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Cohesive Categories and Manifolds (*).

MARCO GRANDIS

Sunte. — Le strutture oftenibilt per incollamento di « spazi elemeniari », come le varieta, 1 fibrati,
le varieta fogliettate, possono essere definite da « atlanti di incollamento » e, formalmente,
come categorie arricchile su opportune categorie ordinate.

0. — Introduction.

0.1. Glueing structures, for instance manifolds, fibre bundles, vector bundles or
foliations, can be obtained by patching together a family (U,) of suitable ¢ elemen-
tary spaces » by means of partial bijections ui: U, U, expressing the glueing con-
ditions and forming a sort of « glueing atlas », instead of the more usual atlas of
charts.

The goal of this paper is to treat these structures as enriched categories over
« totally cohesive » categories, that is ordered categories having binary meets and
arbitrary joins of pairwise « compatible » morphisms. The morphisms of these
« generalized manifolds » are obtained as « compatible » modules between enriched
categories, which can be composed precisely because of the existence of compatible
joins. The condition of Cauchy-completeness corresponds to the maximality of the
glueing atlas; however, since our morphisms are modules, the procedure of Cauchy-
completion just preduces an isomorphic object.

This approach to glueing structures is clearly related to Ehresmann’s one, based
on pseudogroups of transformations (e.g. see [El, E2]).

On the other hand, our setting inseribes in Lawvere’s remark that interesting
mathematical structures not only organize in categories, but are themselves cate-
gories, enriched over some suitable base: a monoidal category as in Lawvere’s
original formulation [La], or more generally a bicategory as in BETTI [Be]. The
bases we actually use are suitable ordered categories (very particular bicategories).

Last, this work is closely related with the notion of « glueing data », considered

(*) Entrata in Redazione il 5 ottobre 1988.
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by KasanciaN and WALTERS [KW] in an involutive ordered category with arbi-
trary (instead of compatible) suprema of parallel maps.

A short version of some of these results, in a more particular setting, appeared
in [G4].

0.2. A cohesive category A is equipped with an order relation f<g and a com-
patibility (or linking) relation f!g, both concerning parallel morphisms (same domain
and codomain), consistent with composition and satisfying some further axioms (2.1).
In particular the relation ! is reflexive and symmetrical, generally non transitive;
binary linked meets fAg have to exist. A totally cohesive category, moreover, has
arbitrary linked joins V¢ (of sets ¢ of parallel, pairwise compatible maps).

The paradigmatic example is the category 8 of sets and partial mappings, where
f<g means that f is a restriction of g, while flg means that f and g agree wherever
they are both defined.

Analogously for the category T of topological spaces and continuous partial
mappings, defined on open subsets; or the category Cr of opem euclidean spaoces
(i.e. open subspaces of some R") and partial mappings of class €, defined on open
subsets.

This category €’ contains the elementary spaces we want to glue in order to
get ("-manifolds, together with the morphisms for the glueing. More precisely,
the glueing-morphisms will live in the inverse subcategory Inv C" of open eucli-
dean spaces and partial C-diffeomorphisms (between open subsets of domain and
codomain), which in our setting replaces Ehresmann’s pseudogroup of (everywhere
defined) C'-diffeomorphisms between open euclidean sets; Inv Cr is an inverse cate-
gory, meaning that each morphism # has a unique generalized inverse @, with:
witw = u and “udl = 4. Notice, however, that we need the whole category Cr to
construct the morphisms of manifolds.

0.3. It may be remarked that, in these examples, the linking relation is deter-
mined by the order: indeed f!g iff f and ¢ have a common upper bound. Such
cohesive categories are here called link-filtered.

However inverse categories, which form an important class of categories having
a canonical cohesion structure, need not be so, and we think useful to keep our
present definition of cohesive category, based on independent, if related, order and
linking.

0.4. In the previous examples the cohesion structure is also determined by the
endomorphisms <1 (the partial identities), which we call projections:

1 f<g HEff=ge (for some projection e),

AY

(2) fig iff f==fe, g=ge¢', fe'=ge (for some projections e, ¢').



MARCO GRANDIS: Cokhesive categories and manifolds 201

Moreover every morphism f has a support e(f): the least projection ¢, of the domain
of f, verifying f = fe, and:

(3) f<g iff f=g-e(f),
(4) flg i f-e(g)=g-elf) .

These facts suggest the more particular notions of prj-cohesive and e-cohesive
category (prj-category and e-category, for short). Notice that these structures are
determined by the order, but need wof be link-filtered: e.g. consider the cohesive
subeategory 8, of 8 consisting of those partial mappings whose definition-set has
no more than (say) five elements.

Every prj-cohesive category A has a canonical inverse subcategory, Inv 4 (5.7).
Every dominical category, in the sense of Di Paola-Heller [He, Di, DH] and more
generally every p-category in the sense of Rosolini [Ro] is e¢-cohesive (3.8).

0.5. Cohesive categories present two interesting notions of « (co)completion »:
the fotally cohesive completion, concerning linked joins and the glueing completion,
concerning the « glueing of manifolds ». The first construction is achieved by con-
sidering equivalence classes of linked sets of parallel morphisms (cohesive comple-
tion theorem, 2.7-2.8).

As to the second, a manifold (U,, i) in the prj-category A is here an enriched
category over A4 (i.e.: u; =1 and u-uj<w;, for all 4, j, k) satisfying a symmetry
condition: u;-u!-u} = w}, which forces the glueing morphisms u} into the inverse
subcategory Inv 4. Its glueing, if existing, is the lax colimit.

If A is prj-cohesive, with linked joins, the category Mf 4 of manifolds over A4
and «linked » modules between them, with the usual matrix composition, is the
glueing completion of A: it is glueing-complete and every prj-functor 4 — B, pre-
serving linked joins, with values in a glueing-complete prj-category, extends uni-
quely to Mf 4 (glueing completion theorem, 7.7).

The e-categories 8 and T are already complete in both regards. Instead the
¢-category Cr is just totally cohesive: its glueing completion Mf G yields Or-mani-
folds as «glueing atlases ». The topological realization of a manifold is given by
the functor Mf C” — G extending the natural embedding Cr — G, by the universal
property of the completion itself; it transforms a manifold (U, ) into its glueing
in G, i.e. the quotient of the sum-space || U, modulo the obvious equivalence
relation produced by the glueing morphisms.

0.6. Analogously, fibre bundles and vector bundles can be considered as mani-
folds over the e-cohesive categories B and AU of trivial fibre or vector bundles,
with suitable partial mappings. The topologieal realization can now be constructed
into a (glueing) category whose objects are general fibrations, or also Serre fibra-
tions.
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A unified formal treatment of differentiable manifolds and fibre bundles clearly
presents advantages. For instance, the trivial tangent bundle functor T': C — U
(r>1), transforming the open set U of R» into the trivial vector bundle U xR~,
automatieally extends, by the glueing completion theorem, to the tangent bundle
functor Mf Cr — Mf U for Cr-manifolds.

0.7. In a different context, the category .L*(a,Ban) of Banach spaces with
spectral measures (on a fixed Boolean o¢-algebra a) and bounded measurable opera-
tors between the former, has a natural prj-cohesive structure whieh will be sketched
here in 1.5 and studied in a subsequent work [G5]. It does not consist of partial
mappings and its projections are idempotent operators.

0.8. Chapter 1 contains a more detailed exposition of the examples and motiva-
tions recalled above; it also treats compositive joing of morphisms in an order cate-
gory (1.7) and the type of « cardinal bound » ¢ we are going to use to restrict com-
pleteness conditions (1.8).

Cohesive, prj-cohesive and e-cohesive categories are introduced and studied in
ch. 2-4, together with the p-cohesive completion (with regard to suprema of linked
p-sets of parallel morphisms).

Ch. 5 is concerned with inverse categories K and their canonical cohesion strue-
ture; the inverse p-glueing completion oIMf K of K is constructed in ch. 6. The
g-glueing completion gMf 4 of an e-cohesive eﬁtegory A is derived from this result
in ch. 7.

Tibre bundles, vector bundles and foliations are briefly considered in ch. 8.
Finally, ch. 9 contains the proof of some completion theorems.

Capital script letters, like 8 or G, usually denote categories of partial mappings.

0.9. Last, some words on the connections of this setting with C. Ehresmann’s
one. I thank Mrs. A, EHRESMANN for her suggestions on this point.

An ordered category (C, <) in Ehresmann’s sense (let us say o-category, to avoid
confusion) abstracts the usual category Set of small sets and (total) mappings,
provided with the following order on morphisms: (f: X - Y)< (f': X'— Y') if
XcX', Yc Y, and fis a restriction of /. Thus, in an o-category, f < f' does not
imply that f and § are parallel; instead, if f, /' are parallel morphisms and i=<f,
it is assumed that f= 7.

These o-categories C, with suitable regularity conditions, should correspond to
e-cohesive categories 4 with splitting of projections (and possibly some further
conditions). Given C, construct 4 = P(C) as the category of « partial maps» of C,
obtained by spans X <> Y whose first morphism ¢ isjan « inclusion » (i < 1z).
Given A, let C be the subeategory of « total maps » « of 4 (e(u) = 1}.

Thus, the present glueing completion theorem, restricted to totally cohesive
e-categories, probably reduces te Ehresmann’s « théoreme d’élargissement complet
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d’un foncteur local » [E2]. The connections at the level of echesive or prj-cohesive
categories should be more involved, if possible.

From our viewpoint, ordered categories in the present sense allow to treat mani-
folds as enriched categories over 2-categories, and their partial mappings as modules
between enriched categories. Moreover, this setting seems to be more adapted to
applications to measurable operators, using the prj-cohesive Banach categories
L*(a, Ban), which are not e-cohesive (1.5, [G5]).

1. — Examples and preliminary notions.

1.1. Cohesion in the category of partial mappings. Let S be the category of small
sets and partial mappings (i.e. univocal correspondences), composed as correspond-
ences. We write Def f the subset of the domain of f on which f is defined.

8 is an ordered category, via:

(1) f<g if f and g are parallel maps and f coincides with g on Def f,

iff f and g are parallel maps and the graph of f is confained in the graph of g.
Moreover § is provided with a prozimity relation (*) which will be called linking
(or compatibility) and written flg:

(2) flg it f and g are parallel maps and coincide on Deffn Defyg.

These two relations, order and linking, are closely related. For instance, if
pC 8(X, Y) is a linked set of parallel maps (f!f' for all f, /' € ¢), the supremum
fi= V¢ and (for ¢ 5~ 6) the infimum f, = A ¢ exist: they are given, respectively,
by the set-theoretical union and intersection of the graphs; moreover they are
compositive, i.e. preserved by composition. It may be noticed that V¢ exists iff
@ is linked (every set of maps having an upper bound is so), while A¢ always
exists for ¢ 7= @; however it is easy to check that the meet is compositive precisely
when ¢ is linked.

1.2. Cohesion and projections. A projection of X in 8 is any « partial identity »
¢: X — ¥, i.e. any endomorphism e<1,. The projections of X form an ordered set
Prj X which is isomorphic to the Boolean algebra §X of the parts of X, via
¢ > Defe.

The projections of 8§ are determined by the order; conversely, they determine

(1) We mean: & binary relation between parallel maps, reflexive, symmetrical and con-
sistent with composition.
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both the order and the linking relation:

(1) f<g if there is some projection ¢ such that f= ge,

{2) flg iff there are projections e, ¢’ such that j=fe, g=ge', fe'=ge,

in the latter case the pair (e, ¢') will be called a resolution of f and g, and we have:
fAg = fe'= ge.

Last, each partial mappings f: X — Y has a least projection e(f) e Prj X such
that f = fe, namely the partial identity on Def f; it will be written e(f) and called
the support of f. Clearly:

(3) f<g it f=g-e(f),
4) flg i f-e(g) = g-e(f) .

In the following (ch. 2, 3) we shall introduce the notion of cohesive category
(4, <, !), of prj-cohesive category (4, Prj), of e-cohesive category (4, e). Every
prj-cohesive category A has an associated cohesion structure defined as in (1)-(2),
or more simply as in (3)-(4) if 4 is also e-cohesive.

1.3. Some categories of continuous partial mappings. Consider the category T
of small topological sets and continuous partial mappings, defined on open subsets.
Congsider also the subeategory Cr of G whose objects are the open subspaces of all R”
(n € N), with partial mappings of class O defined on open subsets; here and in the
following, re N U {oo, o} and class C” means analytiec.

