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Different ia l  Forms  and Reso lut ion  on Certain Analyt ic  Spaces.  

III. - Spectral Resolution (*). 

VINCENZO ANCONA - BERNARD GAVEAU 

Introduction. 

This work is the continuation of the two previous works [1],[2]. The general 
motivations were described in [1] and we briefly recall them. We want to construct a 
resolution of the sheaf of holomorphic functions on an analytic space S with normal 
singularities. We have assumed in [1], that the singular locus X of S is smooth and 
that there exists a desingularization ~: S ~  S of S such that the exceptional divisor 
X =  ~ - ! (X)  is irreducible. In this work, we suppose again that X is smooth, but we 
do not assume that .~ is irreducible. We still have to do an hypothesis, namely that for 
any couple of irreducible components Yi', Y]' of X, ~ is surjective from Y/(~ Yj to X. 
This is a rather strong hypothesis (which basically implies that the desingularization 

can be obtained by one blowing up). 
Under this hypothesis, we can construct a resolution of the sheaf of holomorphic 

function. The main tool is the definition of a spectral resolution. 

1. - Infinitesimal neighborhood of the exceptional divisor. 

1.0. Notations. 

We consider a compact analytic space S with a singular locus X which is assumed 
to be a smooth complex manifold. We assume that S has normal singularities. 

(*) Entrata in Redazione il 30 settembre 1991. 
Indirizzo degli AA.: V. ANCONA: Universit~ degli Studi, Dipartimento di Matematica U. Di- 

ni, Viale Morgagni 67/A, 50134 Firenze, Italia; B. GAVEAU: Universit5 Pierre et Marie Curie, 
Math~matiques, tour 45-46, 5 Stage, 4, place Jussieu, 75252 Paris Cedex 05, France. 
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Let 9: S - o S  a desingularization of S and call 

2= ~-l(X). 

This is the exceptional divisor which has, in general, many components 

N 

(1.1) 2 = [J Y~, 

where Y~ are smooth hypersurfaces with transversal intersections. 
We shall denote Ii the ideal of Y~. If U is an open subset of S touching Yi, then 

A Yi has an equation ~.i = 0 and I,i is generated by {i in U. 

1.1. Vanishing of cohomology near X. 

We shall now assume the following hypothesis (A) 

(A) There exists an ideal J c Os such that J.  Oz is generated by one element and 
such that for all O~-module F in S, there exists an ro > 0 with 

(1.2) Hp(,p -1 (U), (J" 0~) ~ | = O, 

for all sufficiently small open set U r S, all p > 0 and r > to. 

This hypothesis is fulfilled in any situation where the desingularization is obtained 
by successive blowing-up. 

We shall apply this hypothesis only in the case where F is a vector bundle on S. 
The fact that J .  O~ is generated by one element means that there exists al,  ..., aN 

positive integers with the property 

(1.3) J .  Oz = I~ '1 "I2~ ... I ~ .  

We can always assume that for F = 0 , ,  r = 1 provided we change the definition of 
the aj. 

Call J2 = J .  0~. From the cohomology exact sequence associated to the short 
exact sequence 

(1.4) 0 ~ J~2 ~ O~ ~ Oz /J2 ~ 0 

we deduce the isomorphisms: for all p > O, U small in S, 

(1.5) HP (9 -~ (U), 0~) = H p (9 -~ (U), O~/J2) , 

which is induced by the quotient mapping 

(1.6) j~ : 0~--> O~ /J,~. 
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1.2. Ddfinitions of various jets. 

a) We consider again 

N 
(1 .3 )  = 1-I 

j = l  

We call 

(1.7) ()j = O~/I~ 

and Jk : 0~ ~ O~/I~ ~. 
If U is a small open set in Ssuch  that ~(k 5) = 0 is local equation of Yk A Din U, and 

if f is holomorphic on U, then 

~-1 ~ f  [ (~(~))~ 
(1.8) J~(f) = t=o ~ ~(~u)~ I~(~=o- l! 

and we can also say that (9~ is the sheaf of holomorphic sections of a vector 
bundle 

by the identification 

Jk(f)  = (f(o ~), ~(u) where f t  (~) - �9 �9 �9 ~ . ] a  k -  1 alf I " (a~ (k~))l ~)=0 

If we change the open set U into another open set V, then we have a holomorphic 
change of coordinates 

[z (~) ~(z(5)), 

where z (~) are holomorphic coordinates along U(~ Yk. When we write Jk(f)  in both 
systems of coordinates (rood I~ ~) we have the formula for the change of trivialization 
of E (a~-l) by 

~-1 (~)~ ~k-1 (~(~))~ 
(1.9) E f~u) = E (rood l=o l! l=o l! ,~k ~ J- 

In particular ()k is naturally a Oygmodule the multiplication being 

h(f(o ~) ~(u) ) =  (h.f(o #) hf (~) ) " " ~ J a k - 1  ~ "'" Yak--1 

for h e F ( U  A Yk, Oy~). 
Using the identification h ~ h o ~!rk, it also becomes a Ox-module. 
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b) more generally, we can define 

5kl = O~/(I~ + I~l), Jkz: O~--~ Okt. 

~(~) = 0 are local equations of Yk N If U is a small open set  in S, and ~ (k c~ = 0 and ~ t 

and Yt A U, Jkt ( f )  is obtained by taking the Taylor expansion of f i n  terms of ~ (k 5) and 

~I ~ on Ykt = Y~ N Yt and keeping all powers of orders < ak in ~(k 5) and < at in ~I 5) so 
that 

Jkt ( f )  = (~(5))~<a~ 

f ( ] )  = 3~+zf I 

This is also the sheaf of holomorphic sections of a vectors bundle 

It is then naturally a Ofk~-module, but  also a Oy;module, a Ox-module ... 

c) We shall also define 

[ 6kt...,n = 0~/ ( I ;  k + I? t + ... + I ~ ) ,  

(1.10) )Jkt...,~: O~ -~ Okt...~, 
! 

| E ( a ~  - 1  . . . . .  a,,~ -1) ---> v 
(. k l . . .m ~ kl . . .m" 

1.3. Exact sequence associated to O~/J2. 

LEMMA 1.1. - There is an exact sequence of Oz-modules 

(1.11) O--~O~/J~?---~ ~ Ok ~ 0 0kt ---~ ~ O~t~... 

with natural morphisms. 

