Four-Dimensional Almost Kähler Einstein Manifolds (*).

K. Sekigawa - L. Vanhecke

Summary. - We prove that a four-dimensional compact almost Kähler manifold which is Einsteinian and $*$-Einsteinian is a Kähler manifold.

1. - Introduction.

An almost Hermitian manifold $M=(M, g, J)$ is called an almost Kähler manifold if the corresponding Kähler form Ω is closed (i.e. $d \Omega=0$ or equivalently,

$$
\mathfrak{S}_{X, Y, Z} g\left(\left(\nabla_{x} J\right) Y, Z\right)=0
$$

for all smooth vector fields X, Y, Z on $M ; \mathbb{S}$ denotes the cyclic sum). M is a Kähler manifold if $\nabla J=0$ and so it is necessarily an almost Kähler manifold. Moreover, if the almost complex structure of an almost Kähler manifold M is integrable, then M is Kählerian.

An almost Kähler manifold is also necessarily a symplectic manifold and as is well-known, the first compact example of non-Kählerian almost Kähler manifolds appeared in [4], [11]. In this context, the following conjecture of S. Goldberg is interesting [1]:

Conjecture. - The almost complex structure of a compact almost Kähler Einstein manifold is integrable.

As concerns this conjecture some progress has been made under some curvature conditions [1], [6], [7], [8]. For example, in [8] the first author of this paper proved that the above conjecture is true when the scalar curvature is non-negative.

In [10] S. Tachibana introduced the Ricci *-tensor of an almost Hermitian manifold. On a Kähler manifold this tensor coincides with the Ricci tensor. An almost Hermitian manifold is said to be a $*$-Einstein manifold if the Ricci $*$-tensor

[^0]is a constant multiple of the Riemannian metric. The main purpose of this paper is to prove

Theorem A. - Let $M=(M, g, J)$ be a four-dimensional compact almost Kähler manifold which is Einsteinian and *-Einsteinian. Then M is a Kähler manifold.

From this we get immediately
Corollary B. - Let $M=(M, g, J)$ be a compact four-dimensional almost Kähler manifold of constant sectional curvature. Then M is a locally flat Kähler manifold.

This extends a result of Z. Olszak who proved a similar result for arbitrary almost Kähler manifolds M with $\operatorname{dim} M \geqslant 8$ [6].

2. - Preliminaries.

Let $M=(M, g, J)$ be a $2 n$-dimensional almost Hermitian manifold. We denote by Ω and N the Kähler form and the Nijenhuis tensor of M defined respectively by $\Omega(X, Y)=g(X, J Y)$ and $N(X, Y)=[J X, J Y]-[X, Y]-J[J X, Y]-J[X, J Y]$ for $X, Y \in X(M)$, the Lie algebra of all smooth vector fields on. M. Note that the Nijenhuis tensor field satisfies the condition

$$
N(J X, Y)=-J N(X, Y), \quad X, Y \in \mathscr{X}(M)
$$

Further, we denote by ∇, R, ϱ and τ the Riemannian connection, the curvature tensor, the Ricci tensor and the scalar curvature of M, respectively. Here the curvature tensor R is defined by

$$
\begin{equation*}
R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z \tag{2.1}
\end{equation*}
$$

for $X, Y, Z \in \mathscr{X}(M)$. Furthermore, we denote by ϱ^{*} and τ^{*} the Ricoi $*$-tensor and the $*$-scalar curvature defined respectively by

$$
\begin{gathered}
\varrho^{*}(x, y)=g\left(Q^{*} x, y\right)=\operatorname{trace}(z \mapsto R(x, J z) J y), \\
\tau^{*}=\operatorname{trace} Q^{*}
\end{gathered}
$$

where $x, y, z \in T_{y} M, p \in M$. Hence, by using the first Bianchi identity, we have

$$
\varrho^{*}(x, y)=-\frac{1}{2} \sum_{i=1}^{2 n} R\left(x, J y, e_{i}, J e_{i}\right)
$$

for an arbitrary orthonormal basis $\left\{e_{i}, i=1, \ldots, 2 n\right\}$. (See [10], [12].)

The following decomposition for the vector bundle $\Lambda^{2} M$ of real 2 -forms over M is well-known [5]:

$$
\begin{equation*}
\Lambda^{2} M=\boldsymbol{R} \Omega \oplus \Lambda_{0}^{1,1} M \oplus L M, \quad \text { (Whitney sum) } \tag{2.2}
\end{equation*}
$$

where $\Lambda_{0}^{1,1} M$ denotes the bundle of real primitive J-invariant 2 -forms and $L M$ the bundle of real primitive J-skew invariant 2 -forms over M.