If 4 is any of these categories, the (faithful) forgetful functor U: 4 — § creates
an e-cohegive structure on A, provided with arbitrary linked joins and binary linked
meets (1.1), distributive with respect to the former. The projections of the object X
form an ordered set Prj X, isomorphic to the locale (?) O(X) of the open sets of X.

Other examples, related to fibre bundles, vector bundles and foliations, will be
considered in ch. 8.

1.4. Cohesion for measurable functions. Let X be a measurable space and Y a
normed one. The following very simple cohesion struecture on the set Y:

(11) y<y'<= (y=0or y =y, yly' < (y<y' or y'<y),

yields, by the usual « pointwise» argument, a cohesion structure on the normed
space L*(X, ¥) of bounded measurable mappings from X into Y:

(2) f<f < (YoeX: fagygr) <> (VoeX: fo£0 = fo=gx),
(3) fif < (YeeX: falgs) <= (VoeX: fos40£ 9o = fo = gx),

(?) Le., a complete lattice in which binary meets distribute over arbitrary joins.
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which is finitely cohesive, i.e. provided with finite linked joints. It is easy to guess
that the universal completion of L*(X, ¥) with respect to o-joins of linked sets is
the space M(X, Y) of all measurable mappings from X to ¥: indeed any such map
f: X - Y ig the linked join of the increasing sequence of bounded measurable
mappings f, = e,of, where ¢,: ¥ — Y is the following measurable (non linear)
mapping: e (y) =9 if [y|<n, e,(y) =0 otherwise.

It may also be noticed that the category 8 considered in 1.1 is equivalent to
the category 8’ of pointed sets and pointed (everywhere defined) mappings; writing
0 the base point, the cohesion structure of the hom-sets S(X, ¥) may be described
as abaove.

1.5. COohesion for operators. The category L*(a, Ban) of bounded measurable oper-
ators in the category Ban of Banach spaces, on the Boolean c-algebra e, has for
objects all the pairs (X, ) where X is a Banach space and E: a — Ban (X) is a
(bounded) c-additive spectral measure with values in X (see [DS], XV.2.3-4). A
morphism 8: (X, F) — (Y, F) is a bounded linear mapping S: X - ¥ commuting
with the measures E, F: 8-H(a) == F(a)-8, for all ace.

This category has a natural prj-cohesive structure, defined as in 1.2.1-2, the
projections of the object (X, E) being the endomorphisms E(a), for ¢ ca. The
structure is not complete with regard to linked joins: its ¢-cohesive completion may
be concretely described as the category M(ae, Ban) of closed densely defined, meas-
urable operators, as it will be shown in [G5].

1.6. Cohesion for inverse categories. A category K is inverse if every morphism
a: A — A’ has a unique generalized inverse d: A'— A, with ade = a and dad = §.
For example: the category J = Inv § of sets and partial bijections, or the category
Inv G of topological spaces and partial homeomorphisms between open subspaces
(every prj-cohesive category A has an associated invese subcategory, Inv 4, as
shown in 5.7).

The inverse category K has a canonical cohesion structure:

L a<b iff a=b-da, iff a=ad b, iff a =dba, ...,
(2) alb  if (a-bb=b-da and bb-a = ad-b),

which i$ not prj-cohesive, at least in the present sense: the linking relation has to
be deseribed by double resolutions, on domain and codomain (5.4), or equivalently
by supports (on domain) and cosupports (on codomain): e(a)= da, e*(a)= ad.
This structure will be studied in ch. 5, and its glueing completion in ch. 6.

1.7. Compositive joins and meets (°). Let A4 be an ordered category: A is provided
with an order relation < on parallel maps, which is assumed to be reflexive, transi-

() The two last sections of ch. 1 contain some preliminary tools.
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tive, antisymmetrical and compositive. We say that a set «c 4(4, B) of parallel
maps has compositive join (or union) 4 = V « if:

(1) for all the morphisms x: A'— A, y: B — B’ we have: ydz = \/ yax, in the
ordered set A(4', B'); aee

in particular, 4 is the supremum of « in the ordered set A(4, B). Compositive joins
have the following elementary properties:

a) associativity: if @ = \a, (ieI), and for every i, a,= \Va, (jed,) are
compositive joins, then a = Va,; (iel, jed,) is so;

b) composition: if a = \ a, is compositive, yaz = \ (ya,2) is so0;

¢) if & = V a; is compositive and for every i, a,<a,<a, then ¢ = Va, is a
compogitive join.

Dually one defines eompositive meets (or intersections), enjoying dual proper-
ties. A category provided with binary compositive meets (of parallel pairs of maps):

(2) ylaAa' ) = yaw\ya'z ,

is « the same » as a category enriched over the closed category of A -semilattices;
it will be called a semilatliced category.
The stronger cartesian compositive property:

3) (BAD)- (aAa) = bapb'a

will appear in prj-cohesive categories, with respect to linked meets (3.3.3); a catbe-
gory provided with binary meets, compositive in this stronger sense, is the same
as a category enriched over the category of A -semilattices, provided with the
monoidal structure of cartesian produnet (instead of the closed structure considered
above).

1.8. Smallness and cardinal bounds. A universe U is fixed throughout; a small
set is any set belonging to W. A W-category A is assumed to have each object and
each hom set A(4, B) belonging to U: e.g. the category of small sets, of small
groups and so on; it is small if also its object-set belongs to W. All the categories
we explicitly use are assumed to be U-categories, exeept of course some « very
large » 2-category of categories, like the 2-category oCH of p-cohesive U-categories
mentioned in 2.6.

A section of cardinals will be a set o of small cardinals verifying:

a) Leg, if z,ycpo then #-yey,
b) if xcpo and 04 y<w, then yco.
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Thus g is either {1}, or {0, 1}, or an interval [0, #[ or [1, [ where « is any small
infinite cardinal, or the set 2 (£2') of all small (non-null) cardinals. If p is infinite,
it is also closed with respect to the sum. In particular, we write f = [0, &,[, the
set of finite eardinals, and o = [0, ¥ = [0,8,]. We also write p' the seetion of non-
null ecardinals of g.

A g-set is a small set whose cardinal belongs to g; the section {0,1} will be
shortened to 0 in prefixes.

A p-lattice will be a (small) ordered set having join and meet of all its g-subsets;
thus 0-lattices are ordered sets with supremum and infimum, f-lattices are lattices
with supremum and infimum, Q-lattices are the complete lattices. Ordinary lattices
coincide with f'-lattices and ordered sets with {1}-lattices.

Analogously one can consider g-distributive lattices, Boolean g-algebras, p-locales
and so on. An ordinary locale is the same as an £-locale.

A section ¢ is fixed throughount this paper.

2. — Cohesive categories.

2.1. DEFINITION. — A cohesive category will be a category 4 provided with two
binary relations, the order < and the linking (or compatibility) relation !, both on
parallel morphisms, verifying:

(CH.1) <« is an order of categories (reflexive, transitive, antisymmetrical and con-
sistent with composition);

(CH.2) ! is reflexive, symmetrical and consistent with composition in the strong
sense (*): if ala’ and b!d’ are consecutive, then ba!b’a’;

(CH.3) if a<a’, b<bd' and a'!b’ then a!b;

(CH.4) if a!b, the (linked) meet a\b exists and is compositive in A.

The notion of cohesive eategory is selfdual.
Clearly, if a, b<e¢ then a!b (CH.2, 3); we say that the cohesive category A is
link-filtered if the converse holds too:

(1) alb iff ¢ and b have a common upper bound,

in which case the linking relation is determined by the order. A link-filtered cohe-
sive category is clearly the same as an ordered category provided with binary

(*) As ! is not tramsitive, this consistency is stronger than «left and right consistency
with composition with one map ».
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filtered meets, consistent with composition. The eohesive category §, considered
in 0.4 is not link-filtered.

Every category has a discrete cohesive structure, with a<d iff o!b iff a = b.
On the other hand, a cohesive category with iriviel linking (a!e’ iff @ and &' are
parallel) is the same as a semilatticed eategory, i.e. a category enriched over the
closed category of semilattices (1.7).

In this chapter, 4 will always be a cohesive category.

2.2. Linked joins of morphisms. A linked (or compatible) set o of A is any set
of parallel morphisms such that alae’ for all a, o’ € «; if also § is so, a!f will mean
that « and § are parallel and 4!b for all a € o, b € §; or equivalently, that a U § is
linked. Any subset which has an upper bound is linked.

Say that the set « (of parallel morphisms) has linked join if:

a) o has a compositive join Vo« (in particular, it is a linked set),

b) for each linked morphism b (bla, for all o in o), (V«)!b and (VoAb is
the compositive join of {#/\bls € o} (Which is linked, by (CH.3)).

It is easy to see that linked joins verify properties similar fo those considered
in 1.7 a)-¢) for compositive joins.

2.3. DEFINITION. — A p-localic cohesive category (or p-cohesive category, for short)
will be a cohesive category A4 such that every linked p-set of parallel morphisms
has linked join.

Equivalently, 4 has to satisfy:

(CH.5g) every linked g-set a«c 4(A4, B) has join V&, compositive in A; linked
binary meets distribute over joins of linked g-sets:

) (VadAb = V(aAb), it alb.

QEX

The necessity of (CH.5p) being obvious, assume that it holds. (\V «)1b is trivial for
0 {0, 1}; otherwise the set f = a U {b} is a linked g-set and Va, b<\/ B, hence \ «!b.
Moreover the meets aAb (a € «) form a linked g-set (by (CH.3) or by (1) itself), hence their
join has to be compositive.

In particular we have cohesive, 0-cohesive, f-cohesive (or finitely cohesive), c-cohe-
sive, totally cohesive categories when, respeetively: o = {1}, {0, 1}, f, 0, 2 (1.8). The
categories 8§, G, Cr are totally cohesive (1.1-3); L*(a, Ban) is just finitely -cohe-
sive (1.5).

2.4. Hlementary properties. Let A be g-cohesive. A non-empty g-set « c A(4, B)
of parallel morphisms is linked iff it has some upper bound (e.g. Voc).
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If o and 8 are parallel linked g-sets of morphisms and «!B, then Va!V g and:
(1) (VOA(VB) =Vard (eex,bef);

further, if « and y are consecutive linked g-sets of morphisms then ya = {caja € «,
cey} is again a linked p-set (CH.2) and:

(2) Vye) =Vy-Va.

2.5. Characterizations. A cohesive category A is 0-cohesive (resp. f-cohesive,
g-cohesive) iff it satisfies the first (resp. the first two, the following three) condi-
tions:

(CH.5a) for all objects 4, B the set 4(4, B) has a minimum 0% (the zero morphism
from A to B), compositive in 4: the composition of a zero morphism
with any other is a zero morphism;

(CH.Bb) every pair a, be A(4, B) of linked morphisms (a!b) has join aVb, com-
positive in A; linked binary meets distribute over joins of linked pairs;

(OH.B5¢) every increasing sequence (a,) in A(4, B), obviously linked, has join
Va,, compositive in A4; linked binary meets distribute over increasing
countable joins.

The proof reduces to calculate the join of a countable linked set « = {a,:n eN} in
A(4, B) by means of an increasing sequence of finite suprema b, = \/ {a,: & <n}.

Moreover, if 2e€p (i.e. f'C g), every p-cohesive category is link-fillered (2.1).
Thus an ordered category X is p-cohesive, with linking relation expressed by 2.1.1, iff:

(C.1) X has compositive filtered binary meets,

(C.20) o-sets of parallel maps, filtered in X, have compositive join; filtered binary
meets distribute over these p-joins.

2.6. Cohesive funclors and transformoations. A g-cohesive functor F: A — B will
be a functor between g-cohesive categories which preserves order, linking, linked
binary meets and linked p-joins. For o C o there are characterizations of such funec-
tors, similar to those in 2.5.

A g-cohesive transformation ¢: F' —G: A — B will be a natural transformation
between g-cohesive funetors.

A g-cohesive subcategory of the p-cohesive category A is any subcategory A’
which is closed under linked binary meets and linked p-joins; then A4', provided
with the induced order and linking relation, is g-cohesive as well as the inclusion
A~ A.
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A g-cohesive embedding F: A — B will be a p-cohesive functor, injective on the
objects and reflecting the order and linking relations. Then F is also faithful and
F(A) is a o-cohesive subcategory of B, isomorphic to A.

