Some Remarks on the Schemes $W_{d}^{\tau}\left({ }^{*}\right)$.

Marc Coppens

Abstract

Summary. - Let X be an irreducible smooth projective curve of genus g. Let $\varrho_{d}^{r}(g)$ be the BrillNoether Number. In this paper we prove some results concerning the schemes W_{d}^{r} of special divisors. 1) Suppose $\operatorname{dim}\left(W_{d-1}^{r}\right)=\varrho_{d-1}^{r}(g) \geqslant 0$ and $\varrho_{d}^{r}(g)<g$. If W_{d-1}^{r} is a reduced (resp. irreducible) scheme, then W_{d}^{r} is a reduced (resp. irreducible) scheme. 2) Under certain conditions, if Z is a generically reduced irreducible component of W_{a-1}^{r} then $Z \oplus W_{1}^{0}$ is a generically reduced irreducible component of W_{d}^{r}. For $r=1$, we obtain some further results in this direction. 3) As an application of it we are able to prove some dimension theorems for the schemes W_{d}^{1}.

1. - Introduction.

Let X be a smooth irreducible projective curve of genus $g \geqslant 1$ and let $J(X)$ be the jacobian of X. This is an abelian variety of dimension g which can be identified with $\operatorname{Pic}^{0}(X)$, the Picard scheme of the invertible sheafs of degree 0 on X. We always make this identification. Let P_{0} be a fixed base point on X and let $X^{(d)}$ be the d-th symmetric product. We have a natural morphism

$$
I(d): X^{(d)} \rightarrow J(X): D \rightarrow\left[\mathcal{O}_{X}\left(D-d P_{0}\right)\right]
$$

(if L is an invertible sheaf of degree 0 on X, then $[L]$ is the corresponding point on $J(X)$). Consider

$$
W_{a}^{r}=\left\{x \in J(X): \operatorname{dim}\left([I(d)]^{-1}(x)\right) \geqslant r\right\}=\left\{[L] \in \operatorname{Pic}^{0}(X): h^{0}\left(L\left(d P_{0}\right)\right) \geqslant r+1\right\}
$$

Those subsets are different from $J(X)$ if $r>d-g$. Those subsets play a central role in the study of special linear systems. The Riemann-Roch Theorem tells us that it is enough to study the case $d \leqslant g-1$. On W_{d}^{r} there exists a natural scheme structure. For more details concerning the general theory of the schemes W_{d}^{r} we refer to [2], especially Chapter IV.
(*) Entrata in Redazione il 23 settembre 1988.
Indirizzo dell'A.: Katholieke Industriële Hogeschool der Kempen, Campus H. I. Kempen Kleinhoefstraat 4, B 2440 Geel, Belgium.

Those schemes W_{d}^{r} are very well-known if X is a general curve. This is the so-called Brill-Noether Theory. We refer to [2], Chapter V, for a summary of the most important results of that theory. If X is an arbitrary curve, the behaviour of the schemes W_{d}^{r} is far from being well-understood. It is the aim of this paper to present some results in this direction.

An important known result is the following.

$$
\text { If } \operatorname{dim}\left(W_{d}^{r}\right) \geqslant r+1 \text { then } W_{d-1}^{r} \neq \emptyset \text { and } \operatorname{dim}\left(W_{d-1}^{r}\right) \geqslant \operatorname{dim}\left(W_{d}^{r}\right)-(r+1)
$$

This is proved in [7] as a consequence of the theory develloped in [6]. A consequence of this statement is the following statement.

Suppose $W_{d}^{r} \neq J(X)$ and $\varrho_{d-1}^{r}(g) \geqslant 0$ (Brill-Noether Number).

$$
\text { If } \operatorname{dim}\left(W_{a}^{r}\right)>\varrho_{a}^{r}(g) \text { then } \operatorname{dim}\left(W_{d-1}^{r}\right)>\varrho_{d-1}^{r}(g)
$$

Hence failure with respect to Brill-Noether behaviour for large d implies failure for $d_{0}(g, r)$, where

$$
d_{0}(g, r)=\min \left\{d: \varrho_{a}^{r}(g) \geqslant 0\right\}
$$

By making a closer analysis of the proof of the mentioned result we can push on this philosophy a little bit as follows.

Result 1 (Theorem 4). - Suppose $\operatorname{dim}\left(W_{d-1}^{r}\right)=\varrho_{d-1}^{r}(g) \geqslant 0$ and $\varrho_{\dot{a}}^{*}(g)<g$.
a) If W_{d-1}^{r} is a reduced scheme then W_{d}^{r} is a reduced scheme.
b) If W_{d-1}^{r} is an irreducible scheme then W_{d}^{r} is an irreducible scheme.

In the proof of this result we use the description of the tangent space to W_{d}^{r} at a point $x \in W_{d}^{r} \backslash W_{d}^{r+1}$ by means of the Petri map (see [2], Chapter IV). Using this description we are able to prove the following fact relating W_{a}^{τ} to W_{d+1}^{τ}.

Restut 2 (Theorem 5). - Suppose Z is a generically reduced irreducible component of $W_{d}^{r} \neq J(X)$. Suppose that, for a general point z on Z one has

$$
h^{1}\left(L_{z}^{\otimes 2}\left(2 d P_{0}\right)\right) \neq 0
$$

(i.e. $2 D$, where D is a divisor of degree d associated to z, is a special divisor). Then $Z \oplus W_{1}^{0}$ is a generically reduced irreducible component of W_{d+1}^{r}.
(If $A, B \subset J(X)$ then $A \oplus B=\{a+b: a \in A$ and $b \in B\}$. We also use $A \ominus B=$ $=\{a-b: a \in A$ and $b \in B\}$.)

We prove that the condition on the general point z is always satisfied if $Z \nsubseteq W_{a-1}^{r} \oplus W_{1}^{0}$ and $\operatorname{dim}(Z)>2 d-g-2 r$ (this follows from Remark 6). In particular the condition in Result 2 is always satisfied if $r=1$ and $\operatorname{dim}(Z)>\varrho_{d}^{7}(g)$.

In the case $r=1$ we make some further remarks on Result 2 (see Corollary 8 ; Proposition 9 and Problem 10). The conclusion of Result 2 can also be expressed as follows. If g_{d}^{r} is the linear system on X associated to a general point on Z and if P is a general point on X, then $g_{d}^{r}+P=\left\{D+P: D \in g_{d}^{r}\right\}$ is not the specialization of a g_{d+1}^{r} on X without fixed points.