We define the 2 -forms φ and ψ on M by

$$
\begin{equation*}
\varphi(x, y)=\operatorname{trace}\left(z \mapsto J\left(\nabla_{x} J\right)\left(\nabla_{v} J\right) z\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(x, y)=\operatorname{trace}(z \mapsto R(x, y) J z) \tag{2.4}
\end{equation*}
$$

for $x, y, z \in T_{v} M, p \in M$. Then the first Chern form γ of M is given by

$$
\begin{equation*}
8 \pi \gamma=-\varphi+2 \psi \tag{2.5}
\end{equation*}
$$

It is well-known that the first Chern class $c_{1}(M)$ of M (in the de Rham cohomology group) is represented by the 2 -form $\gamma[2]$.

In this paper, we shall adopt the following notational conventions:

$$
\begin{align*}
& R_{h i j k}=g\left(R\left(e_{h}, e_{i}\right) e_{j}, e_{k}\right), \tag{2.6}\\
& R_{\overline{\bar{i} i j k}}=g\left(R\left(J e_{h}, e_{i}\right) e_{j}, e_{k}\right), \\
& \ldots \\
& R_{\overline{h i j} \bar{k}}=g\left(R\left(J e_{h}, J e_{i}\right) J e_{j}, J e_{k}\right) \\
& \varrho_{i j}=\varrho\left(e_{i}, e_{j}\right), \ldots, \varrho_{\bar{i} \bar{j}}=\varrho\left(J e_{i}, J e_{j}\right) \\
& \varrho_{i j}^{*}=\varrho^{*}\left(e_{i}, e_{j}\right), \ldots, \varrho_{i \bar{j}}^{*}=\varrho^{*}\left(J e_{i}, J e_{j}\right) \\
& J_{i j}=g\left(J e_{i}, e_{j}\right), \quad \nabla_{i} J_{j k}=g\left(\left(\nabla_{e_{i}} J\right) e_{j}, e_{k}\right),
\end{align*}
$$

and so on, where $\left\{e_{i}, i=1, \ldots, 2 n\right\}$ is an orthonormal basis of the tangent space $T_{v} M$ at $p \in M$.

3. - Some results in almost Kähler geometry.

In this section we shall prove some elementary formulas and results for almost Kähler manifolds which are Einsteinian and $*$-Einsteinian.

Lemma 3.1. - Let $M=(M, g, J)$ be a $2 n$-dimensional $*$-Einstein almost Hermitian manifold. Then we have

$$
\psi=-\frac{\tau^{*}}{n} \Omega
$$

Proof. - By the definition (2.4) of the 2 -form ψ we get

$$
\psi_{i j}=\sum_{k} R_{i j \bar{k} k}=\sum_{k} R_{i \bar{j} k \bar{k}}=-2 \varrho_{i j}^{*}=-\frac{\tau^{*}}{n} \delta_{i \bar{j}}
$$

which proves the required formula.
Further, the following equalities are known for an almost Kähler manifold [13]:

$$
\begin{gather*}
\|\nabla J\|^{2}=2\left(\tau^{*}-\tau\right) \tag{3.1}\\
\left(\nabla_{X} J\right) X+\left(\nabla_{J X} J\right) J Y=0 \tag{3.2}\\
g(N(X, Y), Z)=2 g\left(J\left(\nabla_{Z} J\right) X, Y\right) \tag{3.3}
\end{gather*}
$$

for $X, Y, Z \in \mathfrak{X}(M)$. (3.2) means that M is a quasi-Kähler manifold.
From now on we assume that $M=(M, g, J)$ is in addition Einsteinian and *-Einsteinian. Then, by Lemma 3.1 and (3.2), we see immediately that the 2 -form ψ is closed and coclosed. Further we have

LEMMA 3.2. - $\sum_{j, k, a, b}\left(\nabla_{j} J_{i k}\right)\left(\nabla_{k} J_{a b}\right)\left(\nabla_{j} J_{a b}\right)=0$.
Proof. - Using (3.2) we get

$$
\begin{aligned}
\sum_{j, k, a, b}\left(\nabla_{j} J_{i k}\right)\left(\nabla_{k} J_{a b}\right) \nabla_{j} J_{a b} & =\sum_{j, k, a, b}\left(\nabla_{\bar{j}} J_{i \bar{k}}\right)\left(\nabla_{\bar{k}} J_{a b}\right) \nabla_{\bar{j}} J_{a b}= \\
& =-\sum_{j, k, a, b}\left(\nabla_{j} J_{i k}\right)\left(\nabla_{k} J_{\bar{a} b}\right) \nabla_{j} J_{\bar{a} b}=-\sum_{i, k, a, b}\left(\nabla_{j} J_{i k}\right)\left(\nabla_{k} J_{a b}\right) \nabla_{j} J_{a b},
\end{aligned}
$$

from which the desired result follows.

$$
\text { LEMMA 3.3. }-\sum_{j, k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) \nabla_{j j}^{2} J_{a b}=0 .
$$

