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Sobolev, Besov and Nikolskii Fractional Spaces:
Imbeddings and Comparisons
for Vector Valued Spaces on an Interval (*).

JACQUES SIMON

Summary. — We consider various fractional properties of regularity for vector valued functions
defined on an interval I. In other words we study the functions in the Sobolev spaces W=r(I; H),
in the Nikolskii spaces N*?(I; E), or in the Besov spaces B3?(I; E). Theses spaces are
defined by integration and tramslation, and E is a Banach space. In particulor we study
the dependence on the parameters s, p and A, that is imbeddings for different parameters.
Moreover we compare each space to the others, and we give Lipschitz continuity, existence of
traces and gq-integrability properties. These results rely only on iniegration techniques.

Introduction.

Purpose. — Let us consider a p-integrable function f defined on an interval I
of R, with values in a Banach space . We are interested in the following regularity
properties:
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(*) Entrata in Redazione il 6 settembre 1988.
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63177 Aubiere Cedex, France.
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These properties are called fractional since the regularity order s is between 0
and 1. They are weaker than the differentiability in L», that is each of them is
entailed by 9f/ox € L*(I; F), which corresponds to the limit case s = 1.

These properties characterize respectively, for (i) the Sobolev space We»(I; E),
for (ii) the Nikoskii space N*»(I; ¥), and for (iili) the Besov space B}*(I; E).

Our purpose is to study how these properties depend on s, p and 4, to compare
each property with the other ones, and then to deduce either Lipsehitz continuity,
or traces existence or g¢-integrability properties.

Contents. — The outline is as follows

1. Definition of fractional spaces.

2. First properties of fractional spaces.

3. Young and Hardy inequalities.

4. An integral identity.

5. A preliminary imbedding from B7? into Le.

6. A preliminary imbedding from BY” into B7T7.

7. Sobolev theorem for Besov spaces: dependence of B}” on s and p.
8. Dependence of By? on A.

9. Dependence of B}? on s.

10. Dependence of BY” on s, p and A. v

11. Sobolev theorem, and other dependence of W#? on s and p.
12. Dependence of N%? on s and p.

13. Comparison of W*?r, No? and BY”.

14. Imbeddings from We?, N%? and B}® into Lips-¥/7.

15. Traces of We?, N&? and B%?: imbeddings into C.

16. A limit case of imbedding from BY? into L7

17. Imbeddings from ¥e?, N%? and By” into L<.

Main results. — Sobolev and Nikolskii spaces are particular cases of Besov spaces
(proposition 2): W*?= B* N*?= BJ?.

The space B” increases with 1 (theorem 11), thus (corollaries 23, 24, 25):
By*c WP c By?c N*?P for l<p<p.

These spaces decrease as s increases (corollary 17, proposition 20, theorem 14):
Wearc Wre, Norc Nvwv, By?c BY* for s»r.

The variations of s dominate the variations of A (corollary (15), whence (corol-
laries 23, 24 and 25): if s > r then We=?, N»? and B}” are all included in W=7, in
Nmvand in BR®.

Lipschitz continuity is obtained (corollary 26): if s> 1/p, Wesr, Nor and B3}”
are all included in Lips-V».

Traces existence is obtained (corollaries 27, 28 and theorem 29): Wer, N7 and
B?? are all included in C for s> 1/p (and, when 1=1, for the limit eoefficient
s = 1/p).

Integrability properties are obtained (corollaries 31, 32 and 33): Ws», N&r and
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B3P are all included in L for s — 1/p > — 1/q, p<g, and in some ecases for the limit
coefficients s — 1/p = — 1/qg.

The Sobolev theorem gives comparisons when both s and p vary (corollaries 18,
21 and theorem 10): Worc Wre, Norc N and By?c By? for s— 1/p =r— 1/,
8>,

Moreover for all these imbeddings (with the exception of the imbedding in L¢
for some limit coefficients) we give estimates for the norms with explicit coefficients.
The obtained coefficients are not necessarily the best possible ones, but they give
an order of magnitude, and a behaviour with respect to the parameters (8,0, A
and [I]).

Motivation. — The regularity properties (i) and (ii) are often used in evolution
problems: then I is a time interval an F is a function space built over a domain
2c R~

The property (iii) is not so frequently used, however it is very useful for our
proofs. Indeed many results for W*?= B} are obtained from properties of Bj”
for p# 2. For example we deduce the Sobolev theorem Ws?c Wre (s— 1/p =
=r—1/q, p<qg) from By”c B} and from B}*c B};* for A<pu, by choosing 1 = p,
b=

Former results. — The imbeddings given here are already known for real functions
on R, that is for # = I = R. But most of them are not proved for vector valued
functions, and there characterizations by translations are not frequently used on
an interval. ' ' o '

The main feature of the present paper lies in the methods. We define the frac-
tional spaces by integration properties, and for the proof we use only the integra-
tion inequalities of Holder, of Young and Hardy, and an integral identity given in
lemma 7. On the contrary the classic definitions and proofs rely on interpolation
and on Fourier transform, For example we prove (corollary 24) that .. . ...

Sup h“s( f!lf(m + h)— f(w)][pdm)l”’<§ ( f(]lf(y) — 7‘(00)[5)” [dy daw )ur.
' IxI

B3>0 ] ly —axl y— o

In

This inequality can be deduced (for B = R) from classical results on fractional
spaces given in [LP], [LM], [BB] and [T]. But the latter results include many hard
properties of interpolation and equivalence of norms. Moreover not all the coef-
ficients are given in these results, and therefore the above coefficient 2/s should be
replaced by an unknown one.

I am indebted with E. MAcENES and A. VISINTIN for their interest and advices
on this topie, and for their kind invitation in Pavia and Trento where the present
paper was partially written.
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1. - Definition of fractional spaces.

Let I be an either bounded or unbounded interval of R, and da be the Lebesgue
measure on I. Let ¥ be a Banach space, | | be the norm on ¥, and 1<p< co. Then
L#(I; E) is the space of class of measurable functions from I into &, such that
1f]z»<< oo, where

o= ([1r@1eas) " st p< oo (Il = Bssgup li0 it p = ).

For any h>0 we set I, = {weI %+ heI}, and we denote by 7, the transla-
tion operator, that is .(1,/)(®) = flx 4- ). Given fe L°(I; E), then f, 7.f, and
7. f— f are all defined in I,.

