Boundary Value Problems with Mixed Lateral Conditions for Parabolic Operators (*) (**).

Avtonio Bove (Napoli) (***) - Bruno Fravchi (Bologna)
Enrico Obrecht (Bologna)

Summary. - We study a parabolic problem in a cylinder with lateral conditions of mixed type. We get an existence, uniqueness and regularity result in dissymmetric function spaces nicely fitting the geometry of the problem.

Introduction.

In this paper, we study a parabolic problem in a cylinder with lateral conditions of mixed type. Problems of this kind were studied by Magenes ([15], [16]), who obtained existence and uniqueness results in classes of regular functions. Later, Balocchi considered the same problem in a variational setting ([2], [3], [4]), under very weak hypotheses on the geometrical properties of the regions where different boundary conditions are given. By similar abstract techniques, Bernardi [5] got some global regularity and non-regularity results. From a completely different point of view, GJul'misarjan [12] studied this problem in a semi-infinite cylinder when the "separating surface" is parallel to the t-axis. In this particular case, Gjul'misarjan proved an existence, uniqueness and regularity theorem in Sobolev spaces taking into account the lack of regularity of the solution near the separating surface in the directions not parallel to the surface; these spaces and the techniques employed to deal with them are analogous to Višik-Eskin's ones for the elliptic case (see [10], [17]). Eskin and Chavg Zuy Ho [11] stated an existence result for differential systems, parabolic in the sense of PetrovskiI, supposing that the separating surface be nowhere tangent to a hyperplane $t=$ const. In [6] we considered a problem of this kind for the heat equation in a quarter space when the separating surface is a paraboloid of revolution; we obtained existence, uniqueness and regularity results in spaces similar to Gjul'misarjan's ones, but taking into account the essentially different situation due to the presence of the vertex of the
(*) Entrata in Redazione il 27 luglio 1981.
(**) Partially supported by G.N.A.F.A. of C.N.R., Italy.
${ }^{(* * *)}$ Partially supported by I.N.F.N., Bologna, Italy.
paraboloid, where the separating surface is tangent to the hyperplane $t=0$. In [8] we studied a parabolic boundary value problem with mixed lateral conditions in a finite cylinder, when the separating surface is nowhere characteristic; there we solved the problem in function spaces nicely fitting the shape of the separating surface: this was accomplished pulling back, via a suitable change of variables having a global character, function spaces of Gjul'misarjan's type.

The aim of this paper is to study the above mentioned problem in the following situation. We consider a second order parabolic operator with smooth coefficients in a cylinder of finite height whose basis is a bounded regular open subset of \boldsymbol{R}^{n}. The separating surface is an $(n-1)$-submanifold of the lateral boundary of the cylinder and we suppose it is tangent to the hyperplane $t=0$ at a point, where there is a contact of order exactly 1; furthermore, the separating surface is nowhere else tangent to a characteristic hyperplane. The boundary conditions on the lateral surface may be either two of the the following classical ones: Dirichlet, Neumann and Robin. We prove an existence and uniqueness result and we establish an a priori estimate in function spaces having the following features:
i) if t is bounded away from zero, they are the spaces defined in [8];
ii) near $t=0$, they are akin to the spaces in [6] but now the weight function on the hyperplane $t=0$ is of power type; we note that the traces in these spaces on the hyperplane $t=0$ are forced to be zero.

With respect to [6] there are two kinds of improvements:
a) the problem is more relevant from the geometrical point of view, since we are not confined to a quarter space situation; furthermore, operators with variable coefficients are allowed;
b) a new choice for the weight function on the basis of the cylinder allows to enlarge-in an essential way-the class of data for which the problem is solvable, even for the heat operator.

We wish now to point out differences and connections between our and Baiocchi's results. Indeed, the two points of view are essentially different: the geometrical situation considered in [4] is quite general; to handle such a problem, Baiocchi employs an abstract variational procedure, so that he obtains the solution in a space which does not depend on the geometry involved. This solution cannot be regularized in the usual Sobolev spaces, because of the presence of discontinuities in the boundary conditions. On the other hand, we consider only a particular situation, but the function spaces in which we get the solution are closely connected with the geometrical structure of the problem, so that, if the data are smooth, so is the solution except in the directions normal to the boundary of the cylinder or transverse to the separating surface. Nevertheless, we note that, by a suitable choice of some parameters which are related to the regularity across the separating surface, our spaces can be embedded in Batoccur's [4] ones.

To outline the essential points of the proof, we give a scheme of the paper.
In Chapter 1, we formulate the problem and establish some notations. In Ohapter 2, we consider a parabolic problem with constant coefficients in a quarter space with mixed lateral conditions, when the separating surface is a paraboloid of revolution. In this case, analogously to [6], it is possible to use a change of variables introduced by Kondrat'ey [14], mapping the paraboloid onto a cylinder and the vertex to infinity. In such a way, by a Laplace transformation, we have to study mixed problems in bounded regions and a (non-mixed) problem with unbounded coefficients in an unbounded region; the latter one was solved in [7]. In Chapter 3, we solve the original problem in a thin layer near to $t=0$. To this end, the results of Chapter 2 and of [9] are used. Finally, in Chapter 4, the original problem is solved; for this, we construct a global diffeomorphism cylindrizing the separating surface far away from the hyperplane $t=0$ and allowing to define function spaces in the upper part of the cylinder, which fairly fit those we have constructed in the lower part. In such a way, the global existence and regularity theorem follows by the results in Chapter 3 and in [8].

We note explicitly that our problem is meaningless when $n=1$. Calculations are carried out when $n \geqslant 3$; the case $n=2$ is obtained by slightly modifying the spaces we consider.

1. - Notations and position of the problem.

In the sequel, we shall always refer to the following notations:

$$
\boldsymbol{R}_{+}^{n}=\left\{x \in \boldsymbol{R}^{n} ; x=\left(x_{1}, \ldots, x_{n}\right), x_{n}>0\right\} ;
$$

if $x \in \boldsymbol{R}^{n}$, then $x=\left(x^{\prime}, x_{n}\right)=\left(x^{\prime \prime}, x_{n_{-1}}, x_{n}\right) . N_{\mathbf{0}}=N \cup\{0\}$. If $x \in \boldsymbol{R},[x]$ is the integral part of x. If $u \in \mathcal{S}\left(\boldsymbol{R}^{n}\right)$, then $\tilde{u}(\xi)=\int_{\boldsymbol{R}^{n}} \exp (-i x \cdot \xi) u(x) d x$, where $x \cdot \xi=\sum_{j=1}^{n_{6}} x_{i} \xi_{i}$.
 erator $\sum_{j=1}^{n} x_{j} \partial_{j}$. If $\xrightarrow[R]{\boldsymbol{R}} \subseteq \boldsymbol{R}^{n}, \alpha, \beta \in[-\infty,+\infty], \alpha<\beta$, we shall put $\left.\left.X_{\alpha, \beta}=\right] \alpha, \beta\right] \times X$, if $\beta<+\infty$ and $\left.X_{\alpha,+\infty}=\right] \alpha,+\infty\left[\times X\right.$. Finally, $\gamma_{k} u$ is the k-th order trace of u on $(\partial X)_{\alpha, \beta}$ and $\gamma_{\alpha}^{(l)}$ is the l-th order trace of u on $\{\alpha\} \times X$.