PgOOF. - If  f e OZ, we can associate 

(1.12) f ---> (j~ (f))~=~...N ~ ~ 5~ 

and this induces the first morphism in (1.11). 
Then if (J~)~=~ ..... ~ ~ ()~, we associate 

(1.13) (Jr (f~) - J~ (J}))~, t e G 0a, t 
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and if (fkt)k, t=l, N E G 0kt, we associate the various 
""'  k , l  

(1.14) (Jm(fkt) --Jl(fim)) e 00k tm  

(the same ()kz,~ is repeated several times). 
This is an exact sequence, because the Yk are 

hypersurfaces. 
all smooth transversal 

REMARK 1. - Although each of these modules in (1.11) except O~/J2 is naturally 
a O~module, this is not a sequence of O~modules because the morphisms (1.13), 
(1.14) ... are note O~-morphisms. 

REMARK 2. - If there are only two components I11, Y2 of X, (1.11) is a short exact 
sequence 

(1.15) 0 ~ O~ /J2--~ O~ (~ 02 --) 0~2 ~ O . 

1.4. The infinitesimal neighborhood as an Ox-module. 

We shall now assume the following hypothesis (S) 

(S) For any i, j = 1,..., N, the morphisms ~ I Y~: Yij ~ X are surjective. 

We want to prove the follow:rag theorem. 

THEOREM 1.2. - Let us assume hypothesis (S). With the natural structures of 
Ox-modules on the sheaves Ok and Okt, the morphism of the sequence (1.11) 

(1.16) G Ok --) e Okt 
k, l 

is a Ox-morphism and in particular O~ /Jy~ is a Ox-module. 

To prove this result, we shall state several lemmas: 

LEMM~ 1.3. - Let Ti be the set of points ~z in Yi such that the rank of d(?l y~ ) at ~t is 
less than dim X. Then Tk N T1 is different from Ykl. 

P R O O F .  - Because Tk is an analytic set in Yk, ~(T~) is an analytic subset in X which 
is of codimension I> 1 in X because X is smooth and because of Sard's theorem. Then 
9(Tk U Tl) is also different from X and because ~(Ykt) = X we have Ykl ~ Tk U Tt. 

LEMMA 1.4. - The set of points ~t E Yk~ such that the fiber (~lYk)-~(~(~)) or the 
fiber (~lYz)-I(~(~)) have a singular point at ~ is a proper analytic subset of 
Yk~. 
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PROOF. - At a point ~ e Y~ such that the fiber (~1Y~)-~ (~(m)) has a singular point, 
the rank of the differential d(~l ~)  at ~ is not maximal, so that ~ is in T~ and Lemma 
1.4 follows from Lemma 1.3. 

PROOF OF THEOREM 1.2. - We have already seen that ()~ and ()~t are Oz-modules. 
We consider a point ~ e Y~t and the morphism 

around that point defined by 

(1.17) f~ ~ ft---> (jt (f~ ) - j~ (f~ ) ) . 

Let us fwst assume that ~ is not in Tk U Tz. The picture around ~ is as follows: the 
fibers (~l~,~) -~ (m')  determine a local analytic foliation of Yk around ~ for m' near 
m = ~(~) and the fibers (~1Y~ ) -~ (m')  determine a local analytic foliation of Yt around 

for m' near m. 
Let us choose local coordinates in S around r~, ( ~ ,  It, z) where ~ = 0 (resp. ~t = 

= 0) are local equation for Y~ (resp. Yt) near ~ and z are local coordinates on Y~ around 
containing local coordinates around m = ~ ( ~ )  in X and maybe other 

coordinates. 
Then if h e O x , ~ ,  it is clear that ho(~]y~) is constant on the fibers of ~1~ 

and 

a~(h~ - 0  for r > 0 .  

Then it is clear that 

(1.18) jz((ho(~lyk)) fk ) = (ho?ly~) j~(fk) 

and (1.17) is a morphism of Ox, ~-modules near ~ .  
Now let us suppose that ~ is in Tk U Tt and let us choose coordinates around ~ in 

of the form (~k, ~l, z ')  so that ~k = 0 is a local equation for Yk (resp. ~t = 0 is a local 
equation for Yl) and (~t, z ')  (resp. (~k, z')) are local coordinates for Yk (resp. for Yt). 
There exist points Kz' e Ykt - (Tk U Tt) tending to ~ ,  and we can assume that there 
exists local coordinates of S around ~ '  of the form ( ~ ,  ~[, z ')  with z ' =  ~' and z 
containing the coordinates of X near z (~)  and with ~ = 0 (resp. ~[ = 0) local 
equation for Y~ (resp. Y1) near ~ ' .  Moreover 

~z = ~t~t(;k, ;z, 5 ') .  
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Now 

(1.t9) 

But around r~' ,  this is 0, so 

( ~ ' )  = o. 

But 0(h o z lyk)/a~ is continuous, so that 

S(ho ~lY~) (~ )  = 0 .  
(1.20) 

All higher derivatives of (h o ?)lYk with respect to ~l can be treated similarly by 
derivations of (1.19) so that (1.18) is still true at points ~ e Ykz A (Tk A Tt). This 
proves that the morphism (1.16) is a morphism of Ox-modules. Now, O~/J?, is the 
kernel of this morphism and so it is naturally a Or-module. 

DEFINITION. - We define the sheaf G2 to be the image of the natural 
mo~phism 

It is then a Ox-module and we deduce 

COROLLARY 1.5. - Under hypothesis (S), we have a short exact sequence of 
Ox-modules: 

(1.21) 0 --~ O~ /Js ~ Ok --> G2--~ 0 

where G2 is the image of the morphism 

5k-  e 5k . 
k, l 

NOTATION. - The formal neighborhood is denoted (gz. 
By definition, 

(1.22) Os = lira (O~/J~). 
k 

We can take the direct image ? ,  ((9~). This is in fact ()s, the formal neighborhood 
of X in S, by a result of Grothendieck [3], but we shall not need this fact 
below. 
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"0 / j k )  is a Ox-module and the natural morphisms On the other hand, each ? ,~  ~/  

O_ /j~__) k-1 s I x Oz/J~ induce morphisms of Ox-modules. As a consequence, we have 

COROLLARY 1.6.-  Under hypothesis (S), the infinitesimal neighborhood 9 ,  ( 0~ ) is 
a Ox-module. 