We also discuss the following dimension problem (see [12], p. 280). Let $j \in \boldsymbol{Z} \geqslant 0$.

$$
\begin{array}{ll}
P(j) \quad \text { Suppose } g \geqslant 2 j+4 \text { and } j+3 \leqslant d \leqslant g-1-j . \\
& \text { Suppose } \operatorname{dim}\left(W_{d}^{1}\right)=d-2-j . \\
& \text { Is it true that } \operatorname{dim}\left(W_{j+3}^{1}\right)=1 ? .
\end{array}
$$

This question is answered affirmatively in the following cases.

$$
\begin{aligned}
& j=0: \quad \text { H. Martens' Theorem (see [13]; see also [2], p. 191); } \\
& j=1: \quad \text { D. Mumford's Theorem (see [15]; see also [2], p. 193); } \\
& j=2: \quad \text { C. Keem, but only for the cases } g \geqslant 11 \text { (see [11]); } \\
& j=3: \quad \text { G. Martens, but only for the cases } g \geqslant 15 ;
\end{aligned}
$$

(G. Martens also has a proof for the cases $4 \leqslant j \leqslant 7$ for g sufficiently large).

As an application of our methods we are able, amongst others, to prove the following contributions to this problem.

Result 3 (Propositions 12 and 13 and Theorem 15).

1) $P(2)$ is true.
2) $P(3)$ holds for the cases $g \geqslant 12$.
3) $P(j)$ holds for arbitrary j in the cases $g \geqslant(j+1)(2 j+1)$.

The reason why we cannot prove $P(3)$ in the case $g=11$ is very much related to problems mentioned earlier in this paper (Remark 14).

2. - Notations and conventions.

Besides those from [2], we use the following notations and conventions. Let $x \in J(X)$. Then L_{x} is the corresponding invertible sheaf of degree 0 on X and $g_{u}(x)$ is the complete linear system associated to $L_{x}\left(d P_{0}\right)$ (see [9], p. 157). We write ω_{X} for the canonical sheaf on X and K_{X} to denote some effective canonical divisor on X. We write k to denote $[I(2 g-2)]\left(K_{X}\right)$. For $x \in J(X)$, the Gieseker-Petri
homomorphism associated to $L_{x}\left(d P_{0}\right)$ is the cup-product homomorphism

$$
\mu_{d}(x): H^{0}\left(X, L_{x}\left(d P_{0}\right)\right) \otimes H^{0}\left(X, \omega_{x} \otimes L_{x}^{-1}\left(-d P_{0}\right)\right) \rightarrow H^{0}\left(X, \omega_{X}\right)
$$

If Z is some projective set then we write $\operatorname{dim}(Z)$ to denote
$\sup (\{\operatorname{dim}(A): A$ is an irreducible component of $Z\})$.

3. - Results.

The starting point for our investigations is the next proposition which is proved in [7].

Proposirion 1. - Let $r \in Z_{\geqslant 1}$. Let $A \subset W_{d}^{r}$ be an irreducible closed subset satisfying $\operatorname{dim}(A) \geqslant r+1$. Then $A \cap W_{d-1}^{r}$ contains some irreducible component B satisfying $\operatorname{dim}(B) \geqslant \operatorname{dim}(A)-(r+1)$. (This can also be proved from the results in [6] using the arguments of Theorem 11 in [4].)

If, in Proposition 1, we have $B \not \subset W_{d}^{r+1}$, then $g_{a}(x)$ is a complete linear system g_{d}^{τ} on X for x a general point of B. Since $B \subset W_{d-1}^{r}$ the base point P_{0} is a fixed point of $g_{d}(x)$. We are going to get more information from Proposition 1 by varying the base point.

Theorem 2. - Let A be as in Proposition 1. If $\operatorname{dim}\left(W_{a-1}^{r}\right) \leqslant \operatorname{dim}(A)-(r+1)$, then there exists an irreducible component B of W_{d-1}^{r} satisfying $\operatorname{dim}(B)=$ $=\operatorname{dim}(A)-(r+1)$ such that $B \oplus W_{1}^{0} \subset A$.

Proof. - For $P \in X$ let $W_{d, P}^{r} \subset J(X)$ be defined in the same way as W_{d}^{r} using P as a base point instead of P_{0}. Then $A \oplus\left[\mathcal{O}_{x}\left(d P_{0}-d P\right)\right]$ is a closed subset of $W_{d, P}^{r}$. From Proposition 1 we obtain $B_{P}^{\prime} \subset W_{d-1, P}^{\tau}$ satisfying

$$
\begin{aligned}
& \operatorname{dim}\left(B_{P}^{\prime}\right) \geqslant \operatorname{dim}(A)-(r+1) \\
& B_{P}^{\prime} \subset A \oplus\left[\mathcal{O}_{X}\left(d P_{0}-d P\right)\right]
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& B_{P}:=B_{P}^{\prime} \oplus\left[\mathcal{O}_{x}\left((d-1) P-(d-1) P_{0}\right)\right] \subset W_{d-1}^{r} \\
& B_{P} \oplus[I(1)](P) \subset A \\
& \operatorname{dim}\left(B_{P}\right) \geqslant \operatorname{dim}(A)-(r+1)
\end{aligned}
$$

Suppose that $\operatorname{dim}\left[\left(W_{d-1}^{r} \oplus W_{1}^{0}\right) \cap A\right] \leqslant \operatorname{dim}(A)-(r+1)$ (hence we have equality).