Let Ω be a bounded open subset of R^{n} with C^{∞} boundary, being locally on one side of $\partial \Omega$. Let $T \in \boldsymbol{R}_{+}$and set $\left.\left.I=\right] 0, T\right], Q=\Omega_{0, T}, T=(\partial \Omega)_{0, T}$. Let Γ_{1} be a connected and relatively open subset of $\bar{\Gamma}$ with boundary γ such that:
i) γ is a connected $C^{\infty}(n-1)$-manifold with boundary $\partial \gamma$;
ii) $\partial \gamma=\gamma \cap(\{T\} \times \partial \Omega)$;
iii) there exists exactly one point $\left(0, x_{0}\right) \in \gamma, x_{0} \in \partial \Omega$, such that the tangent plane to γ in this point is parallel to the hyperplane $t=0$;
iv) γ and its tangent plane in $\left(0, x_{0}\right)$ have a contact of order exactly one.

Furthermore, put

$$
\begin{aligned}
& \Gamma_{2}=\bar{\Gamma} \bar{\Gamma}_{1}, \quad S_{t_{0}}=\bar{Q} \cap\left\{\left(t_{0}, x\right) ; x \in \Omega\right\}, \\
& \Gamma_{i, t_{0}}=\Gamma_{i} \cap\left\{\left(t_{0}, x\right) ; x \in \partial \Omega\right\}, \quad i=1,2, \quad \gamma_{t_{0}}=\gamma \cap \bar{S}_{t_{0}}, \quad \text { where } t_{0} \in[0, T] .
\end{aligned}
$$

Since the roles of Γ_{1} and Γ_{2} are interchangeable, for notational convenience we shall suppose Γ_{1} is such that $\bar{\Gamma}_{1} \cap S_{0}=\left\{\left(0, x_{0}\right)\right\}$.

Let now $P\left(t, x, \partial_{x}\right)=\sum_{|x| \leqslant 2} a_{\alpha}(t, x) \partial_{x}^{\alpha}$ be an elliptic differential operator with real coefficients such that: $|x| \leqslant 2$
v) $a_{\alpha} \in C^{\infty} \overline{\left(\Omega_{0, T}\right)}, \forall \propto$;
vi) $\sum_{|\alpha|=2} a_{\alpha}(t, x) \xi^{\alpha}>0, \forall \xi \in \boldsymbol{R}^{n} \backslash\{0\}, \forall(t, x) \in \overline{\Omega_{0, T}}$.

In the sequel, we shall consider the following problem
(P)

$$
\left\{\begin{array}{l}
\left(\partial_{t}-P\left(t, x, \partial_{x}\right)\right) u=f, \quad \text { in } Q \\
E_{k_{i}}\left(t, x, \partial_{x}\right) u=g_{i}, \quad \text { in } \Gamma_{i}, \quad i=1,2 \\
\gamma_{0}^{(0)} u=0, \quad \text { in } \Omega
\end{array}\right.
$$

where $k_{i} \in\{0,1,2\}, i=1,2, E_{0}=\gamma_{0}, E_{1}\left(t, x, \partial_{x}\right)=\gamma_{0}(\partial / \partial n), E_{2}=E_{1}+\alpha E_{0}, \alpha \in \boldsymbol{R} \backslash\{0\}$ and $\partial / \partial n$ is the conormal derivative with respect to $P\left(t, x, \hat{\partial}_{x}\right)$.

2. - Parabolic problems with mixed boundary conditions in a half space.

2.1. Function spaces.

In what follows, we shall put $\omega=\left\{\left(x^{\prime}, 0\right) \in \boldsymbol{R}^{n} ;\left|x^{\prime}\right|=1\right\}$. Let $\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}$ be a C^{∞} partition of unity in $\overline{\boldsymbol{R}_{+}^{n}}$, such that:
(2.1.a) $\operatorname{supp} \varphi_{i} \cap \omega \neq \emptyset$, if $j=2, \ldots, m^{\prime}<m ; \operatorname{supp} \varphi_{j} \cap \omega=\emptyset$, if $j=1$ or $j=m^{\prime}+1, \ldots, m ;$

$$
\begin{equation*}
\varphi_{j} \in C_{\mathbf{0}}^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n}}\right), \quad j=2, \ldots, m \tag{2.1.b}
\end{equation*}
$$

Furthermore, let W be a fixed neighbourhood of ω in $\overline{\boldsymbol{R}_{+}^{n}}$ such that
(2.1.c) $\quad \bar{W} \cap \operatorname{supp} \varphi_{1}=\emptyset$,
and
(2.1.d) if $\operatorname{supp} \varphi_{j} \cap C W \neq \emptyset$ and $\operatorname{supp} \varphi_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$, then $\operatorname{supp} \varphi_{j} \cap \mathbb{C} W \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset, j=2, \ldots, m$.

We shall also need a set of functions $\left\{\psi_{j} ; j=1, \ldots, m\right\}$ having the following properties:
put $U_{j}=\operatorname{supp} \varphi_{j}$ and let V_{j} be a neighbourhood of U_{j}; then
(2.1.e) $\quad \psi_{i} \in C^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n}}\right)$ and it is bounded with all its derivatives, $j=1, \ldots, m$;
(2.1.f) $\quad 0 \leqslant \psi_{i} \leqslant 1, \quad j=1, \ldots, m ;$
(2.1.g) $\quad \psi_{j}(x)=1, \quad \forall x \in U_{j}, \quad j=1, \ldots, m ;$
(2.1.h) $\operatorname{supp} \psi_{j}$ is a compact set if $j=2, \ldots, m$ and $\operatorname{supp} \psi_{j} \subset V_{j}$, if $j=1, \ldots, m$;
(2.1.i) if $U_{i} \cap U_{k}=\emptyset$, then $\varphi_{k} \psi_{j}=0, j, k=1, \ldots, m$;
(2.1.l) $\operatorname{supp} \psi_{1} \subset \complement W$.

