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M i n i m a  o f  S o m e  n o n  Convex  n o n  Coercive  P r o b l e m s  (*). 

D A N I E L A  G I A C H E T T I  - R O S A N N A  S C H I A N C H I  

Abstract. - We give here an existence result of minimizers for a class of one dimensional inte- 
grals of the Calculus of Variations with non convex, non coercive integrands. 

1. - I n t r o d u c t i o n  a n d  m a i n  re s u l t .  

Let  us consider the functional 

1 

(1.1) F(u) = f f (x ,  u(x), u' (x) )  dx 
o 

defined in the class ~SPp = {u �9 wt 'p (0 ,  1): u(0) = 0, u(1) = ~, u '  i> 0 a.e.} with ~ � 9  
and p i> 1. The integrand f = f ix ,  s, ~) is not assumed to be neither coercive nor con- 
vex with respect to ~. The closure of ~gp in the (either strong or weak) topology of 

1, p Wloc (0, 1) is given by 

(1.2) ~ p  = {u �9 W11'c p (0, 1): u(0) t> 0, u(1) ~< ~, u '  >I 0 a.e.}, 

where the values u(0) and u(1) are defined by 

u(0) = inf u(x), u(1) = sup u(x).  
x �9 (0, 1) x �9 (0, 1) 

The extension of F ~by lower semicontinuity- from ~49p to ~p  is the functional F 
defined for u e ~p  by 

~" U } .  if(u) = inf { lim inf F(uk): {uk} c %Vp, uk 

Let  us precise the hypotheses on the integrand function f :  
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A1) f is a Carath~odory function on [0, 1] x R x R; 

A2) there exist K I> 0, a convex function h = h($) and continuous functions a = a(x, s) 
and b = b(x, s) such that for every x e [0,1], s e R, $ e R 

i) a(x, s) h(~) - K <<. f(x,  s, ~) <<. a(x, s) h(~) + b(x, s), 

ii) I~1 ~<h(~)~<L(1 + I~IP), L E E + ,  

iii) a(x, s) >I O. 

Then the function f** (which is the greatest function convex with respect to ~ and 
less than or equal to f )  satisfies the same assumptions and the lower semicontinuous 
extension of 

G(u) = ~ f**  (x, u(x), u ' ( x ) )dx ,  u e 
0 

to ~p ,  can be represented as 

i [ui0) ; ] 
(1.3) G(u) = I f * *  (x, u(x), u ' ( x ) )dx  + h a(O, s)ds + a(1, s)ds 0 0 u(1) 
where, for simplicity, we set h = h+ = h_,  

h(~) 
h_.= lira 

(see [B.-M.], Theorem 2.4). 
We are interested in the existence of solutions, for the following problem: 

fo [; ] 1 (1.4) rnin f (x ,  u(x), u ' (x))  dx + h a(O, s) ds + a(1, s) ds , u E ~ p  , u(1) 
where ~p is defined by (1.2). 

Usually existence for a non convex problem is achieved in two steps: find a mini- 
mizer Uo e ~p  of the relaxed functional (here (1.3)) and then prove that, for such 
Uo, f (x ,  Uo(X), u6 (x)) = f * *  (x, Uo(X), u~ (x)) a.e, in ~. 

Therefore we need assumptions on f** in order to prove existence of minima of 
the functional (1.3) in the class (1.2): 

B1) f** admits continuous partial derivatives 

f ~  , f ~ * ,  f ~ ,  f ~ ,  f ~  , 

Be) there  exist an exponent p i> 1 and a function M: R+ x R+ ---~R+ such that for 
3, r > 0 ,  

I f**(x ,s ,~ . )  I < M ( 4  r ) ( l +  I~IP), V ( x , s , ~ ) e [ ~ , l - ~ ] x [ - r , r ] x R .  
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REMARK 1. - The assumptions B~) implies that  the functions defined by 

(1.5) ~(x, s, r = f * *  - ** = f,~ - ~f~*, 

(1.6) = ~(x, s, ~) = ~ + ~ ,  

are continuous. 
Existence results for problem (1.4), when the integrand f is convex, are proved 

in [B.-M.]. Here  the authors consider both the cases where ~ = fi - fix - ~ has a defi- 
nite sign or it changes its sign. 

The non convex case is considered in [M.2] under the assumption that the function 
given by (1.5) has a definite sign. 

Our aim in this paper  is to prove (see the theorem below) an existence result for 
(1.4) in the non convex case when ? changes its sign. 