Consider the diagram

where $Z=("+\eta)^{-1}(A)$ and p_{1} is the restriction to Z of the projection morphism $W_{d-1}^{r} \times W_{1}^{0} \rightarrow W_{1}^{0}$. We obtain that p_{1} is surjective and each fibre of p_{1} contains an irreducible component of dimension at least $\operatorname{dim}(A)-(r+1)$. Hence, there exists an irreducible component \tilde{Z} of Z dominating W_{1}^{0} with

$$
\operatorname{dim}(\tilde{Z}) \geqslant \operatorname{dim}(A)-r
$$

Our assumption gives us that $\operatorname{dim}\left(p_{2}(\tilde{Z})\right)<\operatorname{dim}(\tilde{Z})$. On the other hand, p_{2} is injective on the fibres of p_{1}. It follows that $\operatorname{dim}\left(p_{2}(\tilde{Z})\right)=\operatorname{dim}(\widetilde{Z})-1$ and for each $x \in p_{2}(\tilde{Z})$ and for each $P \in X$ there exists $y \in W_{d-1}^{r}$ such that

$$
y+[I(1)](P)=x
$$

If $x \notin W_{d}^{r+1}$ then each point P on X would be a fixed point of $g_{d}(x)$. This is of course impossible, hence $p_{2}(\tilde{Z}) \subset W_{a}^{r+1}$. But this would imply that

$$
\operatorname{dim}\left(W_{a}^{r+1}\right) \geqslant \operatorname{dim}(A)-(r+1)
$$

But $W_{d-1}^{r} \supset W_{d}^{r+1} \Theta W_{1}^{0}$, hence we would obtain that

$$
\operatorname{dim}\left(W_{a-1}^{r}\right) \geqslant \operatorname{dim}(A)-r,
$$

a contradiction to the assumptions. As a corollary, we obtain that

$$
\operatorname{dim}\left[\left(W_{d-1}^{r} \oplus W_{1}^{0}\right) \cap A\right] \geqslant \operatorname{dim}(A)-r
$$

But then, our assumptions give us the existence of an irreducible component B of W_{d-1}^{r} satisfying $\operatorname{dim}(B)=\operatorname{dim}(A)-(r+1)$ such that $B \oplus W_{1}^{0} \subset A$.

In order to get a more detailed result, we study the following situation. Let $r, d \in \boldsymbol{Z}_{\geqslant 1}$ such that $\varrho_{d}^{r}(g)<g$. Let $x \in W_{d-1}^{r} \backslash W_{d-1}^{r+1}$ and consider $x \oplus W_{1}^{0} \subset W_{d}^{r}$.

Lemma 3. - Let y be a general point of W_{1}^{0}.
(i) If $\operatorname{dim}\left(T_{x}\left(W_{a-1}^{r}\right)\right)=\varrho_{d-1}^{r}(g)$ then $\operatorname{dim}\left(T_{x+y}\left(W_{a}^{r}\right)\right)=\varrho_{a}^{r}(g)$.
(ii) If $\operatorname{dim}\left(T_{x}\left(W_{a-1}^{r}\right)\right)>\varrho_{d-1}^{r}(g)$, then

$$
\operatorname{dim}\left(\operatorname{ker}\left(\mu_{a}(x+y)\right)\right) \leqslant \operatorname{dim}\left(\operatorname{ker}\left(\mu_{a-1}(x)\right)\right)-1
$$

Proof. - We are going to make use of the following well-known fact. If $x \in W_{d}^{r} \backslash W_{d}^{r+1}$ then, for the tangent space $T_{x}\left(W_{d}^{r}\right)$ of W_{d}^{r} at x we have

$$
\operatorname{dim}\left(T_{x}\left(W_{a}^{r}\right)\right)=\varrho_{d}^{r}(g)+\operatorname{dim}\left(\operatorname{ker}\left(\mu_{d}(x)\right)\right)
$$

Let $y=[I(1)](P)$ with P a general point on X. Since $g_{d-1}(x)$ is special, P is a fixed point of $g_{a}(x+y)$ and $x+y \in W_{d}^{r} \backslash W_{d}^{r+1}$. Hence we have a natural identification between

$$
H^{0}\left(X, L_{x}\left((d-1) P_{0}\right)\right) \quad \text { and } \quad H^{0}\left(X, L_{x}\left((d-1) P_{0}+P\right)\right)=H^{0}\left(X, L_{x+y}\left(d P_{0}\right)\right)
$$

Also

$$
H^{0}\left(X, \omega_{x} \otimes L_{x+y}^{-1}\left(-d P_{0}\right)\right)=H^{0}\left(X, \omega_{X} \otimes L_{x}^{-1}\left(-(d-1) P_{0}-P\right)\right)
$$

can be considered in a natural way as a subspace of $H^{0}\left(X, \omega_{x} \otimes L_{x}^{-1}\left(-(d-1) P_{0}\right)\right)$. Under those identifications, we obtain a commutative triangle

It follows that $\operatorname{ker}\left(\mu_{a}(x+y)\right) \subset \operatorname{ker}\left(\mu_{d \rightarrow 1}(x)\right)$. From this, (i) follows immediately. Suppose $\operatorname{dim}\left(\operatorname{ker}\left(\mu_{d-1}(x)\right)\right)>0$. Assume that

$$
\begin{equation*}
\operatorname{ker}\left(\mu_{d}(x+y)\right)=\operatorname{ker}\left(\mu_{d-\mathbf{1}}(x)\right) \tag{*}
\end{equation*}
$$

Suppose $\left\{s_{0}, \ldots, s_{r}\right\}$ is a C-basis for $H^{0}\left(X, L_{x}\left((d-1) P_{0}\right)\right)$ and fix $\sum_{(}\left(a_{i} s_{i} \otimes t_{i}: 0 \leqslant i \leqslant r\right)$, a nonzero element of $\operatorname{ker}\left(\mu_{d-1}(x)\right)$ for some $t_{i} \in H^{0}\left(X, \omega_{X} \otimes L_{x}^{-1}\left(-(d-1) P_{0}\right)\right)$. It follows from $(*)$ that $t_{i}(P)=0$ for $0 \leqslant i \leqslant r$ while P is a general point on X. This is of course impossible. This proves (ii).

Theorem 2 (bis). - In the situation of Theorem 2 , if $\operatorname{dim}(A)>\varrho_{d}^{r}(g)$ then B is a multiple irreducible component of W_{d-1}^{r}.