We remark that (2.1.g) implies that $\varphi_{i} \psi_{j}=\varphi_{i}$, if $j=1, \ldots, m$.
Definition 2.1.1. - Let $q \in \boldsymbol{C} \backslash\{0\}, s, r, l \in \boldsymbol{R}$. Denote by $H_{s, r, l}^{q}\left(\boldsymbol{R}^{n}\right)$ the space of functions u such that

$$
\|u\|_{s, r, \ell}^{2}=\int_{\boldsymbol{R}^{n}}\left(|q|^{2}+|\xi|^{2}\right)^{s}\left(|q|^{2}+\left|\xi^{r}\right|^{2}\right)^{r}\left(|q|^{2}+\left|\xi^{\prime \prime}\right|^{2}\right)^{\imath}|\tilde{u}(q, \xi)|^{2} d \xi<+\infty
$$

By $H_{s, r, l}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ we shall denote the natural quotient space. A list of the properties of such spaces is given in [6] and [8]. In a similar way, let us denote by $H_{s, l}^{q}\left(\boldsymbol{R}^{n-1}\right)$ the space of functions u such that

$$
\|u\|_{s, l}^{2}=\int_{R^{n-1}}\left(|q|^{2}+\left|\xi^{\prime}\right|^{2}\right)^{s}\left(|q|^{2}+\left|\xi^{\prime \prime}\right|^{2}\right)^{l}\left|\tilde{u}\left(q, \xi^{\prime}\right)\right|^{2} d \xi^{\prime}<+\infty .
$$

Defrnition 2.1.2. - Put $M_{0}^{q}\left(\boldsymbol{R}^{n}\right)=L^{2}\left(\boldsymbol{R}^{n}\right), \forall q \in \boldsymbol{C}$, and, by induction, if

$$
\begin{aligned}
& 2 m<s \leqslant 2 m+2, \quad m \in N_{0}, \quad q \in \boldsymbol{C} \backslash\{0\}, \quad \operatorname{Re} q^{2}<(n / 2)-2 m, \\
& M_{s}^{q}\left(\boldsymbol{R}^{n}\right)=\mathfrak{D}_{M M_{2 m}^{q}\left(\mathbf{R}^{n}\right)}\left((1-A)^{(s-2 m) / 2}\right) \cap \mathfrak{D}_{M_{2 m}^{q}\left(\boldsymbol{R}^{n}\right)}\left(\left(q^{2}+x \cdot \nabla\right)^{(s-2 m) / 2}\right),
\end{aligned}
$$

equipped with the graph norm. Such a definition is well-posed (see [7], Remark 2.5). We shall denote by $((\cdot))_{s}$ the norm in $M_{s}^{q}\left(\boldsymbol{R}^{n}\right)$. Furthermore, we call $M_{s}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ the natural quotient space. Some properties of these spaces are proved, in [7].

In what follows, we shall always suppose that the following hypothesis is satisfied.

Hypothesis 2.1.3. - Whenever the spaces M_{s}^{q} are involved, the complex parameter q is such that $\operatorname{Re} q^{2}<(n / 2)-2 \cdot[s / 2]-2, q \neq 0$.

Definimion 2.1.4. - If $j \in\left\{2, \ldots, m^{\prime}\right\}$, call S_{j} the operator on functions u, induced by a change of coordinates in V_{i}, mapping $V_{j} \cap \overline{\boldsymbol{R}_{+}^{n}}$ into $\overline{\boldsymbol{R}_{+}^{n}}$ and $V_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right)$ into $\boldsymbol{R}^{n-1} \times\{0\}$, leaving the n-th coordinate unchanged and such that, if $\left(y_{1}, \ldots, y_{n}\right)$ are the new coordinates, y_{n-1} is equal to the (signed) distance between the projection onto the x_{n}-plane of the original point and ω. If $j \in\left\{m^{\prime}+1, \ldots, m\right\}$, we put $S_{i}=I$.

Choose $y_{(j)} \in U_{i}$ in such a way that:
(2.1.4.a) if $U_{i} \cap \omega \neq \emptyset$, then $y_{(j)} \in \omega$;
(2.1.4.b) if $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$ and $U_{i} \cap \omega=\emptyset$, then $y_{(j)} \in \boldsymbol{R}^{n-1} \times\{0\}$;
(2.1.4.e) if $U_{j} \nsubseteq W$ and $U_{j} \cap W \neq \emptyset$, then $y_{(j)} \notin W$.

Definition 2.1.5. - Let $q \in \boldsymbol{C}$ and let $s, r, l: \overline{\boldsymbol{R}_{+}^{n}} \rightarrow \boldsymbol{R}$ be continuous functions such that
i) $\left.s\right|_{C W} \equiv s\left(y_{(1)}\right),\left.r\right|_{C W}=0,\left.l\right|_{C W}=0$.

Put $s_{j}=s\left(y_{(j)}\right), r_{j}=r\left(y_{(j)}\right), l_{j}=l\left(y_{(j)}\right), j=1, \ldots, m$. We shall say that a function u belongs to $M_{(s, r, l)}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ iff
ii) $\varphi_{1} u \in M_{s_{1}}^{Q}\left(\boldsymbol{R}_{+}^{n}\right)$;
iii) $\varphi_{j} u \in H_{s_{j}, r_{j}, l_{j}}^{\alpha}\left(\boldsymbol{R}^{n}\right)$, if $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right)=\emptyset, j \geqslant 2$;
iv) $S_{j} \varphi_{j} u \in H_{s_{j}, r_{j}, l_{j}}^{a}\left(\boldsymbol{R}_{\uparrow}^{n \boldsymbol{f}}\right)$, if $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset, j \geqslant 2$.

If $u \in M_{(s, r, l)}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$, we write

$$
((u))_{(s, r, l)}^{2}=\left(\left(\varphi_{1} u\right)\right)_{s_{1}}^{2}+\sum_{j=2}^{m}\left\|S_{j} \varphi_{j} u\right\|_{s_{j}, r_{j}, l_{j}}^{2}
$$

where the norms $\|\cdot\|_{s_{j}, r_{j}, l_{j}}$ are computed in \boldsymbol{R}_{+}^{n} when condition iv) is satisfied.
We note that the so defined spaces are independent of the particular choice of the change of variable operators S_{j}.

