(x, ~) 
is of real principal type (i.e. QNm (x, ~) is real and the Hamilton field HQN m is non-van- 
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ishing and does not  have  the  radial  direct ion when  QNm - -  0 ) ,  and F is a null bicharac-  
ter is t ic  for  bo th  P ~  (x, D) and QNm (X, D). In  fact  HSrmande r ' s  T h e o r e m  is still valid 
for  the  sy s t em P(x ,D) ,  (see[9]).  H e r e  A = ( A o , . . . , A N _ I )  and ym_2, m_l  = 

N - 1  
~-~ ( ~ O - 2 ,  m - 1 ,  " . ,  ~ m : 2 ,  m -  1). 

REMARK 2. - The  special r61e of r in (P) is the  appea rance  of Dzr  [~[ = m - 1. A 
nonl inear  t e r m  of type  )'t~, ~ - 2 - k, ~ - 1 - k, k >i 1, would allow the  opera to r s  Q(,) to have 
coefficients depending  on D ~ r D~'A, for  [~[, [~'[ ~< k - 1, and the  resul t  would re-  
main t rue ,  bu t  for  the  example  considered below such coefficients and nonl inear  
t e rms  do not  occur. 

Suppose  we are  given a solution (A, r = ((A~), t~ = 0, 1, . . . ,  N - 1; r of (P). We 
wan t  to s tudy  the  propaga t ion  of smoothness  of the  solution. 

Notice tha t  char  (Pro) c char  (P)  and char  (Pro) is foliated by  bicharacter is t ic  curves  
of Pro. L e t  ]'0 = (Xo, ~0) �9 R e~ \ 0  be a point  of F, Pm (Yo) = O, F the  null b icharacter is t ic  
of P,~ t h rough  ~0. H e r e  Hto~ = Hloct (R~). 

THEOREM A. - Suppose 

i) l n + m < s + m - l < . r + m - l < 2 ( s + m - 1 ) -  l n + m - 1  , 

ii) Vb~ , A~, r �9 gl~e + ~ - 1 A llI'l"rml + m - -  1 (P), 

iii) V~,A~,  " ' ' ~ § 2 4 7  < ~ m i n { 1 , 2 s -  1 _ } ~ � 9  ~(Y0), some ~ z n  r , 

iv) (A, r satisfies (P). 

Then A , ,  r �9 H~r m- 1 +~ (F), V~ = 0, 1, . . . ,  N - 1. 

m>~2 ,  

THEOREM B. - Suppose 

1 1 1 
i) 2 n < s ~  < 2 n + l a n d 0 ~ < ~ < s -  ~ n ( s o s < l ) ,  m>1 2, 

ii) V/x, A~, r �9 H1~ + "~ - 1, 

iii) Vt~ , A~, r �9 H~ml + ~n - 1  * e (Y0), 

iv) (A, r satisfies (P). 

Then A~, r �9 H~m{ m - 1 +~ (F), Vt~ = O, 1 , . . . ,  N - 1. 

PROOF OF A .  - We are  going to use the  ProPaga t ion  Theo rems  of  Beals -Reed ([2]) 
and H S r m a n d e r  (see [1], [6] or  [9]). Suppose  f irs t  m = 2. 

Cons ider  A = (1 + IDI~) 1/2 e ~ ,  o (Tl~, 0 being the  set  of pseudo-different ia l  opera-  
tors  of o r d e r  m and type  (1, 0), see [5]. F r o m  now on all the  pseudodif ferent ia l  opera-  
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tors used in the following will be supposed to be properly supported.) Then 

AP2(x, D) = Pz(x, D)A + [A, Pz(x, D)] = Pz(x, D)A + ([A, Pu(x, D)]A-~)A, 

A ~,?~Q.~ = ~, (~Q~(x, D)A + ?~[A, Q,(x, D)] + [A, ?~] Q~(x, D)), 

and, by Rauch's Lemma and our hypothesis, Afo (x, r A) �9 Hi~c A H ~  (F). Notice that: 
[A, P2(x, D)]A -1 + ~?~Q,(x,  D) is a sum of pseudodifferential operators of 0rder  1, 

tt 
t h a t  ?~ �9 Hi~c + 1 A L r r  + 1 �9 ,~1 (F), that  [A, Q~(x, D)] has order 0 and that, by the Commutator  
Lemma in [2], we get  that  [A, ~:~] Q~ (x, D) r �9 H ~  (3 H~I (F). 

