Boundary Regularity for Parabolic Quasiminima (*).

Silvana Marchi

Summary. - We prove a Wiener-type criterion for parabolic Q-minima.

1. - Introduction.

Let $D \subset \mathfrak{R}^{n+1}, n>2$, be an open bounded set. In this paper we establish a sufficient condition for a boundary point of D to be regular for a parabolic Q-minimum. Our criterion is analogous to the Wiener-type criterion proved by W. P. ZIEMER [Z-2] for elliptic Q-minima.

The main tools in the proof of our result are the Harnack inequalities. In fact Harnack inequalities for functions in parabolic De Giorgi classes are proved by G. WANG[Wa].

Moreover W. WIESER [Wi] proved that parabolic Q-minima belong to parabolic De Giorgi classes.

The generic point $z \in \mathfrak{R}^{n+1}$ will be denoted by $z=(x, t)$, with $x \in \mathfrak{R}^{n}$ and $t \in \mathfrak{R}$. u_{x} or $\nabla_{x} u$ will denote the gradient on x of a function $u(x, t)$.

Let $H^{0,1}(D)$ be the space $\left\{u \in L^{2}(D) \mid \nabla_{x} u \in L^{2}(D)\right\}$.
The existence of the parabolic Q-minima is connected to $V^{2}(D)$. It is the space of functions u which belong to $H^{0,1}(D)$ and such that $\|u\|_{L^{2}\left(D_{t}\right)} \in L_{\infty}\left(\mathfrak{R}^{1}\right)$ where $D_{t}=: D \cap\{z=(x, \tau) \mid \tau=t\} . V^{2}(D)$ is endowed with the norm

$$
\|u\|_{V^{2}(D)}=: \sup _{t}\left(\int_{D_{t}} u(x, t)^{2} d x\right)^{1 / 2}+\left(\int_{D}\left|\nabla_{x} u(x, t)\right|^{2} d x d t\right)^{1 / 2}
$$

[^0]Let $Z(D)$ be the space $\left\{u \in \mathscr{D}^{1}(D) \mid u=\operatorname{div} g, g \in L^{2}(D)\right\}$ endowed with the norm $\|u\|_{Z(D)}=\operatorname{Inf}_{\substack{u=\text { div } \\ g \in L^{2}(D)}}\|g\|_{L^{2}(D)}$ and $W^{1}(D)=\left\{u \in H^{0,1}(D), \partial u / \partial t \in Z(D)\right\}$.

We denote $B_{r}\left(x_{0}\right)=\left\{x \in \mathfrak{R}^{n},\left|x-x_{0}\right|<r\right\}$ if $x_{0} \in \mathfrak{R}^{n}$ and

$$
\widehat{Q}_{r}\left(z_{0}\right)=B_{r}\left(x_{0}\right) \times\left(t_{0}-r^{2}, t_{0}+r^{2}\right) \quad \text { if } z_{0}=\left(x_{0}, t_{0}\right) \in \mathfrak{R}^{n+1}
$$

If $u \in W^{1}(D), z_{0} \in \partial D$ and $l \in \mathfrak{R}$, we say that

$$
\begin{equation*}
u\left(z_{0}\right) \leqslant 1 \text { weakly } \tag{1.1}
\end{equation*}
$$

if for every $k>1$ there is $r>0$ and a sequence $\left\{u_{m}\right\} \subseteq W^{1, \infty}\left(\Re^{n+1}\right)$ such that $u_{m} \rightarrow u$ in $W^{1}\left(D \cap \hat{Q}_{r}\left(z_{0}\right)\right)$ and $\operatorname{spt} \eta\left(u_{m}-k\right)^{+} c D \cap \widehat{Q}_{r}\left(z_{0}\right)$ whenever $\eta \in C_{0}^{\infty}\left(\widehat{Q}_{r}\left(z_{0}\right)\right)$. The definition of

$$
\begin{equation*}
u\left(z_{0}\right) \geqslant 1 \text { weakly } \tag{1.2}
\end{equation*}
$$

is analogous, and $u\left(z_{0}\right)=1$ if both (1.1) and (1.2) hold.
Many different definitions of capacity are introduced to study the regularity problem for parabolic equations. A capacity which is «naturally» associated to the space $V^{2}(D)$ is

$$
\begin{equation*}
\operatorname{cap}_{*}(E)=\inf \left\{\sup _{t} \int_{D} u^{2} d x+\int_{D}\left|\nabla_{x} u\right|^{2} d x d t, u \in V^{2}\left(\Re^{n+1}\right), E \subset \operatorname{int}[u \geqslant 1]\right\} . \tag{1.3}
\end{equation*}
$$

W. P. Ziemer [Z-1] proved a sufficient condition for the regularity at the boundary of weak solutions of parabolic equations in term of the capacity cap. In analogy with the Newtonian capacity (cfr. [F.Z]), L. C. Evans and R. Gariepy [E.G] introduced the thermal capacity, which R. Gariepy and W. P. Ziemer [G.Z] proved to be strictly weaker than cap ${ }_{*}$. In [G.Z] a Wiener criterion (only sufficient condition) is also proved for bounded weak solutions of parabolic equations, in terms of the thermal capacity.