This framework could be a general approach to prove existence of a minimizer for 
the following non convex functional related to the problem of cavitation in non linear 
elasticity: 

{1 iv ] (1.7) Min .I rn - l q~ -r ' V' dr + T t - -  
0 

I v ( 0 ) ]  n 

n 
1, p a.e.} : v ~ Wloc (0, 1): v I> 0v(1) = ~v '  I> 0 

where the energy q) = ~(V, ~), satisfies assumptions of type As), A2), B2) and h is de- 
fined as above. The functional to minimize in problem (1.7) has first been considered 
by P. MARCELLINI in [M.1]. 

Up to now, no existence result  seems to be applicable to problem (1.7), when r is 
not convex with respect  to ~. 

The problem of cavitation has been first studied by J. BALL in[B.1] 
and [B.2]. 

More exhaustive references on the subject can be found in [M.2]. 
We now state our main theorem. 

THEOREM. - Assume that fix, s, ~) satisfies t l )  , n 2 )  , B 1 ) a n d  B2) and that the 
functions ~ and ~ defined in (1.5) and (1.6) satisfy the following assumption 

i) ~(x, s, 0) ~ 0 Vx, s,  

C) ii) ~(x, s, ~) = 0, ~ ~ 0 ~ ~(x,  s, ~) > 0. 

Then the variational problem (1.4) has a solution uo which belongs to Wilo~ ~ (0, 1) and 
satisfies the following estimate 



112 D.  GIACHETTI - R. SCHIANCHI: Mi n i ma  of some non convex, etc. 

REMARK 2. - Let  us point out that, if h = + ~ and a(0, s), a(1, s) are almost every- 
where positive, the minimum Uo satisfies Uo (0) = 0, Uo (1) = ~ and therefore Uo is  also a 
minimum of the functional F defined by (1.1) in the class ~p.  

Moreover our theorem also looks at the case where f = f(x,  s, ~) grows at most lin- 
early when I$1--* ~ .  

REMARK 3. - The existence result  in [B.-M.] is related to a convex integrand f such 
that ~ = f ~ - f i x - f i ~  ~ changes its sign according to the following assumption:  

V~ e ]0, 1/2[  and r > 0 there exists ko = ko (~, r) > 0 such that  for every (x, s, $) 
belonging to [ ~ , l - ~ ] • 2 1 5  with I~1 >ko ,  if ~ ( x , s , ~ ) = 0  then 
~(x ,  s, ~) > 0. 

The plan of the paper  is the following: in Section 2 we define approximating prob- 
lems which are convex and coercive and we prove some properties of their 
solutions. 

In Section 3 we prove some geometrical properties (concavity-convexity proper- 
ties) of the approximating solutions defined in Section 2 and a priori estimates. 

Finally, in Section 4, we prove the main theorem. 

2. - A p p r o x i m a t i n g  s o l u t i o n s ,  m o n o t o n i c i t y  propert ies .  

In this section a double approximating scheme is introduced in order to obtain 
smooth convex and coercive integrand functions. We consider 

(2.1) g~(x ,  s, ~) = a~* f ** ( x ,  s, ~) + ~(1 + !~12) q/2 + k(~-) q 

where q I> max {p, 4}, ~ = a(~) is a positive mollifier with compact support  in [ -  1, 1], 
~k(~) = k~(k~) and ~- = - min {~, 0}. 

The variational problem 

(2.2) Min G~k(u) = g~k (x, u(x), u '  (x)) dx: u e W 1' q (0, 1), u(0) = 0, u(1) = ,~ 
o 

related to the convex and coercive integral G ~k (u) admits a solution u~k (x) which satis- 
fies the properties stated in the following lemma. 

LEMMA 2.1. - For ~ ~ ]0, 1[ and k > 0, u~k e C 3 [0, 1] and satisfies 

(2.3) ~ x  [g~k (x, u~k, u'k)] = g~k (x, u~k, u~) .  

Moreover, for f ixed ~ e ]0, 1], HU'klIL~(0, 1) is bounded uniformly with respect to k. 
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P R O O F .  - A classical argument due to Morrey (see Th. 1.10.1 in [Mo.]) provides 
solutions u~k �9 C a [0, 1] of the Euler's equation (2.3). The uniform C 1 bound of u~k is ob- 
tained following the outline of the proof of Lemma 5.7 in [M.2]. 