Therefore the 2nd equation in (P) reduces to an equation in Ar 

P2(x, D)Ar + ([A, P2(x, D)]A -~ + ~,p~(x, r A)Q~(x, D))Ar + 
tL 

+ (E?~(x, r a)po,~(x, D))Ar + ZG~ + Afo(x, r A) = 0 

where P0. ~ (x, D) is in T1 ~ o ; and G~, Afo e Hi~oc A Hmrl (F), all of this since (1/2) n + 
+ l < s ~ < r < 2 s - ( 1 / 2 ) n ,  and ( 1 / 2 ) n + l < s + l ~ < r + l < 2 ( s + l ) - ( ( 1 / 2 ) n +  
+ 1) < 2(s + 1) - (1/2) n (so that we can use Rauch's Lemma). Notice that  now we have 
the following hypothesis on Ar 

Ar �9 Hi~oc N Hri (1") and Ar �9 H~{ -~ (Yo). 

Then we can apply the theorem of Beals-Reed to get Ar �9 Hm~1 +~ (F). Now, since ~ ~< 1, 
L / ~ + l + e  r �9 Hm~{ ~(F) and by standard pseudodffferential arguments,  r e - m l  (F). 

Consider now the first equation in (P): the overall regularity of the arguments of 
~tz, m - 2 ,  m 1 is Hi~o~ c~ rz~+~ _ , ,  lZml (if) (again since ~ ~< 1 and A~ �9 HlSo +IA-~1~r~+I(F)) since 
(1/2) n < s and r + s ~< r + (2s - (1/2)n - r) and Rauch's Lemma applies, and since 
we already have D zr �9 Hi~oc n H~,{ ~(F). 

By hypothesis we have A, �9 H ~  + 1 +~ (Yo) and therefore, by HSrmander 's  Theorem, 
we get  A7 r r r  + l + e �9 _r/ml (F) .  

This concludes the proof in the case m = 2. 
If  m > 2 consider A-(~-~)A~-2r  then we get  that  the second equation in (P) 

becomes: 

(Pro (x, D) A-(~-  2)) Am- 2 r + 

+ ~ ?~-2(x, D~r D~A)(Q~(x, D)A-(~-2))Am-2r +fm-2(x, D:r D ~A) = O. 
g. 

Then we are back in the case where the principal par t  has order 2, and we can apply 
the same procedure as before since the Propagation Theorem of Beals and Reed is 
valid for strictly hyperbolic pseudodifferential equations. 

(We remark that char (Pro) = char (PmA -(m- 2)) and that when P,~ (Yo) = 0 we have 
Hp~A-(.~-2) = (1 + [~12)-(m-2)/2HPm , SO HpmA-(m-2) and Hpm have the same orbits 
through 7o.) This concludes the proof of A. �9 
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PROOF OF B .  - As before suppose first  tha t  m = 2. Then, proceeding the same way 

as above, we get: 

Ar e HiSoc A ~  ~ r z ~ + ~  , , =~'~oc , ~ = 0 , 1 , . . . , N - i ,  ,v0~(x, r A)  �9 H i  s + l ,  Afo(x,r eH{oc, 

then we can apply the second Propagat ion Theorem 
Ar �9 H ~  +~ (F), since we are assuming Ar �9 Hm~ (~0). 

~/S + 1+ z ( F ) .  Now Again it follows tha t  r �9 "m~ 

of Peals-Reed get t ing 

1 ( 1 )  
- n < s < < . s + ~ < s +  s -  n 
2 2 ' 

then, by  Rauch's  Lemma,  we have y~, 0, 1 �9 Hl~c A H~I +~ (F) (since s ~< (1/2) n + 1, then 
~< 1, so tha t  A~ �9 H~1 + ~(F)). 

Then by  Hhrmande r ' s  Theorem w e  obtain A,  �9 H ~  1 +~ (F) ~'~ = 0, 1, . . . ,  N - 1, 
L [ s + l + ~  since by  hypothesis  A~ �9 "ml (70). 

This concludes the proof  in the case m = 2. I f  m > 2 we can apply the same trick 
as above to get  the result. This concludes the proof  of B. �9 

Now we are ready  to s ta te  the following Bony-type theorem: 

THEOREM C. - Suppose (1 /2)n  + m - 1 < ~ ~< z < 2~ - ( (1 /2)n  + m - 1) and A~, 
r �9 Hlo~ (~ Hml(Yo), V/z, where Pro(l%)= 0 and (A, r is a solution to (P). I f  F is 
a null bicharacteristic for P,~(x, D) through Y0, then A~, r �9 A H~I(F),  
V/Z = 0, 1, .. . ,  N - 1, m I> 2. 

