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Some Remarks on the Schemes W7 (*).

MArc CoPPENS

Summary. — Let X be an irreducible smooth projective curve of genus g. Let o7(g) be the Brill-
Noether Number. In this paper we prove some resulls concerning the schemes W3 of special
divisors. 1) Suppose dim (Wj_,) = o} (9)>0 and of(g) < g. If Wi_i is a reduced (resp.
irreducible) scheme, then W7 is a reduced (resp. irreducible) scheme. 2) Under certain con-
ditions, if Z is a generically reduced irreducible component of We then Z@ WS is a
generically reduced irreducible component of W',. For r = 1, we obiain some further results
in this direction. 3) As an application of it we are able to prove some dimension theorems
for the schemes W3,

1. - Introduction.

Let X be a smooth irreducible projective curve of genus g>1 and let J(X) be
the jacobian of X. This is an abelian variety of dimension g which can be identified
with Pic® (X), the Picard scheme of the invertible sheafs of degree 0 on X. We
always make this identification. Let P, be a fixed base point on X and let X@ be
the d-th symmetric product. We have a natural morphism

I(d); X9 > J(X): D—[04D— dP,)]

(if L is an invertible sheaf of degree 0 on X, then [L] is the corresponding point
on J(X)). Consider

W, = {eeJ(X): dim ([L(@)]-*(@) >r} = {[L] e Pie* (X): W(L(@Py) > + 1} .

Those subsets are different from J(X) if » > d— g. Those subsets play a central
role in the study of special linear systems. The Riemann-Roch Theorem tells us
that it is enough to study the case d<g— 1. On W, there exists a natural scheme
structure. For more details concerning the general theory of the schemes W7, we
refer to [2], especially Chapter IV.

(*) Entrata in Redazione il 23 settembre 1988.
Indirizzo dell’A.: Katholieke Industriéle Hogeschool der Kempen, Campus H. I. Kempen
Kleinhoefstraat 4, B 2440 Geel, Belgium.
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Those schemes W/ are very well-known if X is a general curve. This is the
so-called Brill-Noether Theory. We refer to [2], Chapter V, for a summary of the
most. important results of that theory. If X is an arbitrary curve, the behaviour
of the schemes W7 is far from being well-understood. It is the aim of this paper
to present some results in thiz direction.

An important known result is the following.

If dim (W/)>7 -+ 1 then Wi 50 and dim (Wj_,)>dim (Wj;)— (r + 1).

This is proved in [7] as a consequence of the theory develloped in [6]. A consequence
of this statement is the following statement.
Suppose Wi J(X) and g7 4(g9)>0 (Brill-Noether Number).

If dim (W3) > pi(g) then dim (W7_,)> gi_.(9) .

Hence failure with respect to Brill-Noether behaviour for large d implies failure
for dy(g, r), where

do(g, r) = min {d: 03(9) >0} .

By making a closer analysis of the proof of the mentioned result we can push on
this philosophy a little bit as follows.

Resurr 1 (Theorem 4). — Suppose dim (W;_,) = g5_4(g)>0 and gji(g) < ¢.
a) If Wj_, is a reduced scheme then W} is a reduced scheme.
by If Wi_, is an irreducible scheme then W} is an irreducible scheme.

In the proof of this result we use the description of the tangent space to W7,
at a point 2 € W\ W7 by means of the Petri map (see [2], Chapter IV). Using
this description we are able to prove the following fact relating Wj to Wg,,.

Resurt 2 (Theorem 5). — Suppose Z is a generically reduced irreducible com-
ponent of W’ 5= J(X). Suppose that, for a general point z on Z one has

13 (L®*(2dP,)) # 0

(i.e. 2D, where D is a divisor of degree d associated to 2, is a special divisor). Then
Z®W) is a generically reduced irreducible component of Wg,,.

(If A, BcJ(X) then A@QB={a 4 b: ac 4 and be B}. We also use A@B =
= {a—b: ac 4 and be B}.)