Proof. - Let x be a general point on B and let y be a general element of W_{1}^{0}. From [2], p. 182, Lemma 3.5, it follows that $x \notin W_{d-1}^{r+1}$ and since it concerns special divisors, also $x+y \notin W_{a}^{r+1}$. Since $B \oplus W_{1}^{0} \subset A$, we have

$$
\operatorname{dim}\left(T_{x+y}\left(W_{d}^{r}\right)\right)=\varrho_{d}^{r}(g)+\operatorname{dim}\left(\operatorname{ker}\left(\mu_{d}(x+y)\right)\right) \geqslant \operatorname{dim}(A)
$$

Hence $\operatorname{dim}\left(\operatorname{ker}\left(\mu_{d}(x+y)\right)\right) \geqslant \operatorname{dim}(A)-\varrho_{d}^{r}(g)$. Since $\operatorname{dim}(A)>\varrho_{d}^{r}(g)$ also $\operatorname{dim}(B)>$ $>\varrho_{d-1}^{r}(g)$. Applying Lemma 3 (ii) we obtain that

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{ker}\left(\mu_{d-1}(x)\right)\right) & \geqslant \operatorname{dim}\left(\operatorname{ker}\left(\mu_{d}(x+y)\right)\right)+1 \geqslant \operatorname{dim}(A)+1-\varrho_{d}^{r}(g)= \\
& =\operatorname{dim}(B)+(r+1)+1-\varrho_{d-1}^{r}(g)-(r+1)=\operatorname{dim}(B)-\varrho_{d-1}^{r}(g)+1
\end{aligned}
$$

It follows that

$$
\operatorname{dim}\left(T_{x}\left(W_{d-1}^{r}\right)\right)=\varrho_{d-1}^{r}(g)+\operatorname{dim}\left(\operatorname{ker}\left(\mu_{d-1}(x)\right)\right) \geqslant \operatorname{dim}(B)+1
$$

Assume that $\varrho_{d}^{r}(g) \geqslant 0$ and $W_{d+1}^{r} \neq J(X)$. The next theorem indicates that good behaviour with respect to Brill-Noether Theory for W_{d}^{r} implies the same for W_{d+1}^{r}.

Theorem. 4. - (i) If $\operatorname{dim}\left(W_{a}^{r}\right)=\varrho_{a}^{r}(g)$ then $\operatorname{dim}\left(W_{a+1}^{r}\right)=\varrho_{a+1}^{r}(g)$. Suppose that $\operatorname{dim}\left(W_{d}^{r}\right)=\varrho_{d}^{r}(g)$.
(ii) If W_{d}^{r} is a reduced scheme then W_{d+1}^{r} is a reduced scheme.
(iii) If W_{d}^{r} is an irreducible scheme then W_{a+1}^{r} is an irreducible scheme.

Proof. - (i) follows immediately from Proposition 1. In order to prove (ii) and (iii) we start by making the observation that, since $\operatorname{dim}\left(W_{a}^{r}\right)=\varrho_{a}^{r}(g)$, we already know from (i) that $\operatorname{dim}\left(W_{d+1}^{r}\right)=\varrho_{a+1}^{r}(g)$. It follows that W_{d+1}^{r} is a CohenMacauly scheme (see [6], Remark 2.8). The Unmixedness Theorem (see e.g. [14], 16.D) gives us that W_{a+1}^{r} has a multiple component A if W_{a+1}^{r} would not be a reduced scheme. Suppose that A is a multiple irreducible component of W_{a+1}^{r} and assume that W_{d}^{r} would be reduced. We can apply Theorem 2 which proves the existence of an irreducible component B of W_{a}^{r} satisfying $B \oplus W_{1}^{0} \subset A$. Since W_{a}^{r} is reduced, a general point x on B satisfies $\operatorname{dim}\left(T_{x}\left(W_{d}^{r}\right)\right)=\varrho_{d}^{r}(g)$. From Lemma 3 (i) it follows that a general point y on W_{1}^{0} satisfies $\operatorname{dim}\left(T_{x+v}\left(W_{a}^{r}\right)\right)=\varrho_{a+1}^{r}(g)$. This is a contradiction to the fact that $x+y$ belongs to a multiple irreducible component of W_{d+1}^{r}. This proves (ii). Next, suppose that W_{d}^{r} is irreducible while W_{d+1}^{r} is not. Let A and B be two different components of W_{a+1}^{r}. Using Theorem 2 again, we obtain that $W_{a}^{r} \oplus W_{1}^{0} \subset A \cap B \subset \operatorname{Sing}\left(W_{d+1}^{r}\right)$. But, as before, we find that, if x is a general point on W_{a}^{r} and if y is a general point on W_{1}^{0} then $\operatorname{dim}\left(T_{x+y}\left(W_{d+1}^{r}\right)\right)=\varrho_{a+1}^{r}(g)$, a contradiction. This proves (iii).

In the case $r=1$, the proof of Theorem 2(bis) also gives us:
If A is a generically reduced irreducible component of W_{d}^{1} with $\operatorname{dim}(A)>$ $>\varrho_{d}^{1}(g)$, then $A \oplus W_{1}^{0}$ is a generically reduced irreducible component of W_{d+1}^{1}.

For $r>1$ we have the following generalization.

Theorem 5. - Let A be a generically reduced irreducible component of W_{a}^{r} of dimension $\varrho_{a}^{r}(g)+s$ with $s>0$. Suppose that a general point x on A satisfies

$$
h^{0}\left(\omega_{X} \otimes L_{x}^{-2}\left(-2 d P_{0}\right)\right) \neq 0
$$

Then $A \oplus W_{1}^{0}$ is a generically reduced irreducible component of W_{a+1}^{r}.
Proof. - The assumptions give us $\operatorname{dim}\left(\operatorname{ker}\left(\mu_{a}(x)\right)\right)=s$. Let

$$
0 \neq h \in H^{0}\left(X, \omega_{X} \otimes L_{x}^{-2}\left(-2 d P_{0}\right)\right)
$$

Let $y=[I(1)](P)$ be a general point on W_{1}^{0} (hence P a general point on X). Let s_{0}, \ldots, s_{r} be a base of $H^{0}\left(X, L_{x}\left(d P_{0}\right)\right)$ with

$$
s_{0}(P) \neq 0 ; \quad s_{i}(P)=0 \quad \text { for } 1 \leqslant i \leqslant r
$$

Consider

$$
G=\left\langle\left\{s_{i} \otimes s_{j} h-s_{j} \otimes s_{i} h: 0 \leqslant i<j \leqslant r\right\}\right\rangle
$$

(here $\left\rangle\right.$ means the linear span). This is a subvectorspace of ker $\left(\mu_{a}(x)\right)$ of dimension $(r+1) r / 2$. As already mentioned in the proof of Lemma 3 , we can consider $\operatorname{ker}\left(\mu_{a+1}(x+y)\right)$ as a linear subspace of $\operatorname{ker}\left(\mu_{a}(x)\right)$. One has

$$
G \cap \operatorname{ker}\left(\mu_{d+1}(x+y)\right)=\left\langle\left\{s_{i} \otimes s_{j} h-s_{j} \otimes s_{i} h: 0<i<j \leqslant r\right\}\right\rangle
$$

hence $G \cap \operatorname{ker}\left(\mu_{d+1}(x+y)\right)$ has codimension r in G. It follows that $\operatorname{ker}\left(\mu_{d+1}(x+y)\right)$ has codimension at least r in ker $\left(\mu_{d}(x)\right)$. Therefore $\operatorname{dim}\left(T_{x+y}\left(W_{d+1}^{r}\right)\right) \leqslant \operatorname{dim}(A)+1$. This proves the theorem.