Proof. - We use the first Bianchi identity and the Ricci identity to get

$$
\begin{aligned}
& \sum_{j, k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) \nabla_{i j}^{2} J_{a b}=-\sum_{j, k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) \nabla_{j a}^{2} J_{b j}-\sum_{j, k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) \nabla_{j b}^{2} J_{j a}= \\
& =\sum_{j, k, a, b, t} J_{i k}\left(\nabla_{k} J_{a b}\right)\left(R_{j a b t} J_{t j}+R_{j a j t} J_{b t}\right)+ \\
& +\sum_{j, k, a, b, t} J_{i b}\left(\nabla_{k} J_{a b}\right)\left(R_{j b i t} J_{t a}+R_{j b a t} J_{j t}\right)= \\
& =\frac{1}{2} \sum_{i, k, a, b, t} J_{i k}\left(\nabla_{k} J_{a b}\right)\left(R_{a j t b}-R_{a t i b}\right) J_{t j}- \\
& -\frac{\tau}{2 n} \sum_{k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) J_{b a}-\frac{\tau}{2 n} \sum_{k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) J_{\bar{b} a}+ \\
& +\frac{1}{2} \sum_{j, k, a, b, t} J_{i k}\left(\nabla_{k} J_{a b}\right)\left(R_{b j t a}-R_{b t i a}\right) J_{j t}= \\
& =-\frac{1}{2}{ }_{j, k, a, b, t} J_{i k}\left(\nabla_{k} J_{a b}\right) R_{a b j t} J_{t j}-\frac{1}{2} \sum_{j, k, a, b, t} J_{i k}\left(\nabla_{k} J_{a b}\right) R_{b a j i t} J_{j i}= \\
& =-\sum_{j, k, a, b, t} J_{i k}\left(\nabla_{k} J_{a b}\right) R_{a b i} J_{t j}= \\
& =2 \sum_{k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) \varrho_{a b}^{*}=\frac{\tau^{*}}{n} \sum_{k, a, b} J_{j k}\left(\nabla_{k} J_{a b}\right) J_{b a}=0 .
\end{aligned}
$$

LEMMA 3.4. $-\sum_{j, k, a, b} J_{i k}\left(\nabla_{j k}^{2} J_{a b}\right) \nabla_{i} J_{a b}=0$.
Proof. - In a similar way as for Lemma 3.3 we have

$$
\begin{aligned}
& \sum_{, k, a, b} J_{i k}\left(\nabla_{j k}^{2} J_{a b}\right) \nabla_{j} J_{a b}=\sum_{j, k, a, b} J_{i k}\left(\nabla_{k j}^{2} J_{a b}\right) \nabla_{j} J_{a b}-2 \sum_{i, k, a, b, t} R_{j k t *} J_{i k} J_{t b} \nabla_{j} J_{a b}= \\
& =2 \sum_{j, k, a, b, i} R_{j k a t} J_{i k} J_{t j} \nabla_{a} J_{b j}+2 \sum_{j, k, a, b, t} J_{i k} R_{j k a t} J_{t b} \nabla_{b} J_{j a}= \\
& =\sum_{j, k, a, b, t} J_{i k}\left(R_{k j t a}-R_{k t i a}\right) J_{t b} \nabla_{a} J_{b j}+\sum_{j, k, a, b, t} J_{i k}\left(R_{j k a t}-R_{a k i t}\right) J_{t b} \nabla_{b} J_{j a}= \\
& =-\sum_{j, k, a, b, t} J_{i k} R_{k a j i t} J_{t b} \nabla_{a} J_{b j}-\sum_{j, k, a, b, t} J_{i k} R_{a j k t} J_{t b} \nabla_{b} J_{j a}= \\
& =-\sum_{j, k, a, b, t} J_{i k} R_{k a t i} J_{j b} \nabla_{a} J_{b t}-\sum_{i, k, a, a, t} J_{i k} R_{t j k a} J_{a b} \nabla_{b} J_{j t}= \\
& =2 \sum_{j, k, a, b, t} J_{i k} R_{k a j t} J_{a b} \nabla_{b} J_{j t}= \\
& =4 \sum_{a, b} \nabla_{b}\left(\varrho_{a i}^{*} J_{a b}\right)-2 \sum_{j, k, a, b, t}\left(\nabla_{b} J_{i k}\right) R_{k a j t} J_{a b} J_{j t}-2 \sum_{j, k, a, a, b, t} J_{i k}\left(\nabla_{b} R_{k a j t}\right) J_{a b} J_{j t}= \\
& =\frac{2 \tau^{*}}{n} \sum_{b} \nabla_{b} J_{i b}-4 \sum_{k, a, b}\left(\nabla_{b} J_{i k}\right) \varrho_{k i b}^{*}-2 \sum_{i, k, a, b, t} J_{i k} R_{a b j t}\left(\nabla_{k} J_{a b}\right) J_{j t}= \\
& =-4 \sum_{k, a, b} J_{i k} G_{a b}^{*} \nabla_{k} J_{a b}=\frac{2 \tau^{*}}{n} \sum_{k, a, b} J_{i k} J_{a b} \nabla_{k} J_{a b}=\mathbf{0} .
\end{aligned}
$$