In the sequel, we shall always suppose that the functions s, r, l satisfy the condition
v) $\left|s_{j}-s_{k}\right|<1 / 4,\left|r_{j}-r_{k}\right|<1 / 4,\left|l_{j}-l_{k}\right|<1 / 4$,
provided $U_{j} \cap U_{k} \neq \emptyset, j, k=1, \ldots, m$.
Definition 2.1.6. - We put $W^{\prime}=W \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right)$ and we think of W^{\prime} as a subset of \boldsymbol{R}^{n-1}. Let $\sigma, \varrho: \boldsymbol{R}^{n-1} \rightarrow \boldsymbol{R}$ be continuous functions such that $\sigma_{\mathrm{CW}^{\prime}}=\sigma\left(y_{(1)}^{\prime}\right)$,
$\left.\varrho\right|_{\text {CW }},=0$ and put $\sigma_{j}=\sigma\left(y_{(j)}^{\prime}\right), \varrho_{j}=\varrho\left(y_{(j)}^{\prime}\right)$, where $y_{(j)}=\left(y_{(j)}^{\prime}, 0\right)$, if $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$, $j=1, \ldots, m$; if $q \in \boldsymbol{C}$, denote by $M_{(\sigma, \Omega)}^{\alpha}\left(\boldsymbol{R}^{n-1}\right)$ the space of functions v, such that
i) $\varphi_{1}(\cdot, 0) v \in M_{\sigma_{1}}^{\alpha}\left(\boldsymbol{R}^{n-1}\right)$;
ii) $S_{j}^{\prime} \varphi_{j}(\cdot, 0) v \in H_{\sigma_{j}, e_{j}}^{q}\left(\boldsymbol{R}^{n-1}\right)$, if $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset, j \geqslant 2$; where S_{j}^{\prime} is the operator induced by S_{j} on the boundary.

If $v \in M_{(\sigma, Q)}^{q}\left(\boldsymbol{R}^{n-1}\right)$, we write

$$
((v))_{(\sigma, \varrho)}^{2}=\left(\left(\varphi_{1}(\cdot, 0) v\right)\right)_{\sigma_{1}}^{2}+\sum_{\substack{j=2 \\ U_{j} \cap\left(R^{n-1} \times\{0\}\right) \neq \emptyset}}^{m}\left\|S_{j}^{\prime} \varphi_{j}(\cdot, 0) v\right\|_{\sigma_{j}, \varrho_{j}}^{2}
$$

In the sequel, we shall always suppose that the functions σ, ϱ satisfy the condition:
iii) $\left|\sigma_{j}-\sigma_{k}\right|<1 / 4,\left|\varrho_{i}-\varrho_{k}\right|<1 / 4$, provided $U_{j} \cap U_{k} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$,

$$
j, k=1, \ldots, m
$$

Definition 2.1.7. - Let $u \in M_{(s, r, l)}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$; then $\varphi_{j} u$ belongs to the corresponding H-or M-space with fixed indices. Let $k \in N_{0}$ be such that $s_{j}>k+1 / 2$ if $U_{j} \cap$ $\cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$. Then there exists the k-th order trace of $\varphi_{i} u, \gamma_{k}\left(\varphi_{j} u\right)$, on the hyperplane $x_{n}=0$. Put

$$
\gamma_{k} u=\sum_{\substack{j=1 \\ V_{j} \cap\left(\boldsymbol{R}^{n=1} \times\{0\}\right) \neq \emptyset}}^{m} \gamma_{k}\left(\varphi_{j} u\right)
$$

For functions $u \in C^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n}}\right) \cap M_{(s, r, l)}^{a}\left(\boldsymbol{R}_{+}^{n}\right)$, we have $\left(\gamma_{k} u\right)\left(x^{\prime}\right)=\left(\partial_{n}^{k} u\right)\left(x^{\prime}, 0\right)$. By Proposition C.1 in [6] and Theorem 2.14 in [7], we have:

Proposition 2.1.8. - Suppose that the hypotheses of Definition 2.1.7 hold. Then γ_{k} is continuous from $M_{(s, r, l)}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ into $M_{\left(s+r-k-\frac{1}{2}, l\right)}^{\alpha}\left(\boldsymbol{R}^{n-1}\right)$ and its norm is uniformly bounded in q.

In what follows, we shall always write $q^{2}=\gamma+i \mu$; hence, by Hypothesis 2.1.3, γ will satisfy suitable conditions, depending on the order of the spaces involved.

Definition 2.1.9. - Denote by $M_{((s+r+l) / 2 ; s, r, t) ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)$ the space of functions u such that

$$
(u)_{((s+r+l) / 2 ; s, r, l) ; \gamma}^{2}=\int_{\boldsymbol{R}}((\hat{u}(\gamma+i \mu, \cdot)))_{(s, r, l)}^{2} d \mu<+\infty
$$

Definition 2.1.10. - Denote by $M_{((\sigma+\varrho) / 2 ; \sigma, Q) ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n-1}\right)$ the space of functions v such that

$$
(v)_{((\sigma+e) / 2 ; \sigma, \varrho) ; \gamma}^{2}=\int_{\boldsymbol{R}}((\hat{v}(\gamma+i \mu, \cdot)))_{(\sigma, \varrho)}^{2} d \mu<+\infty .
$$

Definition 2.1.11. - Let $s, r, l, \gamma \in \boldsymbol{R}$. Denote by $H_{(s+r+l) / 2 ; s, r, l ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ the space of functions u such that

$$
\|u\|_{(s+r+i) / 2 ; s, r, l ; \gamma}^{2}=\int_{R}\|\hat{u}(\gamma+i \mu, \cdot)\|_{s, r, i}^{2} d \mu<+\infty
$$

The space $H_{(s+r+i) / 2 ; s, r, l ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)$ is denined analogously. Moreover, if J is an interval of the real axis, $H_{(s+r+l) / 2 ; s, r, l ; \gamma}\left(J \times \boldsymbol{R}^{n}\right)$ and $H_{(s+r+l) / 2 ; s, r, l ; \gamma}\left(J \times \boldsymbol{R}_{+}^{n}\right)$ are defined as the natural quotient spaces.

Here and in what follows, we agree to omit the index γ if $\gamma=0$.
Definimion 2.1.12. - Let $\varrho, \sigma, \gamma \in \boldsymbol{R}$. Denote by $H_{(\sigma \div e) / 2 ; \sigma, \varrho ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n-1}\right)$ the space of functions v such that

$$
\|v\|_{(\sigma+e) 2 ; \sigma, \ell ; \gamma}^{2}=\int_{\boldsymbol{R}}\|\hat{v}(\gamma+i \mu, \cdot)\|_{\sigma, \varrho}^{2} d \mu<+\infty .
$$

Moreover, if J is an interval of the real axis, $H_{\langle\sigma+\varrho) / 2 ; \sigma, \varrho ; \gamma}\left(J \times \boldsymbol{R}^{n-1}\right)$ is defined as the natural quotient space.

