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Boundary Regularity for Parabolic Quasiminima (*).

SILVANA MARCHI

Summary. - We prove a Wiener-type criterion for parabolic Q-minima.

1. - Introduction.

Let DcR"*!, n > 2, be ah open bounded set. In this paper we establish a suffi-
cient condition for a boundary point of D to be regular for a parabolic @-minimum,
Our criterion is analogous to the Wiener-type criterion proved by W. P. ZIEMER [Z-2]
for elliptic @-minima.

The main tools in the proof of our result are the Harnack inequalities. In fact Har-
nack inequalities for functions in parabolic De Giorgi classes are proved by G.
WanG [Wal.

Moreover W, WIESER [Wi] proved that paraholic @-minima belong to parabelic De
Giorgi classes.

The generic point z € {"*! will be denoted by z = (x,t), with z e " and t e R. u,
or V,u will denote the gradient on x of a function u(x;, t).

Let H%YD) be the space {u e L%D)|V,u e L%(D)}.

The existence of the parabolic @-minima is connected to V(D). It is the space of
functions u which belong to H"'(D) and such that [ul,2p,eL.(R") where
D,=:DN{z=(x, )|z =t}. VAD) is endowed with the norm

laally2(py = :sup( ju(m, t)zdx)l/z + (j |V, u(z, t)lzalavolt)l/2
{

D, D

(*) Entrata in Redazione il 9 novembre 1990, versione riveduta il 16 ottobre 1991.
Indirizzo dell’A.: Dipartimento di Matematica, via D’Azeglio 85, 43100 Parma.
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Let Z(D) be the space {u e ®'(D)|u = divg, g € L%D)} endowed with the norm
Hu“Z(D) Inf Hg“LZ(D) and W (D) {u EHO l(D) au/at EZ(D)}

We denote B, () ={xeR", |x — 25| <r} if xyeR" and
Qr(z0) = Bulmo) X (tg = 7%, g +75)  if 29 = (2o, ) e """,
If we WY(D), 203D and le R, we say that
an | u(zy) < 1 weakly

if for every k > 1 there is » > 0 and a sequence {u,,} ¢ W» *(R"*") such that u,, —u
in WD N Q,(2)) and sptn(t, — k)™ ¢ D N @,(2) whenever v e C5° (@,(2p)). The defi-
nition of

(1.2) u(zy) = 1 weakly
is analogous, and u(zy) = 1 if both (1.1) and (1.2) hold.

Many different definitions of capacity are introduced to study the regularity prob-
lem for parabolic equations. A capacity which is «naturally» associated to the space
VD) is

(1.3) capy(E)= inf{supfuzdx + J [Vou|?dadt, w e VE(R®), E cint[u = 1]1.
by p

W. P. Z1EMER [Z-1] proved a sufficient condition for the regularity at the bound-
ary of weak solutions of parabolic equations in term of the capacity eap,. In analogy
with the Newtonian capacity (cfr.{F.Z]), L. C. Evans and R. GArRIEPY[E.G] intro-
duced the thermal capacity, which R. GARIEPY and W. P. ZIEMER [G.Z] proved to be
strictly weaker than cap,. In[G.Z] a Wiener criterion (only sufficient condition) is
also proved for bounded weak solutions of parabolic equations, in terms of the ther-
mal eapacity.

This result improved of [Z-1].

In this paper we consider another type of paraholic capacity, which we will denote
cap (E):

(1.4) cap(E) = inf[ J [Voul?, we Co (R, E cint{u = 111.
D
Here E was a compact set.

Birorl and Mosco [B.M-2] showed that cap(#) is a Choquet capacity and, for any
bounded Borel set E,

(1.5) cap (&) = fN — cap (&) dt

where E,=:E N {z=(x, 7)|t =t} and N-cap denote the usual Newtonian ca-
pacity of K, with respect to Ji* It is known (cf.[M]) that N-cap(&,) =
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= sup {||R*uls ! |sptu c E,, u(E,) = 1}, where u is a positive Borel measure in R"™ and
By(x) = |a|1™™
If zy = (2, t;) € 3D we will denote, for «, r > 0,

R.(r) = B(a) X (to 2ty + i-aw),

/
R} (r) = B,(x) X (to - %a’r‘z, b — %a?z) ,
cap (R} (r) — D)

%) = cap (R} (7))

We will prove that

1
(e (~tes. % =+
g

is a sufficient condition for the regularity of a parabolic @-minimum in z,, where C de-
pends on [[ull.2p) and the structure conditions of the @-minimum.