2. - S p e c t r a l  r e s o l u t i o n s .  

2.1. The cone construction. 

LEMMA 2.1. - Let us consider a commutative diagram: 

0 
$ 

O -~ A --* B -----~ C---~ O 

uO ; 
B o ~ C O 

d~ 1 u 1>. C 1 

i 

B ~ >~C~ 

0 0 

with exact columns and a top short exact sequence. Let us define the complex 
Q. 

Qk = B k • Ck-1 (C  -1 ~ 0) 

with a differential given by the matrix 

Dk = ( d ~ O )  
U k _ ~k-1 

and the natural injection A-- )  Q o==_ B O then ( Q ' ,  D ' )  is a resolution of A. 

P R O O F .  - This is an exercise. 
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2.2. Spectral resolution. 

L e t  us now consider  a commuta t i ve  d i a g r a m  

(2.1) 

0 0 0 0 

O--+A--+Ao--~" l l  > ...----)A~ > A~+ 1 

A ~ > A ~ > . . .-+A ~ > A~ 

A 1 - - - - > A  1-  > ...-+A} > A•+I 

$ $ $ ; 

. . . .  A~ > A~+ 1 

A '~ ------~ A ~ 

0 0 

d~ ds+l 
. . . .  ~ ~tk+l "f 

A k + l  s ~ A k + l  
.z~-_ 8 f a'~-.8 + 1 
$ $ 

0 

~ s + l  
>. . .  A~--)O 

> . . . - )A  ~ 

. o .  

. , .  

n > A t - + 0  

0 

and a s s u m e  that :  

(i) the  top  line is exact,  

(ii) the  columns a re  exact,  

(iii) the  lines a re  complexes .  

L e t  us now define for  a fixed s a complex  

(2.2) Z~ A ~ O A  k-1 o = 8 + ; O . . . O A ~ + k ,  

(we define At q = 0 if q < 0, q > n ,  l < 0 or  l > r) wi th  the  differential  

D k :  Z'~sZk-'-> zk+l~s 
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given by the matrix 

(2.3) 
D~ = 0 

0 

0 
k - 1  -d s+l  
k - 1  

- - ~ s + l  
k - 2  ~+~ �9 . �9 . 0 t �9 

�9 o ~ 

k 0" " " " ( 1) ~§ 0 

We check easily that 

so that Z~" is a complex. 

D k + l D k  = 0 8 ~ a  

LEMMA 2.2. - Let  Hs = Ker a~ with the natural  injection Ha ~ Aa ~ Z ~ =- A ~ Then 

(Z~', D~') is a resolution of  Ha. 

PROOF OF LEMMA 2.2. - The proof is by a descending recursion on s. For s = r - 1 
we have the short exact sequence 

O --> Hr_ I --> A~_ I ---> Ar --> O 

and we apply Lemma 2.1 to get the result. 
Let us now assume that Ha+l has the resolution (Z~'+I, Da§ We have a short 

exact sequence 

(because the top line is exact). 
/ '  

Moreover we have a morphism of complexes 

A~" -o Z~*+I 

given by 

u~: a~ e A ~  ---) (a~(a~), O, . . . ,  O) eA~+l 0 ... = Z~+l 

(it is easy to check that it is a morphism of complexes because 

k k k k k k Ds+lus (a~) = D~+l(a~a~), O, . . . , 0 )  - ( d~+~(a~  ), O, ... ,0) ,  

/ k + l . z k + i [ _ k ~  f~ 

= u2 § d2 +1 
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We can apply the Lemma 2.1 to the situation: 

O~ H~-~ A~--* Hs.I--~O 

As" ~ Z s " + I  �9 

Then: 

Q k = A:  �9 Z 2 ~  = Z: .  

Moreover the morphisms Q k ~  Qk§ given in Lemma 2.1 are identical to the 
morphisms Zs k --*Zsk+l: in fact in the notations of Lemma 2.1, we have 

dk=d~ 

u k = ( ~ ,  o ..... o) 

k-1 -ds+ 1 

0 

0 

k-2 ds+2 
~k-2 

s+2 -d~;] i ........ ) 
So that the block matrix 

d k 0 ) --- D~. 
U ~ _ ~ k - 1  

As a consequence, we obtain by taking s = 0: 

THEOREM 2.1. - The complex (Z$, D~ ) is a resolution of A (with the natural 
injection A ~ Z~ 

DEFINITION. - We shall call (Zo', D~ ) the spectral resolution of A associated to the 
array of  resolutions (2.1). 

We shall denote more precisely 

Z~ = A" (A~ -o A "~ ~ ...) 

if we want to emphasize the functorial dependence of the spectral resolution of the 
resolutions AS.. 
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3 . -  Reducible  except ional  divisor: reso lut ion  o f  in f in i tes imal  ne ighborhoods .  

3.1. Resolution of the infinitesimal neighborhood of the exceptional divisor. 

We now consider the general situation where the eceptional divisor X is reducible. 
We write as in Sections 1.0, 1.1, 1.2 

N 

i=1 

and we consider the ideals J:~, I5 ~j . . . .  and the rings O~/J2, Oj= O#/Ir Ojk, ... as 
defined in Sections 1.2. We also consider the long exact sequence of Lemma 1.1 

N 
(3.1) O --> Oz /J?~ --> k~=1 Ok --) k~t Okl --->k,~,~ O~z,~ ~ ... 

with the natural morphisms defined by jets in Section 1.3. Now, Ik is the ideal of 
definition of Yk, and ()k is the sheaf of holomorphic sections of a vector bundle over Yk 
and more generally, ()kl...,~ is the sheaf of holomorphic sections of a vector bundle over 
Ykt...~. In particular, we have a resolution of the sheaf (~k~...kr by taking the tensor 
product of 0k~...k~ with the Dolbeault resolution A~%~ of Yk~ ..k~. 