LEMMA 2.2.-  The sequence {U~}k~N, for  f ixed  ~, is relatively compact in the weak 
topology o f  W 1' q(o, 1): up  to a subsequence, {u~}k ~ N weakly converges to a solution 
u~ of  the fol lowing m i n i m u m  problem: 

(2.4) Min [j lg~(x, U(X), u' (x))dx:  u �9 Wl'q(0, 1), u(0) = 0, u(1) = 2, u ' ~  > 0 a.e.} 

where g~(x, s, ~) = f * *  (x, s, ~) + d l  + 1~12) q/2. 

P R O O F .  - Let us begin by proving that the sequence {u~k)~ ~N is bounded in the 
W 1, q (0, 1)-norm uniformly with respect to k. 

Since u~k solves the problem (2.2), for v = ~x, Vx �9 (0, 1), we get 

G~k(u~k) <<- G~k(v) <<- C1 

where C 1 is a positive constant independent of ~ �9 ]0, 1] and k �9 N. 
By the growth condition on f (see i) in A2)) and the definition of if*,  we 

get 

(2.5) ' q kll(U:k)-IIqLq(O, !) SllU dlLq(O, 1) + -- K G k(u k) <. C1.  

This proves the boundedness of the sequence {U~k}keN in W 1' q(O, 1). Then there 
exists u~eWl,  q(0, 1) which is the weak limit in Wl'q(0, 1) of {U~k}k~N (up to a 
subsequence). 

' - q is bounded for each k �9 N, then the negative part of By (2.5), since kll(u~k) IILq(O, 1) 
U~'k converges strongly to zero in Lq(0, 1) and thus u" I> 0 a.e. in [0, 1]. 

We show now that u~ solves problem (2.4). 
Indeed, by Lemma 2.1, u~'k is bounded in L ~ (0, 1) uniformly with respect to k and 

since ak*f** converges uniformly on bounded sets of [0, 1] • R • R, then we have, for 
E ]0, 1/2[, 

1 - 8  

lim f {~k*f**(x,  u~k, us  - f * * ( x ,  u~k, u•)}dx  = O. 
k--,'.+~ 

Therefore, using lower semicontinuity arguments, for v �9 wl'q(0, 1) such that 



114 D. GIACHETTI - R. SCHIANCHI: Min ima  of some non convex, etc. 

v(0) = 0, v(1) = ~, v '  I> 0 a.e. in [0, 1], we get  

1 - ~  1 - ~  

I g~(x, u~, u ' ) d x  ~< limk_~+~inf I g~(x, u~k, u'k)dx = 

= limk_~+~inf I {~k*f** (x, u~k, us  + ~(1 + lus <<. 

1 

lira inf G~k(u~k) <<. lim inf G~k(v) = I g~(x, v, v ' ) d x .  
k---> + ~ k---~ + oo 

0 

By the monotone convergence theorem, as ~'---)0 we get  the result. 
A strict monotonicity proper ty  of u~ is stated in the following lemma. 

LEMMA 2.3. - For f ixed ~, the functions u~ are strictly increasing in (0, 1). 

PROOF. - Firs t  of all, let us prove that there not exists any interval I c [0, 1] such 
that u" (x )=  0 Vx e I, where us is defined in the previous lemma. 

Indeed, if such an interval I exists, set I = (xl, x2) c_ [0, 1], u~ solves Euler 's equa- 
tion in weak form and also in the form 

x 

(x, us (x), u" (x)) = const + ~ g~ (t, u~ (t), u" (t)) dt, Vx e (xl, x~) g~ 
Xl 

Differentiation with respect  to x, taking into account that  u" (x) = 0 Vx e (xl, x2), 
gives 

f~x (x, u~(x), 0) = f * * ( x ,  us(x), O) Vx e (Xl, x2), 

which contradicts the assumption i) in C). 
Since, by Lemma 2.2, we know that u / I> 0 a.e. in [0, 1], u~ is an increasing func- 

tion in [0, 1]. Indeed the first par t  of the proof implies that  it is strictly increas- 
ing. 

As a consequence, we get 

(2.6) 0 = u~ (0) ~< u~ (x) ~< u~ (1) = ~ Vx e [0, 1]. 

3 . -  Geometrical properties and a priori estimates for approximating sol- 
utions. 