By the definition of the 2 -form φ (see (2.3)) we get

$$
\begin{equation*}
\varphi_{i j}=\sum_{k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) \nabla_{j} J_{a b} \tag{3.4}
\end{equation*}
$$

Further, from (3.4) we obtain

$$
\begin{align*}
\sum_{j} \nabla_{j} \varphi_{i j} & =\sum_{i, k, a, b}\left(\nabla_{j} J_{i k}\right)\left(\nabla_{k} J_{a b}\right) \nabla_{j} J_{a b}+ \tag{3.5}\\
& +\sum_{j, k, a, b} J_{i k}\left(\nabla_{j k}^{2} J_{a b}\right) \nabla_{j} J_{a b}+\sum_{j, k, a, b} J_{i k}\left(\nabla_{k} J_{a b}\right) \nabla_{j j}^{2} J_{a b}
\end{align*}
$$

By using Lemma 3.2, Lemma 3.3 and Lemma 3.4, (3.5) yields

$$
\begin{equation*}
\delta \varphi=0 \tag{3.6}
\end{equation*}
$$

Moreover, since $d \gamma=0$, by (3.6) and Lemma 3.1, we have the following
Proposition 3.5. - Let $M=(M, g, J)$ be an Einstein, $*$-Einstein almost Kähler manifold. Then the 2 -forms φ and ψ are both closed and coclosed.

Note that when M is almost Kählerian, then φ is J-invariant.

4. - Proof of Theorem A.

Let $M=(M, g, J)$ be a four-dimensional Einstein, *-Einstein almost Kähler manifold. By (3.2) we have

$$
\begin{equation*}
\nabla \Omega=\alpha \otimes \Phi-J \alpha \otimes J \Phi \tag{4.1}
\end{equation*}
$$

where $\{\Phi, J \Phi\}$ is a local orthonormal frame field of the bundle $L M$ in (2.2), α a local 1-form and $J \alpha$ the local 1-form defined by $(J \alpha)(X)=-\alpha(J X)$, for $X \in X(M)$ (see [7], [9]). Then, by (2.3) and (3.1) we get

$$
\begin{equation*}
\varphi=2 \alpha \wedge J \alpha \tag{4.2}
\end{equation*}
$$

[7]. By (4.1) we also have

$$
\begin{equation*}
\|\nabla J\|^{2}=2\|\nabla \Omega\|^{2}=4\|\alpha\|^{2} \tag{4.3}
\end{equation*}
$$

Now, we assume that M is not Kählerian, i.e. $\tau^{*}-\tau>0$. Further, we define a local vector field A^{\prime} by $g\left(A^{\prime}, X\right)=\alpha(X), X \in \mathbb{X}(M)$. Taking into account (3.1), (4.2) and (4.3), we may define a differentiable 2 -dimensional $\cdot J$-invariant distribution
\mathfrak{D} on M by

$$
\mathscr{D}(p)=\left\{x \in T_{p} M \mid \alpha(x)=(J \alpha)(x)=0\right\},
$$

$p \in M$. We denote by \mathscr{D}^{\perp} the orthogonal complement of \mathfrak{D} in the tangent bundle $T M$ over M. Then we see immediately that the distribution \mathfrak{D}^{\perp} is also J-invariant. By Proposition 3.5 we have from (4.2)

$$
\begin{equation*}
\left(\operatorname{div} A^{\prime}\right) g\left(J A^{\prime}, X\right)+g\left(\left[A^{\prime}, J A^{\prime}\right], X\right)-\left(\operatorname{div} J A^{\prime}\right) g\left(A^{\prime}, X\right)=0, \tag{4.4}
\end{equation*}
$$

for $X \in \mathscr{X}(M)$ and

$$
\begin{equation*}
g\left(J A^{\prime}, Z\right) g\left(A^{\prime},[X, Y]\right)-g\left(A^{\prime}, Z\right) g\left(J A^{\prime},[X, Y]\right)=0, \tag{4.5}
\end{equation*}
$$

for $X, Y \in \mathfrak{D}, Z \in X(M)$. From (4.4) we get

$$
\begin{equation*}
g\left(\left[A^{\prime}, J A^{\prime}\right], X\right)=0 \tag{4.6}
\end{equation*}
$$

for $X \in \mathfrak{D}$, and from this we see that \mathfrak{D}^{\perp} is involutive. (Note that $\left\{A^{\prime}, J A^{\prime}\right\}$ is a basis of \mathfrak{D}^{\perp}.) Similarly, from (4.5) we get

$$
\begin{equation*}
g\left([X, Y], A^{\prime}\right)=g\left([X, X], J A^{\prime}\right)=0 \tag{4.7}
\end{equation*}
$$

for $X, Y \in \mathbb{D}$. Hence \mathfrak{D} is also involutive. So we have
Proposition 4.1. - Let M be a four-dimensional Einstein, *-Einstein almost Kähler manifold. Then the distributions \mathfrak{D} and \mathfrak{D}^{\perp} are both involutive.

