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Cohesive Categories and Manifolds (*). 

~r GI~ANDIS 

S u n t o .  - Le strutture ottenibili per incollamento di ~ spazi elementari ~, come le varieth, i ]ibrati, 
le variet~ fogliettate, possono essere definite da ~ tttlanti di incollamento ~ e, formalmente, 
come eategorie arriechite su o2po~'tune categorie ordinate. 

O .  - I n t r o d u c t i o n .  

0.1. Glueing structures,  for instance maniiolds, fibre bundles,  vector  bundles or 
loliations, can be obtained by  patching togother  a family  (Ui) of suitable ~ elemen- 
t a r y  spaces >> by  means of par t ia l  bijections u~: U~ -> Uj expressing the glueing con- 

ditions and forming a sort of <~ glueing atlas >>, instead of the more usual atlas of 
charts. 

The goal oi this paper  is to t r ea t  these structures as enriched categories over 
~ total ly  cohesive >> categories, tha t  is ordered categories having b inary  meets and 
a rb i t ra ry  joins of pairwise <~ compatible ~> morphisms. The morphisms of these 
<~ generalized manifolds ~> are obtained as <~ compatible >~ modules between enriched 
categories, which Can be composed precisely because of the existence of compatible 
joins. The condition of Cauchy-completeness corresponds to the maximal i ty  of the 
glueing atlas; however,  since our morphisms are modules, the procedure of Cauchy- 
complet ion just  produces an isomorphic object. 

This approach to glueing structures is clearly re la ted to Ehresmann 's  one, based 
on pseudogroups of t ransformations (e.g. see [El ,  E2]). 

On the other  hand, our set t ing inscribes in Lawvere 's  r emark  tha t  interest ing 
mathemat ica l  s tructures not  only organize in categories, bu t  are themselves cate- 
gories, enriched over some suitable base: a monoida l  category as in Lawvere 's  
original formulat ion [La], or more generally a bieategory as in BETTI [Be]. The 
bases we actually use are suitable ordered categories (very part icular  bieategories). 

L a s t ,  this work is closely related with the notion of (~ glueing data  ~>, considered 

(*) Entrata in Redazione il 5 ottobre 1988. 
Dipartimento di Niatematiea, Universit~ di Genova, Via L. B. Alberti 4, 16132 Genova, 

Italia. 
Work partially supported by M.P.I. Research Projects. 
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by KASAI'~GIA~ and WALTEI~S [KW] in an involutive ordered category with arbi- 
t rary (instead of compatible) suprema of parallel maps. 

A short version of some of these results, in a more particular setting, appeared 
in [Gd]. 

0.2. A cohesive category A is equipped with an order relation }<g and a com- 
patibility (or linking) relation ] !g, both concerning parallel morphisms (same domain 
and codomain), consistent with composition and satisfying some further axioms (2.1). 
In particular the relation ! is reflexive ~nd symmetrical, generally non transitive; 
binary linked meets ]Ag have to exist. A totally cohesive category, moreover, has 
~rbitrary linked joins ~/? (of sets ~ of parallel, pairwise compatible maps). 

The paradigmatic example is the category 8 of sets and partial mappings, where 
]~<g means that  ] is a restriction of g, while ]!g means that  / and g agree wherever 
they are both defined. 

Analogously for the category ~ of topological spaces and continuous partial 
mappings, defined on open subsets; or the category C ~ of open euclidean spaces 
(i.e. open subspaces of some R ~) and partial mappings of class C ~, defined on open 

subsets. 
This category C ~ contains the elementary spaces we want to glue in order to 

get C~-manifolds, together with the morphisms for the glueing. ~ore precisely, 
the gheing-morphisms will live in the inverse subca.tegory Inv C ~ of open eucli- 
dean spaces and partial C'-diffeomorphisms (between open subsets of domain '~nd 
codomain), which in our setting replaces Ehresmann's pseudogroup of (everywhere 
defined) C~-diffeomorphisms between open euclidean sets; Inv C ~ is an inverse cate- 
gory, meaning that  each morphism u has a unique generalized inverse 4, with: 
u(eu ~- u and ~u~ ~- ~. :Notice, however, that  we need the whole category C" to 

construct the morphisms of manifolds. 

0.3. I t  may be remarked that, in these examples~ the linking relation is deter- 
mined by the order: indeed ]! g iff f and g have a common upper bound. Such 
cohesive categories are here called link-]iltered. 

However inverse categories, which form an important class of categories having 
a canonical cohesion structure, need not be so, and we think useful to keep our 
present definition of cohesive category, based on independent, if related, order and 

linking. 

0.4. t n  the previous examples the cohesion structure is also determined by the 
endomorphisms ~<1 (the partial identities), which we call projections: 

(i) ]<g iff/=-ge (for some projection e),  

(2) ]! g iff ] -~ fe ,  g -~ ge',  re '= ge (for some projections e, e') .  
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~oreover every morphism ] has a support e(]): the least projection e, of the domain 
of ], verifying ]-~ ]e~ and: 

(3) ]<g iff ] = g'e(]), 

(~) ]!g is  ].~(g) = g ' ~ ( l )  �9 

These facts suggest the more particular notions of prj-cohesive and e-cohesive 
category (prj-category and e-category, for short). Notice that  these structures are 
determined by the order~ but need not be link-filtered: e.g. consider the cohesive 
subcategory 8o of 8 consisting of those partial mappings whose definition-set has 
no more than (say) five elements. 

Every prj-cohesive category A has a canonical inverse subcategory, Inv A (5.7). 
Every dominicul category, in the sense of Di Paola-Heller [He~ Di, DH] and more 
generally every p-category in the sense of Rosolini [Ro] is e-cohesive (3.8). 

0.5. Cohesive categories present two interesting notions of (( (co)completion)~: 
the totally cohesive completion, concerning linked joins and the glueing completion~ 
concerning the (~ ghming of manifolds ~). The first construction is achieved by con- 
sidering equivalence classes of linked sets of parallel morphisms (cohesive comple- 
tion theorem, 2.7-2.8). 

As to the second~ a maid]old (Ui, u~) in the prj-category A is here an enriched 
category over A (i.e. : u~ ~ 1 and u~.u~<~u~, for all i, ]~ k) satisfying a symmetry 
condition: u~.u~.u~-~ u~, which forces the glueing morphisms u~ into the inverse 
subeategory Inv A. Its glueing~ if existing, is the lax colimit. 

If A is prj-cohesive, with linked joins, the category ~ f  A of manifolds over A 
and (( linked ~) modules between them, with the usual matrix composition, is the 
glueing compIetio~v of A: it is glueing-complete and every prj-functor A --> B, pre- 
serving linked joins, with values in a glueing-eomplete prj-category, extends uni- 
quely to Mf A (glueing completion theorem~ 7.7). 

The e-categories 8 and ~ are already complete in both regards. Instead the 
e-category C ~ is just totally cohesive: its glueing completion Mf C ~ yields C~-mani - 
folds as (~ glueing atlases ~. The topological realization of a manifold is given by 
the funetor ~ f  C ~ -~ ~ extending the natural embedding C ~ --> ~6, by the universal 
property of the completion itself; it transforms a manifold (U~, u~) into its glueing 
in ~, i.e. the quotient of the sum-space ]_I Ui modulo the obvious equivalence 
relation produced by the glueing morphisms. 

0.6. Analogously, fibre bundles and vector bundles can be considered as mani- 
folds over the e-cohesive categories ~ and 9J of trivial fibre or vector bundles, 
with suitable partial mappings. The topological realization can now be constructed 
into a (glueing) category whose objects are general fibrations, or also Serre fibra- 
tions. 
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A unified formal treatment of differentiable manifolds and fibre bundles clearly 
presents advantages. For instance, the trivial tangent bundle functor T: C ~ -+ %~ 
(r>~l), transforming the open set U of R" into the trivial vector bundle U• 
automatically extends, by the glueing completion theorem, to the tangent bundle 
functor 31f C ~ --~ 31f cU for C~-manifolds. 

0.7. In a different context, the category L~176 Ban) of Banach spaces with 
spectral measures (on a fixed Boolean g-algebra a) and bounded measurable opera- 
tors between the former, has a naturM prj-eohesive structure which will be sketched 
here in 1.5 and studied in a subsequent work [G5]. I t  does not consist of partial 
mappings and its projections are idempotent operators. 

0.8. Chapter 1 contains a more detailed exposition of the examples and motiva- 
tions recalled above; it also treats compositive joins of morphisms in an order cate- 
gory (1.7) and the type of (~ cardinal bound }> 0 we are going to use to restrict com- 
pleteness conditions (1.8). 

Cohesiv% prj-cohesive and e-cohesive categories are introduced and studied in 
oh. 2-4, together with the 9-cohesive completion (with regard to suprema of linked 
~-sets of parMlel morphisms). 

Ch. 5 is concerned with inverse categories K and their canonicM cohesion struc- 
ture; the inverse o-glueing completion 9IMf K of K is constructed in ell. 6. The 
~-gheing completion 9Mr A of an e-cohesive category A is derived from this result 
i n c h .  7. 

Fibre bundles, vector bundles and fo]iations are briefly considered in ch. 8. 
FinMly, ch. 9 contMns the proof of some completion theorems. 

Capital script letters, like 8 or G, usually denote categories of partial mappings. 

0.9. Last, some words on the connections of this setting with C. Ehresmann's 
one. I thank )/Irs. A. Em~ES~A~rr for her suggestions ca this point. 

An ordered category (C, ~)  in Ehresmann's sense (let us say o-category, to avoid 
confusion) abstracts the usual category Set  of small sets and (total) mappings, 
provided with the following order on morphisms: (]: X - +  :Y)~ (]': X'-~ Y') if 
X c X', Y c ](% and / is a restriction of ]'. Thus, in an o-category, ] ~ ]' does not 
imply that  ] and ]' are parMlel; instead, if ], ]' are parallel morphisms and /-< ]% 

it is assumed that  ] = ]'. 
These o-categories C, with suitable regularity conditions, should correspond to 

e-cohesive categories A with splitting of projections (and possibly some further 
conditions). Given C, construct A ----- P(C) as the category of (( partial maps ~) of C, 
obtained by spans X +-. -~ 17 whose first morphism i is:an (~ inclusion ~> (i ~ lx). 
Given A, let C be the subcategory of (~ total maps ~ re of A (e(u) ~- 1). 

Thus, the present glueing completion theorem, restricted to totally cohesive 
e-categories, probably reduces to Ehresmann's ~( thdor6me d'dlargissement complet 
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dhm foncteur local ~ [E2]. The connections at  the level of cohesive or prj-cohesive 
categories shotfld be more involved, if possible. 

F rom our viewpoint, ordered categories in the present sense allow to t reat  mani- 
folds as enriched categories over 2-categories, and their  partial  mappings as modules 
between enriched categories. Moreover, this setting seems to be more adapted to 
applications to measurable operators, using the prj-cohesive Banach categories 
L~176 Ban), which are not  e-cohesive (1.5, [G5]). 

1. - Examples  and prel iminary not ions .  

1.1. Cohesion in the category of partial mappings. Let  8 be the category of small 
sets and partial mappings (i.e. univocM correspondences), composed as correspond- 
ences. We write Def f the subset of the domain of f on which f is defined. 

8 is an ordered category, via: 

(1) f<g if f and g are parallel maps and f coincides with g on Def f ,  

iff f ~nd g are parallel maps and the graph of f is contained in the graph of g. 
Moreover $ is provided with a proximity relation (1) which will be called linking 

(or compatibility) and  wri t ten f!g: 

(2) ]!g if f and g are parallel maps and coincide on D e f f n D e f g .  

These two relations, order and linking, are closely related. For  instance, if 
~0c 8(X, I z) is a linked set of parallel maps (fir' for all f, ]'e ~), the supremum 
I1 ---- V~0 and (for ~0r 0) the infimum fo ~ A~0 exist: t hey  are given, respectively, 
by the set-theoretical union and intersection of the graphs; moreover they  are 
compositiv% i.e. preserved by composition. I t  may  be noticed tha t  V~0 exists iff 
~0 is linked (every set of maps having an upper bound is so), while A~0 always 
exists for ~ =~ 0; however it  is easy to check tha t  the meet  is compositive precisely 
when ~0 is linked. 

1.2. Cohesion and projections. A projection of X in 8 is any  (( part ial  ident i ty  ~> 
e: X -+ Y, i.e: any  endomorphism e<lx. The projections of X form an ordered set 
Prj X which is isomorphic to the Boolean algebra f i x  of the parts of X, via 
e ~-~ Def e. 

The projections of 8 are determined by the order~ conversely, they  determine 

(1) We mean: a binary relation between parallel nmps, reflexive, symmetrical and con- 
sistent with composition. 
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both  the  order m~d the linking relat ion:  

(1) 

(2) 

f<g  iff there  is some project ion e such tha t  ] ~ ge, 

f!g iff there  are projections e, e' such tha t  ] = re, g ~ ge', re'= de, 

in the la t te r  case the pair  (e, e') will be called u resolution of ] and g, and we have:  

f ag  = re'= ge. 
Last,  each par t ia l  m~ppings f: 2/--~ Y has a least project ion e(]) ~ Prj  X such 

tha t  f ----- re, namely  the  par t ia l  iden t i ty  on Def  ]; it  will be wri t ten  e(]) and called 
the szepport of ]. Clearly: 

(3) f < g  iff ] : g'e(]),  

(4) ] !g  iff ]'e(g) : g.e(]). 

In  the following (ch. 2, 3) we shall introduce the not ion of cohesive category 
(A, < ,  !), of prj-eohesive category (A, Prj) ,  of e-cohesive category (A, e). E v e r y  
prj-cohesive category A has an associated cohesion s t ructure  defined as in (1)-(2), 
or more simply as in (3)-(4) if A is also e-cohesive. 

1.3. Some categories of continuous partial mappi~gs. Consider the category 
of small topological sets and continuous par t ia l  mappings, defined on open subsets. 
Consider also the subcategory ff~ of ~6 whose objects are the open subspaees of all R" 
(n e N), with par t ia l  mappings of class C ~ defined on open subsets; here  and in the 
following, r ~ N W {c~, m} and class C ~ means ~nalytic. 

I f  A is any  of these categories, the (faithful) forgetful  functor  U: A -+ 8 creates 
an e-cohesive s t ructure  on A, provided  with arbitrary linked joins and binary linked 
meets (1.L), distr ibutive with respect  to the former.  The projections of the object X 
form an ordered set Pr j  X, isomorphic to the  locale (2) O(X) of the open sets of X. 

Other  examples,  i e l a ted  to fibre bundles,  vector  bundles and foliations, will be 
considered in oh. 8. 

1.4. Cohesion /or meas~erable ]mvctions. Let  X be a measurable space and Y a 
normed  one. The following ve ry  simple cohesion struetm'e on the set Y:  

(1.1) y<y~<=> ( y = O  or y ~ y ' ) ,  y ! y , r  (y<yr or y ' < y ) ,  

yields, by  the  usual <~ pointwise ~) argument ,  a cohesion s t ructure  on the normed 
space L~ Y) of bounded  measurable mappings f rom X into Y: 

(2) ]<]'<::>(VxeX: l x < g x ) - c ~ ( V x e X :  f x : A O ~ l x : g x ) ,  

(3) ]!]' r ( V x e X :  ]x!gx) r ( V x e X :  ] ~ : A O ~ g x ~ l x = g x ) ,  

(2) I.e., a complete lattice in which binary meets distribute over arbitrary joins. 
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which is finitely cohesive, i.e. provided with finite linked joints. I t  is easy to guess 
that the universal completion of L~(X,  Y) with respect to a-joins of linked sets is 
the space M ( X ,  ~) of all measurable mappings from X to Y: indeed any such map 
]: X - ~  Y is the linked join of the increasing sequence of bounded measurable 
mappings ]~--~ e~o], where e~: Y--> Y is the following measurable (non linear) 
mapping: e~(y) : y if ]lyll <~ n, e~(y) : 0 otherwise. 