NOTATIONS. - We denote A~ the Dolbeault resolution of the complex manifold M, 
so that A~ is the sheaf of C ~ forms of type (0, p) on M with the ~ operator 

as differential. For any sheaf F of Oi-modules on M, R ~ ( F ) = F |  is a 
resolution of F by fine sheaves. Here we shall denote simply: 

- 1" (3.2) R" (kl ... k~) = Ok~...k~ QOYk~ k# Zklk~ 

with the differential Id | ~ which we simply denote ~. We also define the jet 

(3.3) "" " A ] - ~ R ' ( k l  k,.) J k ~ . . . k ~ .  , . . . ,  

as follows: call ~kl = ... = ~kr local holomorphic equations for Ykl..k~ and call 
(zl , . . . ,  zn-~) holomorphic coordinates along Yk~...kr. Let = be a (0, p) form on S. We 
express it locally in the coordinate systems (zl, ..., zn_~, ~kl, ..., ~kr). To compute 
Jk: ... k~ (=) we first suppress all the components of the form ~ containing one or several 
of the d~k~, ..., d~k~, then we reduce the coefficients modulo ~k~, ..., ~k~ and modulo 
Ik~...k. ---- I;~ + ... + I;?. 

It is then clear that 

(3.4) Jkl.. k~ ~ = 0jkl.kr 

so that j ~ . k~ is a morphism of resolutions. 
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We also have natural je t  morphisms 

(3.5) j "  : R"  (kl, . . . ,  kr) --~ R"  (kl, .. . ,  kr, k~+ 1 ) 

such that the diagram is commutative 

Id 

T j 
R'(k 1 ... kr) . > R| ... kr+l) 

j * is also a morphism of resolutions. 
Now we apply to (3.1) the spectral construction. We have a complex of resolutions 

deduced from (3.1) 

(3.6) 
N 

k~=lR'(k)---~ ~ R ~  l)---~ ~ R ' (k ,  l, m ) ~  ... 
k<i k , l , m  

The horizontal arrows of this complex of resolutions are induced by difference of 
various je ts  (3.5). From Theorem 2.3 of Section 2.2, we deduce the following 
theorem 

THEOREM 3.1. - The diagonal complex associated to the complex of resolutions 
(3.6) is a resolution of O~/J?~ by acyclic sheaves (in fact fine sheaves). 

NOTATION. - We shall denote 

(3.7) R'(O~/J2) = A | ( O R ~  (k) --~ ~ R ' (k ,  l) --~ ...} 

so that  

(3.8) 

N 
"R~ = 0 R~  

k=l  

(A ) Ri(O /J ) = R (k) @ (OR~ 1)), 

, o .  

3.2. Associated resolution of OZ. 

Let  us now replace in (3.1) O~/J2 (resp. each ()~...kr) by O~ and each difference of 
,jets by the corresponding difference of elements. 
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We have then a corresponding exact sequence and a morphism of exact sequences 
given by the jets morphisms 

0 > 02 > ~ 0 ~  0 0 ~  > ... >~  @ 0 ~  
k k<l k,~m 

1 

0 ~ O~/J~ > @ O~ > ~ 0~ ~- @ 0~,~,~ ~ ... 
k k<l k ~ m  

(3.9) 

Let G~ denote the image of the morphism 

We have a morphism of exact sequences of sheaves 

(3.10) 

0 ~ O~ > O O 5  "~ GZ-- >-0 ~ ... 
k 

0 > O~/J2 > 0 Gk ~ �9 Okl -->- @ O~.~ ~ ... 
k k 

In the top line we replace the O~ by their Dolbeault resolutions As: and G~ by its 
Dolbeault resolution GZ| We deduce from (3.10) a morphism of complexes 

0 A~ > Gg| A ~ -  > O" >-... 
k 

t 1 
G R~ >" G R~ l) > G R~ ~ m) > ... 

k k,l k,l~m 

where the vertical arrows are defined by the jets (3.3). We take now, the diagonal 
complex associated with the complex of resolutions of the top line of (3.10). More 
precisely, we define 

(3.12) R" (0~) = A ~ { ~ A~ --> GZQo~A] --~ 0 . . . } .  

By Theorem 2.3 of Section 2.2, this is a resolution of O~ by fine sheaves and we have a 
morphism of resolutions 

(3.13) J~  : R ~ ( 0~ ) ----> R" ( O~ /J~  ) 

induced by the vertical morphism of (3.11). 
In fact if (~P))k e O As ~ and (fl~-l))k,l ~ G~Qo~A~, we have 

(3.14) J(P) ((~Y) ) O(~(k~-~))) = (jk (~Y)))k O (jkt (~-~)))kt G 0 G 0 ... e RP(Oz /J2 ) .  

The morphism J~  is compatible with the jet morphism 

j~: O~ ~ O~/J~.  
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Moreover if we now assume the vanishing of cohomology (hyporthesis (A) of 
Section 1.1), we know that for sufficiently small U in S and all p > 0 

Hp(~ -1 (U), 03) = HP(p -1 (U), 0 3 / J ~  ) . 

We apply Theorem 1.1 of comparison of cohomologies of [1] to the morphism of 
resolutions J "  given by (3.14) and we deduce that J "  induces an isomorphism 
between the De Rham-Dolbeault cohomology groups of 03 and 03/Jx" computed using 
the resolutions R" (03) and R" (03/J~:). 

This is the content of the Theorem 3.2. 

THEOREM 3.2. - The morphism of the diagonal resolutions J ' :R ' (03) - -~  
o R" ( O3 /J2 ) is compatibile with the jet J2 : 0~---~ 02 /J2. 

Under hypothesis (A), it induces an isomorphism between the De Rham- 
Dolbeault cohomology groups of 03 and O~/J~2 computed with these resolutions. 

3.3. Long exact sequence of cohomology sheaves on X. 

We shall henceforth assume hypothesis (S) 

(S) for any k < l, ~ ] Yk~: Yk~ --) X is surjective. 

From theorem 1.2, we know that the short exact sequence of Corollary 1.5 

N 
(3.15) o o3 Ok o 

is a short exact sequence of Ox-morphisms. Here, we recall that G2 is the image of the 
natural morphism 

N 

k = l  

In particular, the direct image sheaves R~,(Ok)~ - and R ~ (Gj~) are naturally 
Ox-modules. The cohomology sheaves R~(()k) and R~,(G~:) are also Ox-modules (for 
example using their description in Cech cohomology). From (3.15), we deduce a long 
exact sequence of cohomology modules over Ox 

(3.16) O__>Ro,(o3/j?~)____) (~Ro , (Sk) . ._ )RO,  ~ 1 (a2) --~ R~, (O~/J2) ---) �9 R~, (Ok) --)... 