Next, let $\{A, J A\}$, respectively $\{B, J B\}$, be a local orthonormal frame field of \mathbb{D}^{\perp}, respectively \mathfrak{D}. Let L be any leaf of \mathfrak{D} and L^{\perp} any leaf of D^{\perp}. We denote by ∇^{1}, respectively ∇^{2}, the induced Riemannian connection on L, respectively L^{\perp}, and by σ_{1}, σ_{2} the corresponding second fundamental forms of L and L^{\perp} in M. Since \mathscr{D} and D^{\perp} are J-invariant, L and L^{\perp} are holomorphic submanifolds of M. Further, since M is a quasi-Kähler manifold, L and L^{\perp} are necessarily minimal submanifolds of M.

Now, we denote by D^{1}, respectively D^{2}, the Hermitian connection on the holomorphic vector bundle \mathfrak{D}, respectively \mathscr{D}^{\perp}, defined by

$$
\begin{align*}
& D_{x}^{1} \xi=g\left(\nabla_{x} \xi, B\right) B+g\left(\nabla_{x} \xi, J B\right) J B, \tag{4.8}\\
& D_{x}^{2} \eta=g\left(\nabla_{x} \eta, A\right) A+g\left(\nabla_{x} \eta, J A\right) J A
\end{align*}
$$

for any $\xi \in \mathscr{D}, \eta \in \mathbb{D}^{\perp}$ and $X \in \mathscr{X}(M)$. Finally, we denote by S_{η}^{1}, respectively S_{η}^{2}, the shape operator of L, respectively L^{\perp}, corresponding to η, respectively ξ.

We now prepare some formulas which we will need later on. Using (3.3) we obtain easily

$$
\begin{align*}
& g\left(\sigma_{2}(A, J A), B\right)-g\left(J \sigma_{2}(A, A), B\right)=\frac{1}{2} g(N(A, J B), A) \tag{4.9}\\
& g\left(\sigma_{2}(A, A), B\right)-g\left(\sigma_{2}(A, J A), J B\right)=\frac{1}{2} g(N(A, B), A) \tag{4.10}
\end{align*}
$$

On the other hand, (3.3) and (4.1) yield

$$
\begin{equation*}
g\left(\sigma_{1}(X, J Y), Z\right)=g\left(J \sigma_{1}(X, Y), Z\right) \tag{4.11}
\end{equation*}
$$

for $X, Y \in \mathscr{D}, Z \in \mathfrak{D}^{\perp}$. Hence (4.11) implies that each $L=\left(L, J=\left.J\right|_{L}\right)$ is a 2-dimensional σ-submanifold.

Moreover, let K_{1}, respectively K_{2}, denote the curvature tensor of D^{1}, respectively D^{2}. Then we obtain

Lemma 4.2. - We have

$$
\begin{align*}
g\left(K_{1}(B, J B) B, J B\right) & =g(R(B, J B) B, J B)+2\left\|\sigma_{1}(B, B)\right\|^{2} \tag{4.12}\\
g\left(K_{2}(A, J A) A, J A\right) & =g(R(A, J A) A, J A)+2\left\|\sigma_{2}(A, A)\right\|^{2}- \\
& -g\left(N\left(A, \sigma_{2}(A, A)\right), A\right)+\frac{1}{4}\|N(A, B)\|^{2}
\end{align*}
$$

(4.14) $g\left(K_{1}(A, J A) B, J B\right)=g(R(A, J A) B, J B)-2\left\|\sigma_{2}(A, A)\right\|^{2}+$ $+g\left(N\left(A, \sigma_{2}(A, A)\right), A\right)$,
(4.15) $\quad g\left(K_{2}(B, J B) A, J A\right)=g(R(B, J B) A, J A)-2\left\|\sigma_{1}(B, B)\right\|^{2}$.

Proof. - First, (4.8) and (4.8') yield

$$
\begin{align*}
g\left(K_{1}(X, Y) B, J B\right) & =g(R(X, Y) B, J B)+g\left(\nabla_{Y} B,\left(\nabla_{X} J\right) B\right)- \tag{4.16}\\
& -g\left(\nabla_{X} B,\left(\nabla_{Y} J\right) B\right)+g\left(\nabla_{Y} B, J \nabla_{X} B\right)-g\left(\nabla_{X} B, J \nabla_{Y} B\right)
\end{align*}
$$

$\left(4.16^{\prime}\right) \quad g\left(K_{2}(X, Y) A, J A\right)=g(R(X, Y) A, J A)+g\left(\nabla_{Y} A,\left(\nabla_{X} J\right) A\right)-$

$$
-g\left(\nabla_{X} A,\left(\nabla_{Y} J\right) A\right)+g\left(\nabla_{Y} A, J \nabla_{X} A\right)-g\left(\nabla_{X} A, J \nabla_{Y} A\right)
$$