This result improved of [Z-1].
In this paper we consider another type of parabolic capacity, which we will denote $\operatorname{cap}(E)$:

$$
\begin{equation*}
\operatorname{cap}(E)=\inf \left\{\int_{D}\left|\nabla_{x} u\right|^{2}, u \in C_{0}^{\infty}\left(\Re^{n+1}\right), E \subset \operatorname{int}[u \geqslant 1]\right\} \tag{1.4}
\end{equation*}
$$

Here E was a compact set.
Biroli and Mosco [B.M-2] showed that cap (E) is a Choquet capacity and, for any bounded Borel set E,

$$
\begin{equation*}
\operatorname{cap}(E)=\int N-\operatorname{cap}\left(E_{t}\right) d t \tag{1.5}
\end{equation*}
$$

where $E_{t}=: E \cap\{z=(x, \tau) \mid \tau=t\}$ and N-cap denote the usual Newtonian capacity of E_{t} with respect to \mathfrak{R}^{2}. It is known (cf.[M]) that N-cap $\left(E_{t}\right)=$
$=\sup \left\{\left\|R_{1} * \mu\right\|_{2}^{-1} \mid \operatorname{spt} \mu \subset E_{t}, \mu\left(E_{t}\right)=1\right\}$, where μ is a positive Borel measure in \mathfrak{R}^{π} and $R_{1}(x)=|x|^{1-n}$.

If $z_{0}=\left(x_{0}, t_{0}\right) \in \partial D$ we will denote, for $\alpha, r>0$,

$$
\begin{aligned}
& R_{\alpha}(r)=B_{r}\left(x_{0}\right) \times\left(t_{0}-\frac{3}{4} \alpha r^{2}, t_{0}+\frac{1}{4} \alpha r^{2}\right), \\
& R_{\alpha}^{*}(r)=B_{r}\left(x_{0}\right) \times\left(t_{0}-\frac{9}{4} \alpha r^{2}, t_{0}-\frac{5}{4} \alpha r^{2}\right), \\
& \delta_{\alpha}(r)=\frac{\operatorname{cap}\left(R_{\alpha}^{*}(r)-D\right)}{\operatorname{cap}\left(R_{\alpha}^{*}(r)\right)}
\end{aligned}
$$

We will prove that

$$
\int_{0}^{1} \exp \left(-\left[C \delta_{\alpha}(r)^{-1}\right]\right) \frac{d r}{r}=+\infty
$$

is a sufficient condition for the regularity of a parabolic Q-minimum in z_{0}, where C depends on $\|u\|_{L^{2}(D)}$ and the structure conditions of the Q-minimum.

Obviously $\operatorname{cap}(E) \leqslant \operatorname{cap}_{*}(E)$, and, a fortiori, thermal capacity is weaker than cap.

Then our result would be refined using cap ${ }_{*}$ or thermal capacity.
We don't know if it is possible to employ these capacities.

2. - Q-minima and De Giorgi classes.

Consider a Caratheodory function

$$
\begin{equation*}
F=F(z, u, p): D \times \Re \times \Re^{n} \rightarrow \Re \tag{2.1}
\end{equation*}
$$

satisfying the growth condition

$$
\begin{equation*}
\lambda|p|^{2}-b|u|^{2}-g(z) \leqslant F(z, u, p) \leqslant \mu|p|^{2}+b|u|^{2}+g(z) \tag{2.2}
\end{equation*}
$$

where g is a nonnegative function, $g \in L^{q}(D), q>n$ and b, λ, μ are positive constants.

Definition 1. - For $Q \geqslant 1$ we define a function $u: D \rightarrow \mathfrak{R}$ with $u, u_{x} \in L^{2}(D)$, to be a parabolic Q-minimum if for every $\dot{\epsilon} \in C_{0}^{\infty}(D)$ the following inequality

$$
\begin{equation*}
-\int_{K} u \phi^{\prime} d z+E(u, K) \leqslant Q E(u-\phi, K) \tag{2.3}
\end{equation*}
$$

holds, where $K=\operatorname{spt} \phi$ and

$$
E(w, K)=\int_{K} F\left(z, w, \nabla_{x} w\right) d z .
$$

We can suppose that ϕ is a Lipschitz function with $\operatorname{spt} \phi \subset D$. A result of WeiSER [Wi] is

Proposition 1. - Let F satisfy (2.8) and $u: D \rightarrow \Re$ be a Q-minimum such that $u, u_{x} \in L^{2}(D)$. Then $u \in V^{2}(D)$.

