Annali di Matematica pura ed applicata (IV), Vol. CLXVI (1994), pp. 17-26

Boundary Regularity for Parabolic Quasiminima(*).

SILVANA MARCHI

Summary. - We prove a Wiener-type criterion for parabolic Q-minima.

1. - Introduction.

Let $D \in \mathfrak{R}^{n+1}$, n > 2, be an open bounded set. In this paper we establish a sufficient condition for a boundary point of D to be regular for a parabolic Q-minimum. Our criterion is analogous to the Wiener-type criterion proved by W. P. ZIEMER [Z-2] for elliptic Q-minima.

The main tools in the proof of our result are the Harnack inequalities. In fact Harnack inequalities for functions in parabolic De Giorgi classes are proved by G. WANG [Wa].

Moreover W. WIESER [Wi] proved that parabolic Q-minima belong to parabolic De Giorgi classes.

The generic point $z \in \Re^{n+1}$ will be denoted by z = (x, t), with $x \in \Re^n$ and $t \in \Re$. u_x or $\nabla_x u$ will denote the gradient on x of a function u(x, t).

Let $H^{0,1}(D)$ be the space $\{u \in L^2(D) | \nabla_x u \in L^2(D)\}.$

The existence of the parabolic Q-minima is connected to $V^2(D)$. It is the space of functions u which belong to $H^{0,1}(D)$ and such that $||u||_{L^2(D_t)} \in L_{\infty}(\mathfrak{R}^1)$ where $D_t = : D \cap \{z = (x, \tau) | \tau = t\}$. $V^2(D)$ is endowed with the norm

$$\|u\|_{V^{2}(D)} = : \sup_{t} \left(\int_{D_{t}} u(x, t)^{2} dx \right)^{1/2} + \left(\int_{D} |\nabla_{x} u(x, t)|^{2} dx dt \right)^{1/2}.$$

^(*) Entrata in Redazione il 9 novembre 1990, versione riveduta il 16 ottobre 1991. Indirizzo dell'A.: Dipartimento di Matematica, via D'Azeglio 85, 43100 Parma.

Let Z(D) be the space $\{u \in \mathcal{O}^1(D) | u = \operatorname{div} g, g \in L^2(D)\}$ endowed with the norm $\|u\|_{Z(D)} = \inf_{u = \operatorname{div} g} \|g\|_{L^2(D)}$ and $W^1(D) = \{u \in H^{0, 1}(D), \frac{\partial u}{\partial t} \in Z(D)\}.$

We denote $B_r(x_0) = \{x \in \mathfrak{R}^n, |x - x_0| < r\}$ if $x_0 \in \mathfrak{R}^n$ and

$$\widehat{Q}_r(z_0) = B_r(x_0) \times (t_0 - r^2, t_0 + r^2)$$
 if $z_0 = (x_0, t_0) \in \Re^{n+1}$.

If $u \in W^1(D)$, $z_0 \in \partial D$ and $l \in \Re$, we say that

$$(1.1) u(z_0) \le 1 weakly$$

if for every k > 1 there is r > 0 and a sequence $\{u_m\} \subseteq W^{1, \infty}(\mathfrak{R}^{n+1})$ such that $u_m \to u$ in $W^1(D \cap \widehat{Q}_r(z_0))$ and spt $\eta(u_m - k)^+ \subset D \cap \widehat{Q}_r(z_0)$ whenever $\eta \in C_0^{\infty}(\widehat{Q}_r(z_0))$. The definition of

$$(1.2) u(z_0) \ge 1 weakly$$

is analogous, and $u(z_0) = 1$ if both (1.1) and (1.2) hold.