We prove that the condition on the general point 2 is always satisfied if
Z¢ Wi D W? and dim (Z) > 2d — g — 2r (this follows from Remark 6). In par-
ticular the condition in Result 2 is always satisfied if »r = 1 and dim (Z) > g}(g).
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In the case r = 1 we make some further remarks on Result 2 (see Corollary 8; Pro-
position 9 and Problem 10). The conclusion of Result 2 can also be expressed as
follows. If g7 is the linear system on X associated to a general point on Z and if
P is a general point on X, then g7 + P = {D + P: D e g7} is not the specialization
of a g7,, on X without fixed points.

We also discuss the following dimension problem (see [12], p. 280). Let
je Z>0. . :

P(j)  Suppose g>2j+ 4 and j+3<d<g—1—7.
Suppose dim (W))=d—2—7.
Is it true that dim (Wj,) =17

This question is answered afﬁrmativelj in the following cases.
j=10: H. Martens’ Theorem (see [13]; see also [2], p. 191);
j=1: D. Mumford’s Theorem (see [15]; see also [2], p. 193);
j=2: C. Keem, but only for the cases g>11 (see [11]);

j = 3: G. Martens, but only for the cases ¢>15;

(G. Martens also has a proof for the cases 4<j< 7 for g sufficiently large).
As an application of our methods we are able, amongst others, to prove the fol-
lowing contributions to this problem.

RESULT 3 (Propositions 12 and 13 and Theorem 15).
1) P(2) is true.
2) P(3) holds for the cases g>12.
3) P(j) holds for arbitrary j in the cases g>(j -+ 1)(2j 4+ 1).

The reason why we cannot prove P(3) in the case g = 11 is very much related to
problems mentioned earlier in this paper (Remark 14).

2. — Notations and conventions.

Besides those from [2], we use the following notations and conventions. Let
® e J(X). Then L, is the corresponding invertible sheaf of degree 0 on X and g,(z)
is the complete linear ’system associated to L,(dP,) (see [9], p. 157). We write wy
for the canonical sheaf on X and Ky to denote some effective eanonical divisor
on X, We write k& to denote [I(2g— 2)](Kz). For wxeJ(X), the Gieseker-Petri
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homomorphism associated to I,(dP,) is the cup-product homomorphism
pa@): HY(X, L(dP) ® HY(X, wz @ L} (— dPy)) — HYX, wy) .
If Z is some projective set then we write dim (Z) to denote

sup ({dim (4): 4 is an irreducible component of Z}) .

3. — Results.

The starting point for our investigations is the next proposition which is proved
in [7].

ProrosiTioN 1. — Let reZ_,. Let AcW, be an irreducible closed subset
satisfying dim (4)>7 -+ 1. Then 4 N Wj_, contains some irreducible component B
satisfying dim (B)>dim (4)— (r + 1). (This can also be proved from the results
in [6] using the arguments of Theorem 11 in [4].)

Tf, in Proposition 1, we have B¢ Wi, then g,(x) is a complete linear system
g, on X for » a general point of B. Since BcW;_, the base point P, is a fixed
point of g,(x). We are going to get more information from Proposition 1 by varying
the base point.

THEOREM 2. — Let A be as in Proposition 1. If dim (Wi_,)<dim (4)— (r 4 1),
then there exists an irreducible component B of Wj_, satisfying dim (B)=
= dim (4)— (r + 1) such that B Wic 4.

PROOF. — For Pe X let W, c J(X) be defined in the same way as W using P
as a base point instead of P,. Then A @ [Ox(dPy— dP)] is a closed subset of W7, .
From Proposition 1 we obtain B, c Wj_, , satisfying
dim (B,)>dim (4)— (r + 1),
Bpc AD[0x(dP,— dP)].
It follows that
Bp:= By ®[0;((d— 1) P— (d— 1) Py)] c Wiy,
B:®IM)IP)c4,
dim (Bp)»dim (4)— (r + 1) .

Suppose that dim [(W5_,® W N A]<dim (4)— (r+ 1) (hence we have equality).
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Consider the diagram
W‘ll < Z W, x W (=, )

b b ]

Ac JX) z-+y

where Z = (¢« + »)"(4) and p, is the restriction to Z of the projection morphism
Wi x We — W{. We obtain that p, is surjeetive and each fibre of p; contains an
irreducible component of dimension at least dim (4)— (r 4+ 1). Hence, there exists
an irreducible component Z of Z dominating W° with

dim (Z)>dim (4)—r .