Wieser proved also that any Q-minimum belongs to a De Giorgi class. To expound a general definition of De Giorgi class we will need some new notations: for any $\rho, \tau>0, \bar{z}=(\bar{x}, \bar{t}) \in \mathfrak{R}^{n+1}$, and $k \in \mathfrak{R}$ we will denote

$$
\begin{gathered}
B_{f}=B_{\rho}(\bar{x}), \quad Q_{\rho, \tau}=Q_{\tilde{\beta}, \tau}(\bar{z})=B(\bar{x}, \rho) \times(\bar{t}, \bar{t}+\tau), \\
(u-k)^{ \pm}=\max (\pm u \mp k, 0) \quad \text { and } \quad A_{k, p, \tau}^{ \pm}=Q_{\rho, \tau} \cap\left[(u-k)^{ \pm}>0\right] .
\end{gathered}
$$

Definition 2. - A function $u \in V^{2}(D)$ belongs to a De Giorgi class $D G_{2}^{ \pm}(D)=$ $=D G_{2}^{ \pm}(D, L, q)$ if there exist some constants $L>0$ and $q>1$ such that, for any $Q_{\rho, \tau}=Q_{\rho, \tau}(\bar{z}) \subset D$ and any $\sigma_{1}, \sigma_{2} \in(0,1), k \geqslant 0$ the following inequalities hold:

$$
\begin{align*}
& \max _{t \in[\bar{t}, \bar{t}+\tau]} \int_{B_{\left(1-\tau_{1}\right),}}\left|(u-k)^{ \pm}(t)\right|^{2} d x \leqslant \int_{B_{\rho}}\left|(u-k)^{ \pm}(\bar{t})\right|^{2} d x+ \tag{2.4}\\
& +L\left\{\left(\sigma_{1 \rho}\right)^{-2} \int_{Q_{\rho, \sigma}}\left|(u-k)^{ \pm}\right|^{2} d z+\left|A_{k, \rho, \tau}^{ \pm}\right|^{1-1 / q}\right\}, \\
& \max _{t \in\left[t, t, t\left(1-\sigma_{2}\right) \tau\right]} \int_{\left.B_{\left(1-\sigma_{1}\right)}\right)}\left|(u-k)^{ \pm}(t)\right|^{2} d x+\int_{Q_{\left(1-\sigma_{1}\right),\left(,\left(1-\sigma_{2}\right) \tau\right.}}\left|\nabla(u-k)^{ \pm}\right|^{2} d z+ \\
& +L\left\{\left[\left(\sigma_{1 \rho}\right)^{-2}+\left(\sigma_{2} \tau\right)^{-1}\right] \int_{Q_{\rho, \tau}}\left|(u-k)^{ \pm}\right|^{2} d z+\left|A_{k, \rho, \tau}^{ \pm}\right|^{1-1 / q}\right\} .
\end{align*}
$$

(2.5)

The De Giorgi classes $D G_{2}(D)$ are defined as
$D G_{2}(D)=D G_{2}(D, L, q)=: D G_{2}^{+}(D, L, q) \cap D G_{2}^{-}(D, L, q)$ (with the same $\left.D, L, q\right)$.
The Harnack inequalities for functions in De Giorgi classes obtained by Wang [Wa] are the following:

Theorem 1. - Let $u(x, t) \in D G_{2}(D), \quad \theta>0, R>0, \quad B_{R}(\bar{x}) \times\left(\bar{t}, \bar{t}+\theta R^{2}\right) \subset D$, $\sigma \in(0,1)$. Then for any $p>0$ there exists a constant $C>0$ such that

$$
\sup _{B_{\sigma R}(\bar{x}) \times\left(\bar{t}+\left(1-\sigma^{2}\right) \theta R^{2}, \bar{t}+\theta R^{2}\right)} u(x, t) \leqslant C\left\{f_{B_{\sigma R}(\bar{x}) \times\left(\bar{t}, \bar{t}+\theta R^{2}\right)}\left|u^{+}\right|^{p} d x d t\right\}^{1 / p}
$$