Obviously cap (E) < cap, (E), and, a fortiori, thermal capacity is weaker than
cap.

Then our result would be refined using cap, or thermal eapacity.

We don’t know if it is possible to employ these capacities.

2. - -minima and De Giorgi classes.

Consider a Caratheodory function
@21 F=Fzu,p:DXRAxA" >R
satisfying the growth condition
2.2) Mpl* = blul® - g(z) < F(z, u, p) S u|p|® + blul* + g(2)

where ¢ is a nonnegative function, ge LY(D), ¢>n and b, A, p are positive
constants.

DEFINITION 1. - For Q = 1 we define a function u: D — R with u, u, € L2(D), to be
a parabolic Q-minimum if for every ¢ € Cy° (D) the following inequality

2.3) - fuqs'dz + E(u, K) < QE( — 4, K)
K
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holds, where K = spt¢ and
E(w, K) = JF(z, w, V,w)dz .
£
We can suppose that ¢ is a Lipschitz function with spt¢ cD. A result of WEI-
SER [Wi] is

PROPOSITION 1. — Let F"satisfy (2.8) and u: D — R be a Q-minimum such that
w, u, € LED). Then u e V(D).

Wieser proved also that any @-minimum belongs to a De Giorgi class. To expound
a general definition of De Giorgi class we will need some new notations: for any
0,7>0, 2= (x,t) e R**Y, and ke R we will denote

B.=B,(%), Q,.=Q.2)=B@)x{t+1),

(u—k)* =max(xuFk,0) and AF, .=Q,.Nu—k*>0].

DEFINITION 2. — A function u € VA(D) belongs to a De Giorgi class DG5 (D) =
= DG3 (D, L, q) if there exist some constants L >0 and q > 1 such that, for any
Q. .=Q,.2)cD and any a1, 520, 1), k=0 the following inequalities hold:

24)  max jI(u—k)i(t)lzdxsjI(u—k)i(t_)lzder

teltt+r] Bu-eps B,

+L{<w)-2 [ lw=b*[2dz+ |A,§P,T|1-1/q},
Qp,‘.'

@5  max [ Je-RTOPde+ [ |Va-k* P+

telti+(1—cg) =
el (A=a2) ]B(I‘UI)P Qi -spad-ont

+ L |[(e10)7% + (037) 7] f [(w —k)* {Pde + |AZ, P19
Q;,?
The De Giorgi classes DGy(D) are defined as
DGy (D)=DGy(D, L, q) =: DGy (D, L, 9)NDGy (D, L, q) (with the same D, L, q).

The Harnack inequalities for functions in De Giorgi classes obtained by
WaNG [Wa] are the following:
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THEOREM 1. — Let w(x,t)e DGy(D), 6>0, R>0, Bp(®) X (t,t+6R*cD,
o€ (0,1). Then for any p > 0 there exists a constant C > 0 such thot

1/p
sup w(z, 1) < C ]( lu*|Pdedt
] _ 27 2 .
B.r@) x(+1 - eR%t+0R%) Bl x I+ 6B

where C depends on p, n, L, o, 6.

We supposed ][ vdxdt = —l—l—l— ][ vdx dt where |S| denote the (n + 1)-dimensional
measure of 8. 3 s

THEOREM 2. ~ Let u(x, t) e DGo(D), 6> 0, R > 0, Bp(&) X (t, t + 6R?) c D. Then
for any oy, c2€(0, 1), 0 <6, <6, <6 there exist positive constants p, and C such
that

1/po
inf wx, t) 2 C ][ || da dt

B, p(®) %t +0:R%+0RY) -
: z Boyr@ x (i +0,R?)

where C depends only n, L, 01, 6,, 6, o, and a».

3. - The Wiener condition.

If zeR", 0<r<R, we will say that n(x) is a cut-off function for the pair
(B,(&), Bg(®)) if n(x) € Cg" (™), n(x) = 1 on B,(&), n(@) = 0 on R* — Bp(x), 0 < n(@) <
<1, |V SC/(R-7). :

Ifz=(Z,)eM"*L 0<r<R, 0<s<S, we will say that n(xz, ) is a cut-off func-
tion for the pair (@, ;(2), Qg s(?)) if n(x,t) is a Lipschitz function

U(xy t)=1 on Qr,sa

(@, 1) =0 on (A" — Qg sh»i = {(x, ) e Qg 5|t > 1}, 0<p, b <1,

' 2 1 1
In"| + |Vy] sC[(R—r)Z + S—s]'

We observe that no conditions are imposed on » for { < t. In fact we will always
multiply » for a function depending on the only variable ¢ and having the support in-
closed in {t > t}.