DerinttioN 1. — Let I be an interval of R and let F be a Banach space.
Sobolev spaces are defined for 0 < s <1, 1<p< oo by

Ws,p( E’) = {fE Li" I By: “f“Wap< oo} y

i Slf(““@iiﬁ Y e

xI
! 1fy) — @) .
[f |77 == Bss sup ———-—-=1 if p=oo.
.f,\W meI,ueIp W ""'7'{ P =
Lipschitz spaces are defined for 0 << s <1 by
Lip*(I; B) = {f € L*(I; B): [flgze< oo}

- I#y) — )]
[l = Bss sup =200

Besov spaces are defined for 0 < s <1, 1<p< oo, 1<i<< 00, by

By(I; B) = {fe In(I; B): |flz32< oo},

ah .
00 (f(w,m  Flarizne ) -—) it 7< oo,
0
i3 = Sup b7 f ~ flustr s if 2= oo.
Nikolskii spaces are defined for 0 < s <1, l<p<oo by

Noo(I; B) = {fe I2(I; B): |flge. < oo} ,

lges= Sup oloaf — fleas . =
>
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REMARK 1.1. — The interval I, is as follows.
If I =1— oo, oo or I = Je, oof, then I,= 1.
If I =1— oo, f[, then I,=]— oo, 8 — BJ[.

If I = Ja, B, then I, = Jo, f — of for h<f— o, I,= 0 for h>f— «.

REMARK 1.2. — Denote ‘|I | the length of I (JI| = oo if I is not bounded).
Sinee I,= 0 for h>|I|, we have

|1}

A 1% .
igee = ( [ (it = Som) ) Uiz = Sup ini= Sl B
0

2. — First properties of fractional spaces.

We give some elementary properties which will be used further. At first let us
see that Sobolev, Nikolskii and Lipschitz spaces are particular Besov spaces.

ProrosiTION 2. - Assume 0 < s <1 and 1<p< oo. Then

W>(I; B) = By*(I; B),
. N*(I; B) = By(I; E),
Lip*(I; B) = Wo°(I; E) = N>*(I; E) = B>>(I; E) .

In addition, Yfe L»(I; E),
[0 = 2% ({557

Iflzes = 15z

Wlizoe = Wlge = [Flgee = {52

PROOF. — Use the change of variable y — « = & in the definitions of |[f|z.,
and [flg.. ®

Next we see that these spaces have the restriction property.

PropoSITION 3. - Let J be an interval of R, JcI, and 0 <s<1, 1<p< oo,
0<A<< oo,

The restriction operator from I onto J maps Wo?(I; E), N*»(I; E) and
B3*(I; I) respectively onto Wer(J; ), N*»(J; E) and By2(J; H).
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In addition, Yfe L#(I; E),
Hf“ﬁ/m(J;E) < W“fVW(I;E) s
Wl gomts my < Uf lgem; 2y 5

sz m<flzpra e W
Prooy. - This follows from the restriction property for the integral and for I». =

When there is no possible confusion, we do not use a special notation for the
restriction. For example for any funetion f on I we shall write f € Wo*(J; F) mean-
ing that «the restriction of f to J belongs to Wee(J; E)». _

We see now that theses spaces have the translation property. We set [ 4k =
= {&+ k:wel}.

PROPOSITION 4. ~ Let £>0 and 0 <s <1, l<p< oo, 1A 00,

The translation operator 7, maps Ws»(I; E), N*»(I; E) and B3*(I; E) respect-
ively onto We?(I— k; E), N>*(I— k; E) and By*(I— k; B).

In addition, Yfe L»(I; E),

lve HlFeog—rs 5= 15 E)?
| ka”ﬁ’ﬂ’(l——k;E) = %m!ﬁw(I:E) ’
I lzeri—nim = ”13’4”’(1;E)- u

Proor. — This follows from the translation property for the integral and for I».

3. — Young and Hardy inequalities.
We will use the following modified Young’s inequality.

Lemma 5. - Let fe Lo(I; B) and g€ L(0,a) where ¢ >0 and 1/p + 1/r>1.
Define ¥ in I,= {zel:w+ acl}, by Fla)=[flx + t)g(t)dt .
0
Then ¥ e L«(I,; E) where 1/g =1/p 4+ 1/r— 1, and

Ve, < I lpoir 90,0 - 8

ProOOF. —~ At first assume that f is continuous and has a compact support. Given
v eI, we have

a

[P@)< [ + 0llgola = (Ife + 0[lg®19) o + D] -slgp-rear.
0

0
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The Holder inequality with 1/¢ + (1/p —1/g) + A)r— 1/g) =1 gives

) <( f i+ ol lgora)” f e -+ opar) f aora) ™",

When ¢ spans 10,al, ¥y = 2 -+ ¢ spans a snbset of I. Thus

k< f e+ e laorae) [1rwiran)™ ( f o)
0 I 0

By integrating in @ on I,, we obtain

[iF@ rar( f o[ 1te + oleasat)( [1rrtean)” ( f oopar)

When » spans I,, y = @ 4- ¢ spans a subset of I. Thus f[]f(m + t)]{z'dw<fﬂf(y)]|” dy,
I, YA

and.
([maieas)”<( [irwa)”( foora)”.

This is the desired inequality. The continuous functions with compact sup-
port being dense in IL?(I; ) by continuity this inequality is satisfied for all
jel»(I;E). =

Let us remind Hardy’s inequality.

LEMMA 6. - Let g be a real non-negative measurable function on 10, T, 7'< oo,
§>0 and 1<A< co. Then

o dh\* dt\V* 1 3 dt\V/
(o2
[ 0 0

Sup t~8fg(h) %@<18 Esssupt—g(f). =

o<i<T o<i<T

ProoF. — We assume for the moment that g = 0 on a neighborhood of 0, and we

i
denote G(t) = f g(t)dh/h. Then
0

=

(=3 G(t)) = — st=+=1G(t) -+ 1= 1g(1) Gty 1 .

ol =
=Y

t
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Let us integrate from 0 to 7. Since & = 0 on a neighborhood of 0, the integral
of the left hand side is non-negative. Therefore

T T
s[e-o1 G ar< [ gy @y o
0 0
The right hand side equals
T
:J‘(t—sz—l G(t)ﬂ.)(}.‘-l)/l(t—sl—lg(t)/".)lil at .
0

Thus, by Hélder inequality with (4 — 1)/4 + 1/4 =1 it is bounded by

. (A—1)/2 3 1/4
<(ft—37-‘1(}(t)"dt) (J.t—”l—lg(t)ldt) .
0 o
Therefore
7 T

1/A 1/4
s(ft—sl—lc%(t)ﬁdt) <(ft—3’1*1g(t)’~di) )
0 0

This proves the first desired inequality in the case where ¢ equals 0 in a neighbor-
hood of 0. The general result follows by approaching ¢ by functions which equal
0 in a neighborhood of 0, for example g.=1,_,9.