Many different definitions of capacity are introduced to study the regularity problem for parabolic equations. A capacity which is «naturally» associated to the space $V^2(D)$ is

(1.3)
$$\operatorname{cap}_{*}(E) = \inf \left\{ \sup_{t \in D} \int u^{2} dx + \int_{D} |\nabla_{x} u|^{2} dx dt, u \in V^{2}(\mathfrak{R}^{n+1}), E \subset \operatorname{int} [u \ge 1] \right\}.$$

W. P. ZIEMER [Z-1] proved a sufficient condition for the regularity at the boundary of weak solutions of parabolic equations in term of the capacity cap_* . In analogy with the Newtonian capacity (cfr. [F.Z]), L. C. EVANS and R. GARIEPY [E.G] introduced the thermal capacity, which R. GARIEPY and W. P. ZIEMER [G.Z] proved to be strictly weaker than cap_* . In [G.Z] a Wiener criterion (only sufficient condition) is also proved for bounded weak solutions of parabolic equations, in terms of the thermal capacity.

This result improved of [Z-1].

In this paper we consider another type of parabolic capacity, which we will denote cap(E):

(1.4)
$$\operatorname{cap}(E) = \inf \left\{ \int_{D} |\nabla_{x} u|^{2}, u \in C_{0}^{\infty}(\mathfrak{R}^{n+1}), E \subset \operatorname{int}[u \ge 1] \right\}.$$

Here E was a compact set.

BIROLI and MOSCO [B.M-2] showed that cap(E) is a Choquet capacity and, for any bounded Borel set E,

(1.5)
$$\operatorname{cap}(E) = \int N - \operatorname{cap}(E_t) dt$$

where $E_t = : E \cap \{z = (x, \tau) | \tau = t\}$ and N-cap denote the usual Newtonian capacity of E_t with respect to \Re^n . It is known (cf. [M]) that N-cap $(E_t) =$

19

 $= \sup \{ \|R_1 * \mu\|_2^{-1} | \operatorname{spt} \mu \in E_t, \, \mu(E_t) = 1 \}, \text{ where } \mu \text{ is a positive Borel measure in } \mathfrak{R}^n \text{ and } R_1(x) = \|x\|^{1-n}.$

If $z_0 = (x_0, t_0) \in \partial D$ we will denote, for $\alpha, r > 0$,

$$egin{aligned} R_{lpha}(r) &= B_r(x_0) imes \left(t_0 - rac{3}{4}lpha r^2, \, t_0 + rac{1}{4}lpha r^2
ight), \ R_{lpha}^*(r) &= B_r(x_0) imes \left(t_0 - rac{9}{4}lpha r^2, \, t_0 - rac{5}{4}lpha r^2
ight), \ \delta_{lpha}(r) &= rac{ ext{cap}\left(R_{lpha}^*(r) - D
ight)}{ ext{cap}\left(R_{lpha}^*(r)
ight)}. \end{aligned}$$

We will prove that

$$\int_{0}^{1} \exp\left(-\left[C\delta_{\alpha}(r)^{-1}\right]\right) \frac{dr}{r} = +\infty$$

is a sufficient condition for the regularity of a parabolic Q-minimum in z_0 , where C depends on $\|u\|_{L^2(D)}$ and the structure conditions of the Q-minimum.

Obviously $\operatorname{cap}(E) \leq \operatorname{cap}_*(E)$, and, a fortiori, thermal capacity is weaker than cap.

Then our result would be refined using cap_{*} or thermal capacity.

We don't know if it is possible to employ these capacities.

2. - Q-minima and De Giorgi classes.

Consider a Caratheodory function

(2.1)
$$F = F(z, u, p): D \times \Re \times \Re^n \to \Re$$

satisfying the growth condition

(2.2)
$$\lambda |p|^2 - b|u|^2 - g(z) \leq F(z, u, p) \leq \mu |p|^2 + b|u|^2 + g(z)$$

where g is a nonnegative function, $g \in L^q(D)$, q > n and b, λ , μ are positive constants.