Proposition 2.1.13. - Let $k \in N_{0}$. If $s>k+1 / 2, \gamma_{k}$ is continuous from $\boldsymbol{H}_{(s+r+l) / 2 ; s, r, l ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)$ onto $H_{\left(s+r+l-k-\frac{1}{2}\right) / 2 ; s+r-k-\frac{1}{2}, l ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n-1}\right)$.

The proof is given in [19], Theorem 6.1 and [13], Theorem 2.2.8.
Definition 2.1.14. - Let $s \geqslant 0$; denote by $M_{s / 2 ; s ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{2}\right)$ the space of functions u such that

$$
(u)_{s / 2 ; s ; \gamma}^{2}=\int_{\boldsymbol{R}}((\hat{u}(\gamma+i \mu, \cdot)))_{s}^{2} d \mu<+\infty .
$$

If J is an interval of the real axis, $M_{s / 2 ; s: \gamma}\left(J \times \boldsymbol{R}_{+}^{n}\right)$ is defined as the natural quotient space.

By Proposition 2.10 in [7], we get
Proposition 2.1.15. - The spaces $M_{s / 2 ; s ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)$ are interpolation spaces.
Defintition 2.1.16. - Let $\sigma \geqslant 0$; denote by $M_{\sigma / 2: \sigma: \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n-1}\right)$ the space of functions v such that

$$
(v)_{\sigma / 2 ; \sigma ; \gamma}^{2}=\int_{\boldsymbol{R}}((\hat{v}(\gamma+i \mu, \cdot)))_{\sigma}^{2} d \mu<+\infty .
$$

If J is an interval of the real axis, $M_{\sigma / 2 ; a ; \gamma}\left(J \times \boldsymbol{R}^{n-1}\right)$ is defined as the natural quotient space.

Proposition 2.1.17. - Let $k \in N_{0}, s>k+1 / 2$; then γ_{k} is continuous from

$$
M_{s / 2: s ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right) \text { onto } M_{\left(s-k-\frac{1}{2}\right) / 2 ; s-k-\frac{1}{2} ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n-1}\right)
$$

The proof is straightforward once the corresponding theorems for "elliptic» M-spaces are known ([7], Theorem 2.14).

Remark 2.1.18. - Let $u \in M_{((s+r+l) / 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)$; then

$$
(u)_{((s+r+l) / 2 ; s, r, l) ; \gamma}^{2}=\left(\varphi_{1} u\right)_{s_{1} / 2: s_{1}: \gamma}^{2}+\sum_{j=2}^{m}\left\|S_{j} \varphi_{j} u\right\|_{\left(s_{j}+r_{j}+l_{j}\right) / 2 ; s_{j}, r_{j}, l_{j} ; \gamma}^{2}
$$

An analogous statement holds for the spaces on the boundary.
Definition 2.1.19. - Let $u \in M_{((s+r+i) / 2 ; s, r, l) ; \nu}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)$; then $\varphi_{j} u$ belongs to the corresponding M - or H-space with fixed indices. Let $k \in N_{0}, s_{j}>k+1 / 2$, provided $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$. So, there exists the k-th order trace of $\varphi_{j} u$ on the hyperplane $x_{n}=0$. Put

$$
\gamma_{k} u=\sum_{\substack{j=1 \\ U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset}}^{m} \gamma_{k}\left(\varphi_{j} u\right) .
$$

We note that, if $u \in C_{0}^{\infty}\left(\boldsymbol{R} \times \overline{\boldsymbol{R}_{+}^{n}}\right),\left(\gamma_{k}^{\prime} u\right)\left(t, x^{\prime}\right)=\left(\partial_{n}^{k} u\right)\left(t, x^{\prime}, 0\right)$.
By Propositions 2.1.13 and 2.1.17, γ_{k} is bounded from

$$
M_{((s+r+b) / 2 ; z, r, b) ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)
$$

to

$$
M_{\left(\left(s+r+l-k-\frac{1}{2}\right) / 2 ; s+r-k-\frac{1}{2}, l\right) ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n-1}\right)
$$

In $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}$ we define the following change of variables ([14]):

$$
T:(t, x) \mapsto(\tau, \omega), \quad\left\{\begin{array}{l}
\tau=-\frac{1}{2} \log t \\
\omega=t^{-1 / 2} \mathscr{W}
\end{array}\right.
$$

It is obvious that T is a C^{∞}-diffeomorphism onto $\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}$. Let $u \in C^{\infty}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{m}\right)$ and put $v=u \circ T^{-1}$; then: we have:

$$
\begin{aligned}
& \partial_{x}^{\beta} \partial_{t}^{p} u=\exp [(2 p+|\beta|) \tau] \sum_{j=0}^{p} \sum_{|\alpha| \leqslant j} \sum_{\gamma \leqslant \beta} C_{\alpha, j j} \omega^{\alpha-\gamma} \partial_{\tau}^{j-|\alpha|} \partial_{\omega}^{\alpha+\beta-\gamma} v \\
& \partial_{\omega}^{\beta} \partial_{\tau}^{p} v=\sum_{j=0}^{p} \sum_{|\alpha| \leqslant j} \sum_{\gamma \leqslant \beta} d_{\alpha \gamma^{j}} t^{j-|\alpha|+|\beta| / 2} x^{\alpha-\gamma} \partial_{t}^{j-|\alpha|} \partial_{x}^{\alpha+\beta-\gamma} u
\end{aligned}
$$

where $O_{\alpha \gamma j}, d_{\alpha \gamma j}$ are suitable constants, equal to zero if $\gamma \leqslant \alpha$.