Let us prove the second inequality. Denotec = Sup t—¢(t). Thus g(k)<ch* and
therefore 0<i<T

[ ¢

h
Sup t—ng(h) @< Sup t*sfchﬂi = E.
o<i<T b~ oct<r b §
0 0

4. — An integral identity.
The proof of the Sobolev imbedding will rely on the following identity.

Levma 7. - Let fe L?(I; B), p<< o and &> 0. Assume that

. an
f”f— Tn lzetin; 2 W < oo,
6
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Then

a a a—*h
1 di .
f:a(frhfdh—l—a di;f(l—n)rtfm in I»I; ). =

PRrOOF. — The function & ->7,f is continuous from [0, 4] into L#(I,; E). Thus
the integral

Y(a) = %f'rhfdh
0
converges in Lr(I,; H).
We show next the convergence of the following integral

a a—

h
di
X{a) =!dhof(f— )T f T3

The integrated function is continuous, and therefore measurable. In addition
if 0<t<a~ h, then & + ¢ spans a subset of I, as x spans I,. Thus

a a—h a a—h
di dt

fdh H(I-— Th)th”LP(Ia;E) m<fdh ”f - TthL?(Ih;E) -+ h)g =
S 0 0 0

a. 1 1
=f“f — Tafllzon; 2y (ﬁma) dh .
0

This last term is finite by hypothesis, thus the integral X(a) converges in L?(I,; EK).
The integrals X(a) and Y(a) being convergent, it remains to prove that their
sum equals f. By the change of variable w = ¢, k = ¢ - h we obtain

4 k
X(a) :f Z—];f(ru—rk)fdu in L*(1,, ).
0 0

Let o> 0 be given, and consider 0 < a<a. Then I,cI,. Therefore by restric-
tion the above equality also holds in L?(I,; E). Thus a — X(a) is differentiable
from [0, «] into L»(I,, E) and

X, 1 o (1 Y
@ =g [r—wian——z (G [ura)o - L w s n.
0 0
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» Thus the restriction to I, of X(a) -+ Y () is independent of a. Moreover, if ¢ — 0
then, in L#(I,; E), X(a) -0 (by the last expression for X(a)), and Y(a) — f.
Therefore

X(a) +Y(a)=Ff in I#(Ils; B) for all a<a.
In partieular this is satisfied for « = @, which proves the lemma.
ReEMARK 4.1. - If f is just in L?(I; H), the identity given in lemma 7 holds in
W-i2(1,; H).

Indeed the double integral X(a) converges in W-t2(I,; E) since

I = ) v flprmga; ;<P ;\Ttﬂ;f,p(zu_h;m<h“ﬂim(z;m . n

REMARK 4.2. - If T = R, letting ¢ — oo, it is possible to prove that:

cor o dt _ ,
f :J‘dhf(l*—‘ T;L)Tt] m in I (R7 E) . [ ]
i 0

REMARK 4.3, — In the case I = R and 0f/ot € L», the identity of lemma 7 is due
to I’IN [I]. It was used in [G], p. 260, to prove trace results.
5. — A preliminary imbedding from B:” into L°.

We give an inequality which will be used to prove the Sobolev theorem for Besov
spaces.

ImMMa 8. — Suppose that s—1/p =—1/g (0 <s<1,1<p < g< o0). Then
Bo(I; B)c L(I; B) .

Moreover for all a<|I}/2 (|I| being the length of I) and fe B:?,
e ) : ; dah .
Wpsasm <2\ VW [onf — oo my 3~ + o7 [flain )5

0

for unbounded I, 2%« may be replaced by 1, and the inequality holds for all a.
For a = |I|/2 this inequality implies

1|fi|m<zw(ufﬂ§;m () ilfllm)- "
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ProoF ~ Let fe B¥*(I; E) and ¢ >0 The assumption of lemma 7 is satisfied
since

[15 =l G <[ 1= ol G <1

Therefore the identity of lemma 7 yields:

a a—h
f= fz’hfdh —i—fdhf )T f s 0 + e in Lr(1,; B).

Let us estimate the first integral by Young’s inequality, that is by lemma 5,

with g(f) =1 and 1)r =1—s, thus 1/g=1/p 4 1fr— 1. This gives 1/a[r,fdhe
e Is(1,; F), and 0

[2 fora,
;

We now estimate the double integral. Usmg lemma 5 for 1,f— fe L#(I,; E)
and g(f) = (¢ + h)~% we obtain iz

[Jormrora it

< w11 oo, = &I laoers -

<f = taflzean » 19 lz0,.a-1) -

Le(Ig; E)
Here
hl—2r_a1—2r 1/r
’ r = < 1/r—2 —s—1
191z70,06-m ( Y] ) <ch ch
where ¢ = (2r — 1)~¥r<1. Thus
di dh
dh h=s{f — 1 »
“ f T f I~ o oz
0

This last term is ﬁmte since fe B{*. Thus the integral

a a—h
fdhf(l——n)v:tf

0 0

dt
(t + h)*
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converges in L«(I,, B). Therefore the identity of lemma 7 yields fe L«(I,; F) and

a

Hel ‘ ah ,,
i < [ =l .+ @il

0

If the interval T is unbounded on the right side, then I, = I and the first desired
inequality of lemma 8 is proved, with 2¥¢ replaced by 1.
If the interval I is bounded on the right side, we invert the time direction. More

precisely we use the above inequality for f(f) = f(— ?) which is defined on I =
= {—t:tel}. Since [f— Tuflisi, m= If — tafloq ), this gives

a

. ) dh .
[t]izeTa; By <f70_“|\f — T f | Le(n; B) n + a~|f|zsz; &) -

0

If the interval I is unbounded on the left side, then I,= I and |[f}|L,,(_;a; =
= |flzeq:zy- Thus the first desired inequality is proved again.