Remark 6. - Suppose A is an irreducible component of W_{d}^{r} of dimension $\varrho_{d}^{r}(g)+s$ with $s>0$. Let x be a general point on A and suppose that F is the fixed divisor of $g_{d}(x)$. Let $F+D$ be a general element of $g_{d}(x)$. Then D imposes at least

$$
h^{0}\left(\omega_{x} \otimes L_{x}^{-1}\left(-d P_{0}\right)\right)-h^{0}\left(\omega_{X} \otimes L_{x}^{-1}\left(-d P_{0}-D\right)\right)
$$

conditions on $\operatorname{im}\left(\mu_{d i}(x)\right)$, hence

$$
\operatorname{dim}\left(\operatorname{im}\left(\mu_{d}(x)\right)\right) \geqslant 2 h^{0}\left(\omega_{X} \otimes I_{x}^{-1}\left(-d P_{0}\right)\right)-h^{0}\left(\omega_{X} \otimes L_{x}^{-1}\left(-d P_{0}-D\right)\right)
$$

In particular

$$
\operatorname{dim}\left(\operatorname{im}\left(\mu_{a}(x)\right)\right) \geqslant 2(r-d+g)-h^{0}\left(\omega_{x} \otimes L_{x}^{-2}\left(-2 d P_{0}\right)\right)-\operatorname{deg}(F)
$$

and

$$
h^{0}\left(\omega_{x} \otimes L_{x}^{-2}\left(-2 d P_{0}\right)\right) \geqslant 2 r-2 d+g-\operatorname{deg}(F)+\operatorname{dim}(A)
$$

This gives us information about the assumption made in Theorem 5.
If $g_{d}(x)$ is birationally ample, we can use the so-called Accola-Griffiths-Harris Theorem (see [8], p. 73) which gives us

$$
h^{0}\left(\omega_{X} \otimes L_{x}^{-2}\left(-2 d P_{0}\right)\right) \geqslant \operatorname{dim}(A)-2 d+g+3 r-1
$$

In the case $r=1$, we have equality in Remark 6, namely
Lemma 7. - Let $x \in W_{d}^{1} \backslash W_{d}^{2}$ and let F be the fixed divisor of the associated linear system $g_{d}(x)$. One has

$$
\operatorname{dim}\left(T_{x}^{\prime}\left(W_{d}^{1}\right)\right)=h^{0}\left(L_{x}^{2}\left(2 d P_{0}-F^{\prime}\right)\right)-3+\operatorname{deg}(F)
$$

Proof. - Let s_{1}, s_{2} be a base for $H^{0}\left(X, L_{x}\left(d P_{0}\right)\right)$. For the associated divisors one has

$$
\left(s_{1}\right)=E_{1}+F ; \quad\left(s_{2}\right)=E_{2}+F
$$

and $\operatorname{Supp}\left(E_{1}\right) \cap \operatorname{Supp}\left(E_{2}\right)=\emptyset . \quad$ Suppose

$$
s_{1} \otimes t_{1}+s_{2} \otimes t_{2} \in \operatorname{ker}\left(\mu_{a}(x)\right)
$$

It is easy to see that this is equivalent to the existence of $s \in H^{0}\left(X, \omega_{x} \otimes\right)$ $\left.\otimes L_{x}^{-2}\left(F-2 d P_{0}\right)\right)$ such that

$$
t_{1}=s_{2} s \quad \text { and } \quad t_{2}=-s_{1} s
$$

It follows that

$$
\operatorname{dim}\left(\operatorname{ker}\left(\mu_{a}(x)\right)\right)=h^{0}\left(\omega_{x} \otimes L_{x}^{-2}\left(F-2 d P_{0}\right)\right)
$$

hence

$$
\operatorname{dim}\left(T_{x}\left(W_{d}^{1}\right)\right)=h^{0}\left(L_{x}^{2}\left(2 d P_{0}-F\right)\right)-3+\operatorname{deg}(F)
$$

Corollary 8. - Let A be a generically reduced irreducible component of W_{a}^{1} of dimension $\varrho_{d}^{1}(g)+s$ with $s>0$. Then, for $0 \leqslant s^{\prime} \leqslant s, A \oplus W_{s^{\prime}}^{0}$ is a generically reduced irreducible component of W_{d+s}^{1}.

Proof. - This can be proved immediately from Lemma 7 (see [5], Corollary 2.11).
Using Lemma 7, we can also prove
Proposimion 9. - Let A be an irreducible component of W_{d}^{1} of dimension $\varrho_{d}^{1}(g)+s$. Suppose that, for a general point x on A, one has $\operatorname{dim}\left(T_{x}\left(W_{d}^{1}\right)\right)=$
$=\varrho_{d}^{1}(g)+s+1$. Then, for $0 \leqslant s^{\prime} \leqslant s$, one has that $A \oplus W_{s^{\prime}}^{0}$ is a multiple irreducible component of $W_{a+s^{\prime}}^{1}$.