Definition 2.1.20. - Let $s, r, l, \gamma \in \boldsymbol{R}$. We denote by $\mathscr{H}_{(s+r+l) / 2 ; s, r, l ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}^{n}\right)$ the space of functions u such that $u \circ T^{-1}=v \in H_{(s+r+b) / 2 ; s, r, l ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ equipped with the norm

$$
\|u\|_{(s+\tau+i) / 2 ; s, \tau, l ; \gamma}^{*}=\|v\|_{(s+r+i) / 2 ; s, r, l ; \gamma} .
$$

In an analogous way, «italic» spaces in $\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}$ and in $\boldsymbol{R}_{+} \times \boldsymbol{R}^{n-1}$ are defined.
Definition 2.1.21. - Let $s \geqslant 0$; denote by $\mathcal{M}_{s / 2 ; s ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}^{n}\right)$ the space of functions u such that $u \circ T^{-1}=v \in M_{s / 2 ; s ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ equipped with the norm

$$
(u)_{s / 2 ; s ; \gamma}^{*}=(v)_{s / 2 ; s ; \gamma} .
$$

In the same way spaces in \boldsymbol{R}_{+}^{n} are defined. If J is an interval of the real positive axis, $\mathcal{H}_{s / 2 ; s ; \gamma}\left(J \times \boldsymbol{R}^{n}\right)$ and $\mathcal{M}_{s / 2 ; s ; \gamma}\left(\boldsymbol{J} \times \boldsymbol{R}_{+}^{n}\right)$ are defined as natural quotient spaces.

Proposition 2.1.22. - Let $k \in N_{0}, s>k+1 / 2$. Then γ_{k} is continuous from $\mathcal{M}_{s / 2 ; s ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)$ onto $\mathcal{M}_{\left(s-k-\frac{5}{2}\right) / 2 ; s-k-\frac{1}{2} ; \gamma+l_{c}}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}^{n-1}\right)$.

The proof is a straightforward consequence of Proposition 2.1.17.
Definition 2.1.23. - Let $\left.\left.s \in N_{0}, T \in\right] 0,+\infty\right], X$ an open subset of \boldsymbol{R}^{n}; denote by $K_{\gamma}^{s}\left(X_{0, x}\right)$ the space of functions u such that

$$
\begin{aligned}
{[u ; T]_{s ; \gamma}^{2}=\int_{X_{0, T}}\left(\frac{t}{1+t}\right)^{\gamma}|u(t, x)|^{2} d t d x } & +\int_{X_{0, T}}\left(\frac{t}{1+t}\right)^{\gamma+2 s}\left|\partial_{i}^{s} u(t, x)\right|^{2} d t d x+ \\
& +\sum_{i=1}^{n} \int_{X_{0, T}}\left(\frac{t}{1+t}\right)^{\gamma+2 s}\left|\partial_{i}^{2_{s}} u(t, x)\right|^{2} d t d x<+\infty .
\end{aligned}
$$

The spaces K_{γ}^{s}, where s is not an integer, are defined by interpolation.
Further results about these spaces can be found in [9].
Proposition 2.1.24. - Let $s \geqslant 0, t_{0}>0, \gamma^{\prime}=\gamma-n / 2-1$. Then

$$
K_{\gamma^{\prime}}^{s / 2}\left(\left(\boldsymbol{R}^{n}\right)_{0, t_{0}}\right)=\mathcal{H}_{s / 2 ; s ; \gamma}\left(\left(\boldsymbol{R}^{n}\right)_{0, t_{0}}\right),
$$

algebraically and topologically.
An analogous assertion holds true for the half space.
Proof. - We note that the spaces $\mathcal{M}_{s / 2 ; s ; \gamma}\left(\left(\boldsymbol{R}^{n}\right)_{0, t_{0}}\right)$ are interpolation spaces. This follows by standard techniques from Proposition 2.1.15. Hence we need only to prove the assertion in the case $s=2 m, m \in N_{0}$. At first, we prove that

$$
(w)_{m ; 2 m ; \gamma}=\left(\sum_{k=1}^{m} \sum_{k+l=k_{\boldsymbol{R}^{n}}} \int_{\mathbf{R}_{+}}\left(\int_{\boldsymbol{R}^{2}} t^{\gamma+k-n / 2-1}\left|\partial_{t}^{n}(1-\Delta)^{l} w\right|^{2} d t\right) d x+\int_{\boldsymbol{R}^{n}}\left(\int_{\mathbf{R}_{+}} t^{\gamma-n / 2-1}|w|^{2} d t\right) d x\right)^{\frac{1}{2}}
$$

is a norm equivalent to $(\cdot)_{m ; 2 m ; \gamma}^{*}$ in $\mathscr{H}_{m ; 2 m ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}^{n}\right)$. By Lemma 2.3 in [7], putting $w \circ T^{-1}=g, C_{1}=q^{2}+x \cdot \nabla_{x}, C_{2}=1-\Delta_{x}, \breve{C}_{1}=\partial_{\tau}+\omega \cdot \nabla_{\omega}, \breve{C}_{2}=1-\Delta_{\omega}$, we have

$$
\begin{aligned}
& (w)_{m ; 2 m ; \gamma}^{* 2}=\left(w \circ T^{-1}\right)_{m ; 2 m ; \gamma}^{2}=\int_{\boldsymbol{R}}((\hat{g}(\gamma+i \sigma, \cdot)))_{2 m}^{2} d \sigma= \\
& =\sum_{k=1}^{m} c_{k, m} \sum_{i_{1}, \ldots, i_{k}=1}^{2} \int_{\boldsymbol{R}}\left\|C_{i_{1}} \ldots C_{i_{k}} \hat{g}(\gamma+i \sigma, \cdot)\right\|_{0}^{2} d \sigma+\int_{\boldsymbol{R}}\|\hat{g}(\gamma+i \sigma, \cdot)\|_{0}^{2} d \sigma= \\
& =2 \pi\left(\sum_{k=1}^{n m} c_{k, m} \sum_{i_{1}, \ldots, i_{k}=1}^{2} \int_{\boldsymbol{R}^{n}}\left(\int_{\boldsymbol{R}} e^{-2 \gamma \tau}\left|\breve{C}_{i_{1}} \ldots \breve{C}_{i_{k}} g\right|^{2} d \tau\right) d \omega+\right. \\
& \left.\quad+\int_{\boldsymbol{R}^{n}}\left(\int_{\boldsymbol{R}} e^{-2 \gamma \tau}|g|^{2} d \tau\right) d \omega\right) \leqslant \eta_{1}(w)_{m ; 2 m ; \gamma}^{2}
\end{aligned}
$$

The converse inequality can be proved in a similar way.
Let now p be a bounded continuation operator from $K_{\gamma^{\prime}}^{m^{\prime}}\left(\left(\boldsymbol{R}^{n}\right)_{0, t_{0}}\right)$ into $K_{\gamma^{\prime}}^{m}\left(\boldsymbol{R}_{+} \times\right.$ $\left.\times \boldsymbol{R}^{n}\right)$, such that $\operatorname{supp}(p u) \subset \overline{\left(\boldsymbol{R}^{n}\right)_{0,2 t_{0}}}, \forall u \in K_{\gamma^{\prime}}^{m}\left(\left(\boldsymbol{R}^{n}\right)_{0, t_{0}}\right)$. Then, if $u \in K_{\gamma^{\prime}}^{m}\left(\left(\boldsymbol{R}^{n}\right)_{0, t_{0}}\right)$, we have

$$
(p u)_{m ; 2 m ; \gamma}^{*} \leqslant \eta_{2}(p u)_{m ; 2 m ; \gamma} \leqslant \eta_{3}[p u ;+\infty]_{m ; \gamma^{\prime}} \leqslant \eta_{4}\left[u ; t_{0}\right]_{m ; \gamma^{\prime}}
$$

hence, $u \in \mathcal{M}_{m ; 2 m ; \gamma}\left(\left(\boldsymbol{R}^{n}\right)_{0, t_{0}}\right)$.
The converse inequality, as well as the assertion about the half space, can be proved in a similar way.