There Temains the case where I is bounded on both sides, that is I = Ja; B[
Then, if a<(f— «)/2,

8—a B
;< [u@ieas + f If(@) nadw) " () (Elsdam))e

x+a
The previous two inequalities then yield

a

dh
0z my <240 (fh'sllfhf L) W + “"s”f“m(I;E)) .

0

Thus the first desired inequality, and therefore the lemma, is proved for any
interval I. =

6. — A preliminary imbedding from B} into B}”.

We now give an imbedding which will be used to prove the Sobolev theorem for
Besov spaces. '

LEMMA 9. — Assume s>r (0 <r<s<1l,1<p<oo,1<A< o0). Then

B:*(I; B)c By"(I; B) .
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Moreover, |I| being the length of I, Yfe By®:

L]
8§ —7r
1
8§ —7r

Ifl5» for bounded I
171

B7<

a2 [l forall. m

ProoF. — Let fe By” and ¢ > 0. By Hoélder’s inequality for (1— 1)/4 4+ 1/A =1
we have

a a

| N T P [ BV e

0 0

where

a

A—1)/4 1\(A—1)/4 -
e = | |nle—rrua-nyG-1)gp ( == 1 ———}" L asr < a .
§—r A s§—7

Thus, for 1 << oo,

a

h ([ A
fh—rilnf— ff!m(zmm% <8“—_y (f(h—SH‘thf — Fluecans ;y)* ‘%h) .

(1] 0
For 4 = oo we obtain

a

, | dh e
fh‘rdfhf ~ Hlaransm - <— oélhlga b= tnf — flusgzn: ) -

0
When I is bounded, we obtain the first desired inequality by choosing o = |I .
Indeed (see remark 1.2) the integrals and the supremum for 0<h<|I| are equal to

the integrals and to the supremum for 0 <h< co.
For all I we have the following estimate '

=] (=%}

J‘h_r l7af — Flzews: 2y %;‘L <fh_r”'5hf ~ flzow: 1y % + 2[f ”Ln(I;E)fh_T% .

0 0 1

By using the previous inequality for & = 1 we obtain

oo

fh_’ T f — oot ;ydh < g—i; (f(h“llTnf — Hlooan: my)* %)m + % 1flze; 2y -

0
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For A = oo the integral in the right-hand side is replaced by a Sup. This implies
the second desired inequality. Then the lemma holds.

7. — Sobolev theorem for Besov spaces: dependence of B3” on s and p.

Let us see that B}” decreases when s increases and p decreases, for any fixed
s— 1/p.

THEOREM 10. — Suppose s>rand s— 1/p=r—1/g (0 <r<s<<1,1<p<g< oo,
1< i o). Then

By"(I; B)c By(I; B),
36
Iflave<—1flay>  Vie By».

This holds for 0 = 2%«31, thus 0«6 and, if I is unbounded, for 6 =1. m

Proor, ~ If ¢ = r the spaces to be compared coincide. Now let s>r, s— 1/p =
=r—1/¢ and fe BY?(I; E). By lemmata 9 and 8, B}”c Bj ™”c L, therefore
fe Ly(I; B). » _

Let t> 0. By restriction (proposition 3), f& BY?(I,; E). By translation and re-
strietion (propositions 4 and 3), 7.fe By*(I,; E). Thus 7,f— fe BY"(I;; K) and,
by lemma 9, v,f— fe B] "°(I;; E).

Now we can use the lemma 8 for v,/ — f, (s—#)—1/p = — 1/gand a = ¢.

Unbounded I. ~ If I is not bounded the lemma 8 yields, for all ¢

§

dah ,
1t:f — flzeae my <fh"s|l (talref — 1) — (vof — D) lzeesn: m W + t=5| . f — fles by -
0

Since 7u(vf — ) — (v:f — ) = vl — ) — (mf— 1), it’s norm in Lo(Z,1,; B) is
bounded by 2 times the norm of 7,f— f in L#(I,; K).

Case A << co. Thus the above inequality yields

~ ) di 1/4
(f(t“”]lftf — flzasmy)? —t‘) <
11}

oo ¢ =
' ) AR\ di\v2 dt\1/A
<2 ( f(t“ffh"“ﬂn f—fleeanimy 7;) %) + (f(t_’ll'ftf — flzeae my)? -{)
0 ] 0
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Bounding the first integral of the right hand side by Hardy’s inequality, that
is by lemma 6, we find

r : any (2 ¢ ' dE\LA
(f(t_" ”Tt f - f]qu(IHE))l _t') <(';‘ —I— 1)(f(t_“l[1t f - f”Lp(I“E))Z 7) .
0 o ' 0 ‘
This yields the desired inequality since 2/r -+ 1<3/r.

Case A = oo. Replacing the integration in { by a supremum, and using the second
inequality of lemma 6, we obtain

¢
: dh
Sup ¢~ |7, f — fllzaz; 3y <2 Sup (t”’fhr_s!i'fh f— e » —h—) + Sup t=*[r.f — flooa m <
t>0 i>0 : >0 :
2
<(; + 1) Sup |7 f — floraimy -
>0
‘This yields the desired inequality for 4 = oo.

Bounded I. - If I = )e, §{ is bounded, then the condition on ¢ in lemma 8 yields
t<|1,]/2, that is ¢<(f— ¢t — )/2 thus ¢<(f— «)/3. Under this condition

3
Iref — f“La(Iz:E)<2»1"?‘(fh'“‘{]fn(‘ftf-* )= (of — Dlooen m d—hh + T f — fHLa(I,;E)) .
0
As in the unbounded case |74(v.f — f) — (T.f — Nl <2]7af — fllz»-

Cose A < co. Thus

(B—u)i3

1
f(t"‘linf — e m)? %) <

co t ) ©o
1 ar\* dt\ | dt\
i (2 (e fastmnr = floann §) 5) 4 ( Jerin = floum §) ).
0 o . 0

Therefore, by Hardy’s inequality, that is by lemma 6,

AN

B—-a)3

(J‘(t—r“-’;tf — flzem)? %)m<21/q (f + 1)([7,;-5”,”7 - f”z;zn(lf;m)'1 %‘t)w :
g 0

»
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In the left hand side we use ¢ = k3. Then 7,f — f = 7o.(t:f — ) + 7:lz:f — f) +
-+ (v.f — f), and therefore |v,f— fl .z, 5y <3[7:f — flie.;zy- Thus this change of
variable gives

; (B—a)/

(x [( el = fenn) dh) <3 Tﬁ( j(t "7of — floasm) ‘zt)w'.

ot

Ifh>p8— o, then I,=0 and |7.f— flpp, ;=0 Thus f— a may be re-
placed by oo in the left hand side. Then the last two inequalities yield,

@ (=]

(Jormt— ) "z (F 1) fese— foanr §)
;

0

This gives the desired inequality.