DEFINITION 1. – For $Q \ge 1$ we define a function $u: D \to \Re$ with $u, u_x \in L^2(D)$, to be a parabolic Q-minimum if for every $\phi \in C_0^{\infty}(D)$ the following inequality

(2.3)
$$-\int_{K} u\phi' dz + E(u, K) \leq QE(u - \phi, K)$$

holds, where $K = \operatorname{spt} \phi$ and

$$E(w, K) = \int_{K} F(z, w, \nabla_{x} w) dz.$$

We can suppose that ϕ is a Lipschitz function with spt $\phi \in D$. A result of WEI-SER [Wi] is

PROPOSITION 1. – Let F satisfy (2.8) and $u: D \to \Re$ be a Q-minimum such that $u, u_x \in L^2(D)$. Then $u \in V^2(D)$.

Wieser proved also that any Q-minimum belongs to a De Giorgi class. To expound a general definition of De Giorgi class we will need some new notations: for any $\rho, \tau > 0, \ \overline{z} = (\overline{x}, \ \overline{t}) \in \Re^{n+1}$, and $k \in \Re$ we will denote

$$B_{\rho} = B_{\rho}(\bar{x}), \qquad Q_{\rho,\tau} = Q_{\rho,\tau}(\bar{z}) = B(\bar{x},\rho) \times (t, t+\tau),$$
$$(u-k)^{\pm} = \max(\pm u \mp k, 0) \quad \text{and} \quad A_{k,\rho,\tau}^{\pm} = Q_{\rho,\tau} \cap [(u-k)^{\pm} > 0]$$

DEFINITION 2. – A function $u \in V^2(D)$ belongs to a De Giorgi class $DG_2^{\pm}(D) = DG_2^{\pm}(D, L, q)$ if there exist some constants L > 0 and q > 1 such that, for any $Q_{e_1,\tau} = Q_{e_1,\tau}(\overline{z}) \in D$ and any $\sigma_1, \sigma_2 \in (0, 1), k \ge 0$ the following inequalities hold:

$$(2.4) \quad \max_{t \in [\bar{i}, \bar{t} + \tau]} \int_{B_{(1-\sigma_1)\rho}} |(u-k)^{\pm}(t)|^2 dx \leq \int_{B_{\rho}} |(u-k)^{\pm}(\bar{t})|^2 dx + L\left\{ (\sigma_1 \rho)^{-2} \int_{Q_{\rho,\tau}} |(u-k)^{\pm}|^2 dz + |A_{k,\rho,\tau}^{\pm}|^{1-1/q} \right\},$$

$$(2.5) \quad \max_{t \in [\bar{i}, \bar{t} + (1-\sigma_2)\tau]} \int_{B_{(1-\sigma_1)\rho}} |(u-k)^{\pm}(t)|^2 dx + \int_{Q_{(1-\sigma_1)\rho,(1-\sigma_2)\tau}} |\nabla(u-k)^{\pm}|^2 dz + L\left\{ (\sigma_1 \rho)^{-2} \int_{Q_{\rho,\tau}} |\nabla(u-k)^{\pm}|^2 dz + (\sigma_1 \rho)^{-2} \int_{Q_{\rho,\tau}} |\nabla(u-k)^{-2} dz + (\sigma_1 \rho)^{-2} \int_{Q_{\rho,\tau}} |\nabla(u-k)^{-2}$$

+ $L\left\{ \left[(\sigma_1 \rho)^{-2} + (\sigma_2 \tau)^{-1} \right] \int_{Q_{\rho,\tau}} |(u-k)^{\pm}|^2 dz + |A_{k,\rho,\tau}^{\pm}|^{1-1/q} \right\}.$

The De Giorgi classes $DG_2(D)$ are defined as

 $DG_2(D) = DG_2(D, L, q) = : DG_2^+(D, L, q) \cap DG_2^-(D, L, q)$ (with the same D, L, q).

The Harnack inequalities for functions in De Giorgi classes obtained by WANG [Wa] are the following:

THEOREM 1. - Let $u(x, t) \in DG_2(D)$, $\theta > 0$, R > 0, $B_R(\bar{x}) \times (\bar{t}, \bar{t} + \theta R^2) \subset D$, $\sigma \in (0,1)$. Then for any p > 0 there exists a constant C > 0 such that

$$\sup_{B_{\sigma R}(\bar{x}) \times (\bar{t} + (1 - \sigma^2)\theta R^2, \bar{t} + \theta R^2)} u(x, t) \leq C \left\{ \oint_{B_{\sigma R}(\bar{x}) \times (\bar{t}, \bar{t} + \theta R^2)} |u^+|^p dx dt \right\}^{1/p}$$

where C depends on p, n, L, σ , θ . We supposed $\oint_{S} v \, dx \, dt = \frac{1}{|S|} \oint_{S} v \, dx \, dt$ where |S| denote the (n + 1)-dimensional measure of S.