The concrete 2-category oCH of g-cohesive U-categories (1.8), g-cohesive func-
tors and natural transformations is easily seen to be 2-complete (i.e. to have all
small indexed 2-limits). The cohesion structure on a cartesian product IT 4, of
g-cohesive categories is quite obvious.

2.7. THEOREM (the p-cohesive completion). ~ Every cohesive category has a uni-
versal cohesive embedding #: A4 — pcd in a p-cohesive category, preserving the
exigting linked g-joins: the g-cohesive completion of A.

The universality of # means that: for each cohesive functor F: 4 — B pre-
serving the existing linked p-joins, with values in a p-cohesive category, there exists
precisely one p-cohesive functor G: gcd — B extensing F (F = Gp).

ProOF. — See 9.1-2.

2.8. A description of the g-cohesive completion. The p-cohesive completion pcAd
may be constructed in the following way.

First form the category §,4 having the same objects as A4 and morphisms
a: A -> B given by the linked g-sets o c A(4, B), with composition:

@ B = {balaco, bef}.
Consider on the ecategory {l‘QA the preorder <:

(2) a<p iff «!f and YVeecx, a =V (aAb) (linked join),

bef

and. the quotient category:
(3) pcd = Q’QA/~ R

where ~ is the congruence associated to <.
The order and the linking relation in ged are given by:

4) fel<if]  iff a<f, le]![B] iff a!f as linked sets of A4,

independently from the choice of representatives.
Linked meets and linked e-joins are calculated in ged by the following for-
mulas:

(5) [A Bl = [{anblae o, DeBi],
(6) V2={u2i,
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where [«]![], 2 is any linked g-set of p-sets of A4 (a!a/, for all a, &’ € ) and

2= {[a]lae X} .

In particular:

(7) Va=1[a] (in pcd, for any linked g-set o of A).

The universal embedding 7: 4 — gcA takes the object A into itself and the
morphism o into the equivalence class of {a}.

The o-cohesive completion of a finitely cohesive category 4 may be given a simpler des-
cription, since for each morphism a in ocd there is an increasing sequence of parallel mor-
phisms (a,),en of 4 such that ¢ = [{a,: n eN}] (see 2.5). This case will be considered in [G5].

2.9. Density. If A is a cohesive subcategory of a g-cohesive category B, with
the same objects, the embedding F: 4 — B is the p-cohesive eompletion of A4 iff:

i) F preserves the existing linked g-joins,

ii) A is g-dense in B: for every morphism b in B there is a linked g-set « in A
whose join in B is b.

Indeed, the necessity of these conditions being obvious, assume that they hold:
we must show that the g-cohesive functor G: pcd > B extending F is an iso-
morphism of cohesive categories. Since it is surjective, by ii), it suffices to show
that it reflects the order (hence it is injective) and the linking relation.

Let « and 8 be parallel, linked g-sets in 4. If G{x]<@[B] in B, for every a € a:
o = Ga< @[]l =V, b, hence a = \/,a\b, linked join in B. Since &« and all a\b
are in A, the linked join holds in 4, which proves that [«]<[f] in gcA.

Last, if G[a]!@[f] in B: Va =V § in B, whence a!b in B for every a € « and
b€ p, and the same holds in the cohesive subcategory A4; in other words, [«]![f] in
pcA.

3. — Prj-cohesive and e-cohesive categories.

As we have seen in ch. 1, cohesion structures are often defined by agsigning
for each object a set of commuting idempotent endomorphisms, which will be called
« projections ». This yields the notions of prj-cohesive and e-cohesive category, the
latter being stronger than the former.

3.1. DEFINITION. ~ A prj-cohesive category (or prj-category for short) will be
a category A4 provided, for every object A, with a set Prj A c A(4) of endomor-
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phisms of 4 (the projections of A) so that:

(PCH.1) every identity is a projection; if ¢ is a projection, e¢ = e¢; if ¢ and f are
parallel projections, ef = fe is a projection;

(PCH.2} if a: A — B is in 4 and fe Prj B, there exists some ¢ € Prj A such that:
fo = ae.

Thus Prj 4 is a commutative idempotent unitary subsemigroup of A(4) and
a l-semilattice in its own right, with eAf=¢f = fe, e<f iff e = ¢f (= fe) and
maximum 1,.

A prj-cohesive functor F: A — B is a functor between prj-cohesive categories
which preserves projections.

3.2. The cohesion structure. The prj-category 4 has the following associated
order and linking relations (which make 4 into a cohesive category, as it is proved
n the following section):

L a<b if there is a projection ¢ such that 4 = be (note: ae = a),

2) a'b if there are projections e, { such that: ¢ = ae, b = bf, af = be; in this
case we say that (e, f) is a resolution of the linked pair (a, b).

This order extends the canonieal order of projections: if ¢ = f-g in Prj 4, then
¢f = fgf = fg = ¢. An endomorphism a e 4(4) is a projection iff a<1,: thus all
(the existing) joins and non-empty meets (°) of projections are the same in Prj A
or in A(A). The identity 1, is maximal in 4(4): if a>1, then 1 = ae hence,

¢=gqee=ae=1 and a=1.

It will also be usefal to remark that the projection ¢ in (1) and (2) may be
replaced with each projection ¢, such that ¢, <e and a-¢, = a.

3.3. PropPoRITION. — The prj-category A with the associated order and linking
relations is a cohesive category (2.1). If (e, ¢') is a resolution of the linked pair
(@, b), the meet of the latter is:

(1) apNb = ae’= be ;

() Warning: the empty set has infimum 1 in Prj 4, but generally (e.g. in the examples
of eh. 1) no infimum in A4(4): the latter has no greatest element.
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moreover, if in the diagram (2) a!b and ¢!d:

(2) A3 B= 0,

then the cartesian compositive property (3) holds (see 1.7):
(3) ca\db = (cAd): (aA\D) .

Every set ¢ of parallel projections is linked; the linked meet of two parallel
projections is their meet in Prj A: eAf = ¢f = fe, which is therefore compositive
in A.

A functor between prj-cohesive categories is cohesive iff it is prj-cohesive, iff
it preserves the order.

PROOF. — The letters ¢, f, ¢/, f ... always denote projections.

For the first two axioms (CH.1-2) the only non-trivial checkings concern the
composition. Let be given the diagram (2).

If a<b and e¢<d, let: a = be, ¢ = df; by (PCH.2) there is a projection ¢’ such
that fa = ae’y, and: db-ee’= d-be- ¢’ = dae’' = dfa = ca.

Instead, if a!b and cld, let: o = ae, b = be', ae'= be, ¢ = ¢f, d = df', ef' = df.
By (PCH.2) there are projections ¢, ¢ such that: fa = aé, f'b = bé'; we want to
show that (eé, ¢’ ¢') is a resolution of the pair (ca, db). Indeed: ca-eé = ¢c-aé =
= ¢fa = c¢a, and analogously: db-¢’ = db; last:

4) ¢+ ¢’ &'= ched' = cbé' ¢ = cf be = dfbe = dfac’= daée'= dae' é = db-eé .

As to (CH.3): if a<o’, b<d and a'!d', let a=a'e, b=1>'f and (¢, f) be a
resolution of (a’, b"). It is sufficient to check that (ee’, ff’) is a resolution of (a, b):
a-e'=a, b-ff'="0, a-ff'=a' eff'= b efe'= b-ee’.

Now we prove (CH.4) and the properties (1), (3). Let a!b, with resolution
(6, €'): @ = ae, b= be', ae’= be; we must show that h = ae¢’= be is the meet of
a and b; clearly h<a, b, while if k<a, b then k = af = bf’ and k = ae*f = bf re<h.
It is now easy to deduce (3), hence the compositive property of meets: with the
hypothesis a!b, ¢!d and the notations above (proof of (CH.2)), we have:

(5) ca\db = ca-e' 6'= df-be = (cAd)- (a/\b) .

The last remarks are now trivial; in particular a functor between prj-cohesive
categories preserves the order iff it preserves the projections, in which case it also
preserves resolutions, hence the linking relation and also binary linked meets, be-
cause of (1). '

3.4. REMARK. ~ A cohesive category (4,<,!) may be defermined by at most
one prj-cohesive structure on 4, given by:

(1) Prid ={acA(d)la<1y},
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which happens iff a<1 implies as = a and moreover the characterizations 3.2.1-2,
concerning the order and linking relations, hold.

Indeed, if this is the case, define the projections by (1). (PCH.1): if ¢, fe Prj 4
then ef<1 is again a projection, hence an idempotent: it follows that e¢f = ef-ef<f-¢;
analogously: fe<ef. (PCH.2): from fa<a and the condition 3.2.1 it follows the
existence of a projection e such that fo = a-e.

Thus a cohesive category will be said to be prj-cohesive when these facts hold.

Analogously, an ordered category (A4, <) is prj-cohesive, with projections defined
by (1), iff a<1 implies ae = 4 and 3.2.1 holds.

3.5. DEFINITION. — An c-cohesive category (or e-cafegory for short) will be a
category A provided, for every object 4, with a projection-set Prj A c 4(4), veri-
fying (PCH.1) and:

(ECH.1) for each a: A — B in A, the set of projections ¢ of 4 such that ac = a
has a least element e(a): the support of a,

(ECH.2) for every a: 4 — B, b: B~ in A: e(b)-a = a-e(ba).

Elementary properties, for a,a’: 4 — B, b: B - (C, ecPrj A, fePrj B:

1) ee) =¢,

(2) e(ba)<e(a),

3) fo = a-e(fa),

4) e(n-e) = e-e(ae) = ela)-¢,

(5) a<a’ = e(a)<eld),

(6) if @ i3 monie, then e{s)=1.

In particular, (3) shows that the axiom (PCH.2) is satisfied: 4 is prj-cohesive,
hence cohesive.

An ¢-cohesive functor will be a functor between e¢-cohesive categories which pre-
serves supports; by (1) it also preserves projections, hence it is prj-cohesive and (3.3)
cohesive,

3.6. The cohesion structure. By the last remark in 3.2, if 4 i8 e-cohesive the
agsociated order and linking relations are characterized by:
1) a<bh iff a=>0-e(a),
(2) ald iff a-e(d) =b-e(a), iff (e(a), e(b)} is a resolution of (a,d),

iff a-e(b)<b and b-e(a)<a.
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Further, if a!b, by 3.3 and 3.5.4:

3) aN\b=a-e(b) =b-ela),
(4) e(a/\b) = e(a)\e(D) .
Similarly, if A is p-cohesive, it is easy to check that:

(5) e(Va) =V e(a), (for every linked g-set a).

QEX

3.7. Counterimages of projections. If A is e-cohesive, every morphism a: A — B
in 4 determines a mapping:

(1) aP: Prj B ->Prj A, a?(f) = e(fa) .
Thus Prj becomes a contravariant functor from A into the category of semilattices:
(2) 1P=1, (ba)? =a"b", a*(fAg) = a"(f)\a?(g) .
Indeed:

a?b?(g) = a(e(gh)) = e(e(gh)-a) = e(a-e(gha)) = e(a)- e(gba) = e(g-ba) = (ba)F(g) .
Further:

a*(fg) = a¥(f7(g)) = (fa)P(g) = (a-aP(f))?(g) =
= (aP(f))"(a?(g)) = a®(f)-a?(g) = a®(f)Aa"(g) .

Other properties, for a,‘ o':A—B, b: B->C, ¢,¢'ePrjd, fePrjB:

3) e’(1) =e,

(4) fa = a-a®(f),

(5) ef(e’) = ee’,

(6) e(ba) = e(e(b)-a) <e(a),

for (6), write f=b"(1), so that:
e(ba) = (ba)?(1) = aPbP(1) = a*(f) = a” f7(1) = (fa)?(1) = e(fa) = e(e(b)-a) .

Conversely, if 4 verifies (ECH.1) and the mappings (1) are given, satisfying
(2)-(4), hence (5), then A is e-cohesive, with e(a) = aP(1). Indeed: a-aP(l) = a; if
ae = o then a(1) = (ae)?(1) = ea?(1) = e-a?(1), i.e. aP(1)<e; further a-(ba)P(l) =
= a-a"b?(1) = a-a”(f) = fa = b?(1)-a, where f= bP(1).
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3.8. Exampirs. — a) The cohesive categories §, B, C" described in ch. 1 are
e-cohesive, with projections given by the partial identities.

b) An e-cohesive category need not be link-filtered: e.g. the subeategory of 8§
considered in 0.4.

o) Every dominical category ([He, Di, DH]), more generally every p-cate-
gory [Ro] A, is e-cohesive, with:
1) Prj 4 = {domare A(A)} = {ec A(A)|da in 4 such that ¢ = doma} =
= {ec A(4)je = dom ¢},
(2) e(s)=doma.