Our assumption gives us that dim (p,(Z)) < dim (Z). On the other hand, p, is injec-
tive on the fibres of p,. It follows that dim (py(Z)) = dim (Z)— 1 and for each
@€ py(Z) and for each Pe X there exists y € W;_, such that

y+ IWIP)=2.

If ¢ W, then each point P on X would be a fixed point of g,(x). This is of
course impossible, hence p,(Z)c Wi+, But this would imply that

dim (W7) >dim (4)— (r -+ 1).
But Wji_;> Wit'© W?, hence we would obtain that
dim (W3_,) >dim (4)—r,
a contradiction to the assumptions. As a corollary, we obtain that
dim [(W;_,® W) N A]>dim (4)—r.
But then, our assumptions give us the existence of aﬁ irreducible component B
of Wi_, satisfying dim (B) = dim (4) — (» + 1) such that BEWIcA.

In order to get a more detailed result, we study the following situation. Let
7, d € Z,, such that gj(g) <g. Let we W,_\ W7 and consider s @W?c wr.

a=1
LemmA 3. - Let y be a general point of W?.
(i) If dim (To(W;_,)) = 05-1(g) then dim (7.,,(W3)) = gi(g).
(i) If dim (T.(Wi_,)) > 05(g), then

dim (ker (ol + y))) <dim (ker (yd_l(m))) —1.
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PRrROOF. — We are going to make use of the following well-known fact. If
xre W\ Wi+t then, for the tangent space T,(W3) of Wj at  we have

dim (T,(W3)) = gilg) + dim (ker (pa(®))) -

Let y = [I(1)}(P) with P a general point on X. Since g, ,(«) is special, P i3 a fixed
point of g,(& - ¥) and # + y € Wi\ Wi+, Hence we have a natural identification
between

HY(X, L((d— 1)P)) and  H(X, L((d—1)Ps+ P)) = BY(X, L, (dPy)) .
Also
H(X, 0y ® L},(— dPy) = B(X, 0x® L;*(— (d— 1) P~ P))

]

can be considered in a natural way as a subspace of H“(X, wxQ L7 — (d— 1)P.,)).
Under those identifications, we obtain a commutative triangle

HYX, T, (dPy)) @ HY(X, wx ® L7L(— dPy))

: HO(X, C{)x)

|
\%
(X, L((d— 1) Py)) @ H(X, 0 ® L~ (d— 1)P,)).

It follows that ker (us» -+ %)) c ker (u,4(»)). From this, (i) follows immediately.
Suppose dim (ker (Ma_1($))) > 0. Assume that

(%) ker (us(w + y)) = ker (Has(@)) -

Suppose {8, ..., 5,} is a C-basis for H"(X, L,((d— l)Po)) and fix Y (¢;8,@ 8 0<i<r),
a nonzero element of ker (uq_.(#)) for some tieH"(X, wr® L — (d—l)Po)). It
follows from (%) that ¢,(P) = 0 for 0<i<r while P is a general point on X. This
is of course impossible. This proves (ii).

THEOREM 2(bis). — In the situation of Theorem 2, if dim (4)> 0%(g) then B ig

r

a multiple irreducible component of W7_;.

PROOF. ~ Let # be a general point on B and let y be a general element of we.
From [2], p. 182, Lemma 3.5, it follows that » ¢ Wrt and since it concerns special
divisors, also z - y ¢ W7+, Since B@® Wic 4, we have

dim (T,o(W5) = gi(g) -+ dim (Ker (o + 9))) > dim (4) .
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Hence dim (ker (al + g/)))>dim (A)— ei{g). Since dim (4)> gi(g) also dim (B)>
> 054(¢9). Applying Lemma 3 (ii) we obtain that

dim (ker (fta1(2))) > dim (ker (uale + ¥))) + 1> dim (4) + 1 — gi(g) =
=dim (B) + (r -+ 1) + 1 — gza(g) — (r + 1) = dim (B) — 0i_4(9) + 1.