Proof. - Suppose $s \geqslant s^{\prime}>0$ and let B be an irreducible component of $W_{d+s^{\prime}}^{1}$ containing $A \oplus W_{s^{0}}^{0}$. Let x be a general point on A and let y be a general point on $W_{s^{\prime}}^{0}$ (i.e. $y=\left[I\left(s^{\prime}\right)\right](D)$ with D a general point on $W^{\left(s^{\prime}\right)}$). From [5], Corollary 2.8 (proved as an application of Lemma 7) we obtain that

$$
\operatorname{dim}\left(T_{x+y}\left(W_{d+8^{\prime}}^{1}\right)\right)=\operatorname{dim}(A)+s^{\prime}+1
$$

If $B \neq A \oplus W_{s^{\prime}}^{0}$ then $\operatorname{dim}(B)=\operatorname{dim}(A)+s^{\prime}+1$. Suppose s^{\prime} is the smallest value for which such a component B exists. Then, for a general point z on B, the linear system $g_{d+s^{\prime}}(z)$ is a linear system $g_{d+s^{\prime}}^{1}$ without fixed points. From Lemma 7 we obtain that

$$
h^{0}\left(\omega_{\bar{x}} \otimes L_{z}^{-2}\left(-2\left(d+s^{\prime}\right) P_{0}\right)\right) \geqslant s-s^{\prime}+1
$$

Using the Semicontinuity Theorem (see [9], p. 288) we obtain that

$$
h^{0}\left(\omega_{X} \otimes L_{x}^{-2}\left(-2 d P_{0}-2 D\right)\right) \geqslant s-s^{\prime}+1
$$

and, since $D \in X^{\left(s^{\prime}\right)}$ is general, we have

$$
h^{0}\left(\omega_{x} \otimes I_{x}^{-2}\left(-2 a P_{0}\right)\right) \geqslant s+s^{\prime}+1
$$

Since $s^{\prime} \geqslant 1$ this gives us a contradiction to the assumption that

$$
\operatorname{dim}\left(T_{x}\left(W_{d}^{1}\right)\right)=\varrho_{d}^{1}(g)+s+1
$$

Problem 10. - It would be very interesting to know whether or not the following situation occurs for some smooth curve X.
A is an irreducible component of $W_{d}^{1} \neq J(X)$ such that, for a general point x on A, one has

$$
\operatorname{dim}\left(T_{x}\left(W_{d}^{1}\right)\right) \geqslant \operatorname{dim}(A)+2
$$

and $A \oplus W_{1}^{0}$ is not an irreducible component of W_{d+1}^{1}.
This problem is strongly related to dimension problems on the schemes W_{d}^{1}, as we shall see.

Examples 11. - Multiple irreducible components A for the schemes W_{a}^{1} satisfying $\operatorname{dim}\left(T_{x}\left(W_{d}^{1}\right)\right)=\operatorname{dim}(A)+1$ for a general point x on A occur. In [3], it is proved that, for each $2 d-2 \leqslant g \leqslant(d-1)^{2}$, there exists a smooth curve X of genus g having a point x on W_{a}^{1} such that $\{x\}$ is an irreducible component of W_{d}^{1} and $\operatorname{dim}\left(T_{x}\left(W_{d}^{1}\right)\right)=1$.

Using Proposition 9, one finds higher dimensional such multiple irreducible components.

Another very explicite example is found in [5], Theorem 5.9: if X is a smooth plane curve of degree $d \geqslant 9$, then $W_{3 d-8}^{1}$ has an irreducible component A such that $\operatorname{dim}\left(T_{x}\left(W_{3 d-8}^{1}\right)\right)=\operatorname{dim}(A)+1$ for x a general point on A.

We are going to study problem $P(j)$ mentioned in the Introduction.
As already mentioned Statements $P(0)$ and $P(1)$ are true.
Proposition 12. - Statement $P(2)$ is true.

Proof. - As already mentioned in the Introduction Statement $P(2)$ is proved by C. Keem in [11] (see also the batch of exercises in [2], pp. 200, 201, 202) for the cases $g \geqslant 11$. So we only have to prove $P(2)$ for the cases $g=10$ and $g=9$.

Suppose $g=10$. In [11] it is also proved that $\operatorname{dim}\left(W_{6}^{1}\right)=2 \operatorname{implies} \operatorname{dim}\left(W_{5}^{1}\right)=1$. So, we only have to prove that $\operatorname{dim}\left(W_{7}^{1}\right)=3 \mathrm{implies} \operatorname{dim}\left(W_{6}^{1}\right)=2$.

Suppose A is an irreducible component of W_{7}^{1} of dimension 3 while $\operatorname{dim}\left(W_{6}^{1}\right) \leqslant 1$. From Theorem 2 it follows that there exists an irreducible component B of A satisfying $\operatorname{dim}(B)=1$ and $B \oplus W_{1}^{0} \subset A$. Since $A \notin W_{6}^{1} \oplus W_{1}^{0}$, it follows from Lemma 7 that, for a general point a on A, one has

$$
h^{0}\left(L_{a}^{2}\left(14 P_{0}\right)\right) \geqslant 6
$$

Using the Semicontinuity Theorem it follows that, for a general point b on B and a general point P on X, one has

$$
h^{0}\left(L_{b}^{2}\left(12 P_{0}+2 P\right)\right) \geqslant 6
$$

It follows that $L_{b}^{2}\left(12 P_{0}+2 P\right)$ is special. In particular also $L_{b}^{2}\left(12 P_{0}\right)$ is special. Since P is a general point on X it is not an inflection point of the complete linear system associated to $\omega_{X} \otimes L_{b}^{-2}\left(-12 P_{0}\right)$, in particular

$$
h^{0}\left(\omega_{x} \otimes L_{b}^{-2}\left(-12 P_{0}-2 P\right)\right)=h^{0}\left(\omega_{x} \otimes L_{b}^{-2}\left(-12 P_{0}\right)\right)-2
$$

From the Theorem of Riemann-Roch, it follows that

$$
h^{0}\left(L_{0}^{2}\left(12 P_{0}\right)\right) \geqslant 6
$$

i.e. $2 b \in W_{12}^{5}$. In particular we obtain that $\operatorname{dim}\left(W_{12}^{5}\right) \geqslant 1$ hence $\operatorname{dim}\left(W_{8}^{1}\right) \geqslant 5$. Now we can apply $P(1)$ which gives us that $\operatorname{dim}\left(W_{4}^{1}\right) \geqslant 1$. It would follow that $\operatorname{dim}\left(W_{6}^{1}\right) \geqslant 3$, a contradiction to the assumptions.

Suppose $g=9$. We only have to prove that $\operatorname{dim}\left(W_{6}^{1}\right)=2 \operatorname{implies} \operatorname{dim}\left(W_{5}^{1}\right)=1$. The proof is exactly the same as before; we leave it to the reader.

Proposition 13. - Statement $P(3)$ holds for $g \geqslant 12$.

Proof. - G. Martens proved $P(3)$ for $g \geqslant 15$ in [12].
a) Case $g=14$.