This follows from the following properties of domains proved in [Ro], 2.1.4-5, for mor-
phisms a: 4 - B, b: B> 0, a': A —+ B’:

i) doml,=1,, ii) dom {ba) = dom ((dom b)-a) ,

iiiy (dom b)-a = a-dom (ba), iv) (dom a)'(dom a’) = (dom a'):(dom a) ,

v) adomg=a, vi) dom (dom a) = dom a,

vii) (dom a)-(dom a) = (dom &), viii) dom ((dom a)-(dom a')) = (dom a)-(dom a’) .

Indeed the second and third equalities in (1) come from the property vi). The axiom
{PCH.1) follows from i), vii), iv) and viii), while (ECH.2) coincides with iii). As to (ECH.1):
if a: 4 — B, then a = a¢-dom @, by v); on the other hand, if ¢ = ae and e € Prj 4, then
e <dom a, as {by ii) and viii)):

(3) doma = dom (ae) = dom ((dom a)e) = dom ((dom a)(dom e)) =

= (dom a)-(dome) = (doma)-e."

d) The category L>™{a, Ban) described in 1.5 is prj-cohesive [G5].

3.9. Cartesion producls and duality. The cartesian product 4 =1II 4; of a
family of prj-cohesive categories (4,),, is prj-cohesive, with Prj, (4,) =II (Prj 4,).
If the factors 4, are e-cohesive, yo is the product 4 with: e((a.),;) = (e(@)));c;-

A pri*-cohesive category will be a pair 4 = (4, Prj) verifying (PCH.1) and
(PCH.2%): for all @ and ¢ there is some f such that fa = ae; the associated cohe-
sion structure has: a<b iff there is some projection f such that ¢ = fb, and analo-
gously for the linking (determined by coresolutions of pairs of morphisms). Then
A is an e*-cohesive category if it is provided with eosupporis e*(a) verifying (ECH.1%,
ECH.2%).

4. — Adequate prj-cohesive categories.

A is always a prj-category; we examine conditions ensuring that the g-cohe-
sive completion of A4 is again a prj-category.
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4.1. Resolution of sets. It is easy to show that a set ac A(4, B) of parallel
morphismg is linked iff there is a family of projections e, € Prj A (a, b€ o) such
that:

(1) 0=Q"€p, O €,=~0b ¢y, forallagbex.

More particularly, a resolution of o will be a family (e,),., of projections of A
such that:

(2) a=ae, a&e==>be, Iforallabdbea;

the second condition may also be written: a-e¢,<b. A set admitting a resolution
is clearly linked, but these two facts are indeed equivalent in most cases we are
interested in, as we shall soon see (4.3-4).

Any prj-cohesive functor preserves resolution of sets.

4.2. Transfer of resolutions. A resolution (e,) of « may be transferred by com-
position in the following way. Given the morphisms w, y:

1) A% A% BY% B, (scaq),

choose, for each a € a, a projection ¢, € Prj 4’ such that ¢, -z = »-¢.: then, a trivial
checking shows that:

2) (¢,) is a resolution of yuw = {yazlacal .

4.3. Ewxistence of resolutions. Let A be prj-cohesive.
a) Every set ¢ of parallel projections has a canonical resolution: (e)

¢€e*

b) More generally, every set « which has an upper bound 4 has a resolution.
Indeed, let ¢ = d-e, (@€ a):

(1) ae, = e, €, =@, G- = 06,76, =de,e,=Db-¢,.

Thus: if 4 is p-cohesive, each linked g-set has a resolution.

¢) 1f 4 has ¢’-meets of projections (in Prj 4 or equivalently in 4(4), by 3.2),
compositive in 4, we are going to show that each linked p-set « has a resolution (e,)
and also (for « = #) compositive meet:

(2) Nae=10b-Ae,, forany bea.
a
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Indeed, with the notations of 4.1.1, the family e, = Ae, (2 €a) is a resolu-

tion of o: b
(3) aeo=0Nes=Nae,=Na=a,
b b b
(4) 06y == Uy Oy = (B 6,,6;) €4 = (DCey 0) 6, = b€y E4n 6, = be, ,

as to (2): b N\ e.<bro, = a-¢<a for all a e «; if v<a for all a € ¢, then z<ab =
= b-e,, henee x<b N\ e, = A\ b-e,; last, the compositive property of the meet is a
straightforward consequence of the transfer of resolutions (4.2).

d) In particular, as any prj-category has linked f-meets, it follows that each
finite linked set has a resolution.

e) It 4 is e-cohesive, a set o of parallel morphisms is linked iff (3.6.2):
(5) a-eb)<b, forall g,bexa,
iff the family ¢, = e(a) of their supports is a resolution of « (the e-resolution).

4.4, Adequate pri-cohesive categories. We shall say that the prj-coherent cate-
gory A is g-adequate if it satisfies:

(PCH.3,) each linked p-set of 4 has a resolution,

(PCH.4,) A4 has g-joins of projections, compositive in 4.

A prj-category which is g-cohesive is also g-adequate (4.3 b); trivially, it is
0-cohesive iff it is 0-adequate. The category L*(a, Ban) (1.5) is s-adequate, because
of 4.3 ¢), whereas it is not o-cohesive.

A g-adequate functor will be a prj-cohesive functor between g-adequate (prj-
cohegive) categories, which preserves p-joins of projections.

4.5. ProposITION. — If A4 is a p-adequate prj-category, a linked g-set of parallel
morphisms has linked join (2.2) iff it has an upper bound. Every existing p-join
of morphisms is linked.

A g-adequate functor preserves all the existing e-joins.

Proo¥. — The thesis being trivial for oc {0, 1}, assume that o is infinite.

First, every g-set o with an upper bound has compositive join: if & = ¢-¢,,
for g €« set é= Ve, (compositive join) and d = ¢+ é; then d = ¢+ Ve, = V, 06, =
= V,a = Vo is a compositive join.

Take now a parallel map b linked with «: we have to show that ¢!b and 4\b =
=V, (aAb). By (PCH.3p), the linked p-set y = o U {b} has a resolution (e,).,;
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the compositive join é = Ve, (@ €a) yields a resolution (4, ¢,) of the pair (4, b),
proving that it is linked:

1) d-6=Vowatw =Voa=d, de=V,(ae)=V.0e) =0bV,e,=b-¢.
The distributivity follows, calculating the meets by the resolutions (3.3.1):
(2) (Va)Ab = d-e,= (Va.a)-e, = V. (a-6) = V,(a\b).

Thus, every existing g-join in A is linked. If ¥: 4 — B is a p-adequate functor,
d=Vais a g-join, a = d-¢, (aca) and é= Ve, as above:

3)  F(Va)=F(4) = F(4-é)=F(4)-F(é) = F(d)-F(V e,) =
= F(@)+(V Fe,) = \ (Fé-Fe,) = \/ Flé-e,) = \V Fa .

4.6. COROLLARY. — A prj-category is g-cohesive iff it is g-adequate and every
linked p-set of parallel morphisms has an upper bound. A functor between g-cohe-
sive prj-categories is g-cohesive iff it is p-adequate.

4.7. THEOREM (the g-completion for g-adequate prj-categories). — If A is a g-ade=
quate prj-category, the p-cohesive completion ged (2.8) is prj-cohesive, with the
same projections. The embedding 4 — ged is p-adequate, and may also be con-
sidered as the universal g-adequate functor from A into a g-cohesive prj-category.

The linking and order relations in gcA4 can also be described as follows, for «
and g parallel linked g-sets of A-morphisms:

1) [ [B] iff there is a resolution (¢,),csus of ® U in 4,
(2)  [«l<[B] iff there is such (e,),c,,s With: a=10a-(V,e ¢), for acw,

iff there is such (e,),c,up With: V,ep6,<Vies @, -

ProorF. - If ¢ is a g-set of parallel projections of 4, ¢ = V¢ is a linked join in A4,
by the previous proposition (4.5); as linked joins are preserved by the embedding
in geA, ¢ = [¢] in geA. It follows that the projections of A4 coincide with the endo-
maps [¢]<1 of ged: indeed, the relation ¢<1 in 4 is preserved by the embeddjng,
while if [«] <1 in ped, each morphism a € « is a projection (e<[]<1 in pcd, hence
a<l in A) and [a] = Va<1 in 4.

We have to prove that the g-cohesive category pcA is prj-cohesive, with the
same projections as 4. Because of 3.4, this reduces to check the characterizations
3.2.1-2 for the order and the linking relation in ged; in the same time, we shall
also verify the characterizations (1) and (2) of these relations.

First, consider the linking. If «!f in .4, then « U B is a linked p-set, with
resolution (¢,).c,,5- Given such a resolution, the subsets ¢ = {e,Ja€a}, n = {6|bef}



220 MArcO GRANDIS: COohesive categfries and manifolds

and their joins ¢ = Ve=1[e], f= Vg = [n] yield a resolution of [«] and [A] in
ocd, in agreement with 3.2.2:

3) we={ocacd=a, fi=f,
@ (=i =[{ealaca be ] = [b-aloca be ] = [Bl:f] = [f-c.

Last, assume we have such a resolution: [«] = [«}-¢, [f] = [f]-f, [¢]f = [B]-e. By
(PCH.3p) there are resolutions (e,) of x and (f,) of §; thus: a = [«] ¢, = [«]* €6, = ae,
and we may assume that e¢,<e, for all a € «; similarly f,<f, for be . Then, in
pcA:

{6) o fo=[a] € fo=[o)f-tafo=[Ble-ecfo = [Bl-tufo =Dreu,

whence a!b in 4 (for all & and b) and [«}![5] in gcd.

Now, consider the order. If [x]<[f] in ged, éevery resolution (e,) of o U S
(with e and f as above) yields: a = V, (aAb) = V, a¢, = af. Given such a resolu-
tion, replace each e, with ¢,-f: this gives a new resolution of o U § verifying e<f.
If this property holds, by (3) and (4): [o] = [a]-¢ = [a]-f = [B]-e, a8 required by
3.2.1. Last, if {o] = [#]-h for some projection h, the relation h<1 in ged implies
[ <[B].

Finally the embedding 4 — ged preserves the projections by the above re-
marks, and their g-joins (as all the existing linked g-joins) by definition; the new
universal property is a particular case of the known one (2.7).

4.8, THEOREM (the p-completion for o-adequale e-categories). — If A is a p-ade-
quate e-category, then gcA is e-cohesive, with supports:

1) ela] = [le(a)leca}] = V e(a) («: linked p-set of A4).

[41=1-2
The embedding 5: A — pcd is a p-adequate e-functor; it is the universal g-ade-
quate e-functor from 4 into a g-cohesive e-category.

ProOF. - Let us consider the p-set of projections ¢ = {e(a)la € o: it is an
endomap in F,4. Clearly «-e= {a-e(a')la, e’ €} ~a; on the other hand, if
[or]-e = [o] then (as in the proof of 4.7) ae = « for all ¢ € a: i.e. e(a)<e, for all a,
and [¢]<e. Hence, in gcd, [x] has support [e] = Ve(a); this proves also that
the embedding # preserves supports.

As to (BECH.2), if § is a linked p-set of A, composable with «, for all a, a' € «

and be
) a-e(ba’)<a-e(ba’)e(a) = a-e(ba'-e(0)) = a-e(ba-e(a')) <a-e(ba),

(3) e[fl-[a] = [{e(d)-alaco, bef}]=[{a-eba)aca, bef}]=
=[{a-e(ba’)|a, o' €, bef}] = [a]-e[fa] .
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4.9. REMARK. — Let 4 be a prj-category. It can be shown that its p-cohesive completion
ocd is prj-cohesive provided that 4 satisfies (PCH.3p) and the following condition, weaker
than (PCH.4p):

a) for every morphism a: 4 — B, every ¢, € Prj A and every g-set ¢ of projections of 4,
if ae, = a = \/ ae is a linked join (i.e. ae, = a~ ac¢ in §,4) then there exists a projection e,
ece
of A such that: e;<e¢;, ae,= ¢ and e, = Veye is a linked join (i.e. & < & in 7,4).
eEe

In such a case the projections of gcA are the equivalence-classes [¢], where ¢ is any
g-set of parallel projections of 4. However, the stronger but simpler condition (PCH.4p)
is sufficient for our purposes.