It follows that
dimn (To(Wi_1)) = eha(g) -+ dim (ker (uy4(2))) > dim (B) + 1.

Assume that gj(g)>0 and Wj ,+ J(X). The next theorem indicates that good
behaviour with respect to Brill-Noether Theory for W; implies the same for Wg,,.

THEOREM 4. — (i) If dim (W}) = ei(g) then dim (W3,,) = 0§,.(g). Suppose that
dim (W3) = gi(g).

(ii) If W; is a reduced scheme then Wj,, is a reduced scheme.

(iti) If W} is an irreducible scheme then Wj,, is an irreducible scheme.

Proor. — (i) follows immediately from Proposition 1. In order to prove (ii)
and (iii) we start by making the observation that, since dim (Wj}) = gi(g), we
already know from (i) that dim (Wj,,) = pi..(g). It follows that Wj,, is a Cohen-
Macauly scheme (see [6], Remark 2.8). The Unmixedness Theorem (see e.g. [14],
16.D) gives us that W, has a multiple component 4 if W7, would not be a reduced
scheme. Suppose that 4 is a multiple irreducible component of Wj,, and assume
that Wj; would be reduced. We can apply Theorem 2 which proves the existence
of an irreducible component B of W; satisfying BO WJc A. Since Wj is reduced,
a general point # on B satisfies dim (7,(W3)) = gi(g). From Lemma 3 (i) it follows
that a general point y on W? satisfies dim (7,.,(W3)) = 03,a(g). This is a contra-
diction to the fact that # - y belongs to a multiple irreducible component of Wg,;.
This proves (ii). Next, suppose that Wj is irreducible while W7, is not. Let 4
and B be two different components of Wj,,. Using Theorem 2 again, we obtain
that W;® Wic A N BcSing (W;,,). But, as before, we find that, if # is a general
point on Wj and if y is a general point on W3 then dim (Z,,,(Win)) = 05,1(9), &
contradiction. This proves (iii).

In the case r = 1, the proof of Theorem 2(bis) also gives us:

If A is a generically reduced irreducible component of W) with dim (4)>
> 0,(9), then A @ W} is a generically reduced irreducible component of W2,,.

For r > 1 we have the following generalization.
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THEOREM 5. —~ Let A be a generically reduced irreducible component of W7 of
dimension pj(g) + s with ¢ > 0. Suppose that a general point » on A satisfies

B (wx® L *(— 2dP,)) # 0 .
Then A @ W? is a generically rednced irreducible component of Wj.,.
PrOOF. ~ The assumptions give us dim (ker (yd(m))) = 8. Let
05 he HY(X, wy® L;%— 2dP,)) .

Let y = [I(1)](P) be a general point on W? (hence P a general point on X). Let
S0y .-y 8, De a base of H(X, L,(dP,)) with

(P)#=0; s(P)y=0 for 1<i<r.
Consider
G ={{s:;:®8,h—8,Q8:h: 0<i<j<r}
(here < > means the linear span). This is a subvectorspace of ker (u,(x)) of dimen-

sion (r 4 1)r/2. As already mentioned in the proof of Lemma 3, we can consider
ker (uaa(® + y)) as a linear subspace of ker (us(#)). One has

GOker (uga(@ -+ y)) = {: @ 8;h— 8, 8:h: 0 <I< <))
hence G N ker (uqa,(¢+y)) has codimension r in G. It follows that ker (.. (¢ +y))
has codimension at least r in ker (u,(x)). Therefore dim (7,,,(Wi,,))<dim (4)+1.
This proves the theorem. ‘
REMARK 6. — Suppose A is an irreducible component of W} of dimension gj(g) + s

with § > 0. Let z be a general point on A and suppose that F is the fixed divisor
of g,(x). Let F 4 D be a general element of g,(x). Then D imposes at least

W{ws® L (— dPy)) — b0z ® L;Y(— dP,— D))
conditions on im {u.(x)), hence
dim (im (uy(@)) ) > 2805 @ L7 (— dPy)) — iz ® L;}(— dPy— D)) .
In particular

dim (im () > 20— d + 9) — W0z ® L;*(— 2dPy)) — deg (F)
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and
B (wx® L;¥(— 2dP,)) >2r — 2d + g— deg (F) ++ dim (4) .