THEOREM 2. – Let $u(x, t) \in DG_2(D), \ \theta > 0, \ R > 0, \ B_R(\bar{x}) \times (\bar{t}, \bar{t} + \theta R^2) \subset D$. Then for any σ_1 , $\sigma_2 \in (0, 1)$, $0 < \theta_1 < \theta_1 < \theta$ there exist positive constants p_0 and C such that

$$\inf_{B_{\sigma_1R}(\bar{x})\times(\bar{t}+\theta_2R^2,\bar{t}+\theta R^2)} u(x,\,t) \ge C \left\{ \oint_{B_{\sigma_2R}(\bar{x})\times(\bar{t},\bar{t}+\theta_1R^2)} |u|^{p_0} dx dt \right\}^{1/p_0}$$

where C depends only n, L, θ_1 , θ_2 , θ , σ_1 and σ_2 .

3. - The Wiener condition.

If $\bar{x} \in \Re^n$, 0 < r < R, we will say that $\eta(x)$ is a cut-off function for the pair $(B_r(\bar{x}), B_R(\bar{x})) \text{ if } \eta(x) \in C_0^\infty(\mathfrak{N}^n), \ \eta(x) = 1 \text{ on } B_r(\bar{x}), \ \eta(x) = 0 \text{ on } \mathfrak{N}^n - B_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq 0 \text{ on } \mathfrak{N}^n + \mathbb{E}_R(\bar{x}), \ 0 \leq \eta(x) \leq$ $\leq 1, |\nabla \eta| \leq C/(R-r).$

If $\overline{z} = (\overline{x}, \overline{t}) \in \Re^{n+1}$, 0 < r < R, 0 < s < S, we will say that $\eta(x, t)$ is a cut-off function for the pair $(Q_{r,s}(\bar{z}), Q_{R,s}(\bar{z}))$ if $\eta(x, t)$ is a Lipschitz function

$$\eta(x, t) = 1$$
 on $Q_{r,s}$,

$$\begin{split} \eta(x,t) &= 0 \ \text{ on } (\Re^{n+1} - Q_{R,S})_{t>\bar{t}} = \{(x,t) \in Q_{R,S} \,| \, t > \bar{t}\}, \qquad 0 \leq \eta(x,t) \leq 1, \\ &|\eta'| + |\nabla \eta|^2 \leq C \bigg[\frac{1}{(R-r)^2} + \frac{1}{S-s} \bigg]. \end{split}$$

We observe that no conditions are imposed on η for $t \leq \overline{t}$. In fact we will always multiply n for a function depending on the only variable t and having the support inclosed in $\{t > t\}$.

Let $z_0 = (x_0, t_0) \in \partial D$ be. If $u(z_0) \leq 1$ weakly, and l < k denote $u_k = (u - k)^+$ prolonged by zero out of D and let r > 0 and $\{u_m\} \in W^{1,\infty}(\mathfrak{R}^{n+1})$ such that $u_m \to u$ in $W^1(D \cap \widehat{Q}_{3r}(z_0))$, spt $\eta(u_m - k)^+ \in D \cap \widehat{Q}_{3r}(z_0)$ wheanever $\eta \in C_0^{\infty}(\widehat{Q}_{3r}(z_0))$.

We observe that the function u_k is bounded on any compact set of D because of the

Harnack inequality (Theorem 1). Moreover if u_k is prolonged out of D by zero, it remains bounded also near the boundary of D, the bound depending on $||u||_{L^2(D)}$ and the structure conditions (2.1). Therefore for any fixed $\alpha > 0$, $u_k(2r) = \sup \{u_k(z), z \in R_{\alpha}(2r)\}$ is finite for all small r. This is applied in the proof of the following theorem.