This section is devoted to the study of concavity-convexity properties of the ap- 
proximating solutions u~k and to the related a priori estimates. Both of them will hold 
true for the limit function u~. 
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Le t  ~ �9 ]O, 1/2[ and ~ �9 ]0, 1] be fLxed. F o r  k �9 N,  define the following subsets  of 
]~, 1 - ~[ 

(3.1) Y~ = {x �9 1 - ~[: u'~(x) ~ 0}, 

(3.2) Z~ = {x �9 Y~: u:~ (x) = O}. 

By L e m m a  2.3, {k �9 N: Y~ ~ 0} is infinite. 
In order  to prove the s ta ted  propert ies  of u ~ ,  we need the following lemma. 

LEMMA 3.1. - I f  the set {k �9 N: Z~ ~ 0} is infinite, up to a subsequence, the func-  
tions u~'~ have a unique global m i n i m u m  point  x~ with  u'~ (x~) > O. 

PROOF. - Since u~k �9 C z, the Euler ' s  equation (2.3) can be differentiated obtain- 
ing: 

(3.3) $]~ ?V v 

g~ u~k = ~k*f** - { ~ k * f ~ *  + u~k'~*f?~* } 

If  we set 

(3.5) 

(3.6) 

- ~ k  ~k J ~  ) - ~k* ( f ~  u~k) - U~'k[ak*(f** U'k)] �9 

L l ( r )  = s u p { I f ~ * ( x ,  s, ~)1: x � 9  1], Isl <~r, 1~1 ~<r}, 

= **  ~ ) l : x � 9  L2(r) s u p { I f ~  (x ,s ,  [O, 1], lsl <<-r, l~l <<-r}, 

then  for such values x, s, ~, we have 

(3.7) I~ak*f~* - ak* 5f~* I = 

= i~I~k( t )  f~**(X,S,~-- t )dt--  I ~ k ( t ) ( ~ - t ) f ~ * ( X , S , ~ - t ) d t l  << - 
R R 

I L l ( r  + 1) I ~ ( t )  l t ld t  <<- ~< L l ( r  + 1) :r k 
R R 

L 1 (rk + 1) f a(t) dt - L1 (rk + 1) 
R 

(3.8) l~ak * ( f**  ~) - ak*f~* ~21 = 

R R 

and in the  set  Zk: 

(3.4) ~k ,, ** , ** g~ u~k = ~k* ( f * *  + f ~  u~k) - ~k*f~x - 
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< .L2(r+l )  l~R[~k ( t ) (~ - t ) -a~( t ) (~ - t )~]d t l=  

= L2(r + 1) ~[ak(t)~t  - ak(t)t2]dt I ~ L~(r + 1 ) [ a k ( t ) , ~ - t ,  ,t I dt <. 
I 

R 

i L2 (r + 1) <~ (r + l)L2(r + l) Itl~k(t)dt <<- k (r + l) 
R 

By (3.4)-(3.8), for r I> sup Ilu~'klIL~(0,1), taking into account the definition (1.6), we 
have, for x �9 Zk, k > o 

(3.9) ~k , , ,  L l(r  + 1) L 2 (r + 1) ( r +  1) .  
g~ u~k - ak* ~1 ~< k + k 

In a similar way, we can prove (see also (5.18) in [M.2]) 

L(r + 1) 
~k , ,  

(3.10) g ~  u ~  - ~k* ~1 ~ k ' 

where ~ is defined in (1.5) and L(r) is defined by 

L(r)=sup{I f~s  (x, s, ~)l: x �9 [0,1], s I ~<r, I$1 <~r}. 

Consider now the infinite set {k �9 N: Zk ~ r We can assume, possibly extracting 
a subsequence, that  for each k, Zk ;e r Let  be xk ~ Zk, then U[k(Xk) ~ O, U:'k(Xk) = 0 and 
{(xk, U~k(Xk), U~(Xk))}k~N converges to some point (x, s, ~) �9 [0, 1] • [ - r ,  r] • 
•  r]. 

On the other hand, b y  the continuity of ~ and (3.10) used for x = xk, 

lira ~(xk, u~  (xk), u'k (xD) = ~(x, s, ~) = 0 
]~ ---> r 

therefore, by assumption i) in C), ~ must  be different from zero, and by ii) in C), 
~b(x, s, ~) > 0 which implies definitively that  U'k(X~)'@(Xk, U~k(X~), U'~(X~)) > 0. Now 
we use (3.9) and, taking into account that  g~  and a~ are positive, we  conclude that 
definitively u'~(x~) and u'~'~(x~) have the same sign. 