Now, we prove (4.12). Using (4.11) we get

$$
\begin{align*}
g\left(\nabla_{J B} B, J \nabla_{B} B\right) & =g\left(\nabla_{J B}^{1} B+\sigma_{1}(J B, B), J\left(\nabla_{B}^{1} B+\sigma_{1}(B, B)\right)\right)= \tag{4.17}\\
& =g\left(\sigma_{1}(J B, B), J \sigma_{1}(B, B)\right)=\left\|\sigma_{1}(B, B)\right\|^{2} .
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
g\left(\nabla_{B} B, J \nabla_{J B} B\right)=-\left\|\sigma_{1}(B, B)\right\|^{2} . \tag{4.18}
\end{equation*}
$$

Hence, (4.12) follows from (4.16), (4.17) and (4.18). (4.13) may be derived in a similar way. Next, we prove (4.14). By a straightforward calculation we get

$$
\begin{align*}
& g\left(\nabla_{J A} B,\left(\nabla_{A} J\right) B\right)=g\left(-S_{B}^{2} J A+D_{J A}^{2} B, \nabla_{A}(J B)-J \nabla_{A} B\right)= \tag{4.19}\\
& \quad=g\left(-S_{B}^{2} J A+D_{J A}^{2} B,-S_{J B}^{2} A+D_{A}^{2} J B-J\left(-S_{B}^{2} A+D_{A}^{2} B\right)\right)= \\
& \quad=g\left(S_{B}^{2} J A, S_{J B}^{2} A-J S_{B}^{2} A\right)= \\
& \quad=g\left(S_{B}^{2} J A, A\right) g\left(S_{J B}^{2} A-J S_{B}^{2} A, A\right)+g\left(S_{B}^{2} J A, J A\right) g\left(S_{J B}^{2} A-J S_{B}^{2} A, J A\right)= \\
& \quad=g\left(\sigma_{2}(A, J A), B\right)^{2}+g\left(\sigma_{2}(A, A), B\right)^{2}+g\left(\sigma_{2}(A, J A), B\right) g\left(\sigma_{2}(A, A), J B\right)- \\
& \quad-g\left(\sigma_{2}(A, A), B\right) g\left(\sigma_{2}(A, J A), J B\right) .
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& g\left(\nabla_{A} B,\left(\nabla_{J A} J\right) B\right)=-g\left(\sigma_{2}(A, A), B\right)^{2}-g\left(\sigma_{2}(A, J A), B\right)^{2}+ \tag{4.20}\\
& \quad+g\left(\sigma_{2}(A, A), B\right) g\left(\sigma_{2}(A, J A), J B\right)-g\left(\sigma_{2}(A, A), J B\right) g\left(\sigma_{2}(A, J A), B\right),
\end{align*}
$$

(4.21) $\quad g\left(\nabla_{J A} B, J \nabla_{A} B\right)=-g\left(\sigma_{2}(A, J A), B\right)^{2}-g\left(\sigma_{2}(A, A), B\right)^{2}-$

$$
-g\left(\sigma_{2}(A, J A), B\right) g\left(\sigma_{2}(A, J A), B\right)+g\left(\sigma_{2}(J A, J A), B\right) g\left(\sigma_{2}(A, A), B\right),
$$

$$
\begin{equation*}
g\left(\nabla_{A} B, J \nabla_{J A} B\right)=g\left(\sigma_{2}(A, A), B\right)^{2}+g\left(\sigma_{2}(A, J A), B\right)^{2} \tag{4.22}
\end{equation*}
$$

Further, by (4.10), we obtain

$$
g\left(\sigma_{2}(A, J A), J B\right)=g\left(\sigma_{2}(A, A), B\right)-\frac{1}{2} g(N(A, B), A)
$$

and hence
(4.23) $\quad g\left(\sigma_{2}(A, A), B\right) g\left(\sigma_{2}(A, J A), J B\right)=$

$$
=g\left(\sigma_{2}(A, A), B\right)^{2}-\frac{1}{2} g(N(A, B), A) g\left(\sigma_{2}(A, A), B\right) .
$$

Similarly, (4.9) yields
(4.24) $\quad g\left(\sigma_{2}(A, A), J B\right) g\left(\sigma_{2}(A, J A), B\right)=$

$$
\begin{aligned}
& =g\left(\sigma_{2}(A, A), J B\right)\left\{-g\left(\sigma_{2}(A, A), J B\right)+\frac{1}{2} g(N(A, J B), A)\right\}= \\
& =-g\left(\sigma_{2}(A, A), J B\right)^{2}+\frac{1}{2} g(N(A, J B), A) g\left(\sigma_{2}(A, A), J B\right) .
\end{aligned}
$$