This gives us information about the assumption made in Theorem 5. _
If g,(») is birationally ample, we can use the so-called Accola-Griffiths-Harris
Theorem (see [8], p. 73) which gives us

(0 ® L;%(— 2dP,)) >dim (A)— 2d + g+ 3r—1.
In the case r = 1, we have equality in Remark 6, namely

LEMMA 7. - Let # € Wi\ W? and let F be the fixed divisor of the associated linear
system g;(x). One has

dim (7,(W3)) = ho(Li(2dP,— F)) — 3 - deg (F) .
PROOF. — Let s, s, be a base for H(X, L.(dP,). For the associated divisors
one hag |

G)=E+F; (s)=08+TF
and Supp (#,;) N Supp (F,) = §. Suppose

8R4+ Q1 eker (Md(w)) .

It is easy to see that this is equivalent to the existence of se H'(X, wz®
®.L;*(F — 2dP,)) such that
ti=8¢ and {,=—gs.
It follows that
dim (ker (uy(2))) = W0z ® L;*(F — 2dP,))
hence
dim\(Tm(W},)) = W(L}(2dP,— F)) — 3+ deg (F) .

COROLLARY 8. — Let A be a generically reduced irreducible component of wi
of dimension g;(g) + s with s> 0. Then, for 0<s'<s, AP W? is a generically
reduced irreducible component of W},,.

PRroOF. — This ean be proved immediately from Lemma 7 (see [5], Corollary 2.11).
Using Lemma 7, we can also prove

ProPOSITION 9. — Let A be an irreducible component of W} of dimension
04(9) + s. Suppose that, for a general point # on A, one has dim (T(W})) =
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= 03(9) + s + 1. Then, for 0<s'<s, one has that 4@ W? is a multiple irreduc-
ible component of Wj,,..

ProOF. — Suppose s>s'>0 and let B be an irreducible eomponent of Wj,,
containing AP W.. Let x be a general point on A4 and let y be a general point
on W°, (i.e. y = [I(s")](D) with D a general point on W®"). From [5], Corollary 2.8
(proved as an application of Lemma 7) we obtain that

dim (T, (Whyo)) = dim (4) + s'+ 1.

It Bs# A© W? then dim (B) = dim (4) 4 s’ 1. Suppose s’ is the smallest value
for whieh such a component B exists. Then, for a general point # on B, the linear
system g,,.(2) is a linear system g;., without fixed points. From Lemma 7 we
obtain that

W(0z @ LH(— 2(d + 8') Py))>8— '+ 1.
Using the Semicontinuity Theorem (see [9], p. 288) we obtain that
W(we® L;%(— 2dPy— 2D)) »>s—s'+ 1
and, since De X®" is general, we have
W(wx® L3%(— 2dPy)) >5 + s+ 1.
Since s'>>1 this gives us a contradiction to the assumption that
dim (To(W3)) = calg) +s+ 1.

ProBLEM 10. ~ It would be very interesting to know whether or not the following
situation occurs for some smooth curve X.

A is an irreducible component of W J(X) such that, for a general point &
on 4, one has

dim (T,(W3))>dim (4) + 2
and A@ W? is not an irreducible component of W;,,.

This problem is strongly related to dimension problems on the schemes W3, as we
shall see.

ExAMPLES 11. — Multiple irreducible components A for the schemes W; satisfying
dim (T,(W3)) = dim (4) + 1 for a general point # on A oceur. In [3], it is proved
that, for each 2d — 2 < g<(d—1)?, there exists a smooth curve X of genus g having 2
point # on W} such that {#} is an irreducible component of W} and dim (Z(W3)) = 1.
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Using Proposition 9, one finds higher dimensional such multiple irreducible com-
ponents,.

Another very explicite example is found in [5], Theorem 5.9: if X is a smooth
plane curve of degree d>9, then Wi, ¢ has an irreducible component A such that
dim (T,(W3s_s)) = dim (4) - 1 for = a general point on A.