5. — Inverse categories and cohesion.

Inverse categories are the obvious generalization of inverse semigroups. They
are used here to supply « glueing morphisms » for generalized manifolds; for instance,
the usual Cr-manifolds will be constructed in c¢h. 6, 7 by means of open euclidean
spaces and partial C-diffeomorphisms between open subsets, forming the inverse
category Inv Cr associated to C-

After a review of elementary properties of inverse categories from [G1, G2],
we introduce here their canonical cohesion structure and study their p-cohesive
completion. Other references on inverse categories can be found in [G3].

5.1. Review of imverse categories. A category K is imverse if every morphism
a: A — A’ has precisely one generalized inverse d: A'—> A:

1) oo =a, dad=4a.

Then [G1, thm. 1.25] the mapping a > & defines an involution of K (i.e. a con-
travariant functor, identical on the objects and involutive), which is selfdual:

(2) ; i=1, (e)"=db, @ =a.

A projection of the object A is any idempotent endomorphism e: 4 — 4;
clearly &= e. The projections of A are closed with respect to composition (ef =
= ef - (¢f)™ - (ef) = ef-fe-ef = ef-¢f) and commute (ef = (¢f)” = fe): they form a uni-
tary semilattice Prj 4.

Every morphism a: A— B defines two mappings, the covariant and contra-
variant transfer of pro;ectlons

(3) ap: PrjA —PrjB, a.le)=aed,

(4) af: PrjB—Prjd, af(f) = dfa=a,(f),
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which are easily seen to be homomorphisms of semilattices and to behave func-
torially ((ba), = b, a,, (ba)? = aFb?). Clearly:

(5) & i8 monic < a?(l) = da = 1 <= a has some left inverse,
(6) a is epi <> a,(1) = ad = L <> o has some right inverse,
(7 @ 18 monic and epi <3 (o =1, ad=1) <> a is an isomorphism .

Lagt, the category K is provided with a canonical order (generalizing the ean-
onical order of inverse semigroups) @< b, characterized by the following equivalent
conditions (for a, b: A — B):

~

i) a = b-da;

ili) @ = ad-b;

iv) @ = ad-b-da;

v) deecPrjd: o =b-e;

vi) dfePrj B: a = f+b;

vii) deePrj A, IfePrjB: a == f-b-e.

Notice that the endomorphisms # <1 are precisely the projections and that z>1
implies # = 1. Since for each morphism a:

(8) o =a, da@=43a, da<l, ad<l;

it follows that & is monic iff it has a right-adjoint b (ba>1, ab<1l); then b = @ is
also left-inverse to a.
A functor between inverse categories preserves all the notions considered above.
The paradigmatic inverse category is the category J of small sets and partial
bijections: any inverse category may be embedded in this ([Ks, G3]). Other exam-
ples of interest for our context are given in 5.8 and ch. 8.

5.2. Imverse categories and regularity. Let the category A be regular in the semse
of vow Newmann (vN-regular): each morphism a: A4 — A’ has some generalized
inverse a': A'— A (verifying: ae'a = @, a’aa’'= o). Then A is inverse (i.e. the
generalized inverses are uniquely determined) iff the idempotents of 4 commute
([61], 1.25).

More particularly, let the category A be provided with a regular involution
@ — @, regular meaning that: ade = a, for all a. Call projection of 4 any sym-
metrieal idempotent, i.e. any endomorphism e: A — A such that ¢ =ec = & (or
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equivalently: ¢ = ¢&, or also ¢ = &). Then each idempotent « is the product of two
projections (@ = ade == ad-da), so that A4 is inverse iff its idempotents commute,
iff its projections commute, iff every idempotent is symmetrical; in this case the
involution of A yields the (unique) generalized inverse of every morphism. _

5.3. The camonical cohesion structure. From now on, K is an inverse category.

It is easy to see that the projections of K satisfy the axioms (PCH.1) and
(ECH.1, 2), defining an e-cohesive structure with e(a) = da = ¢?(1). Indeed: a-e(a) =
=a-Gs=a; if a=ac then da =da-e¢ and da<e; a-e(ba) = a Gbba = bb-ad-a —
= e(b)-a.

Now, the involution of K determines also an ¢*-cohesive structure (3.9), with
cosupports given by: e*(a) = e(@) = ad = a,(1).

Thus K is provided with a first cohesion structure (determined by supports)
and with a second one (determined by cosupports):

@) a<'b iff a=b-da, al'b iff a-bb="0b-da iff bdePrjB (),
(2) a<'b ift a=ad-b, al"b iff bb-a=ad-b iff bacPrj 4 .

These orders coincide with the canonical order < of K (5.1), while the two linking
relations are generally different (), and related by the involution:

(3) al’b it G5

The canonical cohesion structure of K will be given by the canonical order <
together with the following linking relation. (preserved by the imvolution of K):

(4) . alb iff (a!b and a!"b),
iff (6-6b =b-da and bb-a = ad-b),
iff (b@ePrjB and bacPrjd).

K need not- be link-filtered: e.g. consider the inverse subcategory of J formed
by those partial bijections whoge definition-set has no more than five elements.

Every functor between inverse categories preserves the canoniecal cohesion strue-
ture.

(°) If a-bb = b-da then: bi-ba = b-bbd-bd = b-Gab-bd = bbb-dad = bd; conversely, if bd
is a projection: b-da = bd-a = abbd-a = a-bb-da = ada-bb = a-bb.

(") For instance, take the inverse category I of partial bijections: the projections of 3
coincide with the ones of 8, thus a!’b iff a and b are compatible functions, while «!” b iff
@ and & are compatible functions. Thus, any pair a, b with Defa N Defb = ¢ and Vala N
N Valb## ¢ yields a counterexample.
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5.4. PROPOSITION. — This is indeed a cohesion structure on K (if not a prj-cohe-
sion structure in the sense of ch. 3). If a!b:

(1)  aAb=abb = bda = bba = adb = aba = bab ,
(2)  (@AD)(e) = ay(e)Abyle) ,  (aAD)P(f) = aP(H)ABZ(]) ,
(3)  elaA\b) = e(@)\ed) =ba=db, e*(aNb)= e*(a)A\e*(b) = bd = ab .

A set o of parallel morphisms in K is linked iff it has a double resolution (e,), (f.)
of projections, verifying:

(4) o=0-e=f,ra, ae=>~be, fra=7fb, (abeca,

the smallest double resolution being given by: e, = e(s), f. = €*(z).
The cartesian compositive property of meets (1.7.3) holds.

PROOF. — The axioms (CH.1-4) are a straightforward consequence of the defi-
nition: the first and second structure are both cohesion structures, with the same
order relation. Linked meets may be calculated according to the first structure,
e-cohesive (a/\b = a-bb = b-da) or to the second one, ¢*-cohesive (a\b = bb-a =
= afi-b); the last two expressions in (1) follow at once from dd€PrjB and
ba € Prj A.

The cartesian compositive property of meets follows from 3.3 (applied to the
first cohesion structure of K). For (2):

{a/b),(e) = (aAD)- e (aNb)™ = (@e/\be)- (GAD) = aed A\ beb = a.(e}/\b.{e) .
The last assertions are obvious.

5.5. REMARK. — It may be noticed that a!'b (or «!”b) is a sufficient condition
in order that & and b have compositive meet with respeet to the canonical order
(use the associated e-cohesive or e*-cohesive structure). However, in an inverse
category, compositive intersections are not « satisfactory »: e.g. they do not sat-
isfy 5.4.2, nor 5.4.3. The good notion seems to be linked meets, in the present
sense.

5.6. THEOREM (the g-completion of an inverse category). — The p-cohesive com-
pletion of the inverse category K (with respeet to its canonical cohesion structure)
is an inverse eategory, provided with the canonical cohesion structure. The involu-
tion of gcK is given by & = {@|a € o}, while its projections are the classes [e],
where ¢ is any g-set of parallel projections of K.
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ProOF. — The mapping « - & = {@a € of defines clearly an involution on ¢ K,
and further in ecK; the latter is regular (5.2), as:

(1) b = {abla, be a} ~ {adlac o} ,

(2) adioe~ {ad-bla, be o} ~ {adojaca} = o.

An endomorphism [«] is a projection (with régard to the regular involution, see
5.2) iff a~ da~ {dale € o}, iff « 45 & g-set of projections of K. Therefore the pro-
jeetions of gcK commute and the latter is an inverse category (5.2); we only need
to prove that the cohesion structure of pcK coincides with the canonical one,
determined by supports and cosupports.

If [x]<[f] in the « completion » structure of pcK, the projection [£] = [dun]=
= [{@ala € o}] yields:

(3) [61-[e] = [{b-dalaca, bef}] =[{aNblaca, bef}] = [«]A[B] = [o],

hence [e]<[f] in the «inverse» structure. Conversely, if [«] = []'¢ for some pro-
jection e of gcK, the relation e<1 in pcK implies [«]<[f] in the completion
structure. .

Last [«]![A] in the completion structure iff «!f in K, iff a!b for all aca and
b e §, iff all the endomorphisms ba@ and ba are projections, iff [8&] and [B«] are pro-
jections of pcK, iff [«]![B] in the inverse structure.

5.7. The inverse subcategory of a prj-category. Now, let 4 be a prj-category.
Define K = Inv 4 as the subcategory of A4 having the same objects and those
morphisms #: 4 — B having a Morita inverse w': B — A in A, verifying:

a) U= uwu, w=uwuuw, vu<l,, vu'<ly.
y H H

We prove now that K is an inverse category whose projections (i.e. idempotent
endomorphisms) coincide with the ones of 4, the generalized inverse in K being
given by the Morita inverse in 4.

First, K is a subecategory of A4: if u: A — B, v: B — ¢ have Morita inverses
' and v, then #'¢’ is a Morita inverse for vu:

(1) VU w O 0u = v un v v U = v v un u = vy,
(2) vu-u' v = vlunw v <o’ <1 .

Thus, K is vN-regular (5.2). Every idempotent endomorphism ¢ of K is a pro-
jection of A4: if v is a Morita inverse of ¢: v = vev = ve-ev is a projection, hence an

idempotent, and e = eve = ev-ve is a projection.
As the converse is trivial, the idempotent endomorphisms of K ecoincide with
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the projections of A4, hence commute: by 5.2, K is inverse, and the generalized
inverse of a morphism » in K is unique: it will be written 4.
The embedding Inv 4 — 4 preserves the cohesion structure: generally, it does
not reflect it. The Inv-construction is clearly functorial on prj-cohesive functors.
If A is p-cohesive, so is K with respect to its canonical cohesion strueture: if ¢
is a linked g-set in K, so is ¢ = {@iju € ¢}; both ¢ and § are also linked in 4, with
resolutions e, = @u, e. = uf (u€ ¢), and:

3) (Vo) (Vo) =Viw=Ve,e,=Ve,=ecPrjd, (mvep),
(4) (Vo) (V@) (Vo) = (Vo) e=Vue,=Vo.

It may also be noticed that an adjunection w— v in 4 (vu>1, wv<1l) forces
vu == 1, hence is « the same» as & monic « of K (with v = ).

5.8. ExampLes. — If A = §, the prj-category of small sets and partial map-
pings (1.1), then J = Inv § is the subcategory of small sets and partial bijections.

Analogously Inv G (resp. Inv Cr) is the category of topological spaces (resp.
open euclidean sets) and partial homeomorphisms (resp. partial Cr-diffeomorphisms)
between open subsets of the domain and codomain. All these inverse categories are
totally cohesive (5.7).

6. — Manifolds and glueing completion for inverse categories.

In this chapter K is always an inverse category and ¢ is an infinite seetion of
cardinals {1.8). Manifolds over K are introduced as symmetrical enriched categories
over K. If K is g-cohesive, bilinked modules between g-manifolds produce the
¢-glueing completion oIMf K of K.