---> R~, (03/J2) -* �9 R~, (Ok) ---> R~, (G~:) -~ R~ +~ (03/J2) ~ .... 

The ~ is the coboundary operator in cohomology, the other morphisms are obvious. 
Now, all the modules in this long exact sequence are Ox-modules and they have a 
Dolbeault resolution obtained by taking the tensor product of the module by the 
Dolbeault resolution A~ of X (this is where we use the fact that X is smooth so that A~ 
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is a flat Ox-module). If F is anyone of these sheaves, we denote 

(3.17) R~(F) = F | ~:. 

We abreviate the notations as follows: 

R~,(Ok) =- RP(k) 

and also we suppress the index 9,- 
Then we have a long exact sequence of resolutions obtained by taking the tensor 

product of (4.14) with A~ 

(3.18) ~ R~;(R~ --) R~(R~ --~ R~:(R ~ (O~/J?~)) ~ ~ R~(R ~ (k)) ---~ ... 

-o R~:(RP( O~ /J2 )) ---> 0 R~ (RP( k ) ) --> R~:(RP( G~: ) ) --> R~ (RP+ ~( O~ /J2 ) ~ .... 

Then we take the diagonal complex. We define 

R" (9, (O~/J2)) = A | { ~ R~(R~ --~R~(R~ ~ . . . }  

and deduce from Theorem 2.3: 

THEOREM 3.3. - R  ~ (9* ( Oz /J2 )) is a resolution of 9,  ( O~ /J2 ) by fine sheaves on S. 

We shall now investigate more closely the structure of the resolution 
R'(9 , (Oz/J2))  and prepare notations for the next chapter. We have 

R~ (O~/J2)) = 0 R~ ~ 

(3.19) RI(~,(O~/J2)) = (~R~x(R~ G R~176 , 

R2(9 , ( Os /J2 ) ) = ( ~ R~(R~ ) ) ) ~ R~(R~ G2 ) ) ~ R~ ~ ( Oz /J2 ) ) 

and more generally we shall split RP(9,(O~/J2)) into three pieces 

(3.20) RP(9,(O~/J2)) = (ORPx(R~ ORPx-I(R~ �9 C p, 

where C p is defined as 

(3.21) C p = R~-2(RI(Oz/Js ~ (~R~-3(R~(k))) ~ (RPx-4(RI(G2))) 

RPx-5(R2(Oz/J2)) ~ ( ~ RP-6(R2(k))) ~ (RP-7(R2(G2))) ~ ... ~ R~ p-1 ) 
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where F p-~ is defined as 

Fp-1 = Rp - I (G ~)  

= Rp-~ (O~/J~)  

= O R P  l(k) 
k 

i f p  -- 1 mod3 ,  

i f  p -  2 rood3, 

i f  p = 0 mod3.  

Moreover in (3.21) what is inside the symbols R~ mimics the long exact sequence 
(3.16). 

We shall also denote D" the differential of R'(~ , (O~/J? . ) ) .  
We denote typical elements of the modules as: 

~(P' q) = (a(k p' q))k e ~ Rq  (RP(k)) 

fl(P' q) = (.2 (k~ ' q))kl e R~ (R P ( G?~ ) ) 

y(P' q) E R~(R  p (O~/J2)) .  

We now see that, in general the morphism D p splits in the following manner 

(3.22) ~P:  ( ~ R ~ ( R ~  (~R~:-~(R~ @ CP--~ 

--) (~R~z+I(R~ (~ R~:(R~ @ C p+I 

where the splitting has a triangular structure coming naturally from the diagonal 
complex 

(3.23) ~P(~(P' q) @fl(0, p-1)@ C(p)) : 

We denote simply 

C(p+l) _~ ~(p)(~(o,p-1)@ C(p)) (3.24) 

and call it the coboundary part of DP: it depends only of fi(0,p-1) and C (p). 

We also denote by 8(P) the morphism 

(3.25) ~(P)(~(~ Ofl(~ = ( O 8x~(k~ (~ @ (3z(ak" (o,p)) - j k  ~al~ (o,p),) _ 5 ~(o,p-1) ~XHkl k k<l 
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with the natural splitting 

(3.26) ~p(~(O,p) (~ ~(0, p - 1 ) ( ~  C ( p ) )  = ~(p)(~(0, p ) ~  ~(0,p-1)) ~ ~(p)(/~(0, p-.1) ~ C ( p ) ) .  

4. - Reducible exceptional divisor: spectral resolution of Os. 

We are now ready to construct a canonical resolution of Os. In this chapter, we 
shall assume that the hypothesis (A) (of Section 1.1) and iS) (of Section 1.4) hold. 
Moreover, we shall refer freely to the notations of the preceding Chapter 3. 

4.1. Construction of differential forms on S and ~ operator. 

a) Differential forms at a regular point of S. Let m be a regular point of S. We 
define the germs of differential forms of type (O, p) at m by the formula 

N P p-1 

(with the obvious convention A~ 1 = 0) and ~ = 9-1 (m)). In other word 

(4.1) A}, m = R p (O~)~-l(m) 

b) The space F(X r3 U, R}(R~ and its lifting to Yk. Let m be a point in X 
and U an open neighborhood of m in S. For a given k, we can define the space 
F(X A U, R}(R~ which are the sections on X N U of the sheaves 

RPx(R~ k ) ) = 9 , (Ok) r Px. 

If a(k p) is in F(X N U, R~(R~ we can write 

e~i ~ O x  gD i , 

(P) C ~ where ~ are sections on X A U of A~ and ui are global holomorphic sections on 
9 -1 (U)  of ()k. 