Therefore, by (4.16) and (4.19)-(4.24), we obtain

$$
\begin{aligned}
& g\left(K_{1}(A, J A) B, J B\right)=g(R(A, J A) B, J B)+ \\
& \quad+2 g\left(\sigma_{2}(A, J A), B\right) g\left(\sigma_{2}(A, A), J B\right)-2 g\left(\sigma_{2}(A, A), B\right) g\left(\sigma_{2}(A, J A), J B\right)= \\
& \quad=g(R(A, J A) B, J B)+2\left\{\left\|\sigma_{2}(A, A)\right\|^{2}-\frac{1}{2} g\left(N\left(A, \sigma_{2}(A, A)\right), A\right)\right\}= \\
& \quad=g(R(A, J A) B, J B)+2\left\|\sigma_{2}(A, A)\right\|^{2}-g\left(N\left(A, \sigma_{2}(A, A)\right), A\right)
\end{aligned}
$$

(4.15) is obtained in a similar way.

Next, we define the 2-forms $\gamma_{1}=\gamma(\mathcal{D})$ and $\gamma_{2}=\gamma\left(D^{\perp}\right)$ by

$$
\begin{align*}
& \gamma_{1}=\gamma(D)= \tag{4.25}\\
& =-\frac{1}{2 \pi}\left\{g\left(K_{1}(B, J B) B, J B\right) i(B) \wedge i(J B)+g\left(K_{1}(B, A) B, J B\right) i(B) \wedge i(A)+\right. \\
& +g\left(K_{1}(B, J A) B, J B\right) i(B) \wedge i(J A)+g\left(K_{1}(J B, A) B, J B\right) i(J B) \wedge i(A)+ \\
& \left.+g\left(K_{1}(J B, J A) B, J B\right) i(J B) \wedge i(J A)+g\left(K_{1}(A, J A) B, J B\right) i(A) \wedge i(J A)\right\} \\
& \gamma_{2}=\gamma(\mathfrak{D} \perp= \tag{4.26}\\
& =-\frac{1}{2 \pi}\left\{g\left(K_{2}(B, J B) A, J A\right) i(B) \wedge i(J B)+g\left(K_{2}(B, A) A, J A\right) i(B) \wedge i(A)+\right. \\
& +g\left(K_{2}(B, J A) A, J A\right) i(B) \wedge i(J A)+g\left(K_{2}(J B, A) A, J A\right) i(J B) \wedge i(A)+ \\
& \left.+g\left(K_{2}(J B, J A) A, J A\right) i(J B) \wedge i(J A)+g\left(K_{2}(A, J A) A, J A\right) i(A) \wedge i(J A)\right\}
\end{align*}
$$

Here i denotes the duality $T M \rightarrow A^{1} M$ defined by means of the metric. Then the first Chern class $c_{1}(\mathcal{D})$, respectively $c_{1}\left(D^{\perp}\right)$, of the Hermitian vector bundle \mathscr{D}, respectively D^{\perp}, is represented by γ_{1}, respectively γ_{2} (in the de Rham cohomology group).

In what follows we suppose that M is compact. First, we recall an integral formula for a four-dimensional, compact, Einsteinian almost Kähler manifold, established in [7]:

$$
\begin{equation*}
\int_{M}\left\{\left\|R_{A_{+}^{9} ม}\right\|^{2}-\left\|R\left(\frac{1}{\sqrt{2}} \Omega\right)\right\|^{2}\right\} d M=-\frac{1}{8} \int_{M}\left(\frac{\tau}{4}+\frac{1}{8}\|\nabla J\|^{2}\right)\|\nabla J\|^{2} d M \geqslant 0 \tag{4.27}
\end{equation*}
$$

where $d M=\frac{1}{2} \Omega^{2}$ is the volume form of M. We note that $\Lambda_{+}^{2} M=\boldsymbol{R} \Omega \oplus L M$ and $\Lambda_{-}^{2} M=\Lambda_{0}^{1,1} M$.

Now, (3.1) yields

$$
\begin{equation*}
\frac{\tau}{4}+\frac{1}{8}\|\nabla J\|^{2}=\frac{\tau^{*}}{4} \tag{4.28}
\end{equation*}
$$

Thus, by (4.27) and (4.28), we have

Proposition 4.3. - Let $M=(M, g, J)$ be a four-dimensional, compact, Einsteinian almost Kähler manifold such that $\tau^{*} \geqslant 0$. Then M is a Kähler manifold.

This result is a slight generalization of the result in [7] and it was also claimed by B. Watson in his unpublished work.