I t  may also be noticed that  the category 8 considered in 1.1 is equivalent to 
the category 8' of pointed sets and pointed (everywhere defined) mappings; writing 
0 the base point, the cohesion structure of the horn-sets 8(X, 17) may be described 
as above. 

i.5. Cohesion/or operators. The category LC~ Ban)  of bounded measurable oper- 
ators in the category B a n  of Banach spaces, on the Boolean a-algebra a, has for 
objects all the pairs (X, E) where X is a Banach space and E: a -> B a n  (X) is a 
(bounded) a-additive spectral measure with values in X (see [DS], XV.2.3-4). A 
morphism S: (X, E) -~ (Y, ~) is a bounded linear mapping S: X -~ Y commuting 
with the measures E , F :  S . E ( a ) : ~ ( a ) . S ,  for all a e a .  

This category has a natural prj-eohesive structure, defined as in 1.2.!-2 , the 
projections of the object (X, E) being the endomorphisms E(a), for a e a. The 
structure is not complete with regard to linked joins: its a-cohesive completion may 
be concretely described as the category M(a, Ban)  of closed densely defined, meas- 
urable operators, as it will be shown in [G5]. 

i.6. Cohesion /or inverse categories. A category K is inverse if every morphism 
a: A ->A'  has a unique generalized inverse ~: A ' - ~ A ,  with aSa -~ a and 5`a5  ̀~ 5,. 
For example: the category ~ : Inv 8 of sets and partial bijections, or the category 
Inv ~ of topological spaces and partial homeomorphisms between open subspaces 
(every prj-cohesive category A has an associated invese subcategory, Inv A,  as 
shown in 5.7). 

The inverse category K has a canonical cohesion structure: 

(1) 

(2) 

a<b iff a~--b.5,a, iff a----aS.b, iff a ~ a ~ a ,  ..., 

a!b if (a.bb ~ b.5`a and b[).a ---- as`.b), 

which is not prj-eohesive, at least in the present sense: the linking relation has to 
be described by double resolutions, on domain and codomain {5.4), or equivalently 
by supports (on domain) and cosupports (on codomain): e(a)-~  5`a, e*(a)-~ aS. 
This structure will be studied in ch. 5, and its glueing completion in ch. 6. 

1.7. Compositive joins and meets (3). Let A be an ordered category: A is provided 
with an order relation < on parallel maps, which is assumed to be reflexive, transi- 

(8) The two last sections of ch. 1 contain some preliminary tools. 
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t i re ,  ant isymmetr ical  and compositive. We say tha t  a set o~ c A(A,  B) of parallel 
maps has compositive join (or union) ~ = V a  if: 

(1) for aH the morphisms x: A ' - . A ,  y: B - ~ B  ~ we have:  ydx = Vyax ,  in the 
ordered set A(A' ,  B') ; ~ 

in particular~ 5 is the supremum of ~ in the ordered set A(A,  B). Compositive joins 
have the following elementary properties:  

a) associativity: if a =  Va~ ( i e I ) ,  and for every i, a ~ =  Va.~j ( j e J~)  are 
compositive joins, then  a = V a~j (i e I ,  ] e J~) is so ; 

b) composition: if a-= V a~ is compositive, yax = V (ya~x) is so; 

c) if a = V a~ is compositive and for every i, a~ <a'~ < a, then  a = V a'~ is a 
compositive join. 

Dually one defines eompositive meets (or intersections), enjoying dual proper- 
ties. A category provided with binary compositive meets (of parallel pairs of maps): 

(2) y(aA a~)x = yaxAya'  x , 

is <~ the same 7> as a category enriched over the closed category of A-semilattices; 
it  will be called a semilatticed category. 

The stronger cartesian compositive property: 

(3) (b A b') " (aAa;) ---- baA b' a' , 

will appear in prj-cohesive categories, with respect to linked meets (3.3.3); a cate- 
gory provided with binary meets,  compositive in this stronger sense, is the same 
as a category enriched over the category of A-semilattices, provided with the 
monoidal structure of cartesian product  (instead of the closed structure considered 
above). 

1.8. Smallness and cardinal bounds. A universe ~ is fixed throughout ;  a small 
set is any  set belonging to ~ .  A qL-eategory A is assumed to have each object and 
each hom set A(A,  B) belonging to ~o: e.g. the category of small sets, of small 
groups and so on; it  is small if also its object-set belongs to ~ .  All the categories 
we explicitly use are assumed to be ~d~-categories, except of course some (~ very 
large ,> 2-category of categories, like the 2-category @EIt of @-cohesive %L-categories 
ment ioned in 2.6. 

A section of cardinals will be a set @ of small cardinals verifying: 

a) le@, if x, ye@ then x .ye@,  

b) if xe~o and O # y < x ,  then  ye@. 
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Thus @ is e i ther  {1}, or {0, 1}, or an interval  [0, x[ or [1, x[ where x is any  sman 
infinite cardinal, or the set ~2 (t2') of all small (non-null) cardinals. I f  @ is infinite, 
it  is also closed with respect  to the sum. In  particular,  we write ] = [0, }r the 
set of finite cardinals, and ~ = [0, ~1[ = [0, ~o]. We also write @' the section of non- 
null cardinals of @. 

A e-set is a small set whose cardinal belongs to @; the section {0, 1} will be 
shor tened to 0 in prefixes. 

A p-lattice will be a (smM1) ordered set having join and mee t  of all its p-subsets; 
thus O-lattices are ordered sets with supremum and infimum, ]-lattices are lattices 
with supremum and infimum, zQ-lattices are the complete lattices. Ordinary lattices 
coincide with ] '-lattices and ordered sets with {1}-lattices. 

Analogously one can consider z-distributive lattices, Boolean @-algebra.s, @-locales 
and so on. An ordinary  locale is the same a s  an ~-loeale. 

A section @ is fixed throughout  this paper.  

2.  - C o h e s i v e  c a t e g o r i e s .  

2.1. DEF~ITI0~.  - A cohesive category will be a category A provided with two 
binary relations, the order < and the linking (or compatibility) relat ion !, bo th  on 
parallel morphisms, verifying:  

(CH.1) < is an order of categories (reflexive, transit ive,  ant isymmetr ical  and con- 
sistent with composition); 

(CH.2) ! is reflexive, symmetr ical  and consistent with composition in the strong 
sense (4): if a!a' and b!b'  arc consecutive, then  ba!b'a'; 

(CIt.3) if a<~a', b<b' and a'!b' then  a!b; 

(Ctt.4) if a!b, the  (linked) meet  aAb exists and is compositive in A. 

The not ion of cohesive category is selfduM. 

Clearly, if a, b<<.c then  a!b (CH.2, 3); we say tha t  the cohesive category A is 
link-]iltered if the  converse holds too:  

(1) a!b iff a and b have a common upper  b o u n d ,  

in which case the  linking relat ion is determined by  the order. A link-filtered cohe- 
sive category is clearly the same as an ordered category provided with b inary  

(4) As ! is not transitive, this consistency is stronger than ~ left and right consistency 
with composition with one map ~. 
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filtered meets, consistent with composition. The cohesive category 80 considered 
in 0.4 is not  link-filtered. 

Every  category has a discrete cohesive structure, with a<~b iff aIb iff a ~ b. 
On the other hand~ a cohesive category with trivial linking (a! a'  iff a and a' are 
parallel) is the same as a semilatticed category, i.e. a category enriched over the 
closed category of semilattices (1.7). 

In  this chapter,  A will always be a cohesive category. 

2.2. Linked joins o] morphisms. A linked (or compatible) set o~ of A is any  set 
of parallel morphisms such tha t  aIa' for all a, a' ~ ~; if also fl is s% ~!fl will mean 
tha t  ~ and. fl are parallel and a ! b for all a e ~, b ~ fl; or equivalently,  tha t  a U fl is 
linked. Any  subset which has an upper bound is linked. 

Say tha t  the set ~ (of parallel morphisms) has linked join if: 

a) ~ has ~ compositive join V~ (in particular, it is a linked set), 

b) for each linked morl0hism b (b!a, for all a in ~), (Va) !b  and (V~)Ab is 
the compositive join of (aAbla e ~} (which is linked, by  (CH.3)). 

I t  is easy to see tha t  l inked joins verify properties similar to those considered 
in 1.7 a)-c) for eompositive joins. 

2.3. DEFIi~ITI01~. -- • ~-localic cohesive category (or e-cohesive category, for short) 
will be a cohesive category A such tha t  every linked e-set of parallel morphisms 
has linked join. 

Equivalently,  A has to satisfy: 

(CH.5e) every linked 0-set see A(A, B) has join Vow, compositive in A; linked 
binary  meets distribute over joins of l inked e-sets: 

(1) (V~)Ab = V ( a A b ) ,  i f  odb.  
aEOr 

The necessity of (CH.5~) being obvious, assume that it holds. (V~)!b is trivial for 
o c{0, 1}; otherwise the set fl = ~ u  {b} is a linked ~-se~ and V~, b<.Vfl, hence V~!b. 
Moreover the meets nab (a e ~) form a linked e-set (by (CH.3) or by (1) itself), hence their 
join has to be compositive. 

In  part icular  we have cohesive, O-cohesive, ]-cohesive (or ]initely cohesive), (~-cohe- 
sire, totally cohesive categories when, respectively: e ---- (1}, {0, 1}, ], o, ~ (1.8). The 
categories 8~ ~,  C ~ are tota l ly  cohesive (1.1-3); L~ Ban) is just  finitely cohe- 
sive (1.5). 

2.4. :Elementary properties. Let  A be e-cohesive. A non-empty e-set ~ c A(A, B) 
of parallel morphisms is linked iff it  has some upper bound (e.g. V ~). 
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If e and fl are parallel Mnked Q-sets of morphisms and a!fl, then V~! Vf l  and: 

(:[) (V~x)A(V,8) = V a A b  (ae~, befl); 

further, if ~ and 7 are consecutive linked Q-sets of morphisms then 7a = {cain ~ a, 
eel,} is again a linked Q-set (CH.2) and: 

(2) V(r~)  = V ~ " V ~ .  

2.5. Charavterizations. A cohesive category A is 0-cohesive (resp. f-cohesive, 
a-cohesive) iff it satisfies the first (resp. the first two, the following three) eondi- 
tions: 

(CH.5a) 

(CH.5b) 

(cH.5e) 

for all objects A, B the set A(A, B) has a minimum 0~ (the zero .morphism 
from A to B), eompositive in A: the composition of a zero morphism 
with any other is a zero morphism; 

every pair a, b c A ( A ,  B) of linked morphisms (a!b) has join aVb, com- 
positive in A; linked binary meets distribute over joins of linked pairs; 

every increasing sequence (a.) in A(A, B), obviously linked, has join 
V a~, eompositive in A; linked binary meets distribute over increasing 
countable joins. 

The proof reduces to calculate the join of a countable linked set ~ = {a~: n eN} in 
A(A, B) by means of an increasing sequence of finite suprcma b~ = V{a~: k<n}. 

)Ioreover, if 2 e Q (i.e. f c  Q), every Q-cohesive category is link-filtered (2.1). 
Thus an ordered category X is Q-cohesive, with linking relation expressed by 2.1.1, iff: 

(C.!) X has eompositive filtered binary meets, 

(C.2Q) Q-sets of parallel maps, filtered in X, have compositive join; filtered binary 
meets distribute over these pjoins. 

2.6. Cohesive ]unctors and transformations. A Q-cohesive funetor ~:  A --> B will 
be a functor between Q-cohesive categories which preserves order, linking, linked 
binary meets and linked Q-joins. For Q c a there are characterizations of such func- 
tors, similar to those in 2.5. 

A Q-cohesive transformation q~: ~ --~ G: A --~ B will be a natural transformation 
between peohesive funetors. 

A Q-cohesive subeategory of the Q-cohesive category A is any subcategory A' 
which is closed under linked binary meets and linked Q-joins; then A', provi4ed 
with the induced order and linking relation, is Q-cohesive as well as the inclusion 
A ' ~ A .  
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A @-cohesive embedding F: A --~ B will be a @-cohesive functor, injective on the 
objects and reflecting the order and linking relations. Then F is also faithful and 
/7(A) is s @-cohesive subcategory of B, isomorphic to A. 

The concrete 2-category @(]II of @-cohesive %b-cstegories (1.8), @-cohesive func- 
tors and natural transformations is easily seen to be 2-complete (i.e. to have all 
small indexed 2-1imits). The cohesion structure on a cartesian product H A~ of 
@-cohesive categories is quite obvious. 

2.7. Tm~o~E~ (the @-cohesive completion). - Every cohesive category has a uni- 
versal cohesive embedding ~: A - +  @cA in a @-cohesive category, preserving the 
existing linked @-joins: the @-cohesive completion of A. 

The universality of ~ means that:  for each cohesive functor iv: A - +  B pre- 
serving the existing linked @-joins, with values in a @-cohesive category, there exists 
precisely one @-cohesive functor G: @cA ---)-B extensing F (~-~  GN). 

PROOF. - See 9.i-2. 

2.8. A description of the @-cohesive completion. The @-cohesive completion @cA 
may be constructed in the following way. 

First !orm the category $ A  having the same objects as A and morphisms 
a: A ~ B given by  the linked @-sets a c A(A, B), with composition: 

(1) 

Consider on the category ~'A the preorder ~(: 

(2) ~<f l  iff ~!fl and V a e ~ ,  a :  V(aAb) (linked join),  
heft 

and the quotient category: 

(3) @cA : $oA/~.. , 

where ~ is the congruence associated to ~(. 
The order and the linking relation in @cA are given by:  

(4) [~]< [fl] iff zr ~ ,  [~]![fl] iff a!fi as linked sets oi A ,  

independently from the choice of representatives. 
Linked meets and linked @-joins are c~lculated in @cA by the following for- 

m u l a s  : 

(5) [~]A [fl] ~- [{aAb[ae ~, befl}] ,  

(6) V Z ' - -  Iv  Z] ,  
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where [~] ![fl], 27 is any l inked 0-set of 0-sets of A (~!~', for all ~, ~' ~ 27) and 

In  par t icular :  

(7) V ~ =  [~] 

z ' =  {[~]l~e.r}. 

(in oeA, for any  l inked o-set a of A ) .  

The universal embedding U: A ~ ocA takes the object A into itself and the  
morphism a into the equivalence class of {a}. 

The a-cohesive completion of a ]initely cohesive category A may be given a simpler des- 
cription, since for each morphism a in acA there is an increasing sequence of parallel mor- 
phisms (a.)ne N of A such that a = [{an: n eiN}] (see 2.5). This case will be considered in [G5]. 

2.9. De~sity. I f  A is a cohesive subcategory of a 0-cohesive category B, with 
the same objects, the embedding F :  A - + B  is the 0-cohesive completion of A iff: 

i) /~ preserves the existing l inked 0-joins, 

ii) A is o-dense in B :  for every  molohism b in B there  is a l inked 0-set a in A 
whose join in B is b. 

Indeed,  the necessity of these conditions being obvious, assume tha t  they  hold: 
we must  show tha t  the 0-cohesive functor  G: oeA ~ B extending /~ is an iso- 
morphism of cohesive categories. Since it  is surjective, by  ii), i t  suffices to show 
tha t  it  reflects the order (hence it  is injective) and the linking relation. 