THEOREM 3. – There exist positive constants C and p_0 depending on $||u||_{L^2(D)}$ and the structure conditions (2.1) such that, for any $\alpha > 0$,

$$u_{k}(2r) - u_{k}(r) \ge C \left(\int_{R_{x}^{*}(r)} [u_{k}(2r) - u_{k}(z)]^{p_{0}} dz \right)^{1/p_{0}}$$

PROOF. - Let $\overline{x} = x_0$, $\overline{t} = t_0 - (9/4) \alpha r^2$, $\overline{z} = (\overline{x}, \overline{t})$. Denote $v(x) = u_k(2r) - u_k(z)$ prolonged by $u_k(2r)$ out of D. We observe that $v, v_x \in L^2(D \cup Q_{2r,(5/4)zr^2}(\overline{z}))$.

We want to prove that v belongs to a De Giorgi class $DG_2^-(D \cup Q_{2r,(5/4)\alpha r^2}(\bar{z}))$. We prove that v verifies (2.4) and (2.5) for any $Q_{\rho,\tau}(\bar{z})$ with $\rho < 2r$, $\tau < (5/4)\alpha r^2$. For $0 < h < u_k(2r)$ consider $(v - h)^-$ prolonged out of D by zero. Let $\varphi_{m,\epsilon,h}(x,t) = -(\gamma^2(v_m - h)^- \tilde{K}^{\alpha}_{[t_1,\bar{t}+\tau]})_{\epsilon}$ where γ is a cut-off function for the pair $(B_{2s_1\tau}(x_0), B_{2s_2\tau}(x_0))$, $0 < s_1 < s_2 < 1$, $\bar{t} < t_1 < \bar{t} + \tau$, $0 < \tau < \alpha(tr)^2$ and, for any l > 0, $\tau_1 < \tau_2$

$$\aleph^{I}_{\tau_{1}, \tau_{2}}(t) = \begin{cases} 0 & \text{if } t \leq \tau_{1} - l \text{ or } t \geq \tau_{2} + l \text{,} \\\\ 1 & \text{if } \tau_{1} \leq t \leq \tau_{2}, \\\\ 1 + \frac{t - \tau_{1}}{l} & \text{if } \tau_{1} - l \leq t \leq \tau_{1}, \\\\ 1 - \frac{t - \tau_{2}}{l} & \text{if } \tau_{2} \leq t \leq \tau_{2} + l \text{,} \end{cases}$$

denote the piecewise linear approximation of the characteristic function $\aleph_{[\tau_1, \tau_2]}$. ψ_{ε} denote a «time»-mollification of ψ . So $\varphi \in W_0^{1,2}(D \cap R_{\alpha}(2r))$. Inserting φ as test function in (2.3) and letting to the limit $m \to +\infty$ and $\alpha, \varepsilon \to 0$, we obtain that v satisfies the $\sim -\infty$ -part of (2.4) with $\rho = 2s_2r$, $\sigma_1 = 1 - s_1/s_2$. We avoid the calculus which allows us to this issue. It can be obtained following the same line of reasoning of Theorem 3.1 of [Z-2] and Theorem 4.1 of [Wi]. Let now $\eta = \eta(x,t)$ in the test function φ be a cut-off function for the pair $(Q_{2s_1r,\tau_1}(\bar{z}), Q_{2s_2r,\tau_2}(\bar{z})), 0 < \tau_1 < (5/2) \alpha(s_1r)^2, 0 < \tau_2 < (5/2) \alpha(s_2r)^2, \tau_2 < \tau_1$. Inserting φ as test function in (2.3), we obtain in this case that v satisfies the $\sim -\infty$ -part of (2.5).