Let 2y = (%, ty) € 3D be. If u(z;) < 1 weakly, and [ < k denote u;, = (u — k)™ pro-
longed by zero out of D and let 7> 0 and {u,,} cW" *(R"*!) such that u,,—u in
WD N Q3,(2)), spt n(w,, — k)* ¢ D N Qs.(2o) wheanever 7 e Cg”(Qs(20))-

We observe that the function %, is bounded on any compact set of D because of the
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Harnack inequality (Theorem 1), Moreover if %, is prolonged out of D) by zero, it re-
mains bounded also near the boundary of D, the bound depending on [juf,zp,
and the strueture conditions (2.1). Therefore for any fixed >0, %, (27) =
= Sup {u;(2), z € R,(2r)} is finite for all small ». This is applied in the proof of the fol-
lowing theorem.

THEOREM 3. — There exist positive constants C and p, depending on |ull 2y, and
the structure conditions (2.1) such that, for any « >0,

R (r)

1/pq
u(2r) — uy(r) = C( J [ugp(27) — uk(z)]’"’dZ)

PROOF. — Let & =i,, t =t,— (9/4)ar?, z = (&, t). Denote v(x) = u(27r) — uy(2)
prolonged by u,(2r) out of D. We observe that v, v, € LD U Qyy, (5402 (2)).

We want to prove that v belongs to a De Giorgi class DGy (D U Qgy,5/0:2(2)). We
prove that v verifies (2.4) and (2.5) for any Q, .(2) with ¢ < 2r, v < (5/4)ar® For
0 <h <wu(2r) consider (v—h)~ prolonged out of D by zero. Let ¢, . 4(x,t) =
=~ (n*(Vn,~ 1) ™ Rf 74 ). Where 7 is a cut-off function for the pair (By,,, (), B, (%)),
0<s;<8 <], t<t;<t+r, 0<7t<altr)? and, for any [ >0, 7, < 7,

’

0 fitsty~lortzqa,+1,
1 iffclsts’rz,
xil,rz(t):< —_
”tzﬁ if o —l<t<rz,
t— 12 .
1-— fro<t<ey+1,

denote the piecewise linear approximation of the characteristic function X,, .,;. ¢. de-
note a «time»-mollification of ¢. So ¢ € W 2(D N R,(27)). Inserting ¢ as test function
in (2.3) and letting to the limit m — + « and «, ¢ — 0, we obtain that v satisfies the
«—»-part of (2.4) with p = 2s,7, oy =1 ~ 5, /s,. We avoid the calculus which allows
us to this issue. It can be obtained following the same line of reasoning of Theo-
rem 3.1 of [Z-2] and Theorem 4.1 of [Wi]. Let now 5 = n(x,?) in the test function ¢
be a cut-off function for the pair (Qus,r, -, (2), Qasyr,-,(2)), 0 <71 <(5/2)als;7),
0 < 7y < (5/2)alsy7), 75 < v1. Inserting ¢ as test function in (2.3), we obtain in this
case that v satisfies the «—»-part of (2.5).

We can so affirm that v belongs to a De Giorgi class DGy (D U Qg (5/4),2(2))-
Therefore, applying the Harnack inequality (Theorem 2) to the function v, with
R=r0,=1,0,=(3/2)a, 6 =(5/2)a, o; = g5 =1, Theorem 3 is proved.

We recall the following Lemma:
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LEMMA 1 (see Lemma 3.2 of [Z-2]). - Let u € WY 2(B) where B is an open ball of R"

of radius v, and let 1 be a probability measure supported in B N[u = 0]. Then, if
k>0,

8.1) k|l |u| = k]| scqﬂjwu( +CT“I(R1*M)[Vu|.
B

B

Let u;(27) be defined as at the beginning of Theorem 3 and let k; = u(27) —
— 27y (2r), j=0,1,.. where u(27r) = sup . Denote A=k, vy =R}(r) N [(u -
- k;)* > 0]. B30

LEMMA 2. — There s o constant C > 0, depending on |ull2p, and the structure con-
ditions (2.1) such that for any positive integer s,

n % n=21 4 — n+1/2 r®
(3.2) sr®cap (R* — D) < Csr" 2|4~ (k,, r)| + Cr [1 + “@r = }

where a =1~ (n +1)/2q.