Le t  ~ and fl be parallel, l inked 0-sets in A. I f  G[~]<~G[fl] in B, for every  a e 6r 
a = Ga<~G[fl] : Vbb, hence a =  VbaAb, l inked join in B. Since a and all aAb 
are in A, the l inked join holds in A, which proves tha t  [~] ~< [fl] in ocA. 

Last, if G[~JIG[fl] in B :  V~  = Vfl  in B, whence a!b in B for every  a e  ~ and 
b e fl, and the same holds in the cohesive subcategory A; in other  words, [a]l[fl] in 
ocA. 

3. - P r j - c o h e s i v e  and  e - c o h e s i v e  categories .  

As we have seen in oh. 1, cohesion structures are often defined by  assigning 
for each object a set of commuting idempotent  endomorphisms, which will be called 
(( projections )>. This yields the notions of prj-cohesive and e-cohesive category, the 
la t ter  being stronger than  the former. 

3.1. DEFINITION. - /k prj-eohesive category (or pr j -category for short) will be 
a category A provided, for every  object A, with a set Prj  A c A(A) of endomor- 
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9hisms of A (the project ions of A) so t ha t :  

(PCH.1) every  iden t i ty  is ~ projec t ionl  if e is a project ion,  ee---- e; if e and  / are 
paral le l  project ions,  e/---- /e  is a pro jec t ion;  

(PCH.2) if a:  A -+ B is in A and ] e Prj  B, there  exists  some e e Prj  A such t h a t :  

/a : ae. 

Thus Pr j  A is g commuta t i ve  i dempo ten t  un i t a ry  subsemigroup of A ( A )  and 

a 1-semilat t ice in its own right,  wi th  c A / =  e / ~ / e ,  e < /  iff e : e/ ( : / e )  and  
m a x i m u m  1~. 

A pr]-eohesive functor  /~: A - +  B is a functor  be tween  prj-cohesive categories 
which preserves  projec t ions .  

3.2. The cohesion structure. The p r j - ca tegory  A has  the  following associated 

order and  l inking relat ions (which make  A into ~ cohesive category,  a.s i t  is p roved  
I1 the  following sect ion):  

(1) a<-<.b if there  is a project ion e such t h a t  a : be (note: ae--:  a), 

2) a ! b  if there  are project ions e, / such t ha t :  a = ae, b : hi, a / :  be; in this 
case we say t h a t  (e, /)  is a resolution of the  l inked pa i r  (a, b). 

This order extends  the  canonical  order of project ions:  if e ----/ .g in Prj  A, then  
e / - : / g / = / g  = e. An endomorph i sm a e A ( A )  is a project ion iff a-<<lA: thus  all 

(the existing) joins and  non-empty  meets  (5) of project ions are the  same in Prj  A 
or in A ( A ) .  The iden t i ty  1~ is m a x i m a l  in A(A):  if a > l ~  t hen  1 ---- ae hence, 

e ~ ae.e = ae ~- i and a-- 1. 

I t  will also be useful to r e m a r k  t ha t  the  pro jec t ion  e in (1) and  (2) m a y  be 

replaced wi th  each projec t ion  eo such t h a t  e0<e and  a.eo = a. 

3.3. Pt{OPOSlTIO~. - The p r j - ca tegory  A with  the associated order and  l inking 
rela t ions is a cohesive ca tegory  (2.1). I f  (e, e') is a resolut ion of the l inked pa i r  

(a, b), the  m e e t  of the  l a t t e r  is: 

(1) a A b  = a e ' =  be ; 

(5) Walafing: the empty set has infimum 1 in Prj A, but generally (e.g. in the examples 
of ch. 1) no infimum in A(A): the latter has no greatest elemenL 



)/[ARC0 GI~M~DIS: Cohesive categories a~d ma~i/olds 213 

moreover, if in the diagram (2) a!b and c!d: 

(2) A A~ B ~ C 
b e~ 

then the cartesian compositive proper ty  (3) holds (see 1.7): 

(3) caA db -~ (cA d). (aA b). 

Every  set e of parallel projections is linked; the linked meet  of two parallel 
projections is their  meet  in Prj A: e A / =  e] ~ / e ,  which is therefore compositive 
in A. 

A functor between prj.cohesive categories is cohesive iff it  is prj-cohesive, iff 
it  preserves the order. 

/ !  . o .  PROOF. The letters e, /, e'~ always denote projections. 
For  the first two axioms (CH.1-2) the only non-trivial checkings concern the 

composition. Le t  be given the diagram (2). 
I f  a < b  and e < d ,  let :  a : be, v : d/; by (PCH.2) there is a projection e' such 

tha t  /a ---- ae r, and:  db.ee '-~ d . b e . e ' ~  d u e ' =  d/a -~ ca. 

Instead,  if a!b  and c!d, let:  a ~- ae, b ~- be', aer= be, c -~ c/, d = d/', o f =  d]. 

By (PCtt.2) there are projections d, d' such tha t :  fa = ad, / 'b  -~ bdr; we want  to 
show tha t  (ed, erd ') is a resolution of the pair (ca, db). Indeed:  ca.e~ = v .ad  = 

-~ c/a ---- ca, and analogously: db.e  r d r :  db; last:  

(4) ca. e' d r  ebed'= cb~r e ~- c/' be ~ d/be ~ d / a e ' :  d a d e ' :  due r ~ ~- db. ed .  

As to (Ctt.3): if a < a ' ,  b < b '  and a ' !b ' ,  let a = a ' e ,  b - ~ b ' ]  and (e ' , / ' )  be a 
resolution of (a', b'). I t  is sufficient to check tha t  (ee', f]') is a resolution of (a, b): 
a . e e ' =  a, b . / / ' =  b, a . ] ] '=  a' e / / ' :  b' e/e'.~ b.ee'.  

Iqow we prove (CH.4) and the properties (1), (3). Let  a!b,  with resolution 
(e, er): a =-ae,  b - ~  be', ae'-~ be; we must show tha t  h = a e ' =  be is the meet  of 
a and b; clearly h < a, b, while if k < a, b then k = a / =  b/r and k = ae. / -~ b f .  e < h. 

I t  is now easy to deduce (3), hence the compositive property  of meets:  with the 
hypothesis a!b,  c !d  and the notations above (proof of (CH.2)), we have: 

(5) caA db ~ va.e '  d '=  d/ .be = (cAd). (aAb) . 

The last remarks are now trivial;  in particular a funetor between prj-cohesive 
categories preserves the order iff i t  preserves the projections, in which case it also 
preserves resolutions, hence the linking relation and also binary linked meets, be- 
cause  of (1). 

3.4. I~E~(RE. - A cohesive category (A, < ,  !) may  be determined by at most 
one prj-cohesive structure on A, given by:  

(1) Prj A -~ { a e A ( A ) i a < l a )  , 
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which happens iff a < l  implies aa = a and moreover  the characterizations 3.2.1-2, 

concerning the order and linking relations, hold. 
Indeed,  if this is the case, define the projections by  (1). (PCH.1): if e, ] e Prj  A 

then  e l<  1 is again a projection,  hence an idempoten t :  it  follows tha t  e] = e j . eJ< ]. e; 

analogously:  ]e<e]. (PCH.2): f rom fa<<.a and the condition 3.2.1 it follows the  

existence of a project ion e such tha t  ]a = a.e.  

Thus a cohesive category will be said to be prj-cohesive when these facts hold. 
Analogously, an ordered category (A,  <)  is prj-cohesive, with projections defined 

by  (1), iff a < l  implies aa = a and 3.2.1 holds. 

3.5. DEFINITION. - An c-cohesive category (or e-category for short) will be a 
category A provided,  for eve ry  object A, with a project ion-set  Prj  A c A ( A ) ,  veri- 

fying (PCtt.1) and:  

(ECH.t) 

(ECtt.2) 

for each a: A -~ B in A, the set of projections e of A such tha t  ae = a 

has a least e lement  e(a): the support  of a, 

for eve ry  a: A- ->B,  b: B - > C  in A:  e ( b ) . a = a . e ( b a ) .  

Elemen ta ry  propert ies ,  for a, a ' :  A -+ B, b: B -+ C, e e Prj  A, ] e Prj  B:  

(1) e(e) = e , 

(2) e (ba)< e(a) , 

(3) /a = a.  e(]a) , 

(4) e(a .e)  = e .e(ae)  = e ( a ) . e ,  

(5) a < a' :::> e(a) < e(a') , 

(6) if a is monic, then  e (a ) -~  1 .  

In part icular ,  (3) shows tha t  the axiom (PCH.2) is satisfied: A is prj-eohesive, 

hence cohesive. 
An e-cohesive functor  will be a functor  be tween e-cohesive categories which pre- 

serves supports;  by  (1) it  also preserves projections,  hence it is prj-cohesive and (3.3) 

cohesive. 

3.6. The cohesio~ structure. By the last r emark  in 3.2, if A is e-cohesive the 

associated order and linking relations are characterized by:  

(1) a < b  

(2) a! b 

iff a :  b ' e (a )  , 

iff a .e (b )  = b .e(a)  , iff (e(a), e(b)) is a resolutio~ of (a, b) , 

iff a.  e(b) < b and  b. e(a) < a .  
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Further ,  if a!b ,  by  3.3 and 3.5.4: 

(3) n a b  = a . e ( b )  = b ' e ( a )  , 

(4) e ( a A  b) = e ( a ) A  e(b) . 

Similurly, if A is e-cohesive, it is easy to check tha t :  

(5) e (Va)  -~ V e ( a ) ,  (for every linked e-set ~).  
aEr 

3.7. Cou~ter images  o] projeet ions.  I f  A is e-cohesive, every morphism a: A -> B 
in A determines a mapping:  

(1) ae: Prj  B -> Prj  A ,  ae(]) = e( la)  . 

Thus Prj  becomes a contravariant  functor from A into the category of semilattices: 

(2) 1 P = 1 ,  (ba) e =- a e b  e a e ( / A g )  = aP(l)AaP(g)  , �9 

Indeed:  

aebP(g) = ae(e(gb))  -= e ( e ( g b ) . a )  = e (a . e (gba ) )  -~ e (a ) . e (gba )  -= e (g .ba)  = (ba)e(g) .  

Fur ther :  

aP(fg) = aP(le(g)) = (]a)P(g) = (a .aP( l ) )e(g)  = 

= (aP(]))e(ae(g)) = aP(]), ae(g) = ae ( l )A  ae (g ) .  

Other properties,  for a, a': A--->B,  b: B--->C, e, e ' e P r j A ,  ] e P r j B :  

(3) ee(1) = e ,  

(4) ]a --- a.aP(])  , 

(5) ee(e ') = ee' , 

(6) e(ba) : e ( e ( b ) . a ) < e ( a )  , 

for (6), write 1 =  be(l), so tha t :  

e(ba) = (ba)e(l) = aPbP(1) - - ~  aP(/) ~_ aP/P(1) = (In)P(1) = e( /a)  = -  e ( e ( b ) . a )  . 

Conversely, if A verifies (ECH.1) and the mappings (1) are given, satisfying 
(2)-(4), hence (5), then A is e-cohesive, with e(a)  = ae(1). Indeed:  a.ae(1) = a; if 
ae = a then ae(1) = (ae)e(1) = eeaP(1) = .  e.ae(1), i.e. ae(1)<e;  ~urther a . (ba)e (1)  - =  

= a 'aPbP(1)  = a .ae(] )  -= ]a = -  bY(l).a, where ] = bY(l) .  
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3.8. E ~ L v ,  S. - a) The  cohesive ca tegor ies  8, ~ ,  C ~ descr ibed  in ch. 1 are  

e-cohesive, w i th  p ro jec t ions  g iven  b y  t he  pa r t i a l  identi t ies .  

b) A n  e-cohesive c a t e g o r y  n e e d  no t  be  l ink-f i l tered:  e.g. t he  subca t ego ry  of 8 

cons idered  in 0.4. 

v) E v e r y  dominical c a t e g o r y  ([He,  Di,  DH] ) ,  more  genera l ly  eve ry  p-cate- 
gory [Ro] A,  is e-cohesiv% wi th :  

(1) 

(2) 

P r j A  = ( d o m x [ x e A ( A ) }  = ( eeA(A)13a  in  A such t h a t  e = d o m a } - ~  

: (e~ A(A)Ie = dora e}, 
e(a) --~ dora a .  

This follows from the following properties of domains proved in [Ro], 2.1.4-5, for mor- 
phisms a: A -+ B, b: B --> C, a ' :  A -~ B ' :  

i) dom 1~ = 1~, if) 

iii) (dom b).a = a .dom (ha) , iv) 

v) a. dora a = a ,  vi) 

vii) (dora a)- (dom a) = (dora a) , viii) 

dora (ba) -~ dora ((dora b). a) , 

(dora a). (dom a') = (dom a'). (dora a) , 

dora (dom a) = dora a ,  

dom ((dom a). (dom a')) = (dora a). (dom a') . 

Indeed the second und third equalities in (1) come from the property vi). The axiom 
(PCIt.1) follows from i), vii), iv) and viii), while (ECH.2) coincides ~dth iii). As to (ECH.1): 
if a: A -~ B, then a = a .dom a, by  v); on the other hand, if a = ae and e.E Prj A, then 
e < dora a, as (by if) and viii)): 

(3) dom a = dom (ae) = dora ((dora a) e) = dora ((dom a)(dom e)) = 

---- (dora a) .(dome) = (dora a ) . e .  

d) The  c a t e g o r y  L~~ Ban)  descr ibed  in 1.5 is pr j -cohes ive  [GS]. 

3.9. Cartesia~b produvts and duality. The c~r tes ian  p r o d u c t  A ~ I I  Ai  of a 

f ami ly  of p r j -cohes ive  ca tegor ies  (A~)~I is pr j -cohesive ,  wi th  P r j a  (A~) ~- I I  (Prj  A J .  

I f  t he  fac to r s  A~ are  e-cohesive, so is t he  p r o d u c t  A w i t h :  e((aJ~er ) : (e(aJ)~ 1. 
A prj*-cohesive c a t e g o r y  will  be  a pa i r  A----(A,  Prj) ver i fy ing  (PCH.1) and  

(PCH.2*):  for  all a a nd  e t he re  is some ] such t h a t  ]a ~ ae; t he  associa ted  cohe- 

sion s t r u c t u r e  h a s :  a<b iff t h e r e  is some p ro jec t ion  / such t h a t  a ~ ]b, and  analo-  
gous ly  for  the  l ink ing  (de t e rmined  b y  coresolutioq~s of pa i rs  of morphisms) .  T h e n  

A is an  e*-eohesive c a t e g o r y  if i t  is p r o v i d e d  wi th  cosupports e*(a) ve r i fy ing  (ECt t . I* ,  

ECtI .2*) .  

4. - A d e q u a t e  pr j -cohes ive  ca tegor ies .  

A is a lways  a p r j - c a t e g o r y ;  we e x a m i n e  condi t ions  ensur ing  t h a t  the  @-cohe- 

sive comple t ion  of A is aga in  a p r j - ca tegory .  
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4.1. Resolution of sets. I t  is easy to show tha t  a set a c A ( A ,  B)  of parallel 
morphisms is l inked iff there  is a family of projections eab e Prj  A (a, b e a) such 

tha t :  

(1) a ~ a ' e ~ b ~  a 'e~-- - -b 'eab,  for all a, b e g .  