Step 1: dim $\left(W_{10}^{1}\right)=5$ implies $\operatorname{dim}\left(W_{9}^{1}\right)=4$. Suppose A is an irreducible component of W_{10}^{1} of dimension 5 and suppose that $\operatorname{dim}\left(W_{9}^{1}\right) \leqslant 3$. From Theorem 2 it follows that there exists an irreducible component B of W_{9}^{1} satisfying

$$
\operatorname{dim}(B)=3 \quad \text { and } \quad B \oplus W_{1}^{0} \subset A
$$

Let a be a general point on A. Since $A \notin W_{9}^{\mathbf{1}} \oplus W_{1}^{0}, g_{10}(a)$ is a complete g_{10}^{1} without fixed points. If b is a general point on B then $h^{0}\left(L_{b}^{2}\left(18 P_{0}\right)\right) \geqslant 8$ (using the same arguments as in the proof of Proposition 12). It follows that $\operatorname{dim}\left(W_{18}^{7}\right) \geqslant 3$, hence $\operatorname{dim}\left(W_{12}^{1}\right) \geqslant 9$. From $P(1)$ we obtain that $\operatorname{dim}\left(W_{4}^{1}\right)=1$, in particular $\operatorname{dim}\left(W_{9}^{1}\right) \geqslant 6$, hence a contradiction.

Step 2: $\operatorname{dim}\left(W_{8}^{1}\right)=4$ implies $\operatorname{dim}\left(W_{8}^{1}\right)=3$. This can be proved in the same way as Step 1. We leave it to the reader.

Step 3: $\operatorname{dim}\left(W_{8}^{1}\right)=3$ implies $\operatorname{dim}\left(W_{7}^{1}\right)=2$. Suppose A is an irreducible component of W_{8}^{1} of dimension 3 and suppose that $\operatorname{dim}\left(W_{7}^{1}\right) \leqslant 1$. From Theorem 2 we obtain that there exists an irreducible component B of W_{7}^{1} satisfying

$$
\operatorname{dim}(B)=1 \quad \text { and } \quad B \oplus W_{1}^{0} \subset A
$$

Let a be a general point on A and let b be a general point on B. As before one can prove that $h^{0}\left(L_{2 b}\left(14 P_{0}\right)\right) \geqslant 6$. Consider the cup-product homomorphism

$$
\mu: H^{0}\left(X, L_{a}\left(8 P_{0}\right)\right) \otimes H^{0}\left(X, L_{2 b}\left(14 P_{0}\right)\right) \rightarrow H^{0}\left(X, L_{a+2 b}\left(22 P_{0}\right)\right)
$$

If $h^{0}\left(L_{a+20}\left(22 P_{0}\right)\right) \leqslant 10$, then $\operatorname{dim}(\operatorname{ker}(\mu)) \geqslant 2$. Because of the Base point free pencil trick (see [2], p. 126) we obtain that $h^{0}\left(L_{2 b-a}\left(6 P_{0}\right)\right) \geqslant 2$. As a corollary, we would obtain that $\operatorname{dim}\left(W_{6}^{1}\right) \geqslant 3$. In particular $\operatorname{dim}\left(W_{7}^{1}\right) \geqslant 4$, which gives us a contradiction. Suppose that, for a general $a \in A$ and $b \in B$, we have $h^{0}\left(L_{a+2 b}\left(22 P_{0}\right)\right)>10$. Then $\operatorname{dim}\left(W_{22}^{10}\right) \geqslant 3$ hence $\operatorname{dim}\left(W_{13}^{1}\right) \geqslant 12$. This is impossible.

Step 4: $\operatorname{dim}\left(W_{7}^{1}\right)=2$ implies $\operatorname{dim}\left(W_{6}^{1}\right)=1$. This can be proved in the same way as Step 3 ; we leave it to the reader.
b) Case $g=13$.

Similar arguments as those used in Case a) can be used. We leave it to the reader.
c) Case $g=12$.

Step 1: $\operatorname{dim}\left(W_{8}^{1}\right)=3 \mathrm{implies} \operatorname{dim}\left(W_{7}^{1}\right)=2$. This can be proved in the same way as Step 1 of Case a). We leave it to the reader.

Step 2: $\operatorname{dim}\left(W_{7}^{1}\right)=2$ implies $\operatorname{dim}\left(W_{6}^{1}\right)=1$. Suppose A is an irreducible component of W_{7}^{1} of dimension 2. Because of Theorem 2 there exists $b \in W_{6}^{1}$ such that $b \oplus W_{1}^{0} \subset A$. Using the base point free pencil trick as we did in the proof of Case a) Step 3, we obtain a contradiction unless, for a general point a on A, one has $h^{0}\left(L_{a+2 b}\left(19 P_{0}\right)\right) \geqslant 9$. Upper-Semicontinuity gives that, for a general point P on $X, h^{0}\left(L_{3 b}\left(18 P_{0}+P\right)\right) \geqslant 9$. From the Theorem of Riemann-Roch it follows that $L_{3 b}\left(18 P_{0}+P\right)$ is special hence, since P is general on $X, h^{0}\left(L_{3 b}\left(18 P_{0}\right)\right) \geqslant 9$. Using the Riemann-Roch Theorem, we obtain that $h^{0}\left(\omega_{X} \otimes L_{3 b}^{-1}\left(-18 P_{0}\right)\right) \geqslant 2$ hence $W_{4}^{1} \neq \emptyset$. It follows that $\operatorname{dim}\left(W_{6}^{1}\right) \geqslant 2$, which gives us a contradiction.

Remark 14. - In order to give a complete proof for $P(3)$ we have to prove that, for $g=11$, $\operatorname{dim}\left(W_{7}^{1}\right)=2$ implies $\operatorname{dim}\left(W_{6}^{1}\right)=1$. It is enough to prove that the following situation does not occur.
X is a smooth curve of genus $11 ; x$ is an isolated point of W_{6}^{1} satisfying $\operatorname{dim}\left(T_{x}\left(W_{6}^{1}\right)\right) \geqslant 2$ and $x \oplus W_{1}^{0}$ is not an irreducible component of W_{7}^{1}.