where C depends on p, n, L, σ, θ.
We supposed $f_{S} v d x d t=\frac{1}{|S|} f_{S} v d x d t$ where $|S|$ denote the $(n+1)$-dimensional
neasure of S.
Theorem 2. - Let $u(x, t) \in D G_{2}(D), \theta>0, R>0, B_{R}(\bar{x}) \times\left(\bar{t}, \bar{t}+\theta R^{2}\right) \subset D$. Then for any $\sigma_{1}, \sigma_{2} \in(0,1), 0<\theta_{1}<\theta_{1}<\theta$ there exist positive constants p_{0} and C such that

$$
\inf _{B_{\sigma_{1} R}(\bar{x}) \times\left(\bar{t}+\theta_{2} R^{2}, \bar{t}+\theta R^{2}\right)} u(x, t) \geqslant C\left\{\int_{B_{\sigma_{2} R}\left(\bar{x} \times \times\left(\bar{t}, \bar{t}+\theta_{1} R^{2}\right)\right.}|u|^{p_{0}} d x d t\right\}^{1 / p_{0}}
$$

where C depends only $n, L, \theta_{1}, \theta_{2}, \theta, \sigma_{1}$ and σ_{2}.

3. - The Wiener condition.

If $\bar{x} \in \Re^{n}, 0<r<R$, we will say that $\gamma(x)$ is a cut-off function for the pair $\left(B_{r}(\bar{x}), B_{R}(\bar{x})\right)$ if $\eta(x) \in C_{0}^{\infty}\left(\Re^{n}\right), \eta(x)=1$ on $B_{r}(\bar{x}), \eta(x)=0$ on $\Re^{n}-B_{R}(\bar{x}), 0 \leqslant \eta(x) \leqslant$ $\leqslant 1,\left|\nabla_{\eta}\right| \leqslant C /(R-r)$.

If $\bar{z}=(\bar{x}, \bar{t}) \in \Re^{n+1}, 0<r<R, 0<s<S$, we will say that $\eta(x, t)$ is a cut-off function for the pair $\left(Q_{r, s}(\bar{z}), Q_{R, S}(\bar{z})\right.$) if $\eta(x, t)$ is a Lipschitz function

$$
\begin{aligned}
\eta(x, t) & =1 \text { on } Q_{r, s}, \\
\eta(x, t)=0 \text { on }\left(\Re^{n+1}-Q_{R, S}\right)_{t>\bar{t}} & =\left\{(x, t) \in Q_{R, s} \mid t>\bar{t}\right\}, \quad 0 \leqslant \eta(x, t) \leqslant 1, \\
\left|\eta^{\prime}\right|+\left|\nabla_{r}\right|^{2} & \leqslant C\left[\frac{1}{(R-r)^{2}}+\frac{1}{S-s}\right] .
\end{aligned}
$$

We observe that no conditions are imposed on η for $t \leqslant \bar{t}$. In fact we will always multiply η for a function depending on the only variable t and having the support inclosed in $\{t>\bar{t}\}$.

Let $z_{0}=\left(x_{0}, t_{0}\right) \in \partial D$ be. If $u\left(z_{0}\right) \leqslant 1$ weakly, and $l<k$ denote $u_{k}=(u-k)^{+}$prolonged by zero out of D and let $r>0$ and $\left\{u_{m}\right\} \subset W^{1, \infty}\left(\Re^{n+1}\right)$ such that $u_{m} \rightarrow u$ in $W^{1}\left(D \cap \widehat{Q}_{3 r}\left(z_{0}\right)\right)$, spt $\eta\left(u_{m}-k\right)^{+} \subset D \cap \hat{Q}_{3 r}\left(z_{0}\right)$ wheanever $\eta \in C_{0}^{\infty}\left(\widehat{Q}_{3 r}\left(z_{0}\right)\right)$.

We observe that the function u_{k} is bounded on any compact set of D because of the

Harnack inequality (Theorem 1). Moreover if u_{k} is prolonged out of D by zero, it remains bounded also near the boundary of D, the bound depending on $\|u\|_{L^{2}(D)}$ and the structure conditions (2.1). Therefore for any fixed $\alpha>0, u_{k}(2 r)=$ $=\operatorname{Sup}\left\{u_{k}(z), z \in R_{x}(2 r)\right\}$ is finite for all small r. This is applied in the proof of the following theorem.