5lore part icularly,  a resolution of ~ will be a family (e~)ae ~ of projections of A 
such that : 

(2) a = a . e ~ ,  a . e b ~ b ' e ~ ,  for all a , b ~ ;  

the second condition may  also be wri t ten:  a.eb< b. A set admit t ing  a resolution 
is clearly linked, bu t  these two facts are indeed equivalent  in most  cases we are 
in teres ted in, as we shall soon see (4.3-4). 

Any prj-cohesive functor  preserves resolution of sets. 

4.2. Transfer  o/ resolutions. A resolution (Ca) Of g m ay  be transferred by  com- 
position in the following way. Given the morphisms x, y: 

(1) A ' _5> A _~  B -2-> B ' ( a e :r ) 

choose, for each a ~ ~, a project ion ' " A'  e~ e Prj  such tha t  e~.x = x .e::  then,  a trivial 
checking shows tha t :  

(2) (e~') is a resolution of y~x = {yaxlaec~ } . 

4.3. Existence of resolutions. Let  A be prj-cohesive. 

a) E v e r y  set s of parallel projections has a canonical resolution: (e)~.  

b) ~ o r e  generally, eve ry  set a which has an upper  bound d has a resolution. 
Indeed,  let  a ---- d.e~ (a ~ ~) : 

(1) ae~ ~- de~.e~ ~ a ,  a'eb ~- de~'eb -~ deb'e~ -~ b.e~ . 

Thus: if A is Q-cohesive, each l inked ~-set has a resolution. 

e) I f  A has ~'-meets of projections (in Prj  A or equivalently in A ( A ) ,  by 3.2), 
compositive in A ,  we are going to show tha t  each linked ~-set ~ has a resolution (e~) 
and also (for ~ :/: 0) compositive meet :  

(2) A g - - b ' A e ~ ,  for any b e ~ .  
a 
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Indeed,  with the notat ions  of 4.1.1, the family e~ =Ae~b  (a e e) is a resolu- 
t ion of ~: b 

(3) a . e o -  = A a.eo - A a = a ,  
5 b b 

(4) 

us to (2): b .Ae~<b 'e~ - -  a.e~<a for all a e a ;  if x < a  for all a e a ,  then  x < a A b =  
= b.e~, hence x<b .  A e~ = A b.e~; last, the  compositive p rope r ty  of the mee t  is a 
s t raightforward consequence of the t ransfer  of resolutions (4.2). 

d) I n  part icular ,  ~s any pr j -category has l inked ] '-meets,  it  follows tha t  each 
/inite linked set has a resolution. 

e) I f  A is e-cohesive, a set g of parallel  morphisms is l inked iff (3.6.2): 

(5) a .e (b)<b,  for all a, b e ~ ,  

iff the f~mily e~ ~ e(a) of thei r  supports  is a resolution of ~ (the e-resolution). 

4.4. Adequate prj-cohesive categories. We shall say tha t  the pr j -coherent  cate- 
gory A is o-adequate if it  satisfies: 

(PCH.3o) each linked 0-set of A ha~s a reso lu t ion ,  

(PCH.de) A has 0-joins of projections,  eompositive in A. 

A pr j -category which is 0-cohesive is also ~o-adequate (4.3 b); trivially, it  is 
0-cohesive iff i t  is 0-adequate.  The category LC~ Ban) (1.5) is a-adequate,  because 
of 4.3 c), whereas it. is not  a-cohesive. 

A ~-adequate /unctor will be a prj-cohesive functor  between 0-adequate (prj- 
cohesive) categories, which preserves 0-joins of projections. 

4.5. PROPOSITiO}r. - I f  A is a 0-adequate prj-category,  a l inked 0-set of parallel 
morphisms has l inked join (2.2) iff i t  has an upper  bound. E v e r y  existing 0-join 
of morphisms is linked. 

A 0-adequate funetor  preserves all the  existing 0-joins. 

PROOF. - The thesis being tr ivial  for ~o c {0, 1}, assume tha t  0 is infinite. 
First ,  every  0-set e with an upper  bound has compositive join: if a ~ v.e~, 

for a c e ,  set d--~ Ve~ (compositive join) and d = c.~; t hen  d = e'Vea = Vace~ = 
= V~ a - -  V.x is a compositive join. 

Take now a parallel map b l inked with ~: we have to show tha t  d!b and dAb ----- 
= Va (a/\b). By (PCH.30) , the  l inked 0-set y ~ ~ w {b} has a resolution (eo)cev; 
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the eompositive join ~ =  Ve~ ( a e a )  yields s resolution (d, e~) of the pair (d, b), 
proving tha t  it  is linked: 

(1) d . g z  V~,~,aea,: V a a : d ,  d'eb--~- Va(a'eb):  ~a(b'ea)---b'V,e,,--~-b'g. 

The distr ibutivi ty follows, calculating the meets by the resolutions (3.3.1): 

(2) (V,z)Ab ---- #,.e,,---- (V~a).e~-- Vo (a 'eb)--  V~ (aAb) �9 

Thus, every existing 0-join in A is linked. Is F :  A - ~ B  is a 0-adequate fmlctor, 
d---- V~ is a 0-join, a = ~.e~ (a ~ a) and ~ = Ve~ as above: 

(3) F (Va)  = ~(~) = ~(~.  ~) =/~(~).A~(~) = ~ ( ~ ) . . ~ ( V e a )  = 

= ~(,~).(VFeo)= V(F,~'~eo)= VF(4.e,,)= V.F,~. 

4.6. CO~0LLA~Y. -- A prj-category is 0-cohesive iff it  is 0-adequate and every 
linked 0-set of parallel morphisms has an upper bound. A funetor between 0-cohe- 
sive prj-categories is 0-cohesive iff it  is 0-adequate. 

4.7. Tn~o~E~ (the O-completion ]or o-adequate pr~-categories). - I f  A is ~ 0-ade- 
quate prj-category, the 0-cohesive completion ocA (2.8) is prj-cohesive, with the 
same projections. The embedding A --~ oeA is 0-adequate, and may  also be con- 
sidered as the u~iversal 0-adequate functor from A into a 0-cohesive prj-category. 

The linking and order relations in oeA can also be described as follows, for 
and fl parallel linked 0-sets of A-morphisms: 

(1) [g]![fl] iff there is a resolution (e~)~o~ of gWfl  in A ,  

(2) [a]<[fl] iff there is such (e~)~o~ with: a=a.(Vbe~eb), for a e a ,  

iff there is such (e~)~e~u ~ with: Va~ ea<Vb~z e b . 

P~ooF. - I f  e is a 0-set of parallel projections of A, e = Vs  is a linked join in A, 
by the previous proposition (4.5); as linked joins are preserved by  the embedding 
in OeA, e -~ [~] in OvA. I t  follows tha t  the projections of A coincide with the endo- 
maps [~] < 1 of ocA: indeed, the relation e < 1 in A is preserved by  the embedding, 
while if [~] <1  in Oe~I, each morphism a ~ ~ is a projection ( a<  [~] <1  in 0cA, hence 
a < l  in A) and [ a ] ~ - V a < l  in A. 

We have to prove tha t  the 0-cohesive category oeA is prj-cohesive, with the 
same projections ~s A. Because of 3.4, this reduces to check the characterizations 
3.2.1-2 for the order and the linking relation in oeA; in the same time, we shall 
also verify the eharacterizations (1) and (2) of these relations. 

First ,  consider the linking. I f  a!fl in ~'oA, then  a u fl is a linked 0-set, with 
resolution ( e , ) ~ . p .  Given such a resolution, the subsets e = {Cain c o~}, ~] : {eblb ~ fl} 
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and their  joins e - - - V e - - [ e ] ,  f = V N =  [~/] yield a resolution of [a] and [8] in 
oeA~ in agreement with 3.2.2: 

(a) ~ . e =  {a .e[ae~}=o: ,  8 " f = 8 ,  

(4) [~] ' f  = [~].[V]---- [{a 'e01ae~,  b e S } ]  = [{a .eo[ae  ~, a e s } ]  = [8]'E~] = [8 ] ' e .  

Last,  assume we have such a resolution: [~] -~ [~].e, [SJ = [8]'f, [~]'f---- [8]'e. By 
(PCH.30) there are resolutions (eo) of g and (f~) of 8; thus:  a ~-- [~].e~ ---- [a].ee~ ---- ae, 
and we m a y  assame tha t  e~<e, for all a e ~ ;  similarly fb<f, for heft .  Then, in 
oeA: 

(5) a . g  = [ ~ ] . e o . g  = [ ~ ] f ' e o h  = [ 8 ] e ' e o h  = [ 8 ] ' e o h  = b.eo, 

whence a!b in A (for all a and b) and [~]![8] in oeA. 
~ow, consider the order. I f  [~]<[8] in 0cA, ievery resolution (e~) of g u 8 

(with e and f as above) yields: a = V~ ( a A b ) ~  Vbae~ ~-af. Given such a resolu- 
tion, replace each e~ with e~.f: this gives a new resolution of ~ u 8 verifying e<]. 
If  this proper ty  holds, by  (3) and (4): [~] -~ [~].e = [ ~ ] . f -  [S].e, as required by 
3.2.1. Lust, if [g] = [fl].h for some projection h, the relation h < l  in ocA implies 
[~] < [fl]. 

Final ly the embedding A--+ @eA preserves the projections by the above re- 
marks, and their  0-joins (as all the existing linked 0-joins) by  definition; the new 
universal proper ty  is a particular case of the known one (2.7). 

4.8. T~_EO~E~ (the O-completion /or o-adequate e-categories). - I f  A is a 0-ade- 
quate e-category, then  ~eA is e-cohesive, with supports: 

(1) ~[~] = E{e(a)la ~ ~}] = V e(a) (a: l inked 0-set of A) .  

The embedding vl: A -+ 0cA is a 0-adequate e-funetor; it  is the universal 0-ade- 
quate e-functor from A into a 0-cohesive e-category. 

PI~OOF. - Let  us consider the 0-set of projections e----{e(a)[a e ~}: it  is an 
endomap in ffoA. Clearly ~-e ~-{a.e(a ' )[a ,  a ' e ~ }  ~ ;  on the other hand, if 
[~].e ~ [~] then  (as in the proof of 4.7) ae ~- a for all a e  g: i.e. e(a)<e, for all a, 
and [e]<e. Henc% in 0v~4, [~] has support [el----Ve(a); this proves also tha t  
the embedding ~? preserves supports. 

As to (ECtt.2), if fl is a l inked 0-set of A, composable with ~, for all a, a' e 
and b e fl : 

(2) a.e(ba~)<a.e(ba')e(a) : a.e(baf.e(a)) = a.e(ba.e(a'))<.a.e(ba), 

(3) e[fl] .  [~] = [ { e ( b ) . a >  e ~, b e S } ]  = [ { a . ~ ( b a ) [ a  e ~, b e 8 } ]  = 

= [{a.e(ba')la , a' co:, b est}] = [~] .e[fl~.]. 
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4.9. RE~ARK. - Let A be a prj-category. I t  can be shown that its e-cohesive completion 
ecA is prj-cohesive provided that A satisfies (PCH.3e) and the following condition, weaker 
than (PCH.4e) : 

a) for every morphism a: A ~ B, every e 0 e Prj A and every e-set e of projections of A, 
if ae o = a = V ae is a linked join (i.e. ae o = a N  ae in ff~A) then there exists a projection e I 

of A such that:  el<eo,  a e l =  a and el~- Vele  is a linked join (i.e. e1-~ e in ffqA). 
~ e 8  

In such a case the projections of ecA are the equivalence-classes [e], where e is any 
e-set of parallel projections of A. However, the stronger but simpler condition (PCH.4~) 
is sufficient for our purposes. 

5. - Inverse  ca tegor ie s  and cohes ion .  

Inverse  categories are the  obvious general izat ion of inverse semigroups.  They  
are used here to supply  (( glueing m o r p h i s m s ,  for generalized manifolds;  for instance,  
the  usual  C,-manifolds will be const ructed in ch. 6, 7 b y  means  of open euclidean 

spaces and  par t i a l  C*-diffeomorphisms be tween open subsets,  forming the  inverse 

ca tegory  I n v  C ~ associated to C ~. 

After  a review of e l emen ta ry  proper t ies  of inverse categories f rom [G1, G2], 
we introduce here  thei r  canonical cohesion s t ructure  and  s t u d y  their  ~-cohesive 
completion.  Other  references on inverse categories can be found in [G3]. 

5.1. R e v i e w  01 inverse categories. A category K is inverse if every  morph i sm 
a:  A - ~  A '  has precisely one generalized inverse 5: A ' - ~  A :  

(1) a 5 a - ~ a ,  d a S - ~ d .  

Then  [G1, thin.  1.25] the  m a p p i n g  a ~-~ 5~ defines an invo lu t ion  of  K (i.e. a con- 

t r ava r i an t  f lmetor ,  i4entical  on the  objects and  involutive),  which is seffdual: 

(2) ~- : 1, (ba) ~ : a~ , (~)~-~  a . 

A projev t io~  of  the  object  A is any  idempoten t  endomorphism e: A - > A ;  

clearly ~ ~- e. The project ions of A are closed with respect  to  composit ion (el ~- 

: e / ' (e l )~ ' (e] )  ----- e l . l e . e  f -~ el.el) and  commute  (e I = (el)~ : ]e): t hey  fo rm a uni- 
t a r y  semilat t ice  Pr j  A. 

E v e r y  morph i sm a:  AI- ->B defines two mappings ,  the  covar iant  and  contra-  
va r i an t  t ransfer  of project ions:  

(3) a~: Prj  A -+ Prj  B ,  a~(e) -~ a e 5 ,  

(4) aP: Pr j  B - + P r j  A ,  a ' ( / )  = ~ la  = 5,(1) , 
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which are easily seen to be  homomorph i sms  of semilat t ices and  to behave  fuac-  
tori~lly ((ba)~ = bpap, (ba) z = aPbe). Clearly: 

(5) 

(6) 

(7) 

a is monie  <=> aV(1) = ga = i <=~ a has some left  i nve r se ,  

a is epi <=> ae(1 ) = a5 = 1 <=> a has  some r ight  i nve r se ,  

a is m.onie and  epi ~ (Sa = 1 ,  a5 = 1) ~ z  a is an i somorph i sm.  

Last ,  the  ca tegory  K is p rov ided  with  a. canonical order (generMizing the  can- 
onical order of inverse semigroups) a <  b, character ized b y  the following equivalent  

conditions (for a, b: A ~ B)  : 

i) a = a$a;  

if) a = b .Sa;  

iii) a = aS .b ;  

iv) a = a S . b . S a ;  

v) 3 e ~ P r j A :  a ~ b . e ;  

vi) 3 ] E P r j B :  a = ] .b ;  

vii) 3 e e P r j A ,  3 J ~ P r j B :  a = f . b . e .  

Notice t h a t  the  endomorphisms x < 1 are precisely the project ions and  tha t  x>~ 1 
implies x = 1. Since for  each morph i sm a:  

(8) a~a = a ~ 5a5 = 5 ,  5 ~ a < l ,  a 5 < l  ; 

i t  follows t h a t  a is monic  iff i t  has a r ight -adjo in t  b (ba>~l, ab<~l);  t hen  b = 5 is 

also lef t - inverse  to a. 
A funetor  be tween  inverse categories preserves  M1 the notions considered above.  

The pa rad igmat ic  inverse ca tegory  is the  ca tegory  3 of small  sets and  par t ia l  

bi jeet ions:  any  inverse ca tegory  m a y  be embedded  in this ([Ks, G3]). Other  exam- 

pies of in teres t  for our context  are given in 5.8 and  ch. 8. 

