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Boundary Regularity for Parabolic Quasiminima(*). 

SILVANA MARCHI 

S u m m a r y .  - We prove a Wiener-type criterion for parabolic Q-minima. 

1. - I n t r o d u c t i o n .  

Let D r ~+1 ,  n > 2, be a~ open bounded set. In this paper we establish a suffi- 
cient condition for a boundary point of D to be regular for a parabolic Q-minimum. 
Our criterion is analogous to the Wiener-type criterion proved by W. P. ZIEMER [Z-2] 
for elliptic Q-minima. 

The main tools in the proof of our result are the Harnack inequalities. In fact Har- 
hack inequalities for functions in parabolic De Giorgi classes are proved by G. 
WANG [Wa]. 

Moreover W. WIESER [Wi] proved that parabolic Q-minima belong to parabolic De 
Giorgi classes. 

The generic point z ~ ~n+l will be denoted by z = (x, t), with x ~ ~ and t e ~. u,  
or V~ u will denote the gradient on x of a function u(x, t). 

Let H ~ I(D) be the space {u ~ L2(D) IV, u E L2(D)}. 
The existence of the parabolic Q-minima is connected to V2(D). It is the space of 

functions u which belong to H~ and such that II~tIIL2(Dt)~L~(~)~ 1) where 
Dt = : D g~ {z = (x, z) l .c = t}. V2(D) is endowed with the norm 

IlulIv~(D) = : s u p (  ~ u(x, t)2dx + IV~u(x, t)12dxdt 

(*) Entrata in Redazione il 9 novembre 1990, versione riveduta il 16 ottobre 1991. 
Indirizzo delrA.: Dipartimento di Matematica, via D'Azeglio 85, 43100 Parma. 
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Let Z(D) be the space {u e o)~(D)Iu = divg, g eL2(D)} endowed with the norm 
]lUllz(D) = Inf IIg[IL2(D) and WX(D) = {u e H ~ l(D), au/at  e Z(D)}. 

u = div g 

g e L 2 ( D )  

We denote B,(xo) = {x e ~n, ix _ xol < r} if xo e ~  ~ and 

Q,(zo) = B~(xo) x (to - r 2, to + r 2) if z0 = (Xo, to) e ~ + 1 .  

If u ~ WI(D),  Zoe 5D and 1 e ~,  we say that 

(1.1) u(zo) ~< 1 weakly 

if for every k > 1 there is r > 0 and a sequence {u~} c W 1' ~(~.+1) such that u~ ~ u 
in WI(D N Qr(zo)) and sptv(um - k) + c D A (~(z0) whenever V e Co ~ ((~r(Z0)). The defi- 
nition of 

(1.2) U(Zo) >1 1 weakly 

is analogous, and u(zo) = 1 if both (1.1) and (1.2) hold. 
Many different definitions of capacity are introduced to study the regularity prob- 

lem for parabolic equations. A capacity which is ,~naturally, associated to the space 
Ve(D) is 

(1.3) cap. ( E ) =  inf [sup ~ u2dx + I IV~ul~dxdt,  u ~  V ~ ( ~ + ~ ) , E  t i n t  [u >~ 1]}. 

W. P. ZIEMER [Z-l] proved a sufficient condition for the regularity at the bound- 
ary of weak solutions of parabolic equations in term of the capacity cap,. In analogy 
with the Newtonian capacity (cfr. IF.Z]), L. C. EVANS and R. GARIEPY [E.G] intro- 
duced the thermal capacity, which R. GARIEPY and W. P. ZIEMER [G.Z] proved to be 
strictly weaker than cap.. In [G.Z] a Wiener criterion (only sufficient condition) is 
also proved for bounded weak solutions of parabolic equations, in terms of the ther- 
mal capacity. 

This result improved of[Z-l]. 
In this paper we consider another t~)e of parabolic capacity, which we will denote 

cap (E): 

Here E was a compact set. 
BmOLI and MOSCO [B.M-2] showed that cap (E) is a Choquet capacity and, for any 

bounded Borel set E, 

(1.5) cap (E) = f N - cap (Et) dt 

where Et = : E  A {z = (x, v)lz = t} and N-cap denote the usual Newtonian ca- 
pacity of E t with respect to 9t ~'. It is known (cf.[M]) that N-cap(Et)= 
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= sup {IIRI*/zll~l I spt/z r Et, [z(Et) = 1 }, where ~ is a positive Borel measure in ~ and 
R I ( X  ) : Ixl 1-n. 