Definition 2.1.25. - We denote by $\mathbb{M}_{((s+r+l) / 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)$ the space of functions u such that $u \circ T^{-1}=v \in M_{((s+r+l) / 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)$ and put

$$
(u)_{((s+r+l) / 2 ; s, r, l) ; \gamma}^{*}=(v)_{((s+r+l) / 2 ; s, r, l) ; \gamma} .
$$

If J is an interval of the positive real axis, $\mathcal{K}_{((\beta+r+l) / 2 ; s, r, l) ; \gamma}\left(J \times \boldsymbol{R}_{+}^{n}\right)$ is defined as the natural quotient space.

It is straightforward to prove the following result.
Proposition 2.1.26. - Let $\beta>0$. The functions in $\mathcal{H}_{((s+r+i) / 2 ; s, r, l) ; \gamma}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \beta}\right)$ can be continued to functions in $\mathcal{H}_{((s+r+l) ; 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)$ so that the continuation operator has its norm uniformly bounded with respect to β.

Definition 2.1.27. - We denote by $\mathcal{M}_{((\sigma+e) / 2 ; \sigma, e) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}^{n-1}\right)$ the space of functions u such that $u \circ T^{-1}=v \in M_{((\sigma+\varrho) / 2 ; \sigma, \varrho) ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n-1}\right)$ and put

$$
(u)_{((\sigma+\varrho) / 2 ; \sigma, Q) ; \gamma}^{*}=(v)_{((\sigma+Q) / 2 ; \sigma, Q) ; \gamma} .
$$

If J is an interval of the positive real axis, $\mathcal{M}_{((\sigma+\varrho) / 2 ; \sigma, \varrho) ; \gamma}\left(J \times \boldsymbol{R}^{n-1}\right)$ is defined as the natural quotient space.

Proposition 2.1.28. - i) Let $s_{1} \geqslant 1$; then the map $u \mapsto \partial_{x_{j}} u$ is continuous from

$$
\mathcal{H}_{((s+r+i) / 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right) \text { to } \mathcal{H}_{((s+r+l-1) / 2 ; s-1, r, l) ; \gamma+1}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right), j=1, \ldots, n .
$$

ii) Let $s_{1} \geqslant 2$; then the map $u \mapsto \partial_{t} u$ is continuous from

$$
\mathcal{M}_{((s+r+l) / 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right) \text { to } \mathcal{H}_{((s+r+l-2) / 2 ; s-2, r, l) ; \gamma+2}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)
$$

Proof. - Let us prove i). At first, we note that the continuity of spatial derivatives in spaces $M_{(s, r, l)}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ is proved quite analogously to Proposition 2.1.17 in [8]. Now

$$
\begin{aligned}
\left\langle\partial_{x_{j}} u\right)_{((s+r+l) / 2 ; s, r, l) ; \gamma+1}^{* 2} & =\left(\left(\partial_{x_{j}} u\right) \circ T^{-1}\right)_{((s+\tau+l) / 2 ; s, r, l) ; \gamma+1}^{2}= \\
& =\left(\exp (\tau) \partial_{\omega_{j}}\left(u \circ T^{-1}\right)\right)_{((s+r+l) / 2 ; s, r, l) ; \gamma+1}^{2}= \\
& \left.=\int_{\boldsymbol{R}}\left(\left(\partial_{\omega_{s}} \widehat{\exp (\tau)\left(u \circ T^{-1}\right)}\right)(\gamma+1+i \sigma, \cdot)\right)\right)_{(s, r, l)}^{2} d \sigma \leqslant \\
& \leqslant C_{1} \int_{\boldsymbol{R}}\left(\left(\partial_{\omega_{j}}\left(\widehat{\left(u \circ T^{-1}\right.}\right)(\gamma+i \sigma, \cdot)\right)_{(s, r, l)}^{2} d \sigma \leqslant\right. \\
& \leqslant C_{2} \int_{\boldsymbol{R}}\left(\left(\left(u \circ T^{-1}\right)(\gamma+i \sigma, \cdot)\right)\right)_{(s+1, r, l)}^{2} d \sigma=C_{2}(u)_{((s+r+l+1) / 2 ; s+1, r, l) ; \gamma}^{* 2}
\end{aligned}
$$

So, i) is completely proved.
Assertion ii) is proved in a similar way. Indeed,

$$
\begin{aligned}
&\left(\partial_{i} u\right)_{((s+r+l) / 2 ; s, r, l) ; \gamma+2}^{* 2}=\frac{1}{4}\left(\exp (2 \tau)\left(\partial_{\tau}+\omega \cdot \nabla_{\omega}\right)\left(u \circ T^{-1}\right)\right)_{((s+r+i) / 2 ; s, r, v) ; \gamma+2}^{2} \leqslant \\
&\left.\leqslant C_{\boldsymbol{R}} \int\left(\left(\gamma+i \sigma+\omega \cdot \nabla_{\omega}\right)\left(u \circ T^{-1}\right)(\gamma+i \sigma, \cdot)\right)\right)_{(s, r, b)}^{2} d \sigma
\end{aligned}
$$

by the continuity of $q^{2}+\omega \cdot \nabla_{\omega}$ in spaces with fixed indices (see [6], Appendix C and [7], Proposition 2.12), the assertion follows.