5.2. Inverse vategories a~vd regularity. L e t  the  ca tegory  A be regular in  the sense 

oJ yon IYeumann (vN-regular) :  each morph i sm a: A - + A '  has  some generalized 
inverse at: Ar- -~A  (verifying:  a a r a - ~  a, araa ' =  at). Then A is inverse (i.e. the  

general ized inverses are uniquely  determined)  iff the  idempoten ts  of A commute  

([G1], 1.25). 
3~ore par t icular ly ,  let  the  ca tegory  A be provided  wi th  a regular involut ion 

a ~-~ 5, regular  mean ing  t h a t :  aSa = a, for all a. Call project ion of A any  sym- 

met r ica l  idempoten t ,  i.e. any  endomorph i sm e: A -+ A such t h a t  e = ee = g (or 
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equivalent ly :  e ~ e~, or also e ~ ~e). Then each idempoten t  a is the p roduc t  of two 

project ions (a ~ - u s a  == aS.Sa)~ so tha t  A is inverse iff its idempoten ts  commute ,  
iff its project ions commute ,  iff every  idempoten t  is symmet r ica l ;  in this ease the  

involution of A yields the (unique) generalized inverse of every  morphism.  

5.3. T h e  canonica l  cohesion structure.  F r o m  now on~ K is an inverse c~tegory. 

I t  is easy to see t ha t  the  project ions of K satisfy the axioms (PCIt.1) and  
(ECH.1, 2), defining an e-cohesive s t ruc ture  wi th  e ( a ) ~  5a ~ uP(l). Indeed :  a .  e(a) -= 

-~ a . g a  = a; if a - ~  ae t hen  ~a ~-- 5 a . e  and ~a<~e; a . e ( b a ) - ~  a . ~ b b a  ~ t ) b . a ~ . a  

-~ e (b ) .a .  

How, the involut ion of K determines  also an e*-cohesive s t ructure  (3.9), with 
cosupports  given by :  e*(a) : -  e(5)  = a5  ~-- a~(1). 

Thus K is provided with  ~ ]irst cohesion s t ructure  (determined by  supports)  
and  with  a second one (determined by  cosupports) :  

(1) 

(2) 

a < ' b  iff a - ~ b . S a ~  a ! ' b  iff a . ~ ) b = b . S a  iff b S ~ P r j B ( 6 ) ~  

a ~ " b  iff a = a S . b ~  a!Hb iff b b . a = a S . b  iff b a e P r j A .  

These orders coincide with the  canonical order ~< of K (5.1), while the two linking 
relat ions are general ly  different (7)~ and  re la ted by  the  involut ion:  

(3) a!'b iff ~!"~. 

The canonica l  cohesion s t ructure  of K will be given b y  the canonical order ~< 

together  wi th  the following linking relat ion (preserved by the invo lu t io~  of K):  

(4) a ! b iff ( a V b  and a ! " b ) ,  

iff (a .bb  = b . S a  and b~).a = a S . b ) ,  

iff (b5 ~ Prj  B and ba r  Prj  A ) .  

K need n o t  be link-filtered: e.g. consider the inverse sabca tegory  of 3 formed 

b y  those par t ia l  bijections whose definition-set has no more  t han  five elements.  
E v e r y  functor  be tween  inverse categories preserves  the canonical cohesion struc- 

ture .  

(6) If a.Sb = b.5`a then: bs`.bs` = b.$bS.bs` = b.5`a~.bs` ~-- bbb.5`as` = bs`; conversely, if bs` 
is a projection: b'5`a = bS.a ~- a~bs`'a = a'bb.5`a = as`a.~b = a.bb. 

(7) For instance, take the inverse category 3 of partial bijections: the projections of 3 
coincide with the ones of 8, thus a ! 'b iff a and b are compatible functions, while a !"b iff 
g, and ~ are compatible functions. Thus, any pair a, b with Def a (~ Def b = 0 and Val a (~ 
(~ Val b ~ 0 yields a counterexample. 
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5A. P~O~OSITmN. - This is indeed a cohesion s t ruc ture  on K (if not  a prj-cohe- 
sion s t ruc ture  in the  sense of ch. 3). I f  a!b:  

(1) 

(2) 

(3) 

n a b  = abb = bSa = b~a = aSb = aba = bSb , 

(aAb)p(e) = %(e)Abp(e) ,  (aAb)P(J) = aP( / )AbP( j ) ,  

e (aAb)  = e (a )Ae(b )  = ba = 5 b ,  e*(aAb)  = e*(a)Ae*(b)  ~ b5 = J )  . 

A set ~ of paral lel  morph i sms  in K is l inked iff i t  has a double resolution (e~), (],) 

of project ions,  ver i fy ing:  

(4) a = a . e ~ = ~ . a ,  a . e b = b . e a ,  ] b ' a = ] , . b ,  ( a , b ~ a ) ,  

the  smallest  doable  resolut ion being given by :  e~ ~ e(a), ]~ = e*(z). 

The car tes ian  composi t ive  p r o p e r t y  of meets  (1.7.3) holds. 

PROOF. -- The axioms (CH.1-4) are a s t ra ight forward  consequence of the  defi- 

ni t ion:  the  first and  second s t ruc ture  are bo th  cohesion structures,  wi th  the  same 
order relation. Linked  mee t s  m a y  be calculated according to the  first s t ructure ,  

e-cohesive ( a A b =  a.bb = b.ga) or to the  second one, e*-cohesive (nAb = bb.a = 

aS.b) ;  the  last  two expressions in (1) follow at  once f rom b g e P r j  B and  

ba e Pr j  A. 
The car tes ian composi t ive  p r o p e r t y  of meets  follows f rom 3.3 (applied to the  

first cohesion s t ruc ture  of K). For  (2): 

(aA b)p(e) ---- (aAb). e. (aAb)~ ---- (aeA be). (SA b) = aeSA beb ---- ap(e)A be(e) �9 

The last  assert ions are obvious. 

5.5. !~E~AI~K. - I t  m a y  be not iced t ha t  a V b  (or a!"b) is a sufficient condit ion 

in order t h a t  a and  b have  composi t ive  m e e t  wi th  respect  to the  canonical order 

(use the  associated e-cohesive or e*-cohesive structure) .  However ,  in an inverse 

category,  eomposi t ive  intersect ions are not  (( sa t i s fac tory  ~): e.g. t hey  do not  sat- 
isfy 5.4.2, nor  5.4.3. The good not ion seems to be  l inked meets ,  in the  present  

s e n s e .  

5.6. Tn:EO~E~ (the ~-eompletion of an inverse category). - The ~-cohesive com- 
plet ion of the  inverse ca tegory  K (with respect  to its canonicM cohesion structure)  
is an inverse category,  p rov ided  wi th  the  canonical  cohesion s tructure.  The involu- 
t ion of e c K  is g iven b y  5---- {5In ~ ~}, while its project ions are the  classes [e], 

where e is any  ~-set of paral lel  project ions of K. 
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Pgoo~. - The mapping ~ ~-. ~ = {5[a e a{ defines clearly an involution on ffoK, 
and fur ther  in ~cK; the  la t ter  is regular (5.2), as: 

An endomorphism [~] is a project ion (with regard to the regular involution~ see 

5.2) iff ~ - ,  5 ~ - ,  {Sa[a e o~}~ iff ~ is a ~-set of projections of K. Therefore  the pro- 
jections of ~cK commute  and the la t ter  is an inverse category (5.2); we only need 
to prove tha t  the cohesion s t ructure  of ~cK coincides wi th  the canonical on% 
determined  by  supports  and cosupports. 

I f  [~]< [fl] ia the  (( completion ~) s t ructure  of ~cK, the  project ion [s] : [ ~ ]  

= [{gala ~ a}] yields: 

(3) [ f l ] . [e]  = [ {b .~a]a~,  befl}] = [{a/\b[ae~, h e f t } ]  ---- [~]A [fl] = [ ~ ] ,  

hence [cr < [fl] in the (( inverse ~) structure.  Conversely, if [~] = [fl].e for some pro- 
ject ion e of ~cK~ the  relat ion e < l  in ~cK implies [~]<[fl] in the completion 
structure.  

Las t  [a]![fl] in the complet ion s t ruc tu re  iff ~!fl in K,  iff a!b for all a e ~ an d  
b ~ fi, iff all the  endomorphisms b5 and Sa are projections~ iff [flS] and [tic] are pro- 
jections of ~cK, iff [~]![fl] in the inverse structure.  

5.7. The inverse subcategory o] a prj-category. Now, let  A be a prj-category.  
Define K - ~  Inv  A as the subcategory of A having the same objects and those 
morphisms u: A -+ B having ~ Morita inverse q~': B -+ A in A~ verifying:  

a) ~ u u r ~  ~r~_ ~ u r  ~ r ~ < ~ l A  ~ U U ~ I B .  

We prove now tha t  K is an inverse category whose projections (i.e. idempotent  
endomorphisms) coincide with the ones of A,  the  generalized inverse in K being 
given by  the lV[orita inverse in A. 

First~ K is a subcategory of A:  if u: A -~ B,  v: B -+ C have Morita inverses 
u'  and v'~ then  u ' v '  is a )s inverse for vu: 

(1) 

(2) 

V g ' U t  Vt "VU ---- V'qA%r'Vt V ' ~  ~ VVt V ' ~ t  ~ ~-  V~ 

v u . u '  v' = v (uu ' ) v '  < vv' < l  . 

Thus, K is vN-regular (5.2). Ev e ry  idempotent  endomorphism e of K is a pro- 
ject ion of A:  if v is a Morita inverse of e: v = vev = ve.ev  is a projection~ hence  an 
idempotent~ and e = eve = ev.ve  is a projection. 

As the converse is trivial,  the idempotent  endomorphisms of K coincide with 
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the projections of A, hence commute: by 5.2, K is inverse, and the generalized 
inverse of a morphism u in K is unique: it will be written 4. 

The embedding Inv A --> A preserves the cohesion structure: generally, it does 
not reflect it. The Inv-construction is clearly functoria~l on prj-cohesive functors. 

I] A is @-cohesive, so is K with respect to its canonical cohesion structure: if 
is ~ linked p-set in K, so is ~ = {gin r ~}; both ~0 and 95 are also linked in A, with 
resolutions e = ~u, e~ = u~ (ue~) ,  and: 

(3) = V 4 v =  re.% = V e .  = e e P r j  A ,  

(4) = = V, .eo = 

I t  may also be noticed that  an adjunction u-~ v in A (vu>l ,  u v < l )  forces 
vu = !,  hence is (~the same ~> as a monic u of K (with v i ~). 

5.8. ExA~eL~.S. - Ii  A-~  8, the prj-category of small sets and partial map- 
pings (1.1), then 3 ~- Inv 8 is the subcategory of small sets and partial bijections. 

Analogously Inv ~ (resp. Inv C ~) is the category of topological spaces (resp. 
open euclidean sets) and partial homeomorphisms (resp. partial C'-diffeomorphisms) 
between open subsets of the domain and codomain. All these inverse categories are 
totally cohesive (5.7). 

6. - Manifolds and gluelng completion for inverse categories. 

In this chapter K is always an inverse category and @ is an infinite section of 
cardinals (1.8). Manifolds over K are introduced as symmetrical enriched categories 
over K. If  K is @-cohesive, bilinked modules between @-manifolds produce the 
@-glueing completion @I~f K of K. 

6.1. Mani]olds. A diagram U = (Ui, ~j)i, consisting of objects U~ (the charts) 
and morphisms u~: Ui -+ Us of K (the gtueing maps), indexed over a small set I,  
will be said to be ~ man~]olg in K if: 

j .  i i (2) % ~ < %  

(3) 

(identity law), 

(composition law, or triangle inequMity), 

(symmetry law), 

in other words, U is a small symmetrical category enriched over the involutive 
ordered 2-category K [Be, Wa, BC]: notice that  the first condition is equivalent 
to the usual one, ~ > 1  (by 5.1). We say that  U is a @-mani]old if its object-set I 
is a @-set. 
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The glueing of the manifold U in K (if existing) will be an object X = gl U 
provided with a family of morphisms u~: U , - + X  (i E I) ,  such tha t :  

(4) u~'u~<u ~ , for all i, j e I ,  

(5) 4~.u~<u~, for all i, j e I ,  

and universal  in the obvious sense. According to the definition 6.3, the family (u ~) 
is a (~ bilinked ~ module f rom U to the tr ivial  manifold (X, lx). 

K will be said to be Q-glueing (as an inverse category) if it  is q-cohesive and 
every  Q-manifold has u glueing; totally glueing (inverse) category, or just  glueing, 
will mean  I2-glueing. 

F rom now on, we assume that K is Q-cohesive. 

6.2. PROPOSITIOn. - Wi th  the previous notations,  a family of morphisms uS: 
U, --> X (i e I)  is the glueing of the manifold U iff, for all i, j e I :  

(1) u S . u ~ < u  ~ , 

(2) ~ J - u  ~ : u~, 

(3) Vi ui ,~i = 1X (8) ; 

the condition (2) can be replaced with: 

(2') z7 ~.u'< u~, 

(2") ~ ' u  i = 1~.  

2Y[oreover, if y~: U, -+ Y (i ~ I)  is any  family of morphisms ver i fying 6.1.4-5, the 
unique morphism y: X - +  Y such tha t  y*-~ y . u  ~ is given by:  

(4) Y ~ V~ y~'g~ (linked jo in) .  

Eve ry  Q-cohesive functor  between Q-cohesive inverse categories preserves the 
existing glueings of Q-manifolds. 

P R O O F .  - First ,  assume tha t  X is the glueing of U; (1) and (2') hold by  defini- 
tion. To prove (3), consider the project ion e ~ V~ u~ '~ :  X --~ X;  clearly eu i ~ U i ,  

for all i ;  by  the uniqueness in the universal p roper ty  of the glueing, it follows tha t  
e = 1. ~7ow, for (2"), fix some h e I and consider the family of morphisms z~: 

(s) These conditions mean that u = (u s) : U -+ X is an isomorphism, in the category of 
manifolds over K (6.3, 6.4), between U and the one-index manifold X = (X, lx). 
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U~--> U~, z ~-~ u~ ( i e I ) ;  since it  satisfies the conditions 6.L4-5: 

(5) 

(6) 

~ . u l  = u~<u~, = ~ ' ,  

~/ .~'  = u~ui<u~, 

there  is exact ly  one morphism z: X--~ U~ such tha t  z ~  z . u  ~ for all i; in pur- 
t icular  z.uT~-~ z ~ - - u ~  = 1, whence u 7~ is monic and ~7~.u~ ~ 1. 

Secondly, (1), (2'), ( 2 " ) imp ly  (2): u j - - - - l~ .u j  = 4 ~ . u ~ . u ~ < ~ . u  ~. 

Last,  if (1)-(3) hold, it is easy to check the universal  p rope r ty  for (X, u':) by  
means of the formula (~), which concerns the join of a l inked ~-sct, since: 

( 7 )  . . . . . . .  , Y Y < I ,  

The finul ~ssertion on ~-cohesive iunctors  is now trivial.  