If Zo = (xo, to) ~ 0D we will denote, for ~, r > 0, 

R~(r) = B~(xo) X ( t o -  3~r2, to + l a r 2 ) ,  

9 ~r 2, 5air2 ) , R*(r) = Br(xo) • ( t o -  -~ to - 

e a r )  = 
cap (R*(r) - D) 

cap (R* (r)) 

We will prove that 

1 

0 

= + ~  

is a sufficient condition for the regularity of a parabolic Q-minimum in z0, where C de- 
pends on [lUIIL2(D) and the structure conditions of the Q-minimum. 

Obviously cap(E)<  cap, (E), and, afort iori ,  thermal capacity is weaker than 
cap. 

Then our result would be refined using cap. or thermal capacity. 
We don't know if it is possible to employ these capacities. 

2. - Q - m i n i m a  and  De  Giorgi  c lasses .  

Consider a Caratheodory function 

(2.1) F = F(z, u, p): D • ~ • ~n __~ 

satisfying the growth condition 

(2.2) 21pl 2 - blul 2 

where g is a nonnegative 
constants. 

- g(z) <.< F(z, u, p) <-<. ,~lpl 2 + blul 2 + g(z) 

function, g eLq(D), q > n and b, 2, /z are positive 

DEFINITION 1. - For Q >- 1 we define a function u: D ---) ~t with u, u~ e L 2(D), to be 
a parabolic Q-minimum if  for every r ~ C~ (D) the following inequality 

(2.3) - I ur dz + E(u, K) <<. QE(u - r K) 
K 
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holds, where K = sptr and 

E(w, K) = IF(z ,  w, V~w)dz. 
K 

We can suppose that r is a Lipschitz function with spt r c D. A result of WEI- 
SER [Wi] is 

PROPOSITION 1. - Let F satisfy (2.8) and u: D--) ~ be a Q-minimum such that 
u, u~ ~ L2(D). Then u ~ V~(D). 

Wieser proved also that any Q-minimum belongs to a De Giorgi class. To expound 
a general definition of De Giorgi class we will need some new notations: for any 
p, r > 0, # = (5, t) e [R ~+1, and k e ~ we will denote 

B e = B : ( 2 ) ,  Q~, ~ = Q~, ~(z--) = B ( 2 ,  p) • (t ,  t + z ) ,  

(u - k) • = max(+-u -T k, 0) and A • = k,~,: Q ~ , ~ N [ ( u - k )  +- >0]  

DEFINITION 2. - A function u e V2(D) belongs to a De Giorgi class DG~ (D) = 
= DG~ (D, L, q) i f  there exist some constants L > 0 and q > 1 such that, for any 
Qe, ~ = Q~, ~(z--) cD and any ~1, z2 e (0, 1), k >i 0 the following inequalities hold: 

(2.4) max ~ I(u-kY-(t)i2dx< I I(u-k)• 

+ L {  (~1~)-2 I%: I(u-k)• ' 

(2.5) f 
t e [ t ' t  + ( 1 -  ~2) z] ~(1 -c1)~, 

l(u-k)• + I 
Q(1 - z  1) ~,(1 - z2) 

]V(u - k) • ]2dz + 

+ L  {[(~1~)-2 + (v2v)-l] IQ~, ~ I (u-k) •  " 

The De Giorgi classes DG2(D) are defined as 

DG2(D) = DG2(D, L, q) = : DG~ (D, L, q) ADG~ (D, L, q) (with the same D, L, q). 