We can so affirm that v belongs to a De Giorgi class $DG_2^-(D \cup Q_{2r,(5/4)\alpha r^2}(\bar{z}))$. Therefore, applying the Harnack inequality (Theorem 2) to the function v, with R = r, $\theta_1 = 1$, $\theta_2 = (3/2)\alpha$, $\theta = (5/2)\alpha$, $\sigma_1 = \sigma_2 = 1$, Theorem 3 is proved.

We recall the following Lemma:

LEMMA 1 (see Lemma 3.2 of [Z-2]). – Let $u \in W^{1, 2}(B)$ where B is an open ball of \Re^n of radius r, and let μ be a probability measure supported in $B \cap [u = 0]$. Then, if k > 0,

(3.1)
$$k|[|u| \ge k]| \le Cr \int_{B} |\nabla u| + Cr^{n} \int_{B} (R_{1}*\mu) |\nabla u|.$$

Let $u_k(2r)$ be defined as at the beginning of Theorem 3 and let $k_j = u(2r) - 2^{-j}u_k(2r)$, j = 0, 1, ... where $u(2r) = \sup_{R_x(2r)} u$. Denote $A^{\pm}(k_j, r) = R_x^*(r) \cap [(u - k_j)^{\pm} > 0]$.

LEMMA 2. – There is a constant C > 0, depending on $||u||_{L^2(D)}$ and the structure conditions (2.1) such that for any positive integer s,

(3.2)
$$sr^{n} \operatorname{cap} \left(R_{\alpha}^{*} - D\right) \leq Csr^{n-2} \left|A^{-}(k_{s}, r)\right| + Cr^{n+1/2} \left[1 + \frac{r^{a}}{u(2r) - k_{s}}\right]$$

where a = 1 - (n + 1)/2q.

PROOF. – Inserting in (2.3) the test function $\varphi_{m, \varepsilon, h} = -(\gamma^2 (u_m - k_j)^+ \aleph_{[t_1, \bar{t} + \tau_1]}^h)_{\varepsilon}$ where $\{u_m\} \subset W^{1, \infty}(\Re^{n+1}), u_m \to u$ in $W^{1, \infty}(D)$ and spt $(u_m - h)^- \subset D, \eta$ is a cut-off function for the pair $(Q_{r, \tau_1}(\bar{z}), Q_{2r, \tau_2}(\bar{z})), \bar{z} = (\bar{x}, \bar{t}), \bar{x} = x_0, \bar{t} = t_0 - (9/4) \alpha r^2, 0 < \tau_1 < \alpha r^2, 0 < \tau_2 < (13/4) \alpha r^2, \tau_1 < \tau_2$, we obtain

(3.3)
$$\int_{A^+(k_j, r)} |\nabla u|^2 \leq C[r^{n-1}(u(2r) - k_j)^2 + |A^+(k_j, 2r)|^{1-1/q}] \leq C[r^{n-1}(u(2r) - k_j)^2 + |A^+(k_j, 2r)|^{1-1/q}]$$

$$\leq Cr^{n-1}(k_{j+1}-k_j)^2 \left[1+rac{r^a}{u(2r)-k_j}\right]^2$$
 where $s \geq j+1, \ a=1-rac{n+1}{2q}$.

For any $t \in \Re$ let now μ_t be a positive measure supported in $(R^*_{\alpha}(r) - A^+(k, r))_t$ such that

(3.4)
$$\int |R_1 * \mu_t|^2 \leq (4 \cdot N - \operatorname{cap} (R_{\alpha}^*(r) - D))_t^{-2}.$$

Denote $N - \operatorname{cap} (R_{\alpha}^{*}(r) - D)_{t} = \gamma_{r, t}$. Apply Lemma 1 to the function $v(x) = (u - k_{j})^{+} + k_{j}$ with $k = k_{j}$ for the level t (we observe that $v(x) > k_{j} \Leftrightarrow u(x) > k_{j}$). We obtain

$$(3.5) \quad k_j |A^+(k_j, r)_t| \leq C \left(\int_{A^+(k_j, r)_t} |\nabla u|^2 \right)^{1/2} \left(r |A^+(k_j, r)_t|^{1/2} + Cr^n \left(\int_{A^+(k_j, r)_t} |(R_1 * \mu_t)|^2 \right)^{1/2} \right)$$