We can lift ~(k p) on 9-1(U)  A Yk by (9]Yk)* as in [1] Section 2.3 

(4.3) (91yk)*(~(k p)) E ui(9]y~)*" (p)" ---- (0) i ) �9 
i 

This is a (0, p)-form on Yk with coefficient in the jet  sheaf ()k (which is the sheaf of 
sections of a vector bundle on Yk). We can prove exactly as in [1] Section 2.3, Theorem 
2.2: 

LEMMn 4.1. - The mapping (91Yk )* defined by (4.3) is a well defined and injective 
mapping 

(glyk)* : F(X (~ U, RPx(R~ ~ F(9 -~ (U) a Y~, Ok | 
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Moreover 

(4.4) (~lYk)* (~x~(k p)) : ~Yk ((? I Yk )* (a(k p) )) 

k~< [ rg(P)~ c) The space F(X A U, RPx(R~ and its lifting to zYkl. Let  ~Vkl Jk<l an 
element in F(X A U, R~:(R~ By definition we write 

(~ (p)~  ~ ~ (i) ,  ~ . (p) 
(4.5) ~vkt Jkl = A/[Ukl )(k<~)~Ox~i 

(P) C ~ ~ (i))  ~ 1 where co i are again form of type (0, p) on X A U and (uk~ k.o are holomorphic 
sections on ~ - I ( U )  of the sheaf G:~. For  each k < l, we can take 

( fg(P) (i) ( ~  , i (P) (4.6) (~]Yk~)*~kl) = ~] Ukl ~[Yk~) ~ 
i 

which is a C ~ form on ~ -~ (U)  (~ Y~t of type (0, p) with coefficients in the sheaf ()~. As 
in Lemma 4.1 this mapping is well defined and injective and the collection of these 
mappings induces a mapping 

(4.7) (~[ * (~) )* r~(~) ~u~) ((/~)) -= ((~l~ ~.~ ) )~  

so that  we obtain an element of 

~ F(~-~(U) ~ Y~,t, R~(k, l)) 
k<l 

and we have 

LEMMA 4.2. - The mapping (~l ~ r-~)* defined by (4.7) induces a well defined and 
injective mapping 

(~] u y~)* : F(X ~ U, RPx(R~ ~ ~ f ( ~  -~(U) ~ Yzt, RP( k, l)) . 

Moreover 

(4.8) 

Finally the image 

(~l~k~)* ~ 5x = ~ o(~JYk~)*. 

( ~ IuYk~ )* (F(X A U, RPx(R~ G2 ) ) ) ) 

is contained in the kernel of the natural jet difference mapping 

0 RP(k, l)--) ~ RP(k, l, m) 
k<l  k, l, m 

of Section 3.1 formula (3.6). 

The  last s ta tement  of this Lemma 4.2 results from two facts: the definition of the 
je t  difference morphism and the fact that  if 

(p) (Zkt )k<t ~ r (X n U, R~(R~ 
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'~ ({)~ eF (9 -~ (U) ,  G:~) and are killed by the is has the form (4.5) where the various <~kt Jk<l 
je t  difference morphism 

by definition of G:~. 

k, l~ m 

d) Definition of a germ of differential form on S at a point in X. We are now 
ready to define a germ of a C ~ differential form of type (0, p) at a point m e X. Let  U 
be a small open neighborhood of m in S. 

DEFINmON. - We call 7~ a C ~ form of type (0, p) on U to be a collection 

k=l  ! 

which is a section on ~ - I ( u )  of R~(O~) with the following property: 

(P) if  we take J(~)(7~)eR'(Oz/J2),  then 

(J(P)(r~)) k = jk(7:k) E F(X A U, R~(R~ 
(4.9) 

(J(P)(7:))k<t = (jkl(~k)) e F(X A U, 

(Here R~ and J "  are defined by (3.12) and (3.13) respectively). 

This definition makes sense, because of Lemmas 4.1 and 4.2 which give a meaning 
to the fact that  a jet  on Yk of a form (resp. a collection of jets on Ykl of form) belong to 
the space F(X A U, R~(R~ (resp. F(X A U, R~-I(R~ ). 

In other words, a C~(0,  p) form at a point m e X ,  is basically a C ~ section on 
~ - I (U )  of R~(O~) such that  the corresponding jet  J(P) in RP(Oz/J~) is a tensor 
product of global holomorphic sections on ~ - I ( U)  of the sheaves ()k and G:~ with C ~ 
forms of type (0,p) on X. 

NOTATION. - We denote APs,~ the germs of C~(0,  p)forms on S at m. 

Then it is clear that  the collection of all A~, m is a sheaf on S and moreover using 
the same kind of partition of unity as in [1] Section 3.1 we have: 

LEMMA 4.3. - The sheaves 4 ~ are fine sheaves on S. 

Finally we also have 

LEMMA 4.4. - We have a natural jet morphism 

N 
(4.10) J~ : A" --> k(~:lR~(R~ G R~-I(R~ S 
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PROOF. - This statement is exactly the basic property (4.9) of the definition of A~ 
at a singular point and the fact that the liftings are well defined and injective. 

Moreover, we have 

LEMMA 4.5. - Let m be a singular point 
diagramm: 

(4.11) 

on X. We have a commutative 

N 

A's, ~ >- @ R~(R~ @ R~;-~(R~ 
k=l  

~,(R'(Oe))m ~ ?,(R'(O~/J2)) m . 

Here J"  is defined as in formula (3.13), J~ is defined as in (4.10). The left vertical 
morphism is the inclusion. The right vertical morphism is given by Lemmas 4.1 and 
4.2. 

e) Definition of the -8(P). Call 3": R ' ( O ~ ) ~ R ' + ~ ( O ~ )  the differential of the 
resolution R" (Oz) (induced by the diagonal construction (3.12)). 

LEMMA 4.6. - 8" induces a differential 

-~': A~ ~ ~+~ 

and with this differential J~ becomes a mo~hism of complexes 

(4.12) 

J •  N 

,4~ > 0 R~(R~ | R~-~(R~ 
k = l  ,l 

j , + l  N 

A~ +1 > 0 R}+l(R~ �9 R~:(R~ 
k = l  

where the vertical right ~" has been defined in (3.23). 