The Harnack inequalities for functions in De Giorgi classes obtained by 
WANG [Wa] are the following: 
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THEOREM 1 . -  Let u (x , t )  eDGz(D), 0 > 0 ,  R > 0 ,  B R ( 5 ) •  
E (0,1). Then for any p > 0 there exists a constant C > 0 such that 

I sup u(x, t) <<. C ]u + IP dxdt  
BaR(x~ • (t+ (1 - z 2) OR z, t + OR e) [ BzR(~ • (~,~ + ORe) 

where C depends on p, n, L, ~, o. 
_~ 1 j [  We supposed vdxd t  = - ~  vdxd t  where ISI denote the (n + 1)-dimensional 

measure of S. s s 

THEOREM 2. - Let u(x, t) eDGe(D), 0 > 0, R > 0, BR(~) • (t, t + OR z) c D. Then 
for any ~1, ~2 ~ (0, 1), 0 < 01 < 01 < 0 there exist positive constants Po and C such 
that 

t t l/p ~ 
inf u(x, t) >1 C ~ lu]P~ 

BalR(X-) • (t+ 02R2,t + oR 2) Bz2R(X- ) • (t~ + 01R 2) 

where C depends only n, L, 01, 02, O, ~ and z2. 

3. - T h e  W i e n e r  c o n d i t i o n .  

If  5 e ~ ,  0 < r < R, we will say that  ~(x) is a cut-off function for the pair 
(Br(~), BR(~)) if ~(x) e Co ~ ( ~ ) ,  ~(x) = 1 on Br(~), ~(x) = 0 on ~n _ BR(5), 0 < ~(x) ~< 

~< 1, I Vvl ~< C/(R - r). 
I f  z- = (5, t) e ~ + 1 ,  0 < r < R, 0 < s < S, we will say that  V(x, t) is a cut-off func- 

tion for the pair (Q~, ~(z--), QR, s(Z--)) if ~(x, t) is a Lipschitz function 

~(x, t) = 1 on Qr.s, 

rp(x, t) = 0 on (~,~+1 _ QR, s)t>~ = {(x, t) e QI~, s I t > {}, 0 <~ ~7(x, t) ~ 1, 

We observe that  no conditions are imposed on ~ for t ~ t. In fact we will always 
multiply ~ for a function depending on the only variable t and having the support in- 
closed in {t > t-}. 

Let  zo = (xo, to) e 019 be. I f  U(Zo) ~< 1 weakly, and 1 < k denote uk = (u - k) § pro- 
longed by zero out of D and let r >  0 and {urn} c W  1' ~(9t ~+1) such that  u,~--~u in 
WI(D fq Q3r(Zo)), spt ~(u~ - k) § c D  f) Qsr(Zo) wheanever ~ e C~((~3r(Zo)). 

We observe that  the function u~ is bounded on any compact set of D because of the 
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Harnack inequality (Theorem 1). Moreover if u~ is prolonged out of D by zero, it re- 
mains bounded also near the boundary of D, the bound depending on IlUI[L~(D) 
and the structure conditions (2.1). Therefore for any fLxed ~ > 0 ,  u~ (2 r )=  
= Sup {u~(z), z e R~(2r)} is finite for all small r. This is applied in the proof of the fol- 
lowing theorem. 

T H E O R E M  3. - There exist positive constants C and Po depending on I]U]IL~(~) and 
the structure conditions (2.1) such that, for any ~ > O, 

u~(2r) - u~(r) >t (~.(~) [u~(2r) - C I u~(z)]~odz) ~/~~ 

PROOF. - Let  x = XO, t =  to - (9 /4 )~r  ~, z =  (x, t). Denote v(x) = u~(2r) - u~(z) 
prolonged by u~(2r) out of D. We observe that  v, v~ e L~(D ~ Q2r,(5/4)~r~(Z-)). 

We want to prove that  v belongs to a De Giorgi class DG2-(D U Q2~,(5/4)~(z-)). We 
prove that  v verifies (2.4) and (2.5) for any Q~, =(z-) with ~ < 2r, ~ < (5/4)~r2. For  
0 < h < uk(2r) consider (v - h)-  prolonged out of D by zero. Let  ~ ,~ ,h (x ,  t) = 
= - (~2(v~-  h)~t~,~+~]~where ~ is a cut-off function for the pair ( B ~ ( x o ) ,  B~(Xo) ) ,  
0 < 81 < s2 < 1, t < tl < t +% 0 < ~ < ~(tr) 2 and, for any l > 0, z~ < z~ 