We will suppose $s \ge j$, so $A^+(k_s, r) \in A^+(k_j, r)$. Then

$$\begin{split} k_{j} \left| A^{+}(k_{s}, r)_{t} \right| &\leq C \left(\int_{A^{+}(k_{j}, r)_{t}} |\nabla u|^{2} \right)^{1/2} \cdot \left(r^{1+n/2} + r^{n} \left(\int_{A^{+}(k_{j}, r)_{t}} (R_{1} * \mu_{t})^{2} \right)^{1/2} \right) \\ &\leq C \left(\int_{A^{+}(k_{j}, r)_{t}} |\nabla u|^{2} \right)^{1/2} \cdot (r^{1+n/2} + r^{n} \gamma_{r, t}^{-1}) \leq C \left(\int_{A^{+}(k_{j}, r)_{t}} |\nabla u|^{2} \right)^{1/2} \cdot r^{n+1/2} \cdot \gamma_{r, t}^{-1}. \end{split}$$

Hence

$$k_{j} | A^{+}(k_{s}, r)_{t} | \gamma_{r, t} \leq C \left(\int_{A^{+}(k_{j}, r)_{t}} | \nabla u |^{2} \right)^{1/2} \cdot r^{1 + n/2}$$

Integrating in t and taking into account (3.3) we have

$$k_{j}\int |A^{+}(k_{s}, r)_{t}|\gamma_{r, t}dt \leq Cr^{n+1/2}(k_{j+1}-k_{j})\left[1+\frac{r^{a}}{u(2r)-k_{s}}\right].$$

Summing over j from 0 to s + 1 implies

$$\left(\sum_{j=0}^{s+1} k_{j}\right) \int |A^{+}(k_{s}, r)_{t}| \gamma_{r, t} dt \leq Cr^{n+1/2} \left(\sum_{j=0}^{s+1} k_{j+1} - k_{j}\right) \left[1 + \frac{r^{a}}{u(2r) - k_{s}}\right]$$

We have $\sum_{j=0}^{s+1} k_{j} > s \cdot u_{k}(2r)$ and $\sum_{j=0}^{s+1} (k_{j+1} - k_{j}) < u_{k}(2r)/2$, then
(3.6) $s \int |A^{+}(k_{s}, r)_{t}| \gamma_{r, t} dt \leq Cr^{n+1/2} \left[1 + \frac{r^{a}}{u(2r) - k_{s}}\right].$

We have $|A^{+}(k_{s}, r)_{t}| \ge C(|B_{r}| - |A^{-}(k_{s}, r)_{t}|)$, then

$$s\int |A^+(k_s, r)_t|\gamma_{r,t}dt \geq sC\int r^n\gamma_{r,t}dt - sC\int |A^-(k_s, r)_t|\gamma_{r,t}dt.$$

Hence, taking into account (3.6) and that $\gamma_{r,t} \leq Cr^{n-2}$ with C independent of t and r, Lemma 2 is proved.

THEOREM 4. – Let $u \in W^{1,2}(D)$ be a Q-minimum and let $z_0 \in \partial D$. Then there is a constant C > 0, depending on $||u||_{L^2(D)}$ and the structure conditions (2.1) such that, if

(3.7)
$$\int_{0}^{1} \exp\left(-\left[C\delta_{x}(r)^{-1}\right]\right) \frac{dr}{r} = +\infty$$

for some $\alpha > 0$, and $u(z_0) \leq 1$ weakly, then

$$\lim_{\substack{z \to z_0 \\ z \in D}} \sup u(z) \leq 1$$

PROOF. - The proof is analogous to that of Theorem 3.4 of [Z-2].

Let $\lim_{\substack{z \to z_0 \\ z \in D}} \sup u(z) \ge 1$. Then there are numbers k > 1 and $\theta > 0$ such that

(3.8) $u_k(2r) \ge \theta > 0$ for all small r > 0.