Case A = oo. Replacing the integration in ¢ by a supremum, and using the second
inequality of lemma 6 we obtain

£
{ , dh : ,
Sup |7 f — fllpeg,m <21 SUP "t“Jhr"s”Thf Hizoan: ) W + 1 f — flieasm <
t<(f—a)/3

2 |
<2 (2 1) Sup 17.f — .

Now, using again ¢ = h/3 and [7.f — fl;.<3||7:f — fl;., We obtain

Sup A~ |Tnf — floegm ;= Sup P on f — fllzeqns E)<3H Sup 7. f — fleq g)-
h< oo <(f—a)3

Finally

hSUP v f — fllzeqns 2y <3 ”1"1( -+ )SUP ol f — floewsm -
< 00

t<oo

This is the desired inequality, which is proved for all 7 and 4. m

8. — Dependence of B}” on J.

Let us see that B}” increases with A.
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TEEOREM 11. — Suppose A<y (0<s<1, 1<p< oo, 1<A<pu< o). Then
By*(I; E)c By"(1; E),

.lfI|B“’< iflze> VieB3”. =

The theorem will be proved in three steps, by using the following semi-norm
on B%*. Given f in I»(I; ), we set

wy(h) = Sup [7.f — [l

e = ( f(h-s o) (11— Supioh) it 2= ).

In the first step let us prove that this defines an equivalent semi-norm on B%?.

LEmMMA 12. - For all fe B3%(1; B) (0<s<1,1<p< oo, 1<A< 00),

If 1557 < Hﬂ;B;”Q g . =

ProoF. — The first inequality is obvious since |7af — fiu,, my <@, (k).
Let us prove the second omne. For h<i<2h we have 7.f— f= 7,/ — f
+ Ta(Ts-af — f), thus

[7.f — f“m(zt;E)< l7f — f“L@(Ih;E)+ , (k)

For t<h this inequality still holds. Thus, calculating the supremum for 0 <1< 2h
we obtain

w,(2h) < |7, f — fHLp(Ih;E) + w,(k)

The case A < oo. Thus

| AR\ . B\1/4 y B\
( f ooy G) < [oient = floa o F) + ( [oamn F)
0 0

By the change of variable 2k —> h, in the left hand side we obtain

R N AR\ - . AR\
(gs—1) (fh—m)p(h))Z 7) <( J(h—s”'g flzen: m)* hl)
0 0

which is the second desired inequality.
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The case A = oo. Replacing now the integration in ¢ by a supremum, we obtain

20 Sup h—vw,(h) = Sup h=2w,(2h) <Sup =57 f — [z 5y + R 0w,(h) .
h>0

h>0 k>0

This gives the second desired inequality for i = co. m

In the second step let us prove the result of theorem 11 for u = oo.

Levuma 13. - For all feBYY(I[; B) (0<s<l, 1<p< oo, 1A 00),
If|5ee < (sS4 ]f|3s> m

Proor. — Let £ > 0. Since w,(h) increases with 4 we have

co

( f (= *0,(1) dh)m ( f (e, 1 d”)mm,,(t)( fh—sﬂd-};h)”l—_—(szruu—sw,,(t).
i

0

Thus

o

A
Sup 5w, (¢ )g(sl)l/l(f(h"‘w,, (h))* CZL) .

i>0
o

In the last step let us prove the imbedding for all u>A.

ProoF o¥ THEOREM 11. - Let fe B}? and u>A. We have

oQ

—
S

ah\iie
( (=2 tnf — 1l 1o m))* —h‘)

20

o (=D dh\i/u
<(SUP B jtaf — f”Ll’(Ib;E)) ( ( shnf — f]\Lp(Ih E)) i s
1>0

This is
I7lee < (17 15e2) ™ 21 7)Y -

In addition, by lemmata 12 and 13,

171

s < 13 = (2P o < Uil
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The maximum of (sA)* with respeet to A is attained for si=e. Thus
(sA)*](2s— 1)< e™[(2° — 1) <2/s. Therefore

B

| ufu;;:;k@)l"“” s

This proves the inequality in theorém 11, and therefore the theorem
9. — Dependence of B3” on s.

First we show that Bj® decreases when s increases, for fixed p and A.

THEOREM 14. — Suppose s>7 (0 <r<s<1, 1<p< oo, 1< A< o0). Then

BY"(I; BE)c BY*(I, E) .
And, |I| being the length of I, Vfe B}?

[T]s=7| {57 for bounded I,

ifl5z7 <

B s+ S Ul forall. w

Proor. - Let fe B}? and.a > 0.

Bounded I. — For )< oo,

a

( f (5120 f — Flortns )’ %ﬁ)/< ( f (h=2llenf — floncrns ) %)/ :

0
For 1 = o,

Sup h~||taf — fluern my <0* Sup W vaf — flisnmy -
0<h<a . 0<h<a

These inequalities give the first desired inequality by choosing ¢ = |I|. Indeed

(see remark 1.2) the integrals and supremum for 0 <h<|I| are equal to the integrals
and to the supremum for 0< k< co.

Bounded or unbounded I. - We bound

( (h—r ”Thf - f”Lr(In;E))}' %‘?)Ul<

1

2=l
-

< Jorrimr =l )+ 2t [0 )"

0 1
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Thus

o0

1
( dR\/A , AR\ VA . 1\
(J’(h_r Izt — Flzoas 23) —h—) <(f(h“s;1 T — floran my)? 77) + 2] flze: m (;) <

0 o

oo

' dp\vad 9
<(f(h‘5 \taf — Floen 29)? 7) + 7 1 lzor; my-
0

For 1 = oo the integrals are replaced by Sup. This proves the second inequality,
and therefore the theorem. M

Let us see that B}” decreases when s increases, even if 1 varies.