"0 

t - -  T I 
1 + - -  

l 
t - ~2 

1 
1 

if t <~ z~ - 1  or t>~ z 2 + l ,  

if zl ~ t <<. z2, 

if z l - l <<. t <<. z l, 

if v 2 <<. t <<. z 2 + l , 

denote the piecewise linear approximation of the characteristic function ~ 1 ,  ~2~. ~ de- 
note a ~time,-mollification of 4. So ~ e W01' 2(D • R~(2r)). Inserting ~ as test  function 
in (2.3) and letting to the limit m - ~  + ~ and ~, ~--~ 0, we obtain that  v satisfies the 
,~--~part  of (2.4) with ~ = 2s2r, ~t = 1 - s l / s 2 .  We avoid the calculus which allows 
us to this issue. I t  can be obtained following the same line of reasoning of Theo- 
rem 3.1 of[Z-2] and Theorem 4.1 of[Wi]. Let  now V = V(x, t) in the test  function 
be a cut-off function for the pair (Q2.~l~,~(z-), Q2~2r,.~(z-)), 0 < ~1 < (5/2)~(s lr)  2, 
0 < z2 < (5/2)~(s2r) 2, ze < zl.  Inserting ~ as test  function in (2.3), we obtain in this 
case that  v satisfies the . . . . . .  part  of (2.5). 

We can so affirm that  v belongs to a De Giorgi class DG~(D U Q2~,(5/4)~2(z--)). 
Therefore, applying the Harnack inequality (Theorem 2) to the function v, with 
R = r, 01 = 1, 02 = (3/2)~,  0 = (5/2)~,  ~1 = ~2 = 1, Theorem 3 is p roved .  

We recall the following Lemma: 
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LEMMA 1 (see Lemma 3.2 of [Z-2]).- Let u e WI '2(B)  where B is an open ball o f ~  ~ 
of radius  r, and let ~ be a probability measure supported in B (~ [u = 0]. Then, i f  
k > 0 ,  

(3.1) klclul  kll i IVul + cr f(R ,,.)lwl. 
B B 

Let  uk(2r) be defined as at the beginning of Theorem 3 and let kj = u ( 2 r ) -  
- 2-Juk(2r) ,  j = 0, 1, ... where u(2r)  = sup u. Denote A+-(kj, r) = R * ( r )  A [(u - 

- k~) ~ > 0].  R~(2~) 

LEMMA 2 . -  There is a constant C > O, depending on t{UlIL~(D) and the structure con- 
dit ions (2.1) such that f o r  any  positive integer s, 

(3.2) 
[ r~ ] 

s rncap(R  * - D) ~ Csrn-21A-(k~,  r)[ + Cr ~+1/2 1 + u(2r)  - ks 

where a = 1 - (n + 1)/2q. 

. . . .  R[tx,~+~,] )~ PROOF. Inserting in (2.3) the test function ~,~,~, _ (V2(u ~ kj)+ h 
where {u~,} c W  1' ~ ( ~ + 1 ) ,  um--*u  in W 1' ~(D) and spt (u ,~ -  h)-  c D, V is a cut-off 

function for the pair (q~,.x(z-),Qer,~2(z--)), z = ( x , t - ) ,  x = x o ,  t = t o - ( 9 / 4 ) ~ r  ~, 
0 < vl < ar  2, 0 < z2 < (13/4) ~r ~, ~1 < ~2, we obtain 

f IVul 2 <~ C[r~-~(u(2r)  - kj)  2 + IA+(kj ,  2r)[ ~-I/q ] <~ (3.3) 
A + (k j ,  r)  

< Cr~-l(k~+l - kj) 2 [1 + u(2r)  - kj where s >--j + 1, a = 1 n2q + 1 

For  any t e ~ let now ~t be a positive measure supported in (R*(r )  - A +(k, r))t 

such that  

(3.4) I IRl*t~t 12 ~ (4"N - cap (R*(r)  - D ) ) [  2. 