Theorem 3. - There exist positive constants C and p_{0} depending on $\|u\|_{L^{2}(D)}$ and the structure conditions (2.1) such that, for any $\alpha>0$,

$$
u_{k}(2 r)-u_{k}(r) \geqslant C\left(\int_{R_{k}^{*}(r)}\left[u_{k}(2 r)-u_{k}(z)\right]^{p_{0}} d z\right)^{1 / p_{0}}
$$

Proof. - Let $\bar{x}=x_{0}, \bar{t}=t_{0}-(9 / 4) \alpha r^{2}, \bar{z}=(\bar{x}, \bar{t})$. Denote $v(x)=u_{k}(2 r)-u_{k}(z)$ prolonged by $u_{k}(2 r)$ out of D. We observe that $v, v_{x} \in L^{2}\left(D \cup Q_{2 r,(5 / 4) a r^{2}}(\bar{z})\right)$.

We want to prove that v belongs to a De Giorgi class $D G_{2}^{-}\left(D \cup Q_{2 r,(\overline{5} / 4) \times r^{2}(\bar{z})}\right)$. We prove that v verifies (2.4) and (2.5) for any $Q_{\rho, \tau}(\bar{z})$ with $\rho<2 r, \tau<(5 / 4) \alpha r^{2}$. For $0<h<u_{k}(2 r)$ consider $(v-h)^{-}$prolonged out of D by zero. Let $\varphi_{m, s, h}(x, t)=$ $=-\left(\eta^{2}\left(v_{m}-h\right)-\aleph_{\left[t_{1}, \bar{t}+\tau\right]}^{\alpha}\right)_{E}$ where η is a cut-off function for the pair $\left(B_{2_{s_{1}} r}\left(x_{0}\right), B_{2_{s_{2}} r}\left(x_{0}\right)\right)$, $0<s_{1}<s_{2}<1, \bar{t}<t_{1}<\bar{t}+\tau, 0<\tau<\alpha(t r)^{2}$ and, for any $l>0, \tau_{1}<\tau_{2}$

$$
\mathcal{K}_{\tau_{1}, \tau_{2}}^{1}(t)= \begin{cases}0 & \text { if } t \leqslant \tau_{1}-l \text { or } t \geqslant \tau_{2}+l \\ 1 & \text { if } \tau_{1} \leqslant t \leqslant \tau_{2} \\ 1+\frac{t-\tau_{1}}{l} & \text { if } \tau_{1}-l \leqslant t \leqslant \tau_{1} \\ 1-\frac{t-\tau_{2}}{l} & \text { if } \tau_{2} \leqslant t \leqslant \tau_{2}+l\end{cases}
$$

denote the piecewise linear approximation of the characteristic function $\mathcal{K}_{\left[\tau_{1}, \tau_{2}\right]} . \psi_{\varepsilon}$ denote a «time»-mollification of ψ. So $\varphi \in W_{0}^{1,2}\left(D \cap R_{\alpha}(2 r)\right)$. Inserting φ as test function in (2.3) and letting to the limit $m \rightarrow+\infty$ and $\alpha, \varepsilon \rightarrow 0$, we obtain that v satisfies the «-»-part of (2.4) with $\rho=2 s_{2} r, \sigma_{1}=1-s_{1} / s_{2}$. We avoid the calculus which allows us to this issue. It can be obtained following the same line of reasoning of Theorem 3.1 of [Z-2] and Theorem 4.1 of [Wi]. Let now $\eta=\eta(x, t)$ in the test function φ be a cut-off function for the pair ($\left.Q_{2 s_{1} r, \tau_{1}}(\bar{z}), Q_{2 s_{2} r, \tau_{2}}(\bar{z})\right), 0<\tau_{1}<(5 / 2) \alpha\left(s_{1} r\right)^{2}$, $0<\tau_{2}<(5 / 2) \alpha\left(s_{2} r\right)^{2}, \tau_{2}<\tau_{1}$. Inserting φ as test function in (2.3), we obtain in this case that v satisfies the «-»-part of (2.5).

We can so affirm that v belongs to a De Giorgi class $D G_{2}^{-}\left(D \cup Q_{2 r,(5 / 4) a r^{2}}(\bar{z})\right.$). Therefore, applying the Harnack inequality (Theorem 2) to the function v, with $R=r, \theta_{1}=1, \theta_{2}=(3 / 2) \alpha, \theta=(5 / 2) \alpha, \sigma_{1}=\sigma_{2}=1$, Theorem 3 is proved.

We recall the following Lemma:

Lemma 1 (see Lemma 3.2 of [Z-2]). - Let $u \in W^{1,2}(B)$ where B is an open ball of \mathfrak{R}^{n} of radius r, and let μ be a probability measure supported in $B \cap[u=0]$. Then, if $k>0$,

$$
\begin{equation*}
k|[|u| \geqslant k]| \leqslant C r \int_{B}|\nabla u|+C r^{n} \int_{B}\left(R_{1} * \mu\right)|\nabla u| . \tag{3.1}
\end{equation*}
$$

Let $u_{k}(2 r)$ be defined as at the beginning of Theorem 3 and let $k_{j}=u(2 r)-$ $-2^{-j} u_{k}(2 r), j=0,1, \ldots$ where $u(2 r)=\sup _{R(2 r)} u$. Denote $A^{ \pm}\left(k_{j}, r\right)=R_{x}^{*}(r) \cap[(u-$ $\left.\left.-k_{j}\right)^{ \pm}>0\right]$.