PROOF. — Inserting in (2.3) the test function ¢, . 5= — (% (U — k)" Rl 7erg):
where {u, } c Wb = (R**1), u,,—u in Wb~ (D) and spt (u,, — h)™ c D, n is a cut-off
function for the pair (@, ., (2), Qo ., (2), Z2=(2,1), T=2y, t=1tg— (9/4) ar?,
0<rt,<ar? 0<1y,<(18/4)ar? 7, <1y, we obtain

(33) f |Vul? < CLrmt(u(2r) — k; P + [A ™ (K, 20| 1] <

A (g, 7)

n+1
2q

a 2
<O b kP14 i | where szt a1

For any t e R let now «; be a positive measure supported in (RF(r) — A" (k, 7)),
such that

3.4) f [Ryvp|? < (4-N — cap (RX(r) - D)) 2.
Denote N — cap(R}(r) — D), = v, Apply Lemma 1 to the function »(x)=

= (u — k;)* + k; with k = k; for the level ¢ (we observe that v(x) > k; < u(®) > k;). We
obtain

(3.5) kj|A+(kj:T)tlsC( J’ IV%IZ)I/Z(TIA+(kj,r)gll/2+Cr”( j l(Rl*#z)Iz>1/2).

Atk 7y A, )
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We will suppose s =j, so A (k;, r)cA* (k;, v). Then

kj|A+<ks,r>t!sC( [ qulz)”z' 7’“"/2“"( J(lez)”zs

Ay, Ty Atk T

SC( J 1Vu12)1/2'<r“n/2+m;%>sc( J 1vu|2)”2""n”/2-m.

ATk, At g, )

Hence

kj|A+(ks’T)ter,iSC( J lvulz)l/g-T1+"/2.

At (k)

Integrating in ¢ and taking into account (3.3) we have

K f A+ Uy, Py, o < OFF 2 Gl — B

,’,a
L+ e —kJ'

Summing over j from 0 to s +1 implies

s+1 s+1 .
(Z kj)] JA* (g, 1|7y, 08 < Cr”“/z(z oy kj)[l L ]
i=o “

s+1

u(2r) — k,
s+1
We have 2, k; > s u,(2r) and Eo(kjﬂ ~ k) < u,(27)/2, then
i=0 j=

+ n+1/2 _7,'._____0’
(3.6) SJ ‘A (ks’ /r)th”r,tdt s C’i” [1 + 'M(Z'f") —_— ks ]

We have |A*(k,, r)| = C(|B,| ~ |A~(ks, 7);]), then
sf |A+(ks,r)t|y,,tdtascjfrm,tdt—scj |A~ ey, )y |7y, ot -

Hence, taking into account (3.6) and that y, ; < Cr"~? with C independent of ¢ and
r, Lemma 2 is proved.

THEOREM 4. — Let u e WH2(D) be a Q-minimum and let z, € 3D. Then there is o
constant C >0, depending on |ul,2p and the structure conditions (2.1) such
that, if

1
3.7 fexp(*[(/‘eﬂh(r)“l])fl,ﬂl =+

0
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for some o >0, and u(zy) <1 weakly, then

Iim sup w(z) 1.
77y
zeD

ProorF. — The proof is analogous to that of Theorem 3.4 of [Z-2].

Let linzl sup u(z) = 1. Then there are numbers k¥ >1 and 6 > 0 such that
z—2g

zeD
3.8) u(2r) 2 6>0 for all small »> 0.

1

Let w(r) = u,(27) — u(r) and observe that f w(r)dr/r) < + .
6

From Theorem 3 follows that there exists p, > 0 such that

()P0 = (27 uy, (27))P0 mlA K, 7|
e [RE()]
Thus, from (3.8), [A~(k;, |/ |RF(r)| < (672 w(r)™.
Taking into account Lemma 2 and that cap (R}(r)) = Cr",

,’,.CL

I A nig—1os Po <
MR + Csr™(8 712 w(r))

3.9)  si(r) s Or'f [1 +

for any integer j = 1.

< 04»1/2[1 + 2L ] + Csr™(671 2" ().

u(27)

Let s = s(») be the largest integer such that

(3.10) s1(6712% o(r))P0 < % .

Then 2°(6 2% w(r))Pe = 1/2P*! and therefore

; 1/( 6 \Po
s(r)(po + 1) log 2 + pylog[w(r)] = log '2—(5)

hence, dividing by py + 1,
(8.11) s(r) + log[w(r)] = log M, M = M(8, p,).
So, dividing (3.9) by s and taking into account of (3.10), we have

(3.12) 8(r) € Cs(r)™!

1

with C = C(8, py). From (3.7), (3.10) and (3.12) we obtain j w(r)dr/r = + o, This

vields a contradiction, and Theorem 4 is proved. 0
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