6.1. Manifolds. A diagram U == (U,, 4});, consisting of objects U, (the charis)
and morphisms ui: U; - U; of K (the glueing maps), indexed over a small set I,
will be said to be a manifold in K if:

(1) wp=1, {(identity law},
(2) wl-ui<u, (composition law, or triangle inequality),
(3) %= (u}))” (symmetry law),

in other words, U is a small symmetrical category enriched over the involutive
ordered 2-category K [Be, Wa, BC]: notice that the first condition is equivalent
to the usual one, #'>1 (by 5.1). We say that U is a g-manifold if its object-set I
is a g-set.
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The glueing of the manifold U in K (if existing) will be an object X =gl U
provided with a family of morphisms #‘: U, — X (¢ elI), such that:

4) weui<ut, for all 4,jel,

(5) wewt<ul, for all 4,jel,

and universal in the obvious sense. According to the definition 6.3, the family (uf)
is a ¢« bilinked » module from U to the trivial manifold (X, 1).

K will be said to be p-glueing (as an inverse category) if it is g-cohesive and
every p-manifold has a glueing; tofally glueing (inverse) category, or just glueing,
will mean £2-glueing.

From now on, we assume that K is g-cohesive.

6.2. PrRoOPOSITION. — With the previous notations, a family of morphisms u‘:
U;— X (iel) is the glueing of the manifold U iff, for all 4, jeI:

()] weui<u',
2) Weut =,
(3) Viw-iit =1z (%) 5

the condition (2} can be replaced with:

Moreover, if y': U,— Y (i€I) is any family of morphisms verifying 6.1.4-5, the
unique morphism y: X — Y such that y = y-u' is given by:

(4) oy =\Viyi-@ (linked join).

Every g-cohesive functor between p-cohesive inverse categories preserves the
existing glueings of p-manifolds.

ProOF. — First, assume that X is the glueing of U; (1) and (2') hold by defini-
tion. To prove (3), consider the projection ¢ = V, ui-@#': X — X; clearly eu’ = u?,
for all 4; by the uniqueness in the universal property of the glueing, it follows that
¢=1. Now, for (2'), fix some heI and consider the family of morphisms #:

{®) These conditions mean that u = (w¥): U — X is an isomorphism, in the category of
manifolds over K (6.3, 6.4), between U and the one-index manifold X = (X, 1x).
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U, — U, & =u} (ieI); since it satisfies the conditions 6.1.4-5:

N
(5) &y = uu <Y, =&,

(6) ¥edl = wjui <y,

there ig exactly one morphism z: X — U, such that z* = z-«’ for all ¢; in par-
ticular z-u* = 2* = %, = 1, whence w* is monic and @*-u* = 1.

Secondly, (1), (2'), (2") imply (2): u) =1, ~u) = @' W u,<i-u'.

Last, if (1)-(3) hold, it is easy to check the universal property for (X, #*) by
means of the formula (4), which concerns the join of a linked p-set, since:

(1) WF A <wW i <wid'<l, YPuwi<ywg<y'yi<l,
The final assertion on p-cohesive functors is now trivial.

6.3. Bilinked modules. We form here the category oIMf K of g-manifolds
over K and « bilinked modules » between them; we shall show below that this cate-
gory is the inverse g-glueing completion of K.

A bilinked module a = (a;), 2 (U, w;), = (V,, v;), between the g-manifolds U
and V will be a family of K-morphisms af: U, — V,, verifying (for ¢,jel and
hy ke H):

(1 vy <a, @ -u;<a, (module laws),
i i o
(2) 2 <u,, a-d<v; (linking laws),

where (1) is the usual condition for a module a: U —V between categories enriched
over an ordered category ([Be, Wa]), while (2) expresses the linking property on
domain and codomains. Once that the category of bilinked modules is constructed
(here below), and provided with its canonical order as an inverse category (6.4), the
condition (2) may be thought to mean that the modules ¢ = (a;;),,,, and @ = (@;),,
form a Morita context [Bi]: da<1; and ad<1,. Notice, however, that arbitrary
modules can not be composed, because of the lack of arbitrary joins in K.
The (mafriz) composition with (b)), ,. (V,, ¥h), — (W, wy), is given by:

3) (b:z)H,M' (a';;)l,ﬂ = (c:n)],ﬂl s G:n = vh (bZ‘“Z) ’

where the join is legitimate and produces a bilinked module, as:

(4 @bk -bla <dvia <d

m

(B) ¢, ui=V, B al-u)<V, ¥ a)=d,,

m h m

(8) et =V, @05)-V, W a)) = Vo, @100, a)) <V, (@i a) <V, @) <)
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It is easy to see that this is indeed a category, with identity of U = (U,, ul)
given by the bilinked endomodule 1, = (uj);. K has an obvious embedding in
oIMf K, identifying the object U with the g-manifold (U, 1y).

6.4. THEOREM (the inverse structure). — The category M = oIMf K is inverse.
The following conditions are equivalent:
i) e=(a)): (Usy w))y = (U, u); is a projection of M,
ii) e = (aj),; is an endomorphism and ai<u, for all i, j,
iii) e = (ai),, is an endomorphism, ¢, = a.c Prj U, and a! = ule, = ¢;u,
= (

uie;);; where e;cPrj U, and wle;ui<e;, for all R

iv) e
If w__( )y and b= (v}), , are maps from U = (U, w), to V= (V,, "),

B
¢ = (uze,),, and f = (v}f,), , are projections of U and V respectively:

(1) (fae), = f,-a;¢, ,
2) a<b < a,<b} in K, for all 4, h;
3)  alb @b,fah<u and b}a; <o, for all 4,j and &, k&,

<> 0,10} for all 4, h and (a,}lvb;),’y is & linked module .

4) af\b = (aiz;/\b}l;)l,ﬂ ’ aVbh = (a’;;vb}i)z,y (for a! b) .

Last, if e;e Prj U, (iel) is an arbitrary family of projections of our charts,
the least projection &= (aj),, of the manifold U, with é,>e¢, for all 4, is given by:

(6) ab =\, e, up .
Proor. ~ See 9.3.

6.5. INVERSE GLUEING COMPLETION THEOREM. — The category M = oIMf K is
the inverse p-glueing completion of K.

Proor. - See 9.4.

6.6. ExAMPLES. — The inverse category J = Inv § of small sets and partial
bijections (5.8) is totally glueing: the glueing of the manifold (U, «), is the set
X =gl U= (]| U)/R, where R is the equivalence relation identifying every
weDef w;c U, with wj(x)e U,. The partial bijections w': U, - X are obvious
{and everywhere defined).

Analogously for Inv G: take on X the finest topology making continuous all
the mappings .
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Instead Inv Cr is totally cohesive and not glueing, even finitely: its (total)
glueing completion is {can be interpreted as) the category of Cr-manifolds and
partial Cr-diffeomorphisms.

Indeed, the ineclusion Inv € —Inv G extends, by the universal property of
the glueing completicn, to a unique glueing functor IMf (Inv C") —Inv G (the
topological realization of manifolds), transforming the manifold U = (U,, u}); into
the space X = gl U, the glueing of U in 6. This space X is locally euclidean (with
locally constant dimension), because of the partial homeomorphisms u’: U, - X
(everywhere defined), whose images cover X ; it is not necessarily paracompact nor
Hausdorff. It allows to reconstruct the manifold in the usual setting: a topological
space X provided with an open covering (V,) and a C™-atlas of charts (onto open
euclidean sets) vi: V, — U,; take V, = «(U,) and v as the restriction of (u?)~ to
its definition-set V;; the partial ¢"-diffeomorphisms u; are thus the coordinate changes.

6.7. Cauchy-completion and mawimal manifolds. The notion of Cauchy-complete
enriched ecategory was introduced by LAwvERE [La] for a monoidal base and
extended by BrTTI [Be] to enrichment over a bicategory. This nofion has a
straightforward adaptation to our case: symmetrical categories over a p-cohesive
inverse category K. However, the interest of such a notion in the present case is
small: since the natural morphisms for manifolds are modules, the Cauchy-com-
pletion of a manifold would just preduce an isomorphic object: the associated
maximal glueing atlas; moreover these completions are still small manifolds pro-
vided that K is small, which in our examples may be true (e.g. for Inv Cr) or not
(e.g. Inv &, Inv &B in ch. 8).

Recall that, in the inverse category oIMf K, the datum of an adjoint pair a— b
(i.e. a pair of bilinked modules verifying ba>1 and ab<1) is just equivaleht to
giving a monomorphism a (5.1; take b = @).

Now, a lnked functor f: (U, ), — (Vy, v})y between manifolds over K will
be a mapping f: I — H between their index-sets, such that: U, = V,,, u = v}; (°)
for i, jeI. It produces a bilinked module f= (f;): (U,, w), = (V,, ¥})y, fi = v},
which is monie (f— f):

1 { f);: Va ;bf;: Vh”?j”;izv;;::“;'

Actually, the only case we are interested in is a (frivially linked) functor f:
W —M = (U,, u}), defined on a one-index manifold W = (W, 1): this is just the
same as selecting an index kel such that W = U,, and produces the monic
bilinked module (f): W — M, f, = u".

The manifold M = (U,, 4}); over K is said to be Cauchy-complete if, for every

(*) For a funetor, one would herc require < instead of equality.
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W in K, every monic bilinked module (#;): W — M is produced by such a
functor f: i.e. there is some he such that W = U,, u,= ul.

Now, it is easy to see that the datum of a monic bilinked module % = (u,):
W — M (iiw = 1) is equivalent to «adding to M a redundant chart»: in other
words, giving a larger glueing atlas M'== (U,, u}), with I'=T U {k} (k¢ I) and
requiring that the bilinked module (u}),,: M — M’ be an isomorphism. The cor-
respondence between these notions is established by the equations: U, = W,
wt =, W, =1,

" Thus the manifold M is Canchy-complete iff it is a maxzimal glueing atlds, that

is if « every compatible chart is already in M ».

If K is small, every manifold is contained in a maximal isomorphic one, its
Caﬁchy-completion. ‘

7. — Manifolds and glueing completion for prj-categories.

A is always a p-cohesive prj-category and K = Inv A the associated g-cohesive
inverse category (5.7). The simpler, more particular case of a g-cohesive e-category
is treated in 7.8.

7.1. Manifolds and glueing. A manifold over A will be a diagram U = (U, ),
in A, with «i: U, - U; (i,jeI) verifying:

(identity law),

(1) w, =1,
{(2) e ul <) (composition law, or triangle inequality) ,
(3) u)==uww, (symmetry law).

Since u!u)<w; =1, and because of (3), all the morphisms ! are actually in
K =1Inv 4, and verify: (4/)” = u]: in other words the manifolds of 4 are pre-
cisely those of K.. ‘

The glueing X = gl U of the manifold U in A (if existing) will be, by defini-
tion, its lax-colimit, that is an object X provided with a universal lax cocone
wi: U, —~X (1el) in 4:

a) w-ui<u', for all i, j,
b) for any lax cocone yi: U'— Y (y'-u.<y’), there exists a unique y: X - Y
in A4 suech that yi =y u? (iel),
e) i y,y": X =Y and y -ui<y’-u (iel), then y' <y’.
We show below that this problem is equivalent to the glueing of U in K (6.1-2).

A prj-category will be said to be g-glueing if it is g-cohesive and every p-mani-
fold has a glueing.
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7.2. THEOREM. —~ Let U = (U,, 4j), be a manifold over 4 (and K), and w':
U, - X (1el) a family of morphisms in A.

(X, #?) is the glueing of U in A iff it is so in K. In such & case the morphisms
%' are monomorphisms of K and for every lax cocone yi: Ui — Y in A, the
appropriate morphism y: X — Y is given by:

1) y = V,yi-% (linked join in A4).

A is g-glueing iff Inv 4 is so. Every g-cohesive functor between g-cohesive prj-
categories preserves the existing glueings of p-manifolds.

Proor. — If (X, w') is the glueing of U in K, the formula (1) concerns the join
of a linked g-set in A(X, Y), with resolution e, = w'i‘e Prj X (t€I):

(2) yilice, =y, Yo, =y W = ylulw <yu .

It is now easy to check, as in 6.2, the universal properties 7.1b),¢) in A.

Conversely, assume that (X, U?) is the glueing of U in 4. Fix an index hel
and consider, as in the proof of 6.2, the family ' = uj: U, — U, (¢ eI) of mor-
phisms of 4: they form a lax cocone from U (as in 6.2.5), hence there is one
morphism z: X — U, of 4 such that 2? = 2u’ (i € I). In particular, su* = 1; more-
over (w'z)-u' = u'z’ = wuj <, for all ¢, so that w*2<1 (7.1¢)); therefore w* is in
Inv A, with generalized inverse (u")” = z.