We are going to study problem P(j) mentioned in the Introduction.
As already mentioned Statements P(0) and P(1) are true.

PROPOSITION 12. — Statement P(2) is true.

Proor. — As already mentioned in the Introduction Statement P(2) is proved
by C. KEEM in [11] (see also the batch of exercises in [2], pp. 200, 201, 202) for the
cases g>11. So we only have to prove P(2) for the cases g = 10 and g = 9.

Suppose g =10. In [11]it is also proved that dim (W;) = 2 implies dim (W}) =1.
So, we only have to prove that dim (W7)==3 implies dim (W}) = 2.

Suppose 4 is an irreducible component of W} of dimension 3 while dim (W})<1.
From Theorem 2 it follows that there exists an irreducible component B of A
satisfying dim (B) = 1 and B@® W;c A. Since A ¢ W; O W, it follows from Lem-
ma 7 that, for a general point a on A4, one has

BO(LE(14Py)) 6 .

Using the Semicontinuity Theorem it follows that, for a general point b on B and
a general point P on X, one has

(L;(12Py 4 2P)) >6 .
It follows that L}(12P, + 2P) is special. In particular also L(12P,) is special.
Since P is a general point on X it is not an inflection point of the complete linear
system associated to wy® I;*(— 12P,), in particular
W0y R Ly*(— 12P,— 2P)) = h*(wz @ Ly¥(~— 12P))—2.
From the Theorem of Riemann-Roch, it follows that
RO(L3(12P,)) > 6
i.e. 2b e W3,. In particular we obtain that dim (W3,)>1 hence dim (W})>5. Now

we can apply P(1) which gives us that dim (W;)>1. It would follow that dim (W3)>3,
a contradiction to the assumptions.
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Suppose ¢ = 9. We only have to prove that dim (W}) = 2 implies dim (W}) = 1.
The proof is exactly the same as before; we leave it to the reader.

ProposiTIoN 13. — Statement P(3) holds for g>12.
Proor. — G. MARTENS proved P(3) for g>15 in [12].
a) Case g=14.

Step 1: dim (W!) = 5 implies dim (W;) = 4. Suppose A is an irreducible com-
ponent of Wi, of dimension 5 and suppose that dim (W;)<3. From Theorem 2
it follows that there exists an irreducible component B of W, satisfying

dim(B)=3 and B@Wic4.

Let @ be a general point on A. Since 4 ¢ WP W, gi(a) is a complete g;, without
fixed points. If b is a general point on B then h°(L:(18P,))>8 (using the same
arguments as in the proof of Proposition 12). It follows that dim (W7;)>3, hence
dim (W1,)>9. From P(1) we obtain that dim (W;) = 1, in particular dim (Wi)>6,

hence a contradiction.

Step 2: dim (W}) = 4 implies dim (W;) = 3. This can be proved in the same
way as Step 1. We leave it to the reader.

Step 3: dim (W3) = 3 implies dim (W;) = 2. Suppose 4 is an irreducible com-
ponent of W! of dimension 3 and suppose that dim (W})<1. From Theorem 2 we
obtain that there exists an irreducible component B of W) satisfying

dim(B)=1 and BHW'CA.

Let o be a general point on 4 and let b be a general point on B. As before one
ean prove that h“(Lgb(l4Po))>6. Consider the cup-product homomorphism

i H(X, L,(8Py)) @ HYX, Lyy(14Py)) — HO(X, Luyan(22P)) -

If h*(L,,(22P,)) <10, then dim (ker (u)) >2. Because of the Base point free peneil
trick (see[2], p. 126) we obtain that h'(L,_o(6P,))>2. As a corollary, we would
obtain that dim (W})>3. In particular dim (W;)>4, which gives us a contradic-
tion. Suppose that, for a general ae 4 and be B, we have ho(L,.(22F,)) > 10.
Then dim (W2)>3 hence dim (W3,)>12. This is impossible.

Step 4: dim (W}) = 2 implies dim (W;) = 1. This ean be proved in the same
way as Step 3; we leave it to the reader.
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b) Case g == 13.
Similar arguments as those used in Case a) can be used. We leave it to the
reader.