COROLLARY 15. — Suppose s >r (0 <r<s<1, 1<p< oo, 1<i<< oo, L<u< o).
Then
By*(1; E)c By*(I; E)
And, VYfe By?,

2 e for bounded 1,
< 9 4
T i1z = flize for all I.
Moreover, if A<y,
5_; I l557 for bounded 7,
Iz <

2

2 Wlsr 4 Wil for all 1.

Proor. — If A<y theorems 11 and 14 yield By” c B;? c B;” and the desired
inequality.
For all A and p, lemma 9 and theorem 11 yield By?c Bp?c By?. W

10. — Dependence of B}” on s, p and e.

Let us see that B}? decreases as s and s — 1/p increase and as p decreases.
THEOREM 16. — Suppose s>7, p<q and either s—1/p>r—1/g or s—1[p =
=r—1/q, A<u. Then

BY(1; B)c BY(I; B) .
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Moreover, Yfe By?, if A<y

i_sﬁ |T|=-r-vzt1a| f55° for bounded I,

Mz <

(=2}

o 1158+ g—z If1 ;» for unbounded I

and, if s— 1/p > r— 1/g,

36 lI |s—r——1/p+1/q

ri(s —r—1/p -+ 1/g)
!ifllé::“<l ;

ri(s —r—1/p +1/g)

7552 for bounded I,

Iflzee -+ %—g Iflz for unbounded I. m

ProOF. — Denote S =r—1/g +1/p. Then r<S8<s and S—1/p =r—1/q.

If A<p theorems 11, 14 and 10 sucessively yield B}”c Bj;®c B”c B}?, and
the desired inequalities.

It s—1/p>r—1/g, lemma 9 and theorems 10 and 11 successively yield

By?c BY”c By'c B}%, and the desired inequalities. m

REMARK 10.1. — The embedding of theorem 16 contains all the embeddings for
Besov spaces given in sections 7, 8 and 9. But, for each particular case, the coef-
ficients of the inequalities are better there than here. ™

11. - Sobolev theorem, and other dependence of W*” on s and p.

Imbeddings for Sobolev spaces are particular cases of imbeddings for Besov
spaces since W*?= B;”. First let us see that W=»? decreases as s increases.

COROLLARY 17. — Suppose s>r (0 <r<s<<1, 1<p< o). Then

Wer(I; B) c Wro(I; B)
and, Yfe Ws2,
s | flwen for bounded I,

1 lre < I lres + % Iflze foralll. m

ProOF. — Proposition 2 and theorem 14 yield W*” = B}”c B;* = W™” and the
desired inequalities. W

Now we shall see that W+* decreases when s increases and p decreases, s — 1/p
being fixed. That is the Sobolev theorem.
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COROLLARY 18, — Suppose s—1/p =r—1/g and s>r (0 <r<s<<l, 1<p<
<g< oo}, Then

Wen(I; B) c Wra(I; B)

“fle’“< JWWM VieWs. m
For unbounded I, 36 may be replaced by 6. ®

Proor. — Theorems 11 and 10 give B}?c B}?c By?. Then the proposition 2
give Wo?= B2"c B;*= W™ And these results yield the inequality. m

Finally we shall sec that We=? decreases when s and s— 1/p increase and p
decreases.

COROLLARY 19. — Suppose s>7, p<q and s —1/p>r—1/g (0<r<s<l, 1<p<
<¢< oo). Then
Wer(I; B)c Wre(l; E)
and, Yfe War,

i;’ |1 |s—r—tw10a)|f | 5 for bounded I,
Hlira<) ¢
1 ,“ 15 ,+ HfHLp for unbounded 7. =

Proor. ~ Proposition 2 and theorem 16 give W*”= B;’c B'= W”", and the
desired inequalities. n

12. - Dependence of N*” on s and p.

Imbeddings for Nikoslkii spaces are particular case of imbeddings for Besov
spaces, since N®*= B%?
First let us see that N+? decreases when s increases, for fixed p.

PROPOSITION 20. — Suppose s§>7 (0 <r<s <1, 1<p< oo), Then

Ner(I; By c Nv»(I; H)
and, Vfe N+»,
LZE=7 1 Fll e for bounded. I,

Nrp\

Sup {|[f|ges; 21fllz»}  for unbounded I. =
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Proor. — Let fe N»». When I is bounded we have, for h<|I],

B vaf — Flio: my < L1072 |20 f — Flozn; 1y -

For k> |I| this inequality is still satisfied since the two sides equal 0. The first
inequality is then obtained by taking the supremum for %>0.
When I is unbounded we have

h“s“'thf_ f“LP(Ih;E) for h<1 y

Erllvnf — flovgn m < .
20 flzocz; my for h>1.

The second inequality, and therefore the proposition, is then obtained by taking
the supremum for A>0. N

Now let us see that N¢* decreases when s increases and p decreases, s— 1/p
being fixed. That is the Sobolev theorem for Nikolskii spaces.

COROLLARY 21. —~ Suppose s— 1/p=r—1/g and s=r (0<r<s<1, 1<p<
<g< o). Then

Ne#(I; E)c Noo(I; B),

igass s Vi€ Nos.

If I is unbounded, 18 may be replaced by 3. -]

ProoF. - Proposition 2 fand theorem 10 give N*?= B%?c Bl"= N™¢ and the
inequality. W

REMARK 12.1. — The corollary 21 may be written as follows:

Let f € I#(I; B) satisfy: |7af — flzo,, m<ch® VA > 0.

Let ¢ be such that: p<q<oo if sp>1, p<g<p*=p/(1—sp) if sp<l.

Then fe L(I; B) and |taf — flpeq,, m<¢'bV7Ve YA >0. m

Finally we shall show that N+r decreases when s and s— 1/p increase and p
decreases. '

COROLLARY 22. -~ Assume s>7, p<¢ and s—1fp>r—1jg (0 <r<s<<l1,
1<p<g< o). Then ‘

Ne2(1; B)yc N(I; B)
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and, Yje No2,

178 gIls—r—lle-l/a”f”Nw for bounded I,

[fligre<
= Sup {|f|swe; 2]f]z.} for unbounded I. m

PROOF. — Set § =r—1/¢g+ 1/p. Thus r<S8<s and §—1/p=r—1/g. Pro-
position 20 and corollary 21 yield N*?c N5?c Nv¢, and the desired inequality. m

13. — Comparison of W*?, N*? and B%}".
Let us first compare Sobolev and Besov spaces.