PROOF. - We are going to use the boots t rap  ideas as in [2]. Suppose first  tha t  A~, 
r �9 Hloc A H~I (•o) where  (1 /2)n  + m < ~ ~< (1 /2)n  + m + 1. Then by  Theorem A, if 
Sl = min {1, z - v} (notice tha t  in this case 

1)  };min/1 
mi {l  min{l   In / 

if ~ = s + m - 1, r = s), we have tha t  A~, r e Hi~or (~ ~z~ + ~1 - m l  (r) ,  v/z. 
I f  z - ~ <  1 We are done. Suppose z - ~ >  1, then by  hypothesis  A , ,  
u~ ~u~§ = = m i n { 1 ,  v .r �9 Zlloc~ , l~ml ~2()'0) where  now $1 1, 0 < s2 - (e + 1)} and s2 <~ 

~ < m i n { 1 , 2 s - ( 1 / 2 ) n - r } ;  now r  r - s + 1 .  But  z 2 = z - ( ~ + l )  since 
- (~ + 1) < 1, for we have 

z - ( ~ + l ) < 2 ~ - ( ~ + l ) - ( l n + m - 1 ) = ~ - ( l n + m ) < . l  

by  assumption. 
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Since we  have  q = 1 and A~, r e Hloc n Hml + 1 (F), t hen  b y  T h e o r e m  A, we  ge t  A , ,  

r e Hi~r n Hr~Z 1 + ~2 (p) = Hloc n H~l  (F). 
This  concludes the  p roo f  when  ( 1 / 2 ) n  + m < ~ ~< ( 1 / 2 ) n  + m + 1. 

Suppose  now (1/2)n  + m + 1 < z ~< (1 /2)n  + m + 2. 
As before:  Ar~, r �9 H~o~ N Hm~ + ~' (F), w h e r e  r = min {1, r - v} > 0; if z - ~ ~< 1 we 

a re  done;  if  ~ - z > 1, we  have  A~, r �9 Hioc n --ml'~+l+~-~ro~, ~ ~ = min  {1, z - (~ + 1)} > 0, 
thus  A , ,  r �9 H~;~ N H~i~+~i(P) (notice t h a t  $1 : 1). I f  z - (z + 1) <~ 1 we  a re  done, so 
suppose  ~ -  (~ + 1) > 1 so t h a t  ~ + 2 < ~ < 2~ - ((1/2) n + m -  1), (~z, since 

> ( 1 / 2 ) n  + m + 1), and  ~ - (~ + 2) > 0; now we have  t h a t  A,, r �9 H~%~ n H~fZ+~(.ro), 
w h e r e  z~ = min  {1, v - ( ~ +  2)} ~< min  {1, 2s- (1 /2)n  - r} wi th  ~ = s + m - 1, r = s + 2 
and  ss = z - (~ + 2) because  z - (~ + 2) < 1, for  we  have  

z - ( ~ +  2 ) <  2 ~ - ( l n  + m - 1 ) -  (~ + 2 ) =  ~ - ( l n  + m + 1 ) ~ < 1 ,  

by  assumpt ion .  

T h e r e f o r e  A~, r e Hioc n H~2+~(F) = Hl~or n H~ (F). 
Similarly,  in the  case  (1/2) n + m - 1 + k < ~ <~ (1/2) n + m - 1 + k + 1, k e N,  we  

ge t  up to A~, r e HI~c N Hmi~k+~+~(~'0), w h e r e  ~k+~ = min  {1, ~ - (~ + k)} ~ min  {1, 2s - 
- ( 1 / 2 ) n - r }  wi th  ~ = s + m - 1  and r = s + k  and S k + l = Z - ( ~ + k )  since 

(1 ) (1 ) 
z - ( ~ + k ) < 2 ~ -  n + m - 1  - ( ~ + k ) = ~  - ~ n + m + k - 1  <<.1, 

b y  assumpt ion .  
Again  b y  T h e o r e m  A we can conclude 

/~!'z + k + ek+  i . .  �9 A~, r e gior O 1,ml (F) ,  Yt~ = 0, 1, . , n - 1  

I t  is left  to t r e a t  the  case (1/2) n + m - 1 < ~ ~< (1/2) n + m: se t  ~ = s + m - I and ~ = 
= z - v ,  then  s = v - ~ < ~ - ( ( 1 / 2 )  n + m - 1 ) = s - ( 1 / 2 ) n < l  so t h a t  we  have  

r r r s + m - 1  s +  - l + z  1 e ~ioc n H~i m (Y0) with s < s _r ~ n .  