6.3. Bi l inked  modules. We form here the cutegory ~IMf K of ~-manifolds 
over K ~nd ~( bilinked modules )) be tween them;  we shall show below tha t  this cate- 

gory  is the inverse ~-glueing complet ion of K. 
�9 u~), -~- (Vh, v~)~ between the ~-ma, nifolds U A bilinked module a -~ (aj,)~,,. (Ui,  

and V will be a fumily of K-morphisms a~: U~-~ V~, verifying (for i, j ~ I and 

h, k ~ H ) :  

0-) v~. a~ < ' ,  a~'u~ < a~ (module laws),  

(2) ~ . a i ~  ~ " - ~-~ ~ ~ , a~.a~ ~ v~ (linking laws) , 

where (1) is the usual condition for a module a: U - >  V between categories enriched 
over an ordered category ([Be, Wa]), while (2) expresses the linking p ro p e r ty  on 
domain and codom~ins. Once tha t  the category of bilinked modules is constructed 
(here below), and provided  with its canonical order as an inverse category (6.4), the 

condition (2) may  be thought  to mean  tha t  the  modules a = (a~)~,n and 5 ~ (5~)~,~ 
form a 5[orita context  [Bi]: 5 a d l ~  and aS~<lv. Notice, however,  tha t  a rb i t ra ry  
modules can not be composed, because of the lack of a rb i t ra ry  joins in K. 

The (matrix) composit ion with (bm)s,.~ ~ 7 ~  �9 (VT,, Vh~)H--> (W~, w"~ )~ is given by:  

(3) (b~),.:~. (a ; ) , , ,  = (~ : ) , , . , ,  <~ = V~ (b::.a~,), 

where the join is legit imate and produces a bilinked module, as: 

(4 ~~ ~~'b 7~ i 5~v hai ~,: i ( h , / c ~ H )  

(5) < . ~  = V~ ( b ~ a ~ , . < ) < V ~  ( b ~ . a ; : ) =  <, 

(6) ~J . r  = V,: r , ~ , ~ - V , ,  (b~d, )  = V,, ,~,  . , ~ . ,  ,~k k ,,, �9 
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I t  is easy to see tha t  this is indeed a category, with iden t i ty  of U ---- (U~, u~) 
given by the bilinked endomodule lv  ~ (u~)~. K has an obvious embedding in 
oIMi K, identifying the object U with the ~-manifold (U, lv).  

6.4. TI3:EORE~ (the inverse struvture). - The c~tegory M ~ oI1VIf K is inverse. 
The following conditions are equivalent :  

i) e = (a~),.~: (Ui,  u~ )1~(U~ ,  u~)~ is a project ion of M, 

if) e ----- (a~)~,~ is an endomorphism ~nd a~<~u~, for all i, ~, 

iii) e --~ (a~)~,z is an endomorphism, e~ = a~e Prj U~ and a~ --= u~e~ = e~u~, 

i iv) e (uj e~)~,x where e~ e Prj  U~ and J -~ u i e j u j < e i  , for all i, j. 

I f  a = (a~)~,. and b i ---= (v+)~,+ are maps from U : (Ui ,  u~) I to  V : (Vh, Vl :h)lt, 
v h projections of U and V respectively:  e---- (u~ei),,, ~nd ]---- ( k/h)~,u are 

(1) (/~e)~ = s 

(2) a<~b .(=> a~<~bi~, in K ,  for all i, h ; 

(3) a!b  r b~a~<<.u~ and b~5~<~v~, for all i, j and h, k ,  

<==> ai~b ~ for all i, h and (a~ b ~ ~. a V ~)z,~ is a l inked module 

~ i  i ~ i  i . (4) aAb  = ( ~Ab~)~,~ , a V b  = ( ~Vb~)~,. (for a!b)  

Last,  i f  e~ e Prj  U~ (i e I)  is an ~rbitr~ry family of projections of our charts, 
of the manifold U, with d~>e~ for all i, is given by:  the least projection e = (%)r,x 

(5) 

PROOF. - See 9.3. 

~ = Vh n~e~u~. 

6.5. I~VERSE GLUEING COMPLETIOiN TttEORE1VL - -  The category M----~IMf K is 
the inverse ~-glueing completion of K. 

PROOF. -- See 9.4. 

6.6. EXAMPLES. -- The inverse category J - - - - Inv  8 of small sets and par t ia l  
bijections {5.8) is total ly  glueing: the glueing of the manifold (U~, u~)~ is the set 

X =  gl U =  ( H  Ui)/R,  where R is the equivalence relat ion identifying every  
x e D e f  u~c U~ with u~(x)e Uj. The part ial  bijcctions u~: U , - > X  arc obvious 
(and everywhere  defined). 

Analogously for I n v  ~ :  take on X the finest topology making continuous all 
the mappings u t  
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Ins tead  Inv  @" is total ly  cohesive and not  glueing, even finitely: its (totM) 
glueing complet ion is (can be in te rpre ted  as) the category of C~-munifolds and 
par t ia l  C~-diffeomorphisms. 

Indeed,  the  inclusion I n v  C ~ -~ h v  ~ extends,  by  the universal  p rope r ty  of 
the glueing completion,  to a unique glueing functor  IMf (Inv ~ r ) - ~ I a v  ~ (the 
topological realization of manifolds), t ransforming the manifold U = (U~, u~)~ into 
the space X = gt U, the  glueing of U in ~.  This space X is locally euclidean (with 
locally constant  dimension), because of the p~rtiM homeomorphisms u~: U ~ - > X  
(everywhere defined), whose images cover X;  i t  is not  necessarily paracompact  nor  
Hausdorff.  I t  allows to reconstruct  the manifold in the usual set t ing:  a topological 
space X provided with an open covering (V~) and a C"-~tlas of charts (onto open 
euclidean sets) v~: V~ -~ U~; take V~ = W(U~) and v ~ as the  rest r ic t ion of (u~) ~ to 
its definition-set V~; the par t ia l  Cr-diffeomorphisms u~ are thus the  coordinate changes. 

6.7. Cauehy-completion and maximal mani]olds. The notion of Cauchy-complete 
enriched category w~s in t roduced by  LAWVEgE [LaJ for a monoidM base and 
ex tended  by  BETTI [Be] to enr ichment  over a bicategory. This not ion has a 
s trMghtforwar4 ~4aptat ion to our case: symmetr ica l  categories over a 0-cohesive 
inverse category K. However ,  the in teres t  of such a not ion in the present  case is 
small: since the natura l  morphisms for manifolds are modules, the Cauchy-com- 
plet ion of a manifold would just  produce an isomorphi c object:  the  associated 
maximM glueing atlas; moreover  these completions are still small manifolds pro- 
vided tha t  K is smMl~ which in our examples may  be t rue  (e.g. for I n v  C ~) or not  
(e.g. Inv ~-, I n v  55 in ch. 8). 

Recall that ,  in the inverse category ~IMf K~ the da tum of an adjoint  pair  a-~ b 
(i.e. a pair  of bil inked modules verifying b a > l  and a b e l )  is just  equivMent to 
giving a monomorphism a (5.1; take  b = d). 

~ow,  a linked functor f: (U~, u~)~-~ (V~, v[)~ between manifolds over  K will 
be a mapping f: I - ~ H  be tween thei r  index-sets, such tha t :  U i Vfi, ; : fJ (9) 
for i, j ~ I .  I t  produces a bil inked module f = (f[) : (U~, u~)~ -~ (V h, Vk)H, ~ ]h~ Vr~h, 
which iS monic (f ~ ]): 

(1) ( ~  i ~ \ /  V h v f i  ~ Vf i  ---- Hi 
= V~ 7~ ]~ ~ I5 ~ n J " 

ActuMly, the rally case we are in teres ted  in is a (trivially linked) functor  ]: 
W - ~ M  = (U~, u~)r defined on a one-index manifold W ---- (W~ 1): this is just  the 
same as selecting an index h ~ I  such tha t  W = Uh, and produces the monic 

bil inke4 module (]~): W -~ M, fi = u~ ~. 
The manifold M = (U~, u~)~ over  K is said to be Cauchy-complete if, for every  

(9) For a iunc~or, one would here require ~ instead of equality. 
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W i a  K, every  monic bilinked module (u~): W - - ~ M  is produced by  such a 
functor  f: i.e. there  is some h ~ I  such tha t  W = U~, u~ = u~. 

Now, it is easy to see tha t  the da tum of a monic bilinked module u = (u~): 
W--~ M (du = 1) is equivalent  to ~, adding to M a redundant  chart  ~: in other  
words, giving a larger glueing atlas M ' =  (U~, u~)~, with 1 ' = I  w{k} ( k~I )  and 
requiring tha t  the bilinked module (u~)~.~, : M -~ M'  be an isomorphism. The cor- 
respondence between these notions is established by  the equations: U, = W, 

k _ _  i Ui--Ui ,  U ~ -  ~t i. 
Thus the manifold M is Cauchy-complete iff it is a maximal glueing atlas, tha t  

is if (( every  compatible char t  is a l ready in M ~). 
I f  K is small, every  manifold is contained in a maximal  isomorphic one, its 

Cauchy-completion.  

7. - Manifolds and glueing completion for prj-categories. 

A is always a Z-cohesive prj-category and K = In v  A the associated ~-cohesive 
inverse category (5.7). The simpler, more part icular  case of a ~-eohesive e-category 
is t rea ted  in 7.8. 

7.1. Manifold s and glueing. A manifold over A will be a diagram U = (U~, u~)x 
in A, with u~: Ui--~ Us (i, j e I )  verifying:  

(1) u~ = 1~, ( ident i ty  law),  

(2) u~.u~<u~ (composition law, or triangle inequal i ty) ,  

(3) u~ = u~ u~ u~ ( symmetry  law) . 

Since u~u~<u~ = lv. and because of (3), all the  morph i sms  u~ are actual ly in 
K =  I n c A ,  and ver i fy:  ( ~ ) ~ =  u~: in other  words the manifolds of A are pre- 
cisely those of K .  

The glueing X = gl U of the manifold U in A (if existing) will be, by  defini- 
tion, its lax-colimit, tha t  is an object X provided with a universal lax coeone 
u i: U~-->X ( i e l )  in A:  

a) u j. u~ < u i, for all i, j, 

b) for any  lax eoeone y~: U~---~ Y (yJ.u~<y~), there  exists a unique y: X--> :Y 
in A such tha t  y* = y.  u ~ (i e I) ,  

e) if y', y": X--> Y and y' .u~<y".u ~ ( i e I ) ,  then  y'<y". 

We show below tha t  this problem is equivalent to the glueing of U in K (6.1-2). 
A pr j -category will be said to be o-glueing if it  is ~-cohesive and every  ~-mani- 

fold has a glueing. 
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7.2. T~EO~E~. - Let  U : (U,,  uj), be a manifold  over  A (and K), and  u~: 
U , - +  X (i 6 I )  n fami ly  of morph i sms  in A. 

( X ,  u ~) is the  glueing of U in A iff i t  is so in K.  I n  such a case the  morphisms  
u': are monomorph i sms  of K and  for every  lax cocone y~: U~-+ Y in A ,  the  
appropr ia t e  m orph i s m  y: X ~ Y is given by :  

(i) y : V~y~.~ ~ (linked join in A ) .  

A is e-glueing iff I n v  A is so. E v e r y  ~-cohesive functor  be tween 0-cohesive prj-  
categories preserves  the exist ing glueings of ~-manifolds. 

PROOF. - I f  (X ,  u i) is the  glueing of U in K, the formula  (1) concerns the  join 

of a l inked e-set in A ( X ,  Y), wi th  resolut ion ei ~ u * ~ e P r j  X ( i e I ) :  

(2) y i ~ i . e  i -~- y~,  y i S i ' e j  : y i ' ~ ' ~ U J ( t ' i  = y ~ u ~ ( r  

I t  is now easy to check, as in 6.2, the universal  p roper t ies  7.1 b), e) in A. 

Conversely,  assume tha t  (X ,  U ~) is the  glueing of U in A. F ix  an index h c I 

anti consider, as in the  proof  of 6.2, the  f~mily  z ~ ~- u~: U, -+ Ut~ (i E I )  of mor-  
phisms of A:  they  fo rm a lax cocone f rom U (as in 6.2.5), hence there  is one 

morph i s m  z: X -~ Uh of A such t h a t  z ~ = zu  ~ (i e I ) .  I n  par t icular ,  zu  ~ = 1; more-  
over  ( u ~ z ) . u  ~ =- u~~ ~ : u~u~<~u ~, for ~11 i, so t h a t  uhz<<.l (7.1 c)) ; therefore  u J~ is in 
I n v  A, wi th  general ized inverse (uT')~- - - z. 

I t  suffices now to ver i fy  the  conditions 6.2.2-3; the  relat ion:  

(3) ~ h o u i  ~ Z U  i ~ Z i ~ U h , 

gives the  first, b y  ~he arbi t rar iness  of h ~ I ;  the  second follows f rom:  

(4) (V,  u ' ~  ~) .u~ = u~, 

by means  of the  uniqueness p r o p e r t y  in 7.1 a): (V~ u~u i) = 1. 

The last  s t a t e m e n t  follows now f rom the  last  assert ion in 6.2. 

7.3. L i n k e d  modules .  We fo rm the category eM_f A of ~-manifolds over  A and 

l inked modules be tween  them.  
A module  i . (Vh, v h .h. (a~)~,,. ( U ~ u ~ ) ~ - +  k)E is a fami ly  of A-morphisms  a ~" U ~ - + V ~  

verifying,  for ~tl i, j e I nn4 h, k e H :  

(1) 4. ~ ~ - ) . ~ , ~ ' a  ~ (module laws) ; V~ a h ~ a  k ,  ~vh ~J"~ h 

i t  will be said to be l inked  (or compatible)  if i t  has a resolut ion e~ c Prj  U~ (i e I ,  

h ~ H ) :  

~.a ~ (linking l aw) ,  (2) ah eik = V h 
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or equivalent ly:  

(2') a~ e,~ = a' h ~  

(2") a i e~  < v l .a  i , 

as, from (2') and (2"): '~ ': v a a~ -~ v~.a~, ei~ < a~. eik. Moreover each ei~ can be clearly 
replaced with any  e~h with e~h<e~ and a~e~a--= a~. Thus ,  in the e-cohesive case, 
the linking condition (2) may  be more simply expressed by  means of supports:  

eih : e(a~) (7.8). 
Clearly ~IMf K c ~Mf A. But  note  tha t  a l inked module over A whose compo- 

i nents  a~ are in K need not  belong to ~IMf K:  this happens iff also the (( reverse ~ 
module (5~) is linked. I t  is easy to give couuterexamples in the categories 8 and 23, 
where the linking condition (2) forces the module (a~) (more precisely, its glueing) 
to be (( single-valued ~) bu t  not  (~ injective ~), even if all the  components  are so. We 
shall prove  in 7.6 tha t  ~IMf K coincides with In v  (~Mf A). 

Again, the composition is matrix-l ike:  if (b~)~,~: (V~, v~),--> (Win, w:)~ is a 
linked module:  

(3) (~)~,~..(a~)~,~ = (~)~ ,~ ,  c~ = V~ ( ~ ' a ~ ) .  

We prove  tha t  ba is well-defined. Le t  (]h.~) be a resolution of b ~-- (b~) and choose 
projections e~h~. e Prj  U~ such tha t :  

e~,~<ei~ ( i e I ,  h e l l ,  m e M )  (~) h ~ a ~  - -  a~e,~m , , . 