¢) Case g=12.

Step 1: dim (W) = 3 implies dim (W) == 2. This can be proved in the same
way as Step 1 of Case a). We leave it to the reader.

Step 2: dim (W}) = 2 implies dim (W}) = 1. Suppose A is an irreducible com-
ponent of W! of dimension 2. Because of Theorem 2 there exists b € W, such that
b@® Wic A. TUsing the base point free pencil trick as we did in the proof of
Case a) Step 3, we obtain a contradiction unless, for a general point ¢ on 4, one
has ho(L,.5,(19P,))>9. Upper-Semicontinuity gives that, for a general point P
on X, h(L; (18P, + P))>9. From the Theorem of Riemann-Roch it follows that
L, (18P, ++ P) is special hence, since P is general on X, h9(Ly(18P,))>9. Using
the Riemann-Roch Theorem, we obtain that h%(wz® Lz (— 18P,))>2 hence W} 0.
It follows that dim (W})>2, which gives us a contradiction.

REMARK 14. — In order to give a complete proof for P(3) we have to prove that,
for g =11, dim (W;) = 2 implies dim (W;) = 1. It is enough to prove that the
following situation does not occur.

X is a smooth curve of genus 11; x is an isolated point of W, satisfying
dim (T,(W3))>2 and #D W? is not an irreducible component of Wi.

This is Problem 10 in a special case.
THEOREM 15. — Suppose j>4. P(j) holds for g> (j + 1)(2§ - 1).

Proor. — It is well-known that, if g>4j-+3 and 2§ +2<d<g—74, then
dim (W) =d— 2 — j implies dim (W}, ,) =j (see [10], Theorem 1). Hence we
can assume that for some §4- 3 <d<2j - 2, one has an irreducible component 4
of W. of dimension d— 2—j while dim (W} ,)<d— 4—4j. From Theorem 2 we
obtain the existence of a component B of Wj_, satisfying

dim(B)=d—4—4j and BOWicAd.

Sinee g > (j + 1)(2§ 4 1) clearly ¢ > d(d— 1)/2. Also because of the assumptions,
it follows that 4 ¢ W;_,® W?. Hence if a, and a, are general points on A then
ga(@) and g.(as) are linear systems g, on X without fixed points. From computa-
tions in [1] (see also [4], Proposition 3) it follows that gi(a,) and gi(e,) are com-
pounded of the same involution. If they would be compounded of some rational
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involution then X would have a linear system ¢! for some a|d. Since d<2j - 2 it
would follow that a<j-+ 1 hence Wi = @. This would imply that dim (Wi ,)>
>d— j— 2, a contradiction to the assumption. Hence g,(a,) and g¢.(e,) are com-
pounded of the same non-rational involution., But X possesses only a finite number
of non-rational involutions of degree a<j -1 (see [16]). As a corollary, there
exists a smooth curve X' of genus ¢'>1 and a morphism f: X — X’ of some
degree a|d such that for the associated morphism f*: J(X') —J(X) one has (taking
f(Py) as base point for X') that there exists an irreducible component A’ of W3,
of dimension d — 2 — j satisfying f*(4') = A. In particular BP W?c f*(4'). Since
B is an irreducible component of W;_; one has that for b a general point on B, the
linear system g, ,(b) is 1-dimensional (see [2], p. 182). In particular, if # = [I(1)}(P)
is a general point on W$, then g,(b -+ #) is a linear system ¢ and P is a fixed point
of it. Since b 4 @ € f*(4’), there exists a linear system g%, on X’ such that

9. ={D): Degy.} .

But P is a fixed point of g}, hence f(P) is a fixed point of g;,,. Since P is general,
FYf(P)) contains a point P’ different from P and P’ is also a fixed point of ¢!,
hence P’ is a fixed point of g, ;(b). Varying P on X we obtain infinitely many fixed
points for g, ,(b) which is absurd.

REMARK 16. — Using a more detailed analysis using arguments as those used
in e.g. [12], we are able to obtain a better lower bound for g. Since this lower bound
is still of order 0(j?) as j — oo it seems not very useful to reproduce such a long
proof here.
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