T-ls+m- l n HSm~-m- l +s(F), i.e. Then,  b y  T h e o r e m  B, we  ge t  A , ,  r 

A~, r e Hloc n H ~ I ( F ) ,  Vt~ = 0, 1, . . . , N -  1. 

This  concludes the  p r o o f  of  T h e o r e m  C. �9 

COROLLARY 1. - Suppose r R ~  C with r = r  ir 2 and suppose A~, r 
(~ = 0, . . . ,  n - 1; i = 1, 2) satisfy the hypotheses of Theorems A, B, C. Then the con- 
clusions of A, B, C are still true. 
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Appl icat ions .  

As an application of Theorem C we study the propagation of smoothness Of sol- 
utions to the coupled Maxwell-Klein-Gordon (MKG) system in the Lorentz gauge 
(see [10] for the notations): 

[ F~; ~ = -y~, 

(M a) = o, 
[(O ~ +/A')(O~ +/A~) r = 0,  

where y~ = (i/2)(r r - Car~ r + A~ Ir (Here n = 4). 
Notice that  the equation *T'~ '~ = 0 says that  there exists a potential A~ such that  

F~  = a~A~ - a~A~. 
Moreover (MKG) is invariant under the transformations 

T: ((A,), r  ((A, + ~ ) ,  e-i~ r ~: R ~ ---)R. 

Under  the Lorentz-gauge condition ~'A~ = 0 (we are using Einstein's summation con- 
vention with respect  to ~ = diag ( -  1, 1, ..., 1)) we get from (MKG) to 

(MKGL) { ~A,  = y~, tz = 0, 1, 2, 3, 

[3r - 2 /A"0 .  r + A~A~r = 0 

and T: ((A~), r  ((A, + 8~ ~), e-i~ r preserves this system provided that  [3~ = 0. 
We now split the system (MKGL) into real and imaginary par t  so that we are in 

position to use Theorem C. Writing A 1 = Re (A), A 2 = Im (A), r = Re (r r = Im (r 
since [] is a real operator, we get  the following system (here N---2n):  

r iga 1 = r162  -- r 1 6 2  +A~ Ir ~ = 0, 1, 2, 3, 

j :=A:Ir 2, 
(MKGL1) 

|[~r + 2(A1,, 8,r + A2~a, r + ((A1,A~ _ A2,,A2)r _ 2AI~A~ r = 0, 
/ 

[[-1r 2 - 2(A1~ a~ r 1 - A 2 " ~ r  2) + ((AI~A~ - A 2 " A : ) r  2 + 2A1~A2 r 1) = 0. 

Now, splitting the action of the gauge-transformation T into real and imaginary 
part, we see that  T is of the form 

TR : ((A~, A~); r r ~ (A~ + a, ~, d~  ; r cos ~ + r sin ~, r cos ~ - r sin ~) 

so that, since [3~ =0 ,  TR preserves (MKGL1) if and only if T preserves 
(MKGL). 

From now on we will think of the action of T on (MKGL) as the equivalent action 
of TR on (MKGL1). 

Hence, in order for the notion of smoothness of the solution to (MKGL) to make 
sense, T must  preserve the regularity. 



166 ALBERTO PARMEGGIANI: On the propagation of  smoothness, etc. 

So we have the following 

DEFINITION. - T is acceptable if, given A i, r e Hloc N H~(],) ,  i = 1,2 then A~ ~, 
r �9 Hl~e n Hml(•), i = 1,2 where ((A~), r  = T(((A~), r (], can be either (Xo, ~o) orF, 
a null  bicharacteristic of  El). 

Then 

L E M M A  1 .  - Suppose A~ , r �9 Hioc N H~I (}'), i = 1, 2 and define, for  (Xo , ~o) �9 ]', 

8 = {9 �9 Hloc + 1 N H~I + 1 (Xo, ~o); [3~ = O, ~ real valued},  

where (1/2)n < z ~< z < 2~ - (1/2)n. Then 

T~: ((At), r ~ ( (A~  + a ~ ) ,  e-i~r 

is acceptable V~ �9 8. 