Let $\omega(r) = u_k(2r) - u_k(r)$ and observe that $\int_{0}^{1} \omega(r)(dr/r) < +\infty$. From Theorem 3 follows that there exists $p_0^0 > 0$ such that

$$\omega(r)^{p_0} \ge (2^{-j}u_k(2r))^{p_0} \frac{|A^-(k_j, r)|}{|R^*_{\alpha}(r)|} \quad \text{ for any integer } j \ge 1.$$

Thus, from (3.8), $|A^{-}(k_{j}, r)| / |R_{\alpha}^{*}(r)| \leq (\theta^{-1}2^{j}\omega(r))^{p_{0}}$. Taking into account Lemma 2 and that $\operatorname{cap}(R_{\alpha}^{*}(r)) \approx Cr^{n}$,

(3.9)
$$s\delta(r) \leq Cr^{1/2} \left[1 + \frac{r^a}{u(2r) - k_s} \right] + Csr^n (\theta^{-1} 2^s \omega(r))^{p_0} \leq \\ \leq Cr^{1/2} \left[1 + \frac{2^s r^a}{u_k(2r)} \right] + Csr^n (\theta^{-1} 2^s \omega(r))^{p_0}$$

Let s = s(r) be the largest integer such that

(3.10)
$$s^{1}(\theta^{-1}2^{s}\omega(r))^{p_{0}} \leq \frac{1}{2}.$$

Then $2^s (\theta^{-1} 2^s \omega(r))^{p_0} \ge 1/2^{p_0+1}$ and therefore

$$s(r)(p_0+1)\log 2 + p_0\log[\omega(r)] \ge \log \frac{1}{2} \left(\frac{\theta}{2}\right)^{p_0}$$

hence, dividing by $p_0 + 1$,

(3.11)
$$s(r) + \log \left[\omega(r) \right] \ge \log M, \qquad M = M(\theta, p_0).$$

So, dividing (3.9) by s and taking into account of (3.10), we have

$$\delta(r) \le Cs(r)^{-1}$$

with $C = C(\theta, p_0)$. From (3.7), (3.10) and (3.12) we obtain $\int_0^1 \omega(r) dr/r = +\infty$. This yields a contradiction, and Theorem 4 is proved.

REFERENCES

- [B.M-1] M. BIROLI U. MOSCO, Wiener estimates at boundary points for parabolic equations, Ann. Mat. Pura Appl., 141 (1985), pp. 353-367.
- [B.M-2] M. BIROLI U. MOSCO, Wiener estimates for parabolic obstacles problems, Nonlinear Anal., 11 (9) (1987), pp. 1005-1027.
- [E.G] L. C. EVANS R. GARIEPY, Wiener's criterion for the heat equation, Arch. Rational Mech. Anal., 78 (1982), pp. 293-314.
- [F.Z] H. FEDERER W. P. ZIEMER, The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J., 22 (1972), pp. 139-158.
- [G.G] M. GIAQUINTA E. GIUSTI, Quasi-minima, Ann. Inst. H. Poincaré, Anal. Nonlin., 1 (1984).
- [G.Z] R. GARIEPY W. P. ZIEMER, Thermal capacity and boundary regularity, J. Diff. Eqs., 45 (1982), pp. 374-388.
- [M] N. G. MEYERS, A theory of capacities for potentials of functions in Lebesgue spaces, Math. Scand., 26 (1970), pp. 255-292.
- [Wa] G. WANG, Harnack inequalities for functions in the De Giorgi parabolic classes, Lectures Notes, 1306 (1989), pp. 182-201.
- [Wi] W. WIESER, Parabolic Q-minima and minimal solutions to variational flow, Manuscripta Math., 59 (1987), pp. 63-107.
- [Z-1] W. P. ZIEMER, Behavior at the boundary of solutions of quasilinear parabolic equations, J. Diff. Eqs., 35 (1980), pp. 291-305.
- [Z-2] W. P. ZIEMER, Boundary regularity for quasiminima, Arch. Ratio. Mech. Anal., 92 (4) (1986), pp. 371-382.