COROLLARY 23. — Assume s>7 (0<r<s<1, 1<p<oo, 1<A o).
If 2= p then
W**(I; B) = By"(I; B)
Ilee = 29| flgee Vi€ W
If A>p then
W**(I; B)c BS*(I; E)c W*(I; E)
and, Yfe W=,

Hf“fsi:”<% s

and, Vfe B}?,

| Rgil__—;) | [f 15> for bounded I,
[fllre < 4 9
=7 I lz5” + o lflze for all I.

If A<p then
W**(I; B)c By*(I; B)c W*(I; E)
and, Yfe Weo,

s —7) (L= [[f [ for bounded I,
Iz < 0 .
"6 —1) 11 les + o Iflzz  for all T
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and, Yfe B}?,

Hfﬂwn»< flgze. m

Proor. ~ When 4 = p proposition 2 yields W*?= B}* and the equality for
norms.

When A>p proposition 2 and theorem 11 yield W*” = B;*c B}® and the first
inequality. Corollary 15 and proposition 2 yield By”c B = W"? and the other
inequalities.

When A<p proposition 2 and corollary 15 yield W** = B}?c B}” and the first
two inequalities. Theorem 11 and proposition 2 give B}”c B)”= W"? and the
last inequality. =

Now let us compare Sobolev and Nikolskii spaces
COROLLARY 24, — Suppose s>7r (0 <r<s$<1, 1<p<oo). Then

Wer(I; B)c Ns#»(1; B)c Wr*(I; E)
and, Vfe We»,

[f[ 522 < 1flFe
and, Yfe N+,

,.( — II i f |3es for bounded 7,
11 lfrs <

sl UL Ilfllm forall]. m

ProoOF. — This is given by corollary 23 with A = co. Indeed by proposition 2,
N7 = By and |f|geo= [flz2-
At last let us compare Nikolskii and Besov spaces

COROLLARY 25. — Suppose s >r (0 <r<s<1l, 1<p<oo, 1A o). Then

N"’"(I; E') CBQ’”(I; E) CN””(I; E)
and, YVfe N+,

2T

rs—r) o~ [fles for bounded I,

172 <

e —7) \VHN p-l— — |flz= for all I
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and, Vfe B}?,

2
i [ —_ ot 3% 3
|F b < 7 B2
If 1 = oo then
No%(I; ) = B»*(I; E)

Hlyow= Iflze VieN>. m

Proor. — Proposition 2 and corollary 15 give N°?= B%”c B}? and the first
two inequalities. Theorem 11 and proposition 2 give B}?c B"? = N™” and the
third inequality.

Proposition 2 give N*? = B%” and the equality for norms. m

14. - Imbeddings from W*?, N*? and B}” into Lips-¥r,

Let us see that for s large enough, any function of any one of these spaces has
Lipschitz properties.

COROLLARY 26. — Assume s >1/p (0 <s <1, 1<p< oo, 1<A<o0). Then
Wer(I; B)c Lip=vr (I; E)
Ne2(I; H) c Lip=» (I; E)

By#(I; B) c Lip=*(I; E)

and
1 et <§(s——3—§ﬂ]_)5 g Ve W,
Hﬂlﬁpr-w<§_l—§/§ lgw  VieNor,
oo <y lize ¥ Bgo. m
If I is unbounded 36 and 18 may be réplaced by 6 and 3. v u

Proor. — Proposition 2 and theorems 11 and 10 yield W*?= B)*c B%’c
c Bi7vee — Lip*~ Y%, and the first inequality. Corollary 21 and proposition 2 give
N®? ¢ No~1me — Lip*~ 1 and the second inequality. Theorems 11 and 10 and pro-
position 2 yield BY?c B%?c B V7> = Lip*~? and the third inequality. w
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15. — Traces of W+?, N*» and Bj*: imheddings into C,.

We denote by C,(I; E) the space of uniformly continuous functions from I into #,
that is

CuT; B) = {feC(l; B):  Sup [fiy) — f@)] +0 as & >0},
xel, vel,ly—a|<e

First let us give trace results for Sobolev spaces.

COROLLARY 27. — Suppose s>1/p (0 <s<1l, 1 <p<oc). Then

Wer(I; B)c C,(I; E).

For any fe W+» and tel (closure of I), f(t) is uniquely defined and

1@ ] ! | 2 AR
L— ~a,p —_ lrp o
0 < Wl + (22 () ) s
ProoF. ~ By corollary 26 W=7 is included in Lips-*» and therefore in C,. The
inequality is given by lemma 8 with ¢ = oo and s == 1/p, by lemma 9 with A = p
and r = 1/p and by proposition 2. =
Now let us give trace results for Nikolskii spaces
COROLLARY 28, — Suppose s>1/p (0 <<s<1, 1 <p<co). Then

Nex(I; B)c C(I; B).

For any fe N+» and te I, f(t) is uniquely defined and

s <55 Wt (22 + () ) 1l

Proor. - It is same as for corollary 27.

Finally we give trace results for Besov spaces

THEOREM 29. — Suppose either s =1/p, A=1o0rs>1/p (0<s<1l, 1 <p<oo,
1< A< ). Then

BYP(I; BE)c C(I; ).
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For any fe BY” and t € I, f(#) is uniquely defined, and

2\v7 |
[ z2> + (m) Iflize for s =1/p,
1H®) |z < 1 9 \us
s—1jp I3y (2p + (m) iflze for s>1/p,

where |I] is the length of I, thus 2/|I| = 0 for unbounded I. m

Proor. — Lemma 8 with ¢ = oo yields Bi“’"’ c L* and the first inequality for
almost at ¢ in I. Lemma 9 yields B}? c BY/?*? for s > 1/p, and the second inequality.
There remains to prove that BY??cC,.

Let fe BY"?(I; E) and ¢> 0. By propositions 3 and 4 f— v.fe B{>?(1,; B).
Then, by lemma 8, for a<|I;|/2,

a

‘ dh )
If — 7eflzeaem <fh”3}fh(f — 7 f) = — 1N stens 1y 5 T o f — T f e my -

]

Thus

a

. dh )
f— thifnw<1¢;E)<2fh"silf — O flr@sm 5 4 o7 = i f | m -

0

Let ¢ —0. Then |f— 7:flpq, 50 (see for example [S1], remark 3.2 p. 73).
Therefore we can choose @ == a(t) such that a(f) — 0 and at)|f — Tif lazs; gy > O-
Then the right hand side vanishes as ¢ 0, and

17— floowm =0 -

This yields fe C(I; H) (see for example [S1] theorem 1 p. 71, with F = {f}),
and then

Sup [fle)—FHe+)] -0 ast~—0.

wel: g+tel

This is feC,(I; H). =

16. — A limit case of imbedding from B%” into L.