Lemma 2. - There is a constant $C>0$, depending on $\|u\|_{L^{2}(D)}$ and the structure conditions (2.1) such that for any positive integer s,

$$
\begin{equation*}
s r^{n} \operatorname{cap}\left(R_{\alpha}^{*}-D\right) \leqslant C s r^{n-2}\left|A^{-}\left(k_{s}, r\right)\right|+C r^{n+1 / 2}\left[1+\frac{r^{a}}{u(2 r)-k_{s}}\right] \tag{3.2}
\end{equation*}
$$

where $a=1-(n+1) / 2 q$.
Proof. - Inserting in (2.3) the test function $\varphi_{m, \varepsilon, h}=-\left(\eta^{2}\left(u_{m}-k_{j}\right)^{+} \chi_{\left[t_{1}, \bar{t}+\tau_{1}\right]}^{h}\right)_{\varepsilon}$ where $\left\{u_{m}\right\} \subset W^{1, \infty}\left(\Re^{n+1}\right), u_{m} \rightarrow u$ in $W^{1, \infty}(D)$ and $\operatorname{spt}\left(u_{m}-h\right)^{-} \subset D, \eta$ is a cut-off function for the pair $\left(Q_{r, \tau_{1}}(\bar{z}), Q_{2 r_{, ~} \tau_{2}}(\bar{z})\right), \bar{z}=(\bar{x}, \bar{t}), \bar{x}=x_{0}, \bar{t}=t_{0}-(9 / 4) \alpha r^{2}$, $0<\tau_{1}<\alpha r^{2}, 0<\tau_{2}<(13 / 4) \alpha r^{2}, \tau_{1}<\tau_{2}$, we obtain

$$
\begin{align*}
& \int_{A^{+}\left(k_{j}, r\right)}|\nabla u|^{2} \leqslant C\left[r^{n-1}\left(u(2 r)-k_{j}\right)^{2}+\left|A^{+}\left(k_{j}, 2 r\right)\right|^{1-1 / q}\right] \leqslant \tag{3.3}\\
& \quad \leqslant C r^{n-1}\left(k_{j+1}-k_{j}\right)^{2}\left[1+\frac{r^{a}}{u(2 r)-k_{j}}\right]^{2} \quad \text { where } s \geqslant j+1, a=1-\frac{n+1}{2 q} .
\end{align*}
$$

For any $t \in \Re$ let now μ_{t} be a positive measure supported in $\left(R_{\alpha}^{*}(r)-A^{+}(k, r)\right)_{t}$ such that

$$
\begin{equation*}
\int\left|R_{1} * \mu_{t}\right|^{2} \leqslant\left(4 \cdot N-\operatorname{cap}\left(R_{\alpha}^{*}(r)-D\right)\right)_{t}^{-2} \tag{3.4}
\end{equation*}
$$

Denote $N-\operatorname{cap}\left(R_{\alpha}^{*}(r)-D\right)_{t}=\gamma_{r, t}$. Apply Lemma 1 to the function $v(x)=$ $=\left(u-k_{j}\right)^{+}+k_{j}$ with $k=k_{j}$ for the level t (we observe that $\left.v(x)>k_{j} \Leftrightarrow u(x)>k_{j}\right)$. We obtain

$$
\begin{equation*}
k_{j}\left|A^{+}\left(k_{j}, r\right)_{t}\right| \leqslant C\left(\int_{A^{+}\left(k_{j}, r\right)_{t}}|\nabla u|^{2}\right)^{1 / 2}\left(r\left|A^{+}\left(k_{j}, r\right)_{t}\right|^{1 / 2}+C r^{n}\left(\int_{A^{+}\left(k_{j}, r\right)_{t}}\left|\left(R_{1} * \mu_{t}\right)\right|^{2}\right)^{1 / 2}\right) \tag{3.5}
\end{equation*}
$$