Then each family ,~b~a~ a,h~a is linked, with resolution (e~h~)~eu: 

(5) (b~ a ~ ) . e ~  = b~, f~,, a',, = b ~ a , , ' ,  

More generally, for n e M: 

(5 h ai~ bh ai ciT: : b a ~ i k i : b ~ t a ~ w" b~a i (7) , -m  a , ' e . ~ a n :  eikn m V a a k e i ~ , n ~ b m a k e i l m  mlkn  k ~  m n k '  

and (~)  is a linked module, with resolutiou ~ ~-- ~/~ e~h,,~: 

(8) c~. u~ -~ ~/~ (b~a~. u~) < ~/~ (b~. a~) -~ c~,  

(9) c~. d,m = ~/h,k ((b~a~e,k,,) = ~/h b~a~ : c~ (by (5)) ,  

(10) ~ ~ h ~ , .  ~ ~ , .  k i cm'e in  ~ \/h,~(bmaaCiTc,~)~\/TcWm b~ak : w~ ~/l~b~ak --~ wm~'c.* (by (7)) .  

This is indeed a category and  A embeds in ~ f A  as in the inverse case (6.3): 
g ~ (g ,  1~). 
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7.4. The pr}-structure. Define the pro}eetions of ~l~f A to be those of ~I5~ K ,  

described in 6.4. lqote that ,  as in 6.4.1 ~n4 with the same proof, if a: U -+ V is 
a morphism in ~Mf A, e e Prj U and ]~  Prj V: 

(z) (lae)~ = f~ al  e , .  

The axiom (PCH.1) holds, because ~ I M f K  is inverse. As to (PCH.2), given 
the linked module a: U -~V in QMfA, with resolution (eel), and ] e P r j  V, choose 

! 

projections e~ e Prj U~ such tha t :  

(2) 

Further ,  let:  

(3) 

/ ~ a ~ =  ~ '  ' ( i e Z  h e l l )  a h e l k  , e l k  ~ eih , �9 

So that ,  by 6.4.5, d ~ ~* (u~ e,) is the projection of the manifold U spanned by the 
family (e~). We prove tha t  ]a = M :  

(~) 

(5) 

(6) 

- t t i l 

= = = V ~  (vh% eik, " V~ (a ; .  e,,o%o) ~ ~" ' ~ = ai.e, an V, oei  

a '  a ~ " ' : ' "  ': - ( a # ) ; :  ( f ) n  = fn ,, = a l  e,n < a;; e, ~ a,~ ~, 

e', = 

- . ,  ~ , ,  ~, = V~ (/~ v,  ~) = s a n , 

(by (4)) 

- V~ a~ ' a ~ = ( In ) i ,  - (f~ ~ ) = f n  n 

7.5. Lnynvz)~. - t f  a - -  (a~) and b = (b~) are parallel morphisms in @Mr A: 

(1) a<~b <::> the modules a, b have resolutions (e,7~), (]~h) such tha t :  

e~<~f,~ and a ~ =  b~e,h (for all i, h) ,  

a ~ ~b ~ (for all i, h) ; a ~ a 

(2) a!b  ~ the modules a, b have resolutions (e~h), (]~t~) such tha t :  

i i aaf~k<bn and b~e~k<a~ (for all i, h, k),  

�9 i <=> a'~!bl~ (for all i, h) and ,~a~\/b~n~ ~, is a linked module ; 

(3) a/~b - (a~Abf~)x,. , a V b  = (a~Vb~)z,~ z (for a!b)  . 

':. e~ ~< b~. Assume now tha t  a~ < b~, P~ooF. - I f  a < b  then  a = b.e  and a~ = b h 
f for all i and h; let (e~h), (Ln) be resolutions of a and b, respectively, and choose pro- 

ff i i // �9 / [/ jections e~n such t h a t  a n ~ bn'e:n, then  the family e~n = eia'ein'f,n is a resolution 
of a (by 7.3) satisfying, with (],~), our conditions. Lust, if the resolutions (e~,) 
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and (/~) ver i fy  these conditions, write e~ ~ V~ e~ and d the project ion of U spanned 
by  the family  (eD, as in 7.4.3, so tha t  a : bd: 

(~) 

(5) 

~' = b',, .e,~ < bl.  4 = (ba) i ,  

(b~)'~ = b l .  e, = b'~. V, (,,: ~,,,;) = V, (bi.,,~ e, ,,~) < V,,~ b' e,~ ,,~' = 

< V 3 . ~ b ~ . l , ~ e , , u ~ =  ~/  v ' h ' e  ~ , , ' =  " " ' 

The proof of (2) and (3) is similar (see also 6.4). 

7.6. We prove now tha t ,  for the Q-cohesive pr j -category A, the inverse ~-glueing 
completion of K ~ I n v  A coincides with the inverse subcategory of the ~-glueing 
completion of A: 

O) elMf K ---- I n v  (e Mf A ) .  

i Trivially, a bilinked module a = (ah)~, R over K ~ I n v  A is a linked module 
over A,  provided with a Morita inverse (a~)z,~ (5.7) in oM_f A. 

i . i Conversely, let  a (ah)i, ~. (Ui, uj), --~ (Vh, h = vk) H be a l inked module, with reso- 
lution (e~) and having a Morita inverse b = (b~)z. x. Then ba and ab are projec- 
tions of OMf A,  hence so are all the  compositions b~a~ and a~b~: 

(2) 

h i moreover  (ba)~.e~a = b~ a~, as: 

h i (ba)~<.<l b~aa < 

(3) (ba)~.e~a = V~, (b~a~ .e,a ) < Vk(b~ v~a~) < b~ a~ < (ba)~.e,a , 

and finally a~ = a~b~aih, because: 

(4) 

<a~. (ba)~ eta : a~b~a~ < (aba)~ <a~ . 

7.7. GLtrEI~G c0~reL~,~IO~ TrmORE~. - The pr j -category ~Mf A is the ~-glueing 
completion of A. 

PROOF. - I t  is an easy consequence of the inverse glueing completion theorem 
{6.5) and of the previous arguments.  A direct proof, in the simpler e-cohesive 
case, can be found in [Gd]. 

By  7.6 an4 the inverse glueing completion theorem, I n v  ( ~ M f A ) :  ~ I M f K  
is ~-glueing (as an inverse category);  hence the prj-category ~ M f A  is Q-glueing 
(7.2). Now, if F :  A --~ B is a to ta l ly  cohesive prj-functor  with values in a glueing 
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prj-c~tegory, F transforms manifolds and linked modules over A into manifolds 
and linked modules over B, which can be glued in B. 

7.8. The e-cohesive case. Let  A be a 0-cohesive e-category: the previous results 
~ake n simpler form. ~7otiee that ,  for every u in K-- - - Inv  A, the support of 
in A is: e ( u ) :  ~u. 

: a i ( U i ,  ~)• v~)~ between ~-manifolds over A (sat- A module a ( ~)~,.: u ~ (V~, ~ 
isfying the module laws 7.3.1) is linked iff it verifies the equivalent conditions: 

(1) 

(l') 

ai ,a~:,~ = v~:" a k~ (linking law),  

i i k .  i 

iff the family (e(a~)) is a resolution of a (the least one). 
The prj-category ~Mf A of ~o-manifolds and linked 

e-cohesive, with: 
modifies over A is now 

(2) ( < a ) ) ,  = V ~ < a ~ ) ,  (<a))~ = ~ . ( < a ) ) ,  = ( < a ) ) ~ . ~ .  

Indeed, e(a) is a projection of the m~nifold (U~, uj)~, according to 6.4 iv): 

(3) 

(4) 

(5) 

i e a J  (~,. (~)~)<<al),  

J e a i 

We verify now the axioms of the e-structure. For  (ECH.1): (a.e(a))~ = a ~ ~, as it  
follows from the argument  below (for b = 1). On the other hand,  a ~- ae in OMf A 
implies a ~ =  a~e~ (by (4)), hence e~>e(a~) for every h, and e>~e(a). Last,  for 
(ECH.2), given a second module b----(b~): (Vh, v~)--~ ( W ,  w:): 

(6) e ' ~ V~,~ e(b~a/) = ( a ' < b a ) ) i  = a~.~(ba), = ai" Vm ((~a)m) = a'-  

b i i i ~ l = al .  %,,, ( < a l ) .  ~(b~a~)) = V~,,~ (a~. < ~ ) .  <boa~))  = 

= v~.~,, ( ,~< . ,~ (b~a~) )  = V~ (v~(V. , , , (b~) ) 'a~)  = 

= V,: (v~(e(b) )~ '<)=  V,~ (( , , (b)) , , ' , ,~<)= (,,(b))~'a~, = (,,(b).a)~. 

Finally,  from 7.5, for parallel linked modules a, b: 

(7) 

(s) 

i i .  i a <~ b .<=> a~ <~ ba e(ah) 

i b i i i i q i  a!b  r ace ( ~ )~b  a and  bhe(ak)~ 'h 

(for all i, h ) ,  

(for ~11 i, h, ]~). 



MARCO GRA~DIS: Cohesive categories and manifolds 237 

7.9. Differentiable manifolds. The e-categories 8 and 23 are glueing. The e-cate- 
gory C ~ is total ly  cohesive and not  glueing (even finitely): its glueing completion 
is the category of C~-manifolds (as in 6.6) with part ial  C*-mappings (defined on open 
subsets). Also here,  the inclusion C ~" --~ ~3 extends to a glueing functor  Mf C~'-+ 23, 
the topological realization of C*-manifolds. 

Manifolds with boundary  can be obtained in a similar way, by  glueing the open 
subspaces of the spaces H ~ =  {(x~, x~, ..., x ~ ) e R ' I x , > 0  }. 

The category Mf (~r (more precisely, aa equivalent one) can also be obtained by glueing 
completion of the full subcategory of C * whose objects are the euclidean spaces R% since 
each open euclidean space is a union (and a glueing in e ~) of open balls. It can be noticed 
that our totally cohesive e-subcategory of C ~ yields back C" by a projection-completion 
procedure (analogous to the well-known idempotent completion). 

8. - Fibre bundles ,  vec tor  bundles  and fo l iat ions .  

We sketch here  a definition of fibre bund.les, vector  bundles and foliations as 
(( manifolds ~) over the e-cohesive categories of the corresponding trivial  structm'es. 
For  fibre and vector  bundles, the topological realization takes place in a (glueing) 
category ~- of (( fibrations )) p :  X - +  B, playing the role of 23 for differentiable 
manifolds. 

8.1. A gluei~g category. A fibratio~ will be just a continuous, surjective (every- 
where defined) mapping p :  X - ~  B between topological spaces. 

Fo rm the category 5 of fibrations and partial maps (f~ ]): p --~p% provided by  
commuta t ive  diagrams in 23: 

(1) 
X -  I ; X / 

B ,  7 )~B' .  

Thus f and ] are par t ia l  continuous mappings, defined on open subsets of X and B 
respectively,  with:  

(2) D e f / =  p - l (Def  ] ) ,  D e f ]  - -  p(Def  J) ,  

and ] is de termined  by  f. 

A project ion (e, g): p - + p  of 3 ~ will be any  pair  of part ial  identities on a 
distinguished pair (p-l(W), W) of the fibration p, de termined by  any open subset W 
of the base B. 5- becomes thus an e-category. 

The inverse category I n v  ~- has the same objects and for morphisms the pairs 
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(u, ~): p -+ p; composed by partial homeomorphisms between distinguished p~irs 
of p and p~, making (1) commutative. 

5: is totally cohesive and glueing: if M - - ( p , :  X~--->B,, (u~, ~)) ,  is a mani- 
fold over 5:, its glueing p: X-~  B in 5 can be obtained by glueing in. 7~ the 
spaces X~, the bases B~ and the module determined by the fibrations p~: 

(3) X - =  gl (X~, u~)~ , B = gl (B~, ~)~ , p = gl (U~.p~: X~-~  Bj) . 

The full subeategory Sro determined by Serre ]ibratio~s has similar properties; 
it can be substituted to 5 in the following, yielding straightforwardly the homo- 
topy-lifting property for fibre bundles. 

8.2. Fibre bu~bdles. The (~ elementary spaces )> we want to patch together are 
the trivia[ fibre bundles, i.e. the cartesian projections (10) p: B • B, where B 
and F are topological spaces and B • F has the product topology. 

Let ~5 be the flfll subcategory of 5 determined by such objects, with the induced 
e-cohesive structure: this is totally cohesive but not glueing. For a morphism 
(f, ]): p --> p' in B, we have: 

(I) Def f -~ p-~(Def ]) = (Def ]) X/~, 

(2) f(b, y) =- (](b), ],(b, y)) , 

so that  a morphism can also be given by two morphisms in ~, ]: B--> B' and 
f~: BXF-~_F ' ,  with D e i / ~ =  (Def ] )xF .  

The trivial fibre bundle p: B x F -~ B will also be written B X/~; the morphism 
(f, ]) will then be denoted by its component ] (determining ]). 

The inverse category Inv ~ has the same objects and for morphisms the pairs 
(u, g): p--->p' composed by partial homeomorphisms between distinguished pairs 
of p and p', making 8.1.1 to commute. As in (2), this is equivalent to giving two 
mappings of InvT~, g: B - ~ B '  and u~: B •  (partial homeomorphism be- 
tween open subsets), such that  D e f u ~ = ( D e f g ) •  and for every b e D e f g ,  
us(b,-):  2 ~ - + F '  is a homeomorphism. Thus, provided that  the morphism u is 
not empty, the fibres /~ and F '  are homeomorphic. 

The glueing completion Mf :5 has for objects the <~ manifolds ~ 2ff = (B~ • u~)~ 
over ~5, for morphisms their bilinked modules: it is the category of fibre bundles 
and partial maps. The inclusion :5-~ 5 (or, more tightly, ~5-~ 50) extends to 
the topological realizatioqv functor Mf 33 -~ 5: (lV[f 3~ -~ 5:o), taking the above object 
M into its glueing (8.1.3). 

(lo) Not to be confused, of course, with the selected endomaps which we call projections. 
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By  the above character izat ion of the morphisms of I n v  ~ ,  the topological type  
of the fibre F b : p-~({b)) at the point  b of the base B = gl(B~, ~)~ is locally 
constant ,  hence constant  on every  connected component  of B. 

8.3. Vector bundles. A trivial vector bundle is a trivial fibre bundle  p :  B x F --~ B~ 
where B is a topological space and /~ is a finite-dimensional, real  vector  space 
(provided with the l inear topology). 

Le t  ~tY be the subeategory of 31 (and Z)  having such objects, with (~ fiberwise 
linear)) morphisms ]: B •  this means that ,  for every  b eDe f ]o ,  the 
(everywhere defined) mapping ]~(b,-): F - - ~ F '  (8.2.2) is R-linear. A morphism 
u: B •  ~' of InvCU is in h l v ~  (8.2); moreover ,  for every  b in D e f~ ,  
u~(b,-): F - ~  F '  is a l inear isomorphism. 

The glueing completion Mf ~U yields bundles and their  usual morphisms (par- 
t ially defined, on distinguished pairs). Also here we have the topological realiza- 
t ion into ~-, or into ~-o. 

8.4. Di]ferentiable manifolds and tangent bundles. Consider again the category C ~ 
(of tr ivial  C~-munifolds), with r~>l. The (trivial) tangent  bundle funetor,  with the 
abuse of notat ions described in 8.2, is: 

(1) T :  (~. __~c~, U F--~ U X ~  dimU , f b - + T ] ,  

(2) T ] ( x , h ) :  (]x, Dhf(x) ) ,  for x e D e f ]  and h e r  aim~ , 

where Dhj(x) is the derivat ive of ] at  x, along the vector  h. 
Since T is total ly  cohesive, it  extends to a glucing lunetor,  the tangent  bundle 

functor  M_f e" -+ ~ f  ~U for C~-manifolds. 