In section 5 we proved this imbedding for s — 1/p = — 1/g, in the case 1 = 1.
Now we extend this result for A<gq.
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TEEOREM 30. — Suppose s—1/p =—1/¢, s<1fp and A<q< oo (0<s<1,
1<p < ¢ < o0, 1<A<q). Then

By?(I; B)c I*(I; E)
and there exists ¢> 0 such that, Vfe B}?,

Wlze<e(lflzgr =+ Iflz) - m

REMARK 16.1. — The value of ¢ is unknown. Indeed the proof relies on many
interpolation results for which the coefficients are not all known.

A more direct proof with a known ¢ can be given by means of the repartition
funection, but it is guite long. It is not carried on since the result is of little use in
the present paper. W

PrOOF. — The case I = R. We use the standard notation [A4, B]J, , for inter-
polation spaces. For an exact definition the reader is referred to [BB] p. 165. By
the characterization of fractional domains of semi-groups (theorem 3.4.2 p. 194 of [BB]
with A = d/dt and X = L*(R; B)) there holds

BY"(R; B) = [W"(R; ), I*(R; B)],_, ,, 0<s<1, l<i<oo.

Thus by the reiteration theorem (theorem 3.2.20 p. 178 and definition 3.2.15
p. 175 of [BB]),

By*(R; H) = [B{""(R; E), B{»*(R; B, ifs=(s:48)2,, s5%8,.

On other hand the Riesz theorem (theorems 3.3.8 p. 186 and 3.3.10 p. 190 of [BB])
yields

LYR; B) = [L™(R; B), I*(R; B)}; , it 1/g = (Ug+ 1/0:)[2, @17 G-
Suppose now that s < 1/p. We choose s, and s, such that 0 < §,<< 8 < 8, < 1/p
and s == (s;+ 8)/2. Let ¢, and ¢, be defined by s;—1/p = — 1/g;, and s,— 1/p =
= —1/q,. Then 1/q = (1/¢,+ 1/g,)/2. By lemma 8 we have Biv*(R; E)c L*(R; E)
and Bi»*(R; E)c L*(R; E). Thus the above interpolation properties yield
BY"(R; B)c I*(R; E) .
For all 1<q we have B}® c BY® by theorem 11, and therefore
BY”(R; Byc L'R; E) .

All these imbeddings are continuous and therefore ¢ exists.
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The case I c R. For all fe By*(I; E) there exists f e BYP(R; E) whose restriction
to I is f; and the map f —f can be choosen linear and continuous.

Then fe I#(R, E) and therefore fe Ly(I; E), which proves the theorem. The
extension result, that is the existence of f, is proved for real functions in [T] (defi-
nition 4.2.1 p. 310 and theorem 4.4.1 p. 321 successively for Q = I and Q = R).
For vector valued functions a similar proof holds. It is not given here since it is
quite long and since the main change is to replace the norm in R by the norm in E.

17. - Imbeddings from W*?, N*? and B? into L“.
At first we give imbeddings for Besov spaces.

COROLLARY 31. — Let s, p, ¢ and A satisfy

if $>1/p then p<g< oo,
if ¢ =1/p then either p<g<< o0 OF g = o0, A =1,
if s<1fp then either p<q<p, or g = p,, A<p,, where s — 1/p = — 1/p,,

(0<s<l, 1<p<g< oo, 1<A<o0). Then
BYPUI; Byc I B) .

If either s>1fp, p<<q or s=1/p, p<qg<oo or s<1fp, p<<g<<p* then
Yfe BY®,

1 e 2 _Q_,_ 1/p~1/q )
Wios <2 (s W+ (s + () ) )

If s =1/p, ¢ = oo, 4 =1, then Yfe BY»?
1/p
wwqquﬁxm%

If I is unbounded, then 2%2 can be replaced by 1 in these inequalities, and 2/|I| = 0.
¥ s<l/p, g=1p, and A<p,, there exists ¢> 0 such that, Vfe B}?,

[flze<e(lflzge + 1flps) -

Proor. - If g = p by definition Bj?c L
Now let ¢ > p and set r = 1/p — 1/g. Then r > 0. If either s > 1/p or 8 = 1/p,
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p<g<oo Or $s<1lp, p<q<py, then s>r. Thus lemmata 9 and 8 yield
By?c BY?c L* and the desired inequality.

If s =1/p, g = oo, A =1, the result is given by lemma 8.

If s<1/p, ¢ = p,, the result is given by theorem 30. m

Now we give imbeddings for Sobolev spaces.

COROLLARY 32. — Let s, p and q satisfy
if s> 1/p then p<g< oo,
if s=1/p then p<g < oo,
if s<1/p then p<g<ps, where s— 1/p = — 1/p, that is p,= p/(1— sp),
(0<s<l, 1<p<g< o). Then
War(I; B)c L{I; E)
and, if either s>1/p or s<<1/p, ¢ <Py, Vfc Wor,

1 2

" 9 \Vr-1/d
s—1jp F1Jg U1l + (m + (m) ) ”f“z,v) .

If T is unbounded, then 2Y¢ can be replaced by 1, and 2/|I|=0. =

ufuu<2w(

Proor. — This follows from corollary 31 with A = p. Indeed by proposition 2,
Wor= B and |f[zpe = 27 [f|F.,. W

Finally we give imbeddings for Nikolskii spaces.

COROLLARY 33. — Let s, p and ¢ satisfy

if 8>1/p then p<g< oo,
if s<1/p then p<qg<<py, where s— 1fp == — 1/p, that is p,= p/(1— sp),

(0<s<<l, 1<p<g<oo). Then
Ner(I; Eyc Le(I; E),

D1/gf 1 141~ 2 l Haie . EN 4
Wlae <2 (g s (g + () i) e,

If I is unbounded, then 2¥¢ can be replaced by 1, and 2/[I| =0. =

Proor. — It follows from corollary 31 with 1 = oco. Indeed by proposition 2,
NP = BgP and |flgee = [flgsn- ™
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