Denote N -  c a p ( R * ( r ) -  D)t = "r~,t. Apply Lemma 1 to the function v ( x ) =  
= (u - kj) + + kj with k = kj for the level t (we observe that  v(x) > kjc:>u(x) > kj). We 

obtain 

(3.5) 
! 

k;A + (kj, r) J c t  
\ A + (kj ,  r) t 
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We will suppose s >I j,  so A § (ks, r) c A + (kj, r). Then 

+ C f ]Vul 2 1/2. r1+~/2 + r~ 

A § (kj, r) t A + (kj, v)t 

( )  ( C IVul 2 1/2"(rl+n/2 + r  ~'r.t) ~ C 

n + (kj, 'r)t 

(R1,~)2) 1/2) <- 

f IVul2)~/~'r~+~/2"'S,~ �9 
A § (kj, r)t 

Hence 

Integrating in t and taking into account (3.3) we have 

kj f IA + (ks, r)t l ~% tdt  < Cr~ + l/2 (kj+ l - kj) [1 + 
r~ ] 

u(2r) - k~ " 

Summing over j from 0 to s + 1 implies 

\j=o 
~+i s+l 

We have E kj > s 'uk(2r)  a n d  E ( k j +  1 - kj) < uk(2r)/2,  then 
j=o j=o 

(3.6) s IA+(k~, r)~lyr, tdt <<- Cr ~+1/2 1 + u ( 2 r ) -  k~ 

We have IA+(ks, r)t] I> C(IBrl - A - ( k ~ ,  r)t]), then 

u(2r) - k8 " 

. 

S f ]n+(ks,  r)t]~,'r, tdt ~ 8Cfrn~rr, t d t -  s C f  ]A- (ks ,  r)t]~r, td t .  

Hence, taking into account (3.6) and that y~, t <<- C rn-2 with C independent of t and 
r, Lemma 2 is proved. 

THEOREM 4. -- Let u �9 W 1' 2(D) be a Q - m i n i m u m  and let Zo �9 aD. Then there is a 
constant C > O, depending on IlUlI~2(D) and the structure conditions (2.1) such 
that, i f  

(3.7) 

1 

0 
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for  some ~ > 0, and U(Zo) <<. 1 weakly, then 

lira sup u(z) <~ 1. 
Z ---~ Z 0 
z e D  

PROOF. - The proof is analogous to that of Theorem 3.4 of [Z-2]. 

Let lira sup u(z) ~> 1. Then there are numbers k > 1 and 0 > 0 such that 
Z---~ Z 0 
z e D  

(3.8) uk(2r) I> 0 > 0 for all small r > 0. 

1 
Let ~ ( r ) =  u k ( 2 r ) -  uk(r) and observe that I ~o(r)(dr/r)< + oo. 

0 
From Theorem 3 follows that there exists Po > 0 such that 

IA - (kj, r) I 
~(rF o I> (2-Juk(2r)) p~ iR , ( r )  [ for any integer j I> 1. 

Thus, from (3.8), I A - ( k j ,  r ) I / I R * ( r )  I <<. (0-12Jw(r)) p~ 
Taking into account Lemma 2 and that cap ( R * ( r ) ) =  Cr n, 

(3.9) 
[ r~ ] 

s~(r) <<- C r  1 /2  1 q- u(2r) - k8 -b Csrn(o - 1 2  s o~(r))Po 

2Sr~ ] 
<~ Cr 1/2 1 + uk(2r------~ + Csrn(o - 128 o~(r))po. 

Let s = s(r) be the largest integer such that 

1 (3.10) s1(0-128 oj(r))po ~< 2 .  

Then 28(0-12so~(r)) p~ >I 1/2 p~ and therefore 

1 ( 0 )  p~ 
s(r)(po + 1) log 2 + polog[~(r)] I> log ~ 

hence, dividing by Po + 1, 

(3.11) s(r) + log[oJ(r)] i> log M,  M = M(O, Po). 

So, dividing (3.9) by s and taking into account of (3.10), we have 

(3.12) ~'(r) ~ Cs(r) -1 
1 

with C = C(~, Po). From (3.7), (3.10) and (3.12) we obtain I w ( r )d r / r  = + oo 
yields a contradiction, and Theorem 4 is proved. 0 

�9 This 
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