Further, the 2 -form φ may be written as

$$
\begin{equation*}
\varphi=2 \alpha \wedge J \alpha=2\|\alpha\|^{2} i(A) \wedge i(J A) \tag{4.29}
\end{equation*}
$$

and moreover, we have for the Kähler form Ω :

$$
\begin{equation*}
\Omega=-i(B) \wedge i(J B)-i(A) \wedge i(J A) \tag{4.30}
\end{equation*}
$$

Since the tangent bundle $T M$ over M is represented by the Whitney sum of the Hermitian vector subbundles \mathfrak{D} and \mathfrak{D}^{\perp}, the total Chern class $c(M)=c(T M)$ of M is given by

$$
\begin{equation*}
c(M)=c(\mathfrak{D}) \cdot c\left(\mathfrak{D}^{\perp}\right) \tag{4.31}
\end{equation*}
$$

(in $H^{*}(M, \boldsymbol{R})$). From (4.31) we have in particular

$$
\begin{equation*}
c_{1}(M)=e_{1}(\mathscr{D})+c_{1}\left(\mathscr{D}^{\perp}\right) \tag{4.32}
\end{equation*}
$$

Hence $\gamma-\left(\gamma_{1}+\gamma_{2}\right)$ is an exact 1-form on M. Thus, using Proposition 3.5, we obtain

$$
\begin{equation*}
\int_{M}\left\{\gamma-\left(\gamma_{1}+\gamma_{2}\right)\right\} \wedge \varphi=0 \tag{4.33}
\end{equation*}
$$

Now, by Lemma 3.1, (2.5), (3.1), (4.2) and (4.3), we have

$$
\begin{align*}
\gamma & =\frac{1}{8 \pi}\left\{-\frac{\tau^{*}}{2} \Omega-2\|\alpha\|^{2} i(A) \wedge i(J A)\right\}= \tag{4.34}\\
& =\frac{1}{16 \pi}\left\{\tau^{*} i(B) \wedge i(J B)+\left(2 \tau-\tau^{*}\right) i(A) \wedge i(J A)\right\}
\end{align*}
$$

and by Lemma 4.2, (3.1), (4.2), (4.3), (4.25), (4.26), (4.29) and (4.30), we get

$$
\begin{gather*}
\left(\gamma_{1}+\gamma_{2}\right) \wedge \varphi=-\frac{1}{2 \pi}\left(\tau^{*}-\tau\right)\left\{g\left(K_{1}(B, J B) B, J B\right)+g\left(K_{2}(B, J B) A, J A\right)\right\} \tag{4.35}\\
\cdot i(B) \wedge i(J B) \wedge i(A) \wedge i(J A)=\frac{\tau^{*}-\tau}{8 \pi} \tau^{*} d M
\end{gather*}
$$

Further, (4.3), (4.29) and (4.34) yield

$$
\begin{equation*}
\gamma \wedge \varphi=\frac{\tau^{*}-\tau}{16 \pi} \tau^{*} d M \tag{4.36}
\end{equation*}
$$

Hence, from (4.35) and (4.36) we get

$$
\begin{equation*}
\left\{\gamma-\left(\gamma_{1}+\gamma_{2}\right)\right\} \wedge p=-\frac{\tau^{*}-\tau}{16 \pi} \tau^{*} d M \tag{4.37}
\end{equation*}
$$

Therefore (4.33) and (4.37) imply $\tau^{*}=0$ and hence, by Proposition $4.3, M$ is a Kähler manifold. This is a contradition and it completes the proof of Theorem A.

REFERENCES

[1] S. I. Goldberg, Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc., 21 (1969), pp. 96-100.
[2] A. Gray - M. Barros - A. M. Naveira - L. Vanhecke, The Chern numbers of holomorphic vector bundles and formally holomorphic connections of complex vector bundles over almost complex manifolds, J. Reine Angew. Math., 314 (1980), pp. 84-98.
[3] S. Kobayashi - K. Nomizu, Foundations of differential geometry, II, Interscience Publ., New York (1969).
[4] K. Kodaira, On the structure of complex analytic surfaces, I, Amer. J. Math., 86 (1964), pp. 751-798.
[5] P. Libermann, Classification and conformal properties of almost Hermitian structures, Differential Geometry, János Bolyai Soc., 31, Budapest (1979), pp. 371-391.
[6] Z. Olszak, A note on almost Kähler manifolds, Bull. Acad. Pol. Sci. sér. Sci. Math. Astronom. Phys., 26 (1978), pp. 139-141.
[7] K. Sekigawa, On some 4-dimensional compact Einstein almost Kähler manifolds, Math. Ann., 271 (1985), pp. 333-337.
[8] K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan, 39 (1987), pp. 677-684.
[9] K. Sekigawa, On some 4-dimensional compact almost Hermitian manifolds, J. Ramanujan Math. Soc., 2 (1987), pp. 101-116.
[10] S. Tachibana, On almost-analytic vectors in almost-Källerian manifolds, Tôhoku Math. J., 11 (1959), pp. 247-265.
[11] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., 55 (1976), pp. 467-468.
[12] F. Tricerri - L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc., 267 (1981), pp. 365-398.
[13] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, New York (1965).

[^0]: (*) Entrata in Redazione il 12 settembre 1988.
 Indirizzo degli AA.: K. Sekigawa: Department of Mathematics, Niigata University, Niigata, 950-21, Japan; L. Vanhecke: Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3030 Leuven, Belgium.