We will suppose $s \geqslant j$, so $A^{+}\left(k_{s}, r\right) \subset A^{+}\left(k_{j}, r\right)$. Then

$$
\begin{aligned}
& k_{j}\left|A^{+}\left(k_{s}, r\right)_{t}\right| \leqslant C\left(\int_{A^{+}\left(k_{j}, r\right)_{t}}|\nabla u|^{2}\right)^{1 / 2} \cdot\left(r^{1+n / 2}+r^{n}\left(\int_{A^{+}\left(k_{j}, r\right)_{t}}\left(R_{1} * \mu_{t}\right)^{2}\right)^{1 / 2}\right) \leqslant \\
& \leqslant C\left(\int_{A^{+}\left(k_{j}, r_{t}\right.}|\nabla u|^{2}\right)^{1 / 2} \cdot\left(r^{1+n / 2}+r^{n} \gamma_{r, t}^{-1}\right) \leqslant C\left(\int_{A^{+}\left(k_{j}, r_{t}\right.}|\nabla u|^{2}\right)^{1 / 2} \cdot r^{n+1 / 2} \cdot \gamma_{r, t}^{-1} .
\end{aligned}
$$

Hence

$$
k_{j}\left|A^{+}\left(k_{s}, r\right)_{t}\right| \gamma_{r, i} \leqslant C\left(\int_{A^{+}\left(k_{j}, r\right)_{t}}|\nabla u|^{2}\right)^{1 / 2} \cdot r^{1+n / 2}
$$

Integrating in t and taking into account (3.3) we have

$$
k_{j} \int\left|A^{+}\left(k_{s}, r\right)_{t}\right| \gamma_{r, t} d t \leqslant C r^{n+1 / 2}\left(k_{j+1}-k_{j}\right)\left[1+\frac{r^{a}}{u(2 r)-k_{s}}\right] .
$$

Summing over j from 0 to $s+1$ implies

$$
\left(\sum_{j=0}^{s+1} k_{j}\right) \int\left|A^{+}\left(k_{s}, r\right)_{t}\right| \gamma_{r, t} d t \leqslant C r^{n+1 / 2}\left(\sum_{j=0}^{s+1} k_{j+1}-k_{j}\right)\left[1+\frac{r^{a}}{u(2 r)-k_{s}}\right]
$$

We have $\sum_{j=0}^{s+1} k_{j}>s \cdot u_{k}(2 r)$ and $\sum_{j=0}^{s+1}\left(k_{j+1}-k_{j}\right)<u_{k}(2 r) / 2$, then

$$
\begin{equation*}
s \int\left|A^{+}\left(k_{s}, r\right)_{t}\right| \gamma_{r, t} d t \leqslant C r^{n+1 / 2}\left[1+\frac{r^{a}}{u(2 r)-k_{s}}\right] \tag{3.6}
\end{equation*}
$$

We have $\left|A^{+}\left(k_{s}, r\right)_{t}\right| \geqslant C\left(\left|B_{r}\right|-\left|A^{-}\left(k_{s}, r\right)_{t}\right|\right)$, then

$$
s \int\left|A^{+}\left(k_{s}, r\right)_{t}\right| \gamma_{r, t} d t \geqslant s C \int r^{n} \gamma_{r, t} d t-s C \int\left|A^{-}\left(k_{s}, r\right)_{t}\right| \gamma_{r, t} d t
$$

Hence, taking into account (3.6) and that $\gamma_{r, t} \leqslant \mathrm{Cr}^{n-2}$ with C independent of t and r, Lemma 2 is proved.

Theorem 4. - Let $u \in W^{1,2}(D)$ be a Q-minimum and let $z_{0} \in \partial D$. Then there is a constant $C>0$, depending on $\|u\|_{L^{2}(D)}$ and the structure conditions (2.1) such that, if

$$
\begin{equation*}
\int_{0}^{1} \exp \left(-\left[C \delta_{x}(r)^{-1}\right]\right) \frac{d r}{r}=+\infty \tag{3.7}
\end{equation*}
$$

for some $\alpha>0$, and $u\left(z_{0}\right) \leqslant 1$ weakly, then

$$
\lim _{\substack{z \rightarrow z_{0} \\ z \in D}} \sup u(z) \leqslant 1
$$

Proof. - The proof is analogous to that of Theorem 3.4 of [Z-2].
Let $\lim _{\substack{z \rightarrow z_{0} \\ z \in D}} \sup u(z) \geqslant 1$. Then there are numbers $k>1$ and $\theta>0$ such that

$$
\begin{equation*}
u_{k}(2 r) \geqslant \theta>0 \quad \text { for all small } r>0 . \tag{3.8}
\end{equation*}
$$