I t  follows that definitively x~ is a local minimum for u'~(x) with u'~(x~) > 0 if ~ > 0 
or, definitively, x~ is a local maximum with u'~ (x~) < 0 if ~ < 0. 

n ' Indeed x~ is a strict global minimum for the function I ~ ], because if it was strict 
local but  not global, it would imply the existence elsewhere of a local positive maxi- 
mum, which is excluded by the previous argument. For  the same reason it is unique. 
The lemma follows now from the strong L ~-convergence of  u~ to us and Lemma 2.3. 

REMARK 4. - From the above proof it follows also that  u~  cannot have a positive lo- 
cal maximum. 

Now we can state the lemma which exhibits the mentioned geometrical properties 
of the approximating solutions u~k. 
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LEMMA 3.2. - Let be ~ �9 ]0, 1/2[. There exists a subsequence of  {u~k }k ~N, still denot- 
ed by {Usk}keN and two sequences {x~} and {x~}, ~ ~< x 1 ~< x~ ~< 1 - 3 such that 

i) u'k (x) = 0 Vx �9 x~[; 

ii) i f  u[k(x) > 0 (resp. u'k(x) < O) in ]~, x~[, then u~k is concave (resp. convex) in 
]8, x~[; 
i f  u'k (x) > 0 (resp. u s  (x) < O) in ]x~, 1 - ~[, then u~k is convex (resp. con- 
cave) in ]x~, 1 - ~[. 

PROOF. - Assume first that  the set {k e N: Yk =]8, 1 - ~[} is infinite (the set Yk is 
defined by (3.1)); up to a subsequence, we can assume that  Yk=]~, 1 - ~ [  
V k e N .  

I f  the set {k �9 N: Zk ;~ 0) is finite then definitively Zk = 0 and u~k are convex in 
]8, 1 - ~[ or concave in ]8, 1 - 8[ and the lemma is proved by choosing x 1 = x~ = ~ or 
x I = x ~ =  1 - 8 .  

I f  the set {k e N: Zk ~ 0} is infmite, by Lemma 3.1, up to subsequence, u'~k (x) is 
decreasing for x < xk and increasing for x > xk. We can conclude also in this case that  
the lemma is true, by choosing x 1 = x~ = xk. 

Assume now that  the set {k e N: Yk =]8, 1 - ~ [ }  is finite. Therefore, definitively 
Yk ~]~, 1 -  $[, i.e. there exists k �9 N such that, for k > k, there exists at least one 
point xk �9 1 - ~[ satisfying U~'k(Xk) = 0. Moreover for large values of k, Zk = 0 be- 
cause if not, the set {k �9 N: Zk ~ 0} would be infinite and, by Lemma 3.1, it would 
exists a positive local minimum for u~ in 5k �9 Yk. On the other hand we have that  
u~ (xk) = 0 ,  which implies the presence of a local maximum point for u~ in the interval 
with end points xk and 5k and this contradicts Remark 4. 

Now we prove that, for k large enough, the set {x eJ4 1 - 8[: u'k(x) = 0} is an in- 
terval. In fact, let be x, y such that  u'k (x) = u~ (y) = 0; if u'k (5) is different from zero 
in some point 5 between x and y, the function u~ must have an extremum between x 
and y in contradiction with the fact that  Zk, = 0 definitively. 

Setting 

x~ = inf{x �9 [8, 1 - 3]: u'~(x) = 0}, 

x~ = sup {x �9 [8, 1 - ~]: u'k (x) = 0}, 

then assertion i) in the s tatement  of the lemma is proved. 
Since Zk = 0 for k large enough, lu~'k[ is decreasing in ]8, x~[ and increasing in 

]x~, 1 - 8 [  which proves assertion ii). 

! 
Finally we are able to prove the a priori local estimate on u~k. 
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LEMMA 3.3. - Let { u~k I k ~ N be the subsequence satisfying the statement in the Lem- 
ma 3.2, then the following estimate holds: 

PROOF. - Let  us apply Lemma 3.2 with 6̀  replaced by 6`/2. Different situations are 
possible, but  in any case we get  the following estimate: 

[u~k (x) - u~k (6'/2) 
lus <- Ix - 6`/2[ Vx  ~]6`, x l [ .  

Then, Yx e ]6 ,̀ x 1 [ 

' x  4 (3.12) lug(  )1 ~< lU=klL'(O, 1). 