PROOF. - Since (1/2)n < ~ + 1 ~< v + 1 < 2~ - (1/2)n + 1 < 2(~ + 1) - (1/2)n, we 
have 

(e-i~)i�9 +1 n H~I+ ~ (Xo, ~o)r ~o), i = 1, 2 

so that  

( A , + ~ )  i, ( e - i~r149  V ~ = 0 , 1 , . . . , n - 1 ;  i = 1 , 2 .  

This concludes the proof of the Lemma ff ], = (xo, $o). If  ~, = F it suffices to notice that, 
by HSrmander 's  Theorem and by ~ �9 8, ~ �9 Hioc + 1 n H ~  1 (1"). This concludes the proof 
of Lemma 1. �9 

REMARK 3. - The hypothesis A~, r �9 Hlo~ n H~I (Xo, ~o), i = 1, 2 implies that  A, ,  
r �9 Hloc n Hr~l (Xo, ~o) if and only ff At ,  r �9 Hloc n Hml (Xo, - ~o) if and only if 

A~, r �9 Hloc n H~l (Xo, ~o) n H~l (xo , -~o),  i = 1 , 2 .  

Hence the conclusion of the foregoing Lemma 1 is still true in the case where ~o is 
replaced by ~ = ( X o ,  +$o) and F replaced by F_+, for any ~ � 9  

~z~+~ n Hm~ 1 (Xo, ~o) nHm~ + 1 (Xo, -~o); [ ~  = 0, ~ real valued} = 8, ~ being real ---- {9 �9 ~ I o c  

valued. 

R E M A R K  4 .  - Suppose 
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(i.e. allow A~ to be complex). Then  a nontr ivial  solution to (MKGL) is given by  

A~(x) = ~(e  i('~'~) - e-i(x'~)), r = ze i(~'~) + we -i(~'~) 

where  F ~ = 0, I z 12 = ]wl 2 ; z, w �9 C, ~ �9 R ~. (Notice tha t  8"A,  = 0). 

REMARK 5. - Consider the following equation (satisfied by  the imaginary pa r t  of A) 

( , )  Du = 1r 

on R ~, suppose  r e HS(R n) where  s > n/2  + 1 and tha t  t he r e  exists a solution 
u �9 H s (R ~) to ( . )  with compact ly  suppor ted  initial data.  We have 

r �9 C(0 ) (R, H s - 1/2 (R ~ - 1)) c C(o ) (R, L 2 (R n - 1)) r7 C(0 ) (R, L ~ (R ~ - 1))_ 

(C(0) is the  space of continuous functions vanishing at  infinity) since s - 1/2 > ((n - 
- 1)/2) + 1. Take  q such t ha t  1/2 = 1/q + 1/(n - 1) i.e. q = (2n - 2 ) / (n  - 3). (Recall  
tha t  n - 1/> 3 is the  in te res t ing  case for  (MKGL).)  

By  Sobolev's L e m m a  we have: 

21- a'llu'(t')ll2= I 
R n - 1 

I ( f  I = ut ]r <<-Ilutll 1r 1/(~-1) 

c~ Ilu'll IIr Full -< C n  I1r Ilu '112 
since r 1 4 9  ~ implies r 1 4 9  2n-2. (He re  u ' = ( D t u ,  Vu) and I I I I  = 
= I1 II.(~,,-,P Hence,  by  Gronwall 's  inequali ty,  we conclude tha t  

Ilu'(t, )11 ~< Ilu'(O, ")llexp - 5  I1r ")llb~ ~d~ 
0 

The re fo r e  we can say  tha t  if in (MKGL1)  A is sat isfying the  same hypo theses  as the  
above u, and A is rea l  initially (A~ = 0, at A 2  = O, say  at  t ime t = 0), then  it mus t  be 
rea l  locally in la te r  t imes (by the  previous a r g u m e n t  and the  fact  tha t  A~ satisfies an 
equat ibn of the  form (.)) .  

We can now s ta te  the  following 

THEOREM. - Suppose (A, r is a solution to (MKGL) such that, for  i = 1, 2, A~, 
r e Hloc A H ~  (70), where (1/2) n + 1 < ~ < ~ < 2~ - ((1/2) n + 1). 

Then A~,, r e Hloc A H~I (F+ ) r~ H~,I (F_),  and 

Tv (A, r e Hloc n Hml (F+) A H~,I (P_), ~r ~ 8. 
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PROOF. - I t  is just  an application of Theorem C, Corollary 1 and Lemma 1 
to (MKGL1) followed by Remark 3. �9 
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