This is Problem 10 in a special case.
Theorem 15. - Suppose $j \geqslant 4 . \quad P(j)$ holds for $g>(j+1)(2 j+1)$.
Proof. - It is well-known that, if $g \geqslant 4 j+3$ and $2 j+2 \leqslant d \leqslant g-j$, then $\operatorname{dim}\left(W_{d}^{1}\right)=d-2-j$ implies $\operatorname{dim}\left(W_{2 j+2}^{1}\right)=j$ (see [10], Theorem 1). Hence we can assume that for some $j+3<d \leqslant 2 j+2$, one has an irreducible component A of W_{d}^{1} of dimension $d-2-j$ while $\operatorname{dim}\left(W_{d-1}^{1}\right) \leqslant d-4-j$. From Theorem 2 we obtain the existence of a component B of W_{d-1}^{1} satisfying

$$
\operatorname{dim}(B)=d-4-j \quad \text { and } \quad B \oplus W_{1}^{0} \subset A
$$

Since $g>(j+1)(2 j+1)$ clearly $g>d(d-1) / 2$. Also because of the assumptions, it follows that $A \nsubseteq W_{d-1}^{1} \oplus W_{1}^{0}$. Hence if a_{1} and a_{2} are general points on A then $g_{d}\left(a_{1}\right)$ and $g_{d}\left(a_{2}\right)$ are linear systems g_{d}^{1} on X without fixed points. From computations in [1] (see also [4], Proposition 3) it follows that $g_{d}\left(a_{1}\right)$ and $g_{d}\left(a_{2}\right)$ are compounded of the same involution. If they would be compounded of some rational
involution then X would have a linear system g_{a}^{1} for some $a \mid d$. Since $d \leqslant 2 j+2$ it would follow that $a \leqslant j+1$ hence $W_{j+1}^{1} \neq \emptyset$. This would imply that dim $\left(W_{d-1}^{1}\right) \geqslant$ $\geqslant d-j-2$, a contradiction to the assumption. Hence $g_{d}\left(a_{1}\right)$ and $g_{d}\left(a_{2}\right)$ are compounded of the same non-rational involution. But X possesses only a finite number of non-rational involutions of degree $a \leqslant j+1$ (see [16]). As a corollary, there exists a smooth curve X^{\prime} of genus $g^{\prime} \geqslant 1$ and a morphism $f: X \rightarrow X^{\prime}$ of some degree a|d such that for the associated morphism $f^{*}: J\left(X^{\prime}\right) \rightarrow J(X)$ one has (taking $f\left(P_{0}\right)$ as base point for $\left.X^{\prime}\right)$ that there exists an irreducible component A^{\prime} of $W_{d / \alpha}^{1}$ of dimension $d-2-j$ satisfying $f^{*}\left(A^{\prime}\right)=A$. In particular $B \oplus W_{1}^{0} \subset f^{*}\left(A^{\prime}\right)$. Since B is an irreducible component of W_{d-1}^{1} one has that for b a general point on B, the linear system $g_{d-1}(b)$ is 1-dimensional (see [2], p. 182). In particular, if $x=[I(1)](P)$ is a general point on W_{1}^{0}, then $g_{d}(b+x)$ is a linear system g_{d}^{1} and P is a fixed point of it. Since $b+x \in f^{*}\left(A^{\prime}\right)$, there exists a linear system $g_{d / a}^{1}$ on X^{\prime} such that

$$
g_{d}^{1}=\left\{f^{-1}(D): D \in g_{d / a}^{1}\right\} .
$$

But P is a fixed point of g_{d}^{1}, hence $f(P)$ is a fixed point of $g_{d / a}^{1}$. Since P is general, $f^{-1}(f(P))$ contains a point P^{\prime} different from P and P^{\prime} is also a fixed point of g_{d}^{1}, hence P^{\prime} is a fixed point of $g_{d-1}(b)$. Varying P on X we obtain infinitely many fixed points for $g_{d-1}(b)$ which is absurd.

Remark 16. - Using a more detailed analysis using arguments as those used in e.g. [12], we are able to obtain a better lower bound for g. Since this lower bound is still of order $O\left(j^{2}\right)$ as $j \rightarrow \infty$ it seems not very useful to reproduce such a long proof here.

REFERENCES

[1] R. D. M. Accold, On Oastelnuovo's inequality for algebraic curves I, Trans. Am. Math. Soc., 251 (1979), pp. 357-373.
[2] E. Arbarello - M. Cornalba - P. Griffiths - J. Harris, Geometry of algebraic curves, Vol. I, Grundlehren, 267 (1985).
[3] M. Coppens, One-dimensional linear systems of type $I I$ on smooth curves, Ph.-D. Thosis, Utrecht (1983).
[4] M. Coppens, Some sufficient conditions for the gonality of a smooth curve, J. Pure Appl. Algebra, 30 (1983), pp. 5-21.
[5] M. Coppens, A study of the schemes W_{e}^{1} of smooth plane curves, Proc. first Belgian-Spanish Woek on Algebra and Geometry - R.U.C.A. (1988), pp. 29-62.
[6] W. Fulton - R. Lazarsfeld, on the connectedness of the degeneraey locus and special divisors, Acta Math., 146 (1981), pp. 271-283.
[7] W. Fulton - R. Lazarsfeld - J. Harris, Excess linear series on an algebraic curve, Proc. of the A.M.S., 92 (1984), pp. 320-322.
[8] J. Harris, Curves in projective space, Les Presses de l'Université de Montreal (1982).
[9] R. Hartshorne, Algebraic geometry, Graduate Texts in Math., 52, Springer-Verlag (1977).
[10] R. Horivehi, Gap orders of meromorphic functions on Riemann surfaces, J. reine angew. Math., 336 (1982), pp. 213-220.
[11] C. Keem, A remark on the variety of special linear systems on an algebraic curve, Ph.-D. Thesis (1983).
[12] G. Martens, On the dimension theorems of the varieties of special divisors on a curve, Math. Ann., 267 (1984), pp. 279-288.
[13] H. Martens, On the varieties of special divisors on a curve, J. reine angew. Math., 227 (1967), pp. 111-120.
[14] H. Matsumura, Commutative algebra, W. A. Benjamin Co. (1970).
[15] D. Mumford, Prym varieties I, Contributions to Analysis, Academic Press (1974), pp. 325-350.
[16] G. Tamme, Teilkörper höherer geschlechts eines algebraischen Funktionenkörpers, Archiv der Math., 23 (1972), pp. 257-259.