8.5. Foliations. A trivial foliations is a cartesian product  U X V, where U and V 
are open euclidean spaces; the subsets V ~ {x} • V ure its leaves (for x e U). A 
partial C~-map ]: U x V - ~  U ' x  V' (of tr ivial  foliations) is a par t ia l  Cr-mapping, 
defined on an open subset of U x V, which preserves leaves: if (x, Yl) and (x, y~) 
are in V~, thei r  ]-images are in the same leaf of U'X V' (11). 

All this forms the category C~37 of triviM Cr-foliations and part ial  C'-maps, 
ordered by  restriction.  I t  is a total ly  cohesive e-category, whose glueing comple- 
t ion Mf C~5 yields C~=foliations, with part ial  C~-maps. 

(11) In other words: there exists a partial map ]: U-~ U' (also of class C r) defined on 
p(Def ]), such that p'] 4 ]p, where p: U X V-+ V and analogously p'. Compare this with the 
stronger condition of commutativity in 8.1: a partial map of foliations need not be defined 
on a union of leaves. 
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9.  - P r o o f  o f  s o m e  c o m p l e t i o n  t h e o r e m s .  

We prove here the e-cohesive completion theorem (2.7) and the two theorems 
on the ~-glueing conpletion of an inverse category (6.4, 6.5). 

9.1. The category o] linked ~-sets. Let  A be a category provided with a proxi- 
mi ty  relation ! (and no order): we embed A in a category l e a  with order and 
proximi ty  satisfying (CH.1-3) and tha t  par t  of (CH.5~) which concerns joins. 

The objects are the same. A morphism a e F~A(A, B) is given by any e-set 
r A(A, B), l inked in A (including the empty  subset 0~, if O e ~). The composi- 

t ion of ~: A - +  B with fl: B--> C is obviously: 

(1) 

which is again a linked ~-set of A-morphisms from A to C. 
l e a  is obviously a category, wi th  ident i ty  of A given by  the subset {1A} ; pro- 

vide l eA with the inclusion relation a r  a' (for parallel maps) and the linking 
relation: 

(2) ~!g if a!a' in A, for all a r  a'eo~'. 

Now (CH.1-3) are tr ivially satisfied. Le t  E c  leA(A, B) be a linked 0-set of 
l e a  and let fl ~ U X c A(A, B): this is again a e-set (1.8) of parallel morphisms 
of A, clearly l inked; fi is the join of the set X with respect to the order of l eA;  the 
join is comloositive: if y:  A'-->A and 8: B ->B '  are in l eA:  

(3) a~7 = {dbelc ~ X, b e U ~ ,  d e  8} = U {dbclcex, be~,  4e8} = V 8 ~ .  

I t  may  be noticed tha t  f lea has arbi t rary non-empty meets;  however these are 
not  compositive, even in the b inary  case, and will play no role in the following 
steps. 

9.2. PI~00F OF T ~  e-COHESIVE C0iVrPLETIO~ T~E0aE~ (2.7). -- 3N0W A is a cohe- 
sive category and l e a  is the category of its linked e-sets, constructed on (A, !). 

Consider the following binary  relation on parallel morphisms of ~ A :  

(1) ~<: fi iff ~!fl and Vae ~ ,  a ~ V ( a A b )  (linked join) . 
bee 

I t  is a preorder of categories: if ~-< f l~ (y :  a ~  VaAb (b6fl) and b ~ VbAe 
(e~y);  let b~fl, cey:  from b!v it follows tha t  (aAb)!c (for a e ~ )  and a = V(aAb)!c;  
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thus a!c for all c E y ;  moreover i by  the proper ty  1.7c), we have a compositive 
join: a = V~ (aA(Vo (bAt))) -= Vb.~ (aAbAc) ---- V(aAe) (for b eft, c e r )  , which is 
easily seen to be distributive (in the sense of 2.3.1). This preorder is consistent 
with composition because l inked joins and meets are so. 

Let  ~ be the congruence associated to -< and consider the quotient  category: 

(2) ~cA = $~A/~, 

provided with the order < induced by the preorder -<: [a] < [fl] iff a ~( fl (inde- 
pendent ly from the choice of representatives). The linking relation is defined by:  
[a]![fl] iff a!fl as l inked sets of A (again, independently from choice). 

For  (CIt.4, 5~), linked meets and linked ~-joins are calculated in pea by the 
following formulas: 

(3) [~]A[fl] = {aAblaeo~, be f l} ,  for [~]![fl] ; 

(4) V s ' =  [U z'], 

where 2: is any  linked pse t  of pse ts  of A (cr163 for all a, a ' r  2:) and 2 2 =  {[a]lzr e S}. 
]Sast, define the funetor ~: A---> pcA taking the object A into itself and the 

morphism a into the equivalence class of {a}. Clearly, it  reflects the order and 
linking relations, it  is cohesive an6 preserves the existing linked ~-joins of A. 
To verify the universal property,  set G([a]) = V F a  (a e ~) and check tha t  G is a 
e-cohesive fnnetor;  its uniqueness is trivial. 

9.3. PI~OOF oF THEOI~EM 6.4. -- 

a) M has a natural  regular involution: 

(1) 

(2) 

( ( a l ) . , . V  = 

(a l ) "  =  i ial) = (al),,., 

where the last equahty  follows from a~5~a~i<a~<a ~ for all k and j, with equali ty 
for i ----- i and k = h. 

b) We prove now the equivalence of i)-iv), where a projection is any  idem- 
potent  endomap, symmetrical  with respect to the above involution. 

I \ l  ~ J a i ~  i V.~,ja{j~,{ i) ~ ii) ( a j ) = e = ~ e = ~ v h  h h/ and a t =  ~, ~ .  

ii) =>iv) e ~ = a ~ < u ~ = l  is a projection of U~ and:  

(3) a' = a i a ' a  ' < a~ r < u~ e, = u'a'  ~ a' i J 1 i J i "~- i 7  

i i e a l l d :  J i j i i SO t h a t  a~ ~ ~ ~ - e i ~  = uie~u j ~ a~%<a~ for all i, j. 
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iv) =~ iii) I t  is easy to show tha t  u~e~ = e~u~. 

is an endomorphism of U, as (for i, j, h e I ) :  

(4) ~ ~ = ~i" ( ~  ~,:) < ~ e, = e~, 

~a e ~ �9 " (5) j ~ = (e~ul)(u].ei)<u ~ , 

iii) ~ ii) 

(7) (~e)~. = V~,~>;, >,~>; = e, ge~ = ,~ ; .  

The  fami ly  e = (e~)= (u~e~)~,, 

e) M is inverse. We just  need to show tha t  the product  of two parallel pro- 
jections e = (e~), ] = (]~) is a project ion:  

(s) 

(9) 

~o reove r ,  the  p rope r ty  6.4.1 is aa  easy eo~tsequence of the  following b~equality: 
j~a~e~= ]hv~.a~.u~e~<fha~e ~ (with equal i ty  for j =  i and k = h). 

h k j 

i i d) We check now the  character izat ion 6.4.2 of the order of M. If  % < b h ,  

for  alt i ~ I ,  h e l l :  

(zo) (,~a)~ = V,,,, ,~,~'"'b, ,~,~ > \/.k,~ , ~ ' X ' ~  ~ ~ = (,~a~)~ = ,~,~, 

(11) (,~,),i = V~., ,~,~ ~,~i: < V~., , ~ b ~  < V~.~ ~i.~ <,~;,, 

hence aba = a snd  a <.b ia  M .  Conversely, if the last p rope r ty  holds, a = be for 

some project ion e of M and:  

(12) ~, = (be)i = V, blel = V~ h i <  e,< V~ bi = ~i. 

e) Final ly  we prove  the  character izat ion 6.4.3 of the linking relat ion i~t M. 
First ,  assume tha t  a !b  in the inverse category M;  then  ba and b5 are projec- 

tions, and b~aa<(ba)~< j for all i, j e I  and h e l l  (proper ty  ii)). Analogously 

for b& 
~~ ~ u ~ = I and  b~a~<v~ Z~ i.e. ~ow,  if the  previous conditions hold, b~a~< 

ia  K (for all i~ h); moreover :  (a~Vb~)• is a l inked module:  

(13) ~ i b ~ (v ~ ~ , ~ i " " %(a,2,/ ~) = ,  ~%,V~%b~) <(~.Vb~, 

(14) r i ~ ~~ i ~~ i ~~ ~ ~,b ~ �9 (% Vb~) ~ (a ia~) V (a~ b~,)A (b~a~) V ( ~ ~) < % 

T~st~ i f  x ~- [ a~ \ /b  ~ is  a l i a k e d  m o d u l e :  a~ b c x  ( b y  (2 ) ) ,  a n d  a ! b .  
h v h t I , H  
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As to  6.4.1, if a ! b  one shows as be fo re  t h a t  y : (aih/~b~)z,~ is a l inked  m o d u l e ;  

b y  6.4.2, x = a V b  and  y = n a b .  The  las t  r e m a r k  follows n o w  easi ly  f r o m  our  

p rev ious  cha rac t e r i za t i on  of p ro jec t ions .  

9.4. PROOF OF THE INYEI~SE GLU:EING COMPLETION THEOI~EiK (6 .5) .  

a) M is ~-cohesive.  A s s u m e  t h a t  e is a l inked  ~-set  of pa ra l l e l  m a p s  (aa)~.~.~ �9 

(U~, ~)~ --> (V~, v~)a a n d  wr i t e  ~ :  U~ -+ V~ the  Q-set of its i, h -componen t s ,  which  

is l inked  b y  the  cha r ac t e r i z a t i on  6.4.3; se t  b~: Ui --> V~ the  jo in  of t he  f o r m e r  se t  
in K.  I t  is nOW easy  t o  check  t h a t  b = (b~) is t he  l inked  jo in  of e. 

b) M is ~-glueing:  we h a v e  to  show t h a t  each  ~-manif01d U = (U ' ,  Z")R 
of M has  a g lue ing  in M .  The  man i fo ld  U is g iven  b y  objec ts :  

(z) u" = (T:;, %), p ) ,  

wi th  g lue ing  m o r p h i s m s :  

(2) z'~: u ~ = ( v ~ ,  % ) , - >  u ~ = (u~,  %), 

(3) Z"  : (z . . . .  U ~ (~, s e R )  . ij" Ui "-> i)i,:ex 

v e r i f y i n g  the  fol lowing condi t ions  (for r, s, t ~ R and  i, j, h E I ) :  

( l )  Z "  = 1 ,  i . e .  z "  : u" i j  ij 

(5) Z ~ ' Z ' ~ < Z  "~, i.e. z~ t . z " -~z  "~ jh ij "~- ih 

(6) (Z'~) ~ : Z ~' i.e. (z~r~) ~ : Z ~' ji " 

" z 'n  is in M b y  (4)-(6). I t  is p ro-  N o w  the  0 -d i ag ram over  K :  X : (U~, ~j,a• 
v ided  wi th  n a t u r a l  m a p s  (for r e R):  

(7) 

( s )  

Z~: U ~ U r ur r = (  i '  i i ) l " ~ X = ( V i ,  zrs~ i j l R X i  ? 

Z ' =  (z "~ " U s , i~: Ui  --> j ) i e I , ( s , j ) e l~x I~  

ve r i fy ing  the  cha r ac t e r i z a t i on  6.2.1-3 for  the  g lueing:  

(9) (Z ~ .Z%,~,~ 

(lo) (2 ~.z')~,J 

(:[1) (Z z~.2,),, (z~.j zi~ ) : i ,  5i ji, jj 8,J 

(12) Clearly it is possible to index all the manifolds U ~ on the same Q-set I .  
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e) Finully the embedding K--> M s~tisfies this universal p roper ty :  if F :  

K --> A is ~ ~o-cohesive functor  with w lues  into n ~-glueing inverse category, there 

is exact ly one ~-cohesive funetor  G: M - ~ A  extending F, Obviously one t~kes 

G(U~, u~)~ to be the glueing of the m~nifold (FU~, Fu~)~ in A. 

REFERENCES 

[BC] 

[Be] 
[Bi] 
[DH] 

[Di] 

[DS] 

[El] 

[E2] 

[G1] 

[G2J 

[G3] 

[G4] 

[GS] 

[He] 

[Ks] 

[KW] 

[La] 

[Ro] 

[Wa] 

R. BETTI - • .  C A R B O N I ,  Cauchy compIetiou and the associated shea], Cahiers Topologie 
G6om. Diff6reutielle, 23 (1982), pp. 243-256. 
R. BE~TI, Bicategorie di base, Ist. Mat. Univ. Milano, 2/S (1981). 
G.J.  BIRD, Morita theory ]or enriched categories, Thesis, Univ. of Sydney (1981). 
R.A. DI PAOLA - A. H]~LL~, Dominical categories: recursion theory without elements, 
J. Symb. Log., 52 (1987), pp. 594-635. 
R. A. DI PAOLA, Creativity and e]]ective inseparability in dominical categories, in (( Atti 
degli incontri di Logica Ma~ematic~ ~), 2 (1983-84), Dip. Mat. Univ. Siena, pp. 477-478. 
N. DU~FO~D - J .T.  SCHWARTZ, Linear operators, Part III ,  Wiley, Interscience, New 
York (1971). 
C. EHRESMAI~N, Gattungen yon Lolcalen Strukturen, Jahres d. Deutscheu Math., 60 
(1957), pp. 49-77; Esp~ces de structures locales, Cahiers Topologie G6om. Diff4relltielle, 
3 (1961), pp. 1-24. 
C. E~IRESM~NN, Elargissement cemptet d'un ]oncteur local, Cahiers Topologie G6olm. 
Diff6relitielle, 11 (1969), pp. 405-419. 
M. GI~ANDIS, Canonical preorder aud congruence in orthodox semigronps and categories 
(Orthodox categories, 1), Boll. Un. Mat. Ital., 13-B (1976), pp. 634-650. 
M. CxRANDIS, Regular and orthodox involution categories (Orthodox categories, 2), Boll. 
Un. Mat. Ital., 14-A (1977), pp. 38-48. 
M. GRANDIS, Concrete representations ]or inverse and distributive exact categories, Rend. 
Aec~d. Naz. Sei. XL, Mere. Mat., 8 (1984), pp. 99-120. 
3J[. GRANDI~, Mani]olds as enriched categories, in Categorical Topology, Prague 1988, 
World Scientific, Singapore (1989), pp. 358-368. 
M. GI~A~DIS, Cohesive categories and measurable operators, Dip. Mat. Univ. Genova, 
Preprint, 81 (1989). 
A. H~LI~]~I~, Dominical categories and reeursion theory, in (~ Atti degli incontri di Logiea 
Matematica ~>, 2 (1983-84), Dip. Mat. Univ. Siena, pp. 339-344. 
J. KASTL, Inverse categories, in (~ AlgebrMsche Modelle, Kutegorien und Gruppoide )>, 
Akademie Verlag, Berlin (1979), pp. 51-60. 
S. KASAI~-GIA~ - R. F. C. WALKERS, An abstract notion o] glueing, unpublished manu- 
script (1982) (13). 
F. W. LAwv~t~E, Metric spaces, generalized logic and closed categories, Rend. Sem. Mat. 
Fis. Univ. Milalio, 43 (1974), pp. 135-166. 
G. ROSOLINI, Continuity and e]]ectiveness in topoi, Dept. of Computer Science, Car- 
negie-Mellon Univ., Pittsburgh, Pennsylvania (1986). 
R. F, C. WALT~I~S, Sheaves and Cauchy.complete categories, Ca,hiers Topologie G6om: 
Diff6rentielle, 22 (1981), pp. 282-286. 

(is) Talks on this subject where given by the first author at the University of Fribourg 
(198"2) and by the second author at t~he Sussex Category Meeting (1982). 