In a similar way we proceed to prove estimate (3.12) for x e]x~, 1 - 6`[. By (3.12) 
and i) in Lemma 3.2 we get  the estimate (3.11). 

Let  us observe that  estimate (3.11) holds true passing to the limit for k--) ~ .  In 
U t fact the boundedness in L ~ (6 ,̀ 1 - 6 )̀ of { ~k} implies that  this sequence converges in 

the weak* topology to u" and by lower semicontinuity of the norm, we get  

(3.13) 
k---, *r $ 

4. - P r o o f  o f  t h e  m a i n  t h e o r e m .  

Here  we follow the outline of the proof of Theorem 5.4 of [M.2]. Let  us consider for 
each ~ the function u=(x) obtained as limit, for k - ~  oo, of u=k. By inequality (3.t3), 
{u~} is relatively compact in the weak* topology of W~I'~ ~ (0, 1) and there exists a rune- 
tion u0 ~ Wl1'r ~ (0, 1) such that, up to a subsequence, 

W - - *  

(4.1) u= ~" Uo in Wllo~ ~ (0, 1) for r 

By the definition of G (see 1.3), recalling that  u~ is a solution of problem (2.4) (see 
Lemma 2.2), Vv e ~ q  = ~gp M W 1, q (0, 1), we get  

1 1 

- f /  f G(uo) <<. lim inf **(x, u~ u ' ) d x  <<. lim inf g~(x, u~, u ' ) d x  <<. 
~ - ~ 0  ' ~ -..-~ 0 

o o 

1 1 

li=m2onf f g cx, v, v')dx ff**(x, v, v')dx - e(v) 
o o 
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then 

(4.2) -G(uo) <~ G(v) Yv �9 ~?q. 

Let now be w �9 ~p ,  because of the density of W 1' q in W 1' P, there exists a sequence 
{vk} r ~q such that vk-~ w in W 1' p (0, 1). Moreover since, by A2), G is strongly contin- 
uous in W I'p, inequality (4.2) applied to v = vk, to the limit, gives 

(4.3) -G(uo) <<- G(w) Yw �9 ~ p .  

Finally let v �9 ~p ,  by the definition of G, for a sequence {vk} r %Vp such that vk--~v 
in the weak topology of W11'c p (0, 1), lim G(vk) = -G(v). By replacing w with vk in the pre- 
vious inequality (4.3) and passing to the limit, we see that 

G(uo) <~ G(v) Vv e Wp 

and u0 solves the minimum problem related to the functional (1.3) in ~p. 
To conclude our proof we must only prove that 

(4.4) f (x ,  Uo(X), ug(x)) = f * *  (x, Uo(X), ug(x)) a.e. in (0, 1) 

since from (3.13) immediatly follows the analogous estimate for ug, by semicontinuity 
arguments. 

Let us point out that ug is a piecewise monotone function because of the geo- 
metrical properties of u~ stated in the Lem'ma 3.2. Then ug is almost everywhere con- 
tinuous. Let be A = {x �9 (0, 1): u~ is continuous in x} and choose x e A such that 
f (x ,  Uo(X), ug (x)) ~ f * *  (x, u0 (x), ug (x)). We recall that f** is a linear function with re- 
spect to E = ug (x) and therefore, taking the derivative at x of the Euler's equation in 
the weak form, 

X 

(x, Uo(X), u~ (x)) = c + I f * *  (t, Uo (t), u~ (t)) dt ,  f?* 
0 

we get 

~(x, Uo(X), Uo (x)) = f * *  - ** ' f~x - f 2 *  ug (x) = O. 

By i) in the assumption C), it follows that ug (x) ~ 0. 
On the other hand ~(x) = ~(x, uo(x), ug (x)) is strictly increasing in this point x be- 

cause of assumption ii) in C). Then there exists a neighbourhood I(x) such that, for 
each y �9 I(x) - {x}, ~(y) ~ 0. It follows that, for each y �9 I(x) - {x}, either y ~ A or 
f (y ,  uo (y), ug (y)) = f * *  (y, uo(y), ug (y)) otherwise, by the previous arguments, ~(y) 
would be equal to zero. 

Since ug is almost everywhere continuous, then ( f - f * * ) ( y ,  uo(y), ug (y)) = 0 a.e. 
in I(x) - {x}. This contradicts the fact that ( f - f * * ) ( x ,  Uo (x), ug (x)) is different from 
zero in x which is a continuity point for ug. We conclude that (4.4) holds true. 
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