It suffices now to verify the conditions 6.2.2-3; the relation:

{3) Whew' = 2wl = 2' = u; ,

gives the first, by the arbitrariness of h e ; the second follows from:
(4) (Viwia) w = ui,

by means of the uniqueness property in 7.1 a): (Viuifm’) = 1.

The last statement follows now from the last assertion in 6.2.

7.3. Linked modules. We form the category oMf 4 of p-manifolds over 4 and
linked modules between them.

A module (a;), 2 (U, ), — (V,, v}); is a family of A-morphisms a;: U; -V,
verifying, for all 4,jeI and h, ke H:
1) veai<al, ai-ui<a, (module laws) ;
it will be said to be linked (or compatible) if it has a resolution e, e Prj U, (e l,
heH):

(2) a’li O — v, “2

(linking law),
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or equivalently:

(2 “:;eih = “;i ’
(2" a;eik<vili'a’£’

as, from (2) and (2): v}-a; = v}-al-e, <a}-¢,. Moreover each ¢; can be clearly
replaced with any e, with e, <e, and ale, = a.. Thus, in the e-cohesive case,
the linking condition (2) may be more simply expressed by means of supports:
e = e(a) (7.8). ‘

Clearly oIMf Kc oMf A. But note that a linked module over 4 whose compo-
nents o] are in K need not belong to oIMf K: this happens iff also the «reverse »
module (d;) is linked. It is easy to give counterexamples in the categories § and G,
where the linking condition (2) forces the module (a}) (more precisely, its glueing)
to be « single-valued » but not « injective », even if all the components are so. We
shall prove in 7.6 that of/Mf K coincides with Inv (oMf A).

Again, the composition is matrix-like: if (@), ,: (V,, vh)y — (W,
linked module:

(3) (bfn)H,M. (a'll;,)lﬂ = (G;J)I,M 3 C:n = Vh (bZ“;i) .

»

wy)y, 18 a

We prove that ba is well-defined. Let (f..) be a resolution of b = (b*) and choose
projections e, € Prj U, such that:

{4) fhma'}i: a’;:peihm’ Cinm < €ip g (iC“.I, hEH, me M) .
Then each family (b a),c, is linked, with resolution (Com)nen

(5) (bfn a’;b) ’ Gihm = bfn fhm “IZL = b::, a’li ’

(6) (b7, 83) " €y = U}, 6, Cutn < Uy " U5 0, <D 1

More generally, for ne M:

(AP AN __ hE 4t —— hh k4t k 1 e hE i_vnki
(7) (bma’h) eikn - bma'h 6i7c gilm - bm Uhalceilm<bma’k 6ilm - bmflma'lc - wm bna'k ’

and (¢’) is a linked module, with resolution é, = Vi Cinm:
(8) i =\, (hal-u) <V, (B ai) = ¢,
(9) O b = Vh;c ((bfn“;;@ikm) =V, bha; = o, (by (5)) y

(10) Oyt by = Vh,k (b 05, 5100) < \A wh b ar = wh\f, biai = WZQOJ (by (7)) .

This is indeed a category and 4 embeds in oMf 4 as in the inverse case (6.3):
U (U,1,).
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7.4. The pri-struciure. Define the projections of oMf A to be those of pIMf K,
deseribed in 6.4. Note that, as in 6.4.1 and with the same proof, if a: U — V is
a morphism in o Mf A4, ecPrj U and fePrjV:

{1) (fae), = f,a'e, .

The axiom (PCH.1) holds, because oIMf K is inverse. As to (PCH.2), given
the linked module a: U —V in o Mf 4, with resolution (e;), and fePrjV, choose
projections e, € Prj U, such that:

’

(2) je.=a.e,, e¢,<e, (iel,heH).

Further, let:

(3) o=V, e, &=V, (ueu),

L I

$o that, by 6.4.5, ¢ = (u}é,) is the projection of the manifold U spanned by the
tamily (e;). We prove that fa = aé:
(4) o, = ai-V, e, =V, (@, 0,) =V, 0al-e,) =
=V, (Wi f,a) =V, (f, v ) = f, 4, ,
(5) (fa). = f,a. = al e, <a.c,<a, é, = (aé)],
(6) (@é); = a6, =\, (el wie;u) <V, (@ e;u) =  (by (4))
=V, (o) = 0 = (fa);

7.5. LEMMA. — If @ = (a)) and b = (b)) are parallel morphisms in oMf A:

1 a<b <> the modules a, b have resolutions (¢s), (f») such that:
ean<fim and a) = bye, (for all ¢, &),
<> ai<b, (for all 4, h) ;
(2) a!b <> the modules a, b have resolutions (¢:;), {f) such that:
aifn<bi and biey<a;,  (for all ¢, h, k),
<> alldl  (for all ¢, h) and (a,Vb,) is a linked module ;
(3) afhb = (GA\Db), 5,  aVb=(a,Vb,),, (for alb).
PrOOF. — If a<b then ¢ =b-¢ and @, = bi-e,<bi. Assume now that a<b;,
for all ¢ and h; let (e, : )y (f .) be resolutions of & and b, respectively, and ehoose pro-

jections ¢/, such that a = bi-¢},; then the family e, = ¢, ¢, f, i a Tesolution
of a (by 7.3) satlsfyxng, with (fm), our conditions. Last, if the resolutions (eu)
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and (f,) verify these conditions, write e, = V/, e,, and ¢ the projection of U spanned
by the family (e;), as in 7.4.3, so that ¢ = bé:
4) ol =b,-e,<bi-é = (bé);,
(B)  (08), =106, =0b-V,(uleul) =V, 0, wleu)<V,, bl e, ul =
<V, b feu =V, vible, ul = V,  viaiul = af .

The proof of (2) and (3) is similar (see also 6.4).

7.6. We prove now that, for the p-cohesive prj-category A, the inverse g-glueing
completion of K = Inv 4 coincides with the inverse subcategory of the o-glueing
completion of A:

1) : oIMfK = Inv (o Mf 4) .

Trivially, a bilinked module a = (a;),, over K=1Inv A is a linked module

over A, provided with a Morita inverse (@;),, (5.7) in oMf 4.
Conversely, let a = (a;), ,: (U,, %), = (V,, v}); be a linked module, with reso-
lution (e¢,) and having a Morita inverse b = (b%),,. Then ba and ab are projec-

tions of gMf 4, hence so are all the compositions d* e’ and afb*:
(2) bra, < (ba)i<1;

moreover (ba);-e, = b}a;, as:

(3) (ba)i-e,, =\, (Ba-e,) < V,(B: v'al) <brai < (ba)i-e
and finally @, = aibtai, because:

(4) a,;; = (ab“);'eih = (\/.'I “i(ba)g) b = V; (a;'u;'.(ba):: 'ez'h) <

a, - (ba)i e, = a’btal < (aba) <a; .

7.7. GLUEING COMPLETION THEOREM. — The prj-category oMf 4 is the p-glueing
completion of A.

PROOF. — It is an easy consequence of the inverse glueing completion theorem
(6.5) and of the previous arguments. A direct proof, in the simpler e-cohesive
case, can be found in [G4]. ' '

By 7.6 and the inverse glueing completion theorem, Inv (oMf A) = oIMf K
is g-glueing (as an inverse category); hence the prj-category oMf A is o-glueing
(7.2). Now, if F: A — B is a totally cohesive prj-functor with values in a glueing
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prj-category, F transforms manifolds and linked modules over 4 infto manifolds
and linked modules over B, which can be glued in B.

7.8. The e-cohesive case. Let A be a p-cohesive e-category: the previous results
take a simpler form. Notice that, for every u in K = Inv 4, the support of
in 4 is: e(u) = u.

A module a = (a;), 50 (U, w;); —> (V,, v}), between o-manifolds over A4 (sat-
isfying the module laws 7.3.1) is linked iff it verifies the equivalent conditions:

(1) ae(a)) =vi-a;  (linking law),

x ale(a))<v:-al,

iff the family (e(a})) is a resolution of a (the least one).

The prj-category oMf 4 of o-manifolds and linked modules over 4 is now
¢-cohesive, with:

2) (e@)i= Vaelar), (ela)); =u;-(e(a)); = (e(a), u; .

Indeed, e(a) is a projection of the manifold (U, ),, according to 6.4 iv):

3) o (ul-elal)-ul) <ai-e(a) u; = al-u<al ,
(4) (ui-e(al)-u;) <ela;),
) (s (et)) ) = (ud-Vy e@) ) <V, elaf) = (e(@),.

We verify now the axioms of the e-structure. For (ECH.1): (a-e(a))) = a, as it
follows from the argument below (for b = 1). On the other hand, ¢ = a¢ in oMf 4
implies a} = aje; (by (4)), hence e,>e(a}) for every h, and e>e(a). Last, for
(ECH.2), given a second module b = (b%): (V,, v}) — (W _, wl):

6)  (a-e(ba))i = ai-e(ba), = a;;-vm (e(ba)l) = a}-V,,, e(b} a}) =
= a},* Vi,m (e(a}) - e(bh,a)) = V.. (a4 e(a}) - e(bra})) =
= Vieou (vt - e(bha3)) = Vi (vh(Vin e(8h) af) =
= Vi (vh(e®))r-at) = Vi ((e(®))u-viai) = (e(®))s-af = (e(b)-a); .
Finally, from 7.5, for parallel linked modules &, b
(1) a<b <> a. <bi-e(a’) (for all 4, &),

(8) alb < ale(bl)<b, and bie(a))<a;, (for all i, b, k).

3
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7.9. Differentiable manifolds. The e-categories 8§ and B are glueing. The e-cate-
gory Cr is totally cohesive and not glueing (even finitely): its glueing completion
is the category of C™-manifolds (as in 6.6) with partial C"-mappings (defined on open
subsets). Also here, the inclusion C" — G extends to a glueing functor Mf C'— T,
the topological realization of C"-manifolds.

Manifolds with boundary can be obtained in a similar way, by glueing the open
subspaces of the spaces H» = {(w, &, ..., #,) € R"|»,>0}.

The category Mf C (more precisely, an equivalent one) can also be obtained by glueing
completion of the full subcategory of C” whose objects are the euclidean spaces R®, since
each open euclidean space is a union (and a glueing in C7) of open balls. It can be noticed
that our totally cohesive e-subcategory of Cr yields back Cr by a projection-completion
procedure (analogous to the well-known idempotent completion).

8. — Fibre bundles, veetor bundles and foliations.

We sketch here a definition of fibre bundles, vector bundles and foliations as
« manifolds » over the e-cohesive categories of the corresponding trivial structures.
For fibre and vector bundles, the topological realization takes place in a (glueing)
category F of «fibrations» p: X — B, playing the role of G for differentiable
manifolds.

8.1. A glueing category. A fibration will be just a continuous, surjective (every-
where defined) mapping p: X — B between topological spaces.

Form the category F of fibrations and partial maps (f, f): p — p’, provided by
commutative diagrams in G:

X I,X
(]) \Lm \Lp'

B_* , B,

Thus f and f are partial continuous mappings, defined on open subsets of X and B
respectively, with:

2) Deff=p"%Deff), Deff=p(Detf),

and f is determined by f.

A projection (e, 2): p —~p of F will be any pair of partial identities on a
distinguished pair (p~*(W), W) of the fibration p, determined by any open subset W
of the base B. §F becomes thus an e-category.

The inverse category Inv & has the same objects and for morphisms the pairs
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(u, w): p —p’ composed by partial homeomorphisms between distinguished pairs
of p and p’, making (1) commutative.

J is totally cohesive and glueing: if M = (p,;: X, — B,, (4}, %})); is a mani-
fold over ¥, its glueing p: X — B in F can be obtained by glueing in 6 the
spaces X, the bases B, and the module determined by the fibrations p,:

(3) X =gl(X;,u);, B=glB;,,u), p=gl@ip;:X,—B).

The full subeategory J, determined by Serre fibrations has similar properties;
it ecan be substituted to F in the following, yielding straightforwardly the homo-
topy-lifting property for fibre bundles.

8.2. Fibre bundles. The « elementary spaces» we want to pateh together are
the trivial fibre bundles, i.e. the cartesian projections (**) p: BxF — B, where B
and F are topological spaces and B X.F has the product topology.

Let & be the full subcategory of F determined by such objects, with the induced
e-cohesive structure: this is totally cohesive but not glueing. For a morphism

(f, H: p —p in B, we have:
(1) Deff=p 1 (Deff) = (Def ) x I,

(2) f(b’ ZI) = (;(b)7 fz(b7 ?/)) 3

so that a morphism can also be given by two morphisms in 6, f: B — B’ and
fa: BXF —F', with Deff, = (Deff) x F.