Let $\omega(r)=u_{k}(2 r)-u_{k}(r)$ and observe that $\int_{0}^{1} \omega(r)(d r / r)<+\infty$.
From Theorem 3 follows that there exists $\stackrel{0}{p}_{0}>0$ such that

$$
\omega(r)^{p_{0}} \geqslant\left(2^{-j} u_{k}(2 r)\right)^{p_{0}} \frac{\left|A^{-}\left(k_{j}, r\right)\right|}{\left|R_{\alpha}^{*}(r)\right|} \quad \text { for any integer } j \geqslant 1
$$

Thus, from (3.8), $\left|A^{-}\left(k_{j}, r\right)\right| /\left|R_{\alpha}^{*}(r)\right| \leqslant\left(\theta^{-1} 2^{j} \omega(r)\right)^{p_{0}}$.
Taking into account Lemma 2 and that $\operatorname{cap}\left(R_{\alpha}^{*}(r)\right) \approx C r^{n}$,

$$
\begin{align*}
s \delta(r) \leqslant C r^{1 / 2}\left[1+\frac{r^{a}}{u(2 r)-k_{s}}\right]+ & \operatorname{Sr}^{n}\left(\theta^{-1} 2^{s} \omega(r)\right)^{p_{0}} \leqslant \tag{3.9}\\
& \leqslant C r^{1 / 2}\left[1+\frac{2^{s} r^{a}}{u_{k}(2 r)}\right]+\operatorname{Csr}^{n}\left(\theta^{-1} 2^{s} \omega(r)\right)^{p_{0}}
\end{align*}
$$

Let $s=s(r)$ be the largest integer such that

$$
\begin{equation*}
s^{1}\left(\theta^{-1} 2^{s} \omega(r)\right)^{p_{0}} \leqslant \frac{1}{2} . \tag{3.10}
\end{equation*}
$$

Then $2^{s}\left(\theta^{-1} 2^{s} \omega(r)\right)^{p_{0}} \geqslant 1 / 2^{p_{0}+1}$ and therefore

$$
s(r)\left(p_{0}+1\right) \log 2+p_{0} \log [\omega(r)] \geqslant \log \frac{1}{2}\left(\frac{\theta}{2}\right)^{p_{0}}
$$

hence, dividing by $p_{0}+1$,

$$
\begin{equation*}
s(r)+\log [\omega(r)] \geqslant \log M, \quad M=M\left(\theta, p_{0}\right) . \tag{3.11}
\end{equation*}
$$

So, dividing (3.9) by s and taking into account of (3.10), we have

$$
\begin{equation*}
o(r) \leqslant C s(r)^{-1} \tag{3.12}
\end{equation*}
$$

with $C=C\left(\theta, p_{0}\right)$. From (3.7), (3.10) and (3.12) we obtain $\int_{0}^{1} \omega(r) d r / r=+\infty$. This
yields a contradiction, and Theorem 4 is proved.

REFERENCES

[B.M-1] M. Biroli - U. Mosco, Wiener estimates at boundary points for parabolic equations, Ann. Mat. Pura Appl., 141 (1985), pp. 353-367.
[B.M-2] M. Biroli - U. Mosco, Wiener estimates for parabolic obstacles problems, Nonlinear Anal., 11 (9) (1987), pp. 1005-1027.
[E.G] L. C. Evans - R. Gariepy, Wiener's criterion for the heat equation, Arch. Rational Mech. Anal., 78 (1982), pp. 293-314.
[F.Z] H. Federer - W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J., 22 (1972), pp. 139-158.
[G.G] M. Giaquinta - E. Giusti, Quasi-minima, Ann. Inst. H. Poincaré, Anal. Nonlin., 1 (1984).
[G.Z] R. Gariepy - W. P. Ziemer, Thermal capacity and boundary regularity, J. Diff. Eqs., 45 (1982), pp. 374-388.
[M] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue spaces, Math. Scand., 26 (1970), pp. 255-292.
[Wa] G. Wang, Hamack inequalities for functions in the De Giorgi parabolic classes, Lectures Notes, 1306 (1989), pp. 182-201.
[Wi] W. Wieser, Parabolic Q-minima and minimal solutions to variational flow, Manuscripta Math., 59 (1987), pp. 63-107.
[Z-1] W. P. Ziemer, Behavior at the boundary of solutions of quasilinear parabolic equations, J. Diff. Eqs., 35 (1980), pp. 291-305.
[Z-2] W. P. Ziemer, Boundary regularity for quasiminima, Arch. Ratio. Mech. Anal., 92 (4) (1986), pp. 371-382.

[^0]: (*) Entrata in Redazione il 9 novembre 1990, versione riveduta il 16 ottobre 1991.
 Indirizzo dell'A.: Dipartimento di Matematica, via D'Azeglio 85, 43100 Parma.