PROOF. - To prove this fact, we first remark that the lifting of Lemmas 4.1 and 4.2 
induce an injective morphism of complexes 

N 

(4.13) ~ R~(RO(k)) ~ R~ I(R~ ---> 9 ,  (R" (O~/J2)) 
k = l  

obtained by associating to (~ )O( f ik~-1 )  the 

(4.14) ((9 Iyk)* ( ~ ) )  0 (~ [yYk~ (rift- 1 )) ~ 0 ~ 0 ~ 0. . .  

where the O denotes the 0 section in the 9 ,  (ig~=r R" (K)) for r I> 3. The fact that it is 

a morphism of complexes is also deduced from the fact that (~]Uyk~(flk'~-l)) is an 
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element in the image of the natural morphism 

@ R" (k) ~ @ R" (k, t) 
k k<l  

and thus, it gives 0 in G R" (k, l, m) (Lemma 4.2). 
k, l, m 

Then the proof of lemma (4.6) is deduced from the following facts 

(i) J':R~ is a morphism of complexes (Theorem 3.2); 

(ii) we have the injective morphism of complexes (4.13); 

(iii) we have the commutative diagram (4.11). 

4.2. Definition of the spectral resolution R" ( Os ). 

a) Definition of R" (Os). We come back to the sheaves C p defined as in (3.19). 
These sheaves are supported on X. We define 

(4.15) R" (Os) = A "s ~ C" 

and we define also a differential D ~ as follows 

DP: A ~ C P  ~sAP§ G C p§ 

by saying that we associate to 

(=k) G(~kz) �9 C (p) e A~ G CP 

the element 

(4.16) D(P)((7~k) ~ ( ~ l )  G C (p)) = ~(P)((~k)k G(~kt)k<l) G ~(P) ((jkz(~kl))k<Z ~ C (p)) 

where ~(q) is the coboundary part of ~(P) in (3.24) and by (4.9), (jkl(~kZ))k<t is in 
RPx- I (R~ G~ ) ). 

b) The jet morphism. 

LEMMA 4.7. - We have a morphism of complexes 

(4.17) J~ : R" (Os) -~ R ~ (~, (O2/J~.)) 

defined as follows: the morphism: 

N 

J~ : A~ ~ C" --~ ~ R~(R~ ~ R~(R~ ~ C ~ 
k=l  
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is defined to be 

(4.18) J "  (=~ O C ~ = J~ (= ' )  E) C" 

where J:~ has been defined by (4.10) in Lemma 4.4. 

It is clear by construction and by Lemma 4.6 and the definition of D ~ that we have 
a morphism of complexes. 

c) Finally, it is clear that the R~ Os ) are fine sheaves. 

DEFINITION. - We call R ' (  Os ) the spectral complex of Oz. 

4.3. Relations between the various resolutions. 

LEMMA 4.8. - There is a natural morphism of complexes ~" obtained by forgetting 
the C" part of R'(Os) 

(4.19) ~" : R ~ (ON) ~ 9,  ( R~ (0~)) . 

PROOF.- Let ~ eR ' (Os)  of the type 

~=~OCeA'OC'.  S 

By definition r~ is in 9 ,  (R'(O~)) and we define 

~ ' (~GC)=~.  

It is clear that ~ commute with the 5, i.e. 

,~" (D" (~ @ C)) = ,~" (8" (~) @ a" (~ @ C)) = 8" (~) 

= ~ ' ( ~ ' ( ~ G  c ) ) .  

Now we can relate in a clear way, the relations between the various complexes 
R ~ (...). This is the content of the following theorem. 

THEOREM 4.1. - We have a commutation diagram of morphisms of 
complexes 

(4.20) 

RO(Os) - >, ~,(R'(O~)) 

R'(~,(Os/J2)) ~ ~,(R'(Os/J2)) 
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PROOF. - ~~ has been explained in Lemma 4.8 and the left vertical J~  in Lemma 
4.7. The right vertical J "  comes from (3.13) (Theorem 3.2) and ~~ is constructed as 
follows. We start from 

(a(kP)) ~ (  - ~ ) ~  ) ~ C (p) ~ ~R~x(R~176 
k 

( -1 )  we forget the component C ~) and lift the ( ~ ( ~ ) ) ~ ( ~  ) through the injection 
morphism (4.13) (i.e. through (~lY~)* and (,~lz~)*) to an element of z,(R~(O~/J~)) 
(using also the embedding (4.14)). 

We clearly get morphisms of complexes. 

4.4, R ~ (Os) is a resolution of Os (cases p = 0, 1). 

The fundamental theorem is the following 

THEOREM 4.2. - The complex R" (Os) is a resolution of Os by fine sheaves on S. 

In this section we prove the cases p = 0 and 1 which are slightly special. We shall 
work around m e X 

a) Case p = O. 

Let ~eR~ so that ~ = (~(2)) is simply an element of F(~-I(U),@A~ 
Because ~ is Do closed this implies that each ~(2 ) is 0~-closed and that all tl~e ~(k ~ 
coincide. Then (a(~~ define a unique C ~ function on ~-I(U),  say a(o), which is 
holomorphic. Because the analytic space S is normal, this function is in 
F(U, Os). 

b) Case p = 1. 

We start with ~1 e Rl(Os) at m, which is Dl-closed and we want to prove that it is 
Do closed. 

1st step: image of 1 in RI(~,(O~/Jy~)). 

This image is j1 (~1) (see diagram (4.20)) and it is D~-closed. But R" (~,  (O~/J2)) 
is a resolution, so j1 (~1) is Do-exact or 

(4.21) j l ( 1 )  = ~o~O 

where ~o eRO(~,  (O~/J~)). 

2nd step: the image o f  Or 1 in ~,(RI(O~)) is ~~ on all of ~-~(U) 

,~1(~1) is in F('~-I(U),RI(O~)); 

let us take j l (  ~(1))  e /~(~- l (U) ,  R~(O~/j~)). 

Because of the commutative diagram (5.20) this is also v ~ ( J ~ )  and because of 
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(5.21) and the fct that all these morphisms are morphisms of resolutions, this is 
also 

j 1 ( ~ 1 ( 1 ) )  = ~ovo(~o ) ,,~0(~0) eF(z-l(U),  Ro(O~/j2)). 

Now the morphism J ' :  R*(O~)~R'(Oz/Jz)  induces an isomorphism of the 
Dolbeault cohomology groups on ? - ~ ( U )  (Theorem 3.2 of comparison of 
cohomologies) so that there exists some fo  in P(~-~(U),  R~ with 

(4.22) ,~1(~1) = ~fo .  