The trivial fibre bundle p: B X F — B will also be written B x.F'; the morphism
(f, /) will then be denoted by its component f (determining f).

The inverse category Inv & has the same objects and for morphisms the pairg
{(u, #): p —p’ composed by partial homeomorphisms between distinguished pairs
of p and p', making 8.1.1 to commute. As in (2), this is equivalent to giving two
mappings of Inv G, w: B — B’ and w4,: BXF — F' (partial homeomorphism be-
tween open subsets), such that Defwu, = (Def#)xF and for every beDef%,
Uy(b, =): F — F' is a homeomorphism. Thus, provided that the morphism u is
not empty, the fibres ¥ and F' are homeomorphic.

The glueing completion Mf $ has for objects the « manifolds » M = (B; X F,, u});
over $, for morphisms their bilinked modules: it is the category of fibre bundles
and partial maps. The inclusion % — F (or, more tightly, $ — F,) extends to
the topological realization functor Mi H - F (M H — F,), taking the above object
M into its glueing (8.1.3).

(1) Not to be confused, of course, with the selected endomaps which we call projections.
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By the above characterization of the morphisms of Inv B, the topological type
of the fibre F, = p~({b}) at the point b of the base B = gl (B,, ), is locally
constant, hence constant on every connected component of B.

8.3. Vector bundles. A trivial vector bundle is a trivial fibre bundle p: BxF — B,
where B is a topological space and F is a finite-dimensional, real vector space
(provided with the linear topology).

Let U be the subcategory of B (and §) having such objects, with « fiberwise
linear » morphisms f: BxF —>B’><F" this means that, for every b e Deff,, the
(everywhere defined) mapping f,(b, —): ¥ —F (8.2.2) is R-linear. A morphism
u: BXF — B'xXF' of Inv U is in IanB (8.2); moreover, for every b in Def 7,
uz(b -): F — F'" is a linear isomorphism.

The glueing completion Mf U yields bundles and their usual morphlsms (par-
tially defined, on distingunished palrs) Also here we have the topological realiza-
tion into ¥, or into .

8.4. Differentiable manifolds and tangent bundles. Consider again the category Cr
(of trivial C"-manifolds), with r>1. The (trivial) tangent bundle functor, with the
abuse of notations described in 8.2, is: '

1) T: C -V, U-UxR™Y . §,7Tf,
(2) Tf(x, h) = (f», D, f(@)) , for zeDeff and heRI™T

where D), f(x) is the derivative of f at x, along the vector A.
Since T is totally cohesive, it extends to a glucing functor, the tangent bundle
functor Mf C* — Mf U for C’-manifolds.

8.5. Foliations. A trivial foliations is a cartesian product U x V, where U and V
are open euclidean spaces; the subsets V_ = {#} XV are its leaves (for we U). A
partial Cr-map f: UXV — U'xV’ (of trivial foliations) is a partial ¢"-mapping,
defined on an open subset of U XV, which preserves leaves: if (z, y;) and (z, ys)
are in V_, their f-images are in the same leaf of U’ XV’ (11).

All this forms the category C'F of trivial Cr-foliations and partial Cr-maps,
ordered by restriction. It is a totally cohesive e-category, whose glueing comple-
tion Mf CF yields ("-foliations, with partial Cr-maps.

(1) In other words: there exists a partial map 7: U — U’ (also of class O7) defined on

p(Detf), such that p'f<jp, where p: UX V-V and analogously p’. Compare this with the

stronger condition of commutativity in 8.1: a partial map of fohatlons need not be defined
on a wnton of leaves.
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9. — Proof of some completion theorems.

We prove here the g-cohesive completion theorem (2.7) and the two theorems
on the p-glueing conpletion of an inverse category (6.4, 6.5).

9.1. The category of linked o-sets. Let A be a category provided with a proxi-
mity relation ! (and no order): we embed A4 in a category F,4 with order and
proximity satisfying (CH.1-3) and that part of (CH.5¢) which concerns joins.

The objects are the same. A morphism «e F,4(4, B) is given by any g-set
aC A(4, B), linked in 4 (including the empty subset 04, if O € ). The composi-
tion of «: A — B with f: B — C is obviously:

1) fo= {balaca, bef},

which is again a linked g-set of A-morphisms from 4 to C.

JoA is obviously a category, with identity of A given by the subset {1,}; pro-
vide §,4 with the inelusion relation o c o’ (for parallel maps) and the linking
relation:

(2) oalee  if ala’ in 4, for all aca, a'ca’.

Now (CH.1-3) are trivially satisfied. Let X'c §,4(4, B) be a linked p-set of
JoA and let f=1{J X c A(4, B): this is again a g-set (1.8) of parallel morphisms
of A, clearly linked; f is the join of the set X with respect to the order of §,4; the
join is compositive: if y: A’—> 4 and 4: B — B’ are in F.4:

(3) 0y = {dbeleey, beUZ, de 8} = U{dbejcey,bea,ded) = Viay.

ack

It may be noticed that J,4 has arbitrary non-empty meets; however these are
not compositive, even in the binary case, and will play no role in the following
steps.

9.2, PROOF OF THE @-COHESIVE COMPLETION THREOREM (2.7). — Now A is a cohe-
sive category and J,4 is the eategory of its linked g-sets, constructed on (A4, !).
Consider the following binary relation on parallel morphisms of ¥,4:

(1) a<p iff a!f and Veaex, a=\V(eAb) (linked join).
beB

It is a preorder of categories: if a< < y: a=Vanb (bef) and b = VbAc
(cey); let be B, cey: from b'le it follows that (aAb)!c (for aea) and a = V(aAb)!e;
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thus a!e for all ¢ey; moreover, by the property 1.7c¢), we have a compositive
join: a =V, (aA(V, BA0)) =V, (@AbAe) =V (ahe) (for beB, cey), which is
easily seen to be distributive (in the sense of 2.3.1). This preorder is consistent
with composition because linked joins and meets are so. ‘

Let ~ be the congruence associated to < and econsider the quotient category:

(2) oA = F A~

provided with the order < induced by the preorder <: [a]<[f] iff a< £ (inde-
pendently from the choice of representatives). The linking relation is defined by:
[«]![B] iff x!B as linked sets of A4 (again, independently from choice).

For (CH.4, 5p), linked meets and linked g-joins are calculated in ged by the
following formulas: .

3) [AA[Bl = {apblaca, bef}, for [«]![B];
(4) VZ2=[U21,

where X is any linked o-set of p-sets of A (x!e, for all a, o'€ X) and X'= {[«]ja e Z}.

Last, define the functor 7: 4 — ged taking the object A into itself and the
morphism a into the equivalence class of {a}. Clearly, it reflects the order and
linking relations, it is cohesive and preserves the existing linked g-joins of A.
To verify the universal property, set G([«]) = V Fa (2 € «) and check that G is a
o-cohegive funetor; its uniqueness is trivial.

9.3. PROOF OF THEOREM 6.4. —

a) M has a natural regular involution:

1) ((a’il;)I,E)N = (&Izz )E,I y

@) (@) (@) () = (V,, 6 dla) = (a}),

where the last equality follows from a!d)a)<aiu}<a; for all k and j, with equality
for j=1 and k= h.

b) We prove now the equivalence of i)-iv), where a projection is any idem-
potent endomap, symmetrical with respect to the above involution,

i) = ii) (af) =e=ée = (V,@}oi) and a] =V, dai<ui.

<u; =1 i8 a projection of U, and:

12

ii) = iv) e, =a’

12

t 2

T gt it i i gt gt <

(3) . a; = G0 <ae,<uje, = u,0,<a,

3 d

i gt . H T ___ gint i > g
so that o) = uje, and: w]eu; = aju,<a;= ¢, for all i, j.



242 Marco GrANDIS: Cohesive categories and manifolds

iv) => iil) It is easy to show that wje, = e,u}. The family e = (¢}) = (ule,);
is an endomorphism of U, as (for ¢, j, hel):

@ e = - (o) <ule, = o
6 B = eyup)uie) <u

i) = ii)
(6) =V, 8la, =V, (¢, Wu,e,)<eu e, =al;
(7) (ée)ﬁ.: V, @ 0} >al0) = eule, = ol

- 6} M is inverse. We just need to show that the product of two parallel pro-
jections e = {€}), f = (f;) is a projection:
(8) €=V, & fi = Vs e, 0l 0, 1) = e it
) (ef)i = e, f,€Prid,, (ef) = e,uif, = ui-(ef)i = (ef)} -
Moreover, the property 6.4.1 is an easy consequence of the following inequality:
frale; = f,v5-0l-uje,<f,a, ¢, (With equality for j =14 and k= k).
d) We check now the characterization 6.4.2 of the order of M. If o} <¥;,
for all icl, heH:
(10) (aba). =V, ¢l biai >V,  ald 6l = (ada), = af ,
(1) (aba), =V, 0l blai <\, ;0] b;<Vk,ahu <a;,

hence aba = a and a<b in M. Conversely, if the last property holds, a = be for
some projection ¢ of M and:

1zy ai = (be). = V, bl el =\, bl ule, <V, b, =D .

¢) Finally we prove the characterization 6.4.3 of the linking relation in M.
First, assume that ¢!b in the inverse category M; then ba and b3 are projec-
tions, and bial<(ba)<u! for all i,jeI and heH (property ii)). Analogously
for ba.
Now, if the previous conditions hold, bjai<u =1 and ba,<v, =1, ie. a}!b}
in K (for all 4, b); moreover: (a;Vb;),, is a linked module: ‘

(13) A CALA S CUANICAA R AR
(14) (@) VB)™ (@l VB) = (@ af) V@ b)A (Blag) v (Bib)) <.

Last, if @ = (a Vb)), ; is a linked module: @, b<a (by (2)), and a!b.
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As to 6.4.4, if a!b one shows as before that y = (a;AD;), , is a linked module;
by 6.4.2, x = aVVb and y = aA\b. The last remark follows now easily from our
previous characterization of projections.

9.4, PROOF OF THE INVERSE GLUEING COMPLETION THEOREM (6.5).

a) M is g-cohesive. Assume that « is a linked g-set of parallel maps (a;), ;:
(U, ), = (V,, ¥}); and write «;: U, — V, the g-set of its 4, h-components, which
is linked by the characterization 6.4.3; set b;: U, — V, the join of the former set
in K. It is now easy to check that b = (b)) is the linked join of . ‘

b) M is g-glueing: we have to show that each p-manifold U = (U’, Z™)z
of M has a glueing in M. The manifold U is given by objects:

1) U= (U7, ujy), (%)

with glueing morphisms:

@) Zr: U = (U, ul), > U = (U2, ),
(3) Z0 =@ U >, (rhseR),

verifying the following conditions (for r, s,fe R and 4,4, he I):

(4) Zr =1, ie. & =u,,
(3) ZZr<Zt, e Btdi<e,
(6) (er)" = 7 , ie. (z;s)” = z:: .

Now the p-diagram over K: X = (U7, %}}),,,, is in M by (4)-(6). It is pro-
vided with natural maps (for r € R):

M Zr: U= (U7, uy), X = (U}, 2 )us s

@®) Zr = (253 Ul = Udier (s.i)emx 19

verifying the characterization 6.2.1-3 for the glueing:

(9) . (Z° .Z”)i,t,h = v: (zysif %) <zzrif = (Zr)z',t,h y
(10) (ZS'ZT)Z',:' = \/t,h (%sr:zzrfi) = \/t,h (z;;z:;i) = z:j = (Zm)i,j ’
(11) (Vo 2-2r),, =V, @2 = V., (e =25 = (1), -

(*?) Clearly it is possible to index all the manifolds U” on the same g-set I.
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¢) Finally the embedding K -> M satisfies this universal property: if F:

K > A4 is a g-cohesive functor with values into a p-glueing inverse category, there
is exactly one p-cohesive functor G: M — A4 extending F. Obviously one takes
(U, u}); to be the glueing of the manifold (FU,, Fuj); in A.

[(BC]
[Be]
[Bi]
[DH]
[Di]
(D8]

[E1]

{E2]
[G1]
[G2]
[G3]
[G4]
[G5]
[He]
[Ks]
[KW]
[La]
[Ro]

[Wa]
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