3rd step: ~ ~ is -D ~ in R" ( Os ). 

Now, because we are in rank p = 1, by definition ~ =  Id, so that (4.22) is 
really 

(4.23) ~l = ~fo. 

Take the j1 of (4.23) and compare with (4.21), to obtain 

~ (o ) ( jo fo_  ~o) = 0 
N 

which means that j o f o _  ~o is an holomorphic section of O ()k on ? - I ( U )  and in 
N k=l 

particular is in (~ R~ This implies, because 
k=l 

that 

This means by definition that f o e  A ~ in U and the definition of ~ o  __ ~ in degree 0, 
implies 

~1 = ~ o f o  from (4.23). 

4.5. R" (Os) is a resolution of Os (case p > 1). 

This is a little bit more intricate. We start from aP~RP(Os) with DPa  p = 0 on 
some open subset U of S which is a neighborhood of a point m in X. 

1st step: decomposition of ~(P). 

According to the definition of RP(Os), we can decompose ~P as follows 

(4.24) ~P = [((~ ~P) �9 ( (~ ~PF1)] �9 a p e A p (~ C ~. 
k k<l  

2nd step: JP(~P) in RP(~, (O~/J2)). 
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We consider by definition 

P P J~(#p) = J # [ ( ~  #~) @ ( ~ #Pt-1)] @ a p 
k<l 

and because JP is a morphism of complexes D~JP(~ ~) = O, so that there exists a 
fl(P-~) e R p-1 (~, (02/J?.)) with 

(4.25) ~ ~-~(~-~) = J~ (~P). 

We decompose 

(4.26) ,~(p-1) : [ k~k(P-1) @ @/~(~-2) ] @ bp-1 ~ ~Rp-l(RO(k)) (~ 
k<l k 

The definition of D ~-~ tells us that 

~ R~-e(R~ G C ~-~ �9 

(4.27) ~p-1 [ @ ~(k~-,) @ ~  ~<t'~"~ ~ ~ ~(~-m ~ = j # [ (~  ~ )  @ ( ~ p - , ) ] .  

3rd step: image of aP in RP(O~). 

The image by .~P of aP in RP(O~) is exactly ( ~ a ~ ) ( ~ ( ( ~ t  -1) and this is 
k<l 

~P-closed (because ~P is DP-closed and DP coincide with ~P on ~P(aP)). To see that  
t2  (~P) is ~P-l-exact in R" (O~), it is sufficient to prove that its Dolbeault cohomology 
class on ~ - I ( U )  for O~ is O, so that by Theorem 1.2 of comparison of cohomology 
of [1], it is sufficient to prove that JP (,~P (aP)) has a Dolbeault cohomology class 0 on 
? - I ( U )  for O~/J~. But because the diagram (4.20) is commutative, because of the 
definition of v and of (4.27), JP(~PaP) is ~P-exact on ~ - I ( U )  in the complex 
R" (O~/J2). This means that there exists 

y(p-1) ~ F ( ~ - I ( U ) ,  R p - I ( 0 % ) )  

with 

(4.28) = = @ . Y k t  ) 

with 

y -i r(v-1(u), -1) 

k~<lyPl2 ~ /~ ( ~ - I ( u ) ,  R~-2(G~)). 

4th step: comparison of y(p-1) and ~(p-1). 

If we take the jet JP of equation (4.28) and substract from (4.27) (skipping the 
identification through v to abreviate the notations), we deduce that 

~(p-1) (V/~(p- 1) -- j p - 1  (~,p-1)) : 0 
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which implies that v~ v - ~ - J v - * ( v v - ~ )  defines a cohomology class in 
HP-I(9-~(U), O%/J,). Again the comparison Theorem 1.2 of [1], tells us that this 
class comes from a class H ~ -~ (? - I (U) ,0g )  so that there exists an 
~o ~-~eF(?-I (U) ,R~-~(0%))  which is g(~-~)-closed in R ~-1(0~) and a 
~(~-m e F(?-~(U),  RP-e(Og/J2)) so that 

(4.29) 
j p - l ( y p - 1 )  _ v~(p-1)= j p - l ( o f f - 1  ) 3- -~P-g{aP-2 

~-1)  ~o~'-~ = O . 

5th step: modification of yp-1. 

Let us chose ~(p-m e / , ( ~ - l ( u ) ,  Rv-e(O~)) so that j v - e ( ~ v - e ) =  Cv-e and let us 
define 

It is clear that from (4.29) 

(4.30) { -~p- 1 ~ p -  1 = ,g p ( o~p ) 

j p - l ( ~ p - 1 )  = yfl(p-1) 

fl~'-~) e ~ R~ -1 (R~ (~ R~-e(R~ 

6th step: resolution of the -D p-1  equation. 

Let us now define =p-1 eRp-l(Os) as 

(4.31) ffp-1 = ~p-1 @ bp-1 

(where ~p-1 was defined in (4.30) and b p-1 was defined in (4.26)). 
It is then clear from (4.30) that 

(4.32) ~z p-1 e A~ -1 . 

Let us now compute/7 p-17~p-1: this has a part on A~, which is exactly ~p-1 (zp-1) = 
= :~P (~P) which is exactly what we want. 

Now, to compute the other part of Dp-I(r:P-I),  we take the image of 7: p-~ in 
R ~-1 (~, (Oz/J,2)) by j p - l :  this is 

j p - 1  (n.p-1) = jxp-1 (pp-~) G b p-1 = ~fl(p-1)@ bp-1 

but v/? (p-l) 0 b p-1 is exactly tip-1 by definition of v, so 

jp-1 (=p-l) = j~p-!. 

A 
Then we take the ~p-1 of jp- l (=p 1) and take the C p part of DP-~JP-I(r~P-1)= 
= ~ v-1/3p-1 = jp  (~p) (see (4.25)). But the C p part of JP (~P) is exactly a p because JP is 
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the identity on the C p part  of R~(Os)  by definition. These computations prove 
that  

where ~p-1 is defined by (4.31) with ~p-1 in A~ -1. 

DEFINITION. - We shall call R ~  with the differential D"  the spectral 
resolution of  Oz. 
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