Proposition 2.1.29. - Let $\alpha \in S\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$; then there exist $C_{0}>0, O_{\alpha}>0$, such that, $\forall \delta>0, \forall u \in \mathcal{M}_{(s / 2 ; s,-b, b) ; \gamma}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta}\right)$,

$$
(\alpha u)_{(s / 2 ; s,-l, l) ; \gamma}^{*} \leqslant C_{0}\left(\sup _{\left\{\boldsymbol{R}_{+}^{*}\right), \delta}|\alpha|+C_{\alpha} \delta^{\frac{1}{2}}\right)(u)_{(z / 2 ; s,-l, l) ; \gamma}^{*}
$$

Proof. - By Proposition 2.1.24, we have:

$$
\begin{aligned}
(\alpha u)_{(s / 2 ; s,-l, l) ; \gamma}^{*} \leqslant C_{1}\left(\left[\alpha\left(\varphi_{1} \circ T\right) u\right]_{s_{1} / 2 ; \gamma-n / 2-1}+\right. & \\
& \left.+\sum_{j=2}^{m}\left\|S_{j}\left(\varphi_{j}\left(\alpha \circ T^{-1}\right)\left(u \circ T^{-1}\right)\right)\right\|_{s_{j} / 2 ; s_{j},-l_{j}, l_{j} ; \gamma}\right)=C_{1} \sum_{j=1}^{m} I_{j}
\end{aligned}
$$

In order to estimate I_{1}, we first prove the following assertion: there exist O_{0}^{\prime}, $O_{\alpha}^{\prime}>0$ such that
$(2.1 .29 . a) \quad \forall v \in K_{\gamma-n / 2-1}^{c}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta}\right)$

$$
[\alpha v]_{\sigma / 2 ; \gamma-n / 2-1} \leqslant C_{0}^{\prime}\left(\sup _{\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta}}|\alpha|+C_{\alpha}^{\prime} \delta^{\frac{1}{2}}\right)[v]_{\sigma / 2 ; \gamma-n / 2-1}
$$

By interpolation, we may suppose $\sigma=2 m, m \in N_{0}$. Then, we have, by Remark 2.10 and Proposition 2.12 in [9],

$$
\begin{aligned}
& {[\alpha v]_{m ; \gamma-n / 2-1}^{2} \leqslant O_{2}\left(\int _ { (\boldsymbol { R } _ { + } ^ { n }) _ { 0 , \delta } } \left(t^{\gamma-n / 2-1+2 m}\left|\partial_{i}^{m}(\alpha v)(t, x)\right|^{2}+\right.\right.} \\
& \left.\left.\quad+t^{\gamma-n / 2-1+2 m} \sum_{i=1}^{n}\left|\partial_{i}^{2 m}(\alpha v)(t, x)\right|^{2}+t^{\gamma-n / 2-1}|(\alpha v)(t, x)|^{2}\right) d t d x\right) \leqslant \\
& \leqslant \\
& \leqslant C_{3}\left(\int _ { (\boldsymbol { R } _ { + } ^ { n }) _ { 0 , \delta } } \left(t^{\gamma-n / 2-1+2 m} \sum_{l=0}^{m}\left|\left(\partial_{t}^{l} \alpha\right)\left(\partial_{t}^{m-l} v\right)(t, x)\right|^{2}+\right.\right. \\
& \left.\left.+t^{\gamma-n / 2-1+2 m} \sum_{i=1}^{n} \sum_{\lambda=0}^{2 m}\left|\left(\partial_{i}^{\lambda} \alpha\right)\left(\partial_{i}^{2, n-\lambda} v\right)(t, x)\right|^{2}+t^{\gamma-n / 2-1}|(\alpha v)(t, x)|^{2}\right) d t d x\right) \leqslant \\
& \leqslant
\end{aligned}
$$

So (2.1.29.a) is proved.
Then, by Proposition 2.1.24,

$$
I_{1} \leqslant O_{1}^{\prime}\left(\sup _{\left(\boldsymbol{R}_{+}^{n}\right)_{0}, \delta}|\alpha|+\sigma_{\alpha}^{\prime} \delta^{\frac{1}{2}}\right)(u)_{(s / 2 ; s,-l, l) ; \gamma}^{*}
$$

In order to estimate $I_{j}, j>1$, we need only to prove the following assertion:
(2.1.29.b) there exist $C_{0}^{\prime \prime}>0, C_{\alpha}^{\prime \prime}>0$ such that,

$$
\begin{aligned}
& \forall v \in H_{\varrho / 2 ; \varrho,-\lambda, \lambda ; \gamma}(]-\frac{1}{2} \log \delta, \quad+\infty\left[\times \boldsymbol{R}^{n}\right) \\
& \left\|S_{j}\left(\varphi_{j}\left(\alpha \circ T^{-1}\right) v\right)\right\|_{\varrho / 2 ; \varrho,-\lambda, \lambda ; \gamma} \leqslant C_{0}^{\prime \prime}\left(\sup _{\left(\boldsymbol{R}^{n}\right)_{\rho, \delta}}|\alpha|+C_{\alpha}^{\prime \prime} \delta^{\frac{1}{d}}\right)\left\|\varphi_{j} v\right\|_{\varrho / 2 ; \varrho,-\lambda, \lambda ; \gamma}
\end{aligned}
$$

First, we note that, if $v^{\prime} \in H_{\ell / 2 ; \rho,-\lambda, \lambda ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right),\left\|v^{\prime} ; H_{\ell / 2: \rho,-\lambda, \lambda ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right\|^{2}$ is equivalent to

$$
\int_{R^{n+1}}\left(|\gamma|+|\sigma|+|\xi|^{2}\right)^{\varrho}\left(|\gamma|+|\sigma|+\left|\xi^{\prime}\right|^{2}\right)^{-\lambda}\left(|\gamma|+|\sigma|+\left|\xi^{\prime \prime}\right|^{2}\right)^{\lambda}\left|\widetilde{w^{\prime}}(\sigma, \xi)\right|^{2} d \sigma d \xi
$$

where $w^{\prime}(t, x)=\exp (-\gamma t) \cdot v^{\prime}(t, x)$.
Put (see also the proof of Proposition 2.2.8 in [8])

$$
\begin{aligned}
& \hat{Q}_{1}^{+}=\sigma+i|\gamma|+i \mid \xi^{2}, \\
& \hat{Q}_{2}^{+}=\sigma+i|\gamma|+i\left|\xi^{\prime}\right|^{2}, \\
& \hat{Q}_{3}^{+}=\sigma+i|\gamma|+i\left|\xi^{\prime \prime}\right|^{2} .
\end{aligned}
$$

Call E^{+}the pseudo-differential operator whose symbol is

$$
\hat{E}^{+}=\left(\hat{Q}_{1}^{+}\right)^{\theta}\left(\hat{Q}_{2}^{+}\right)^{-\lambda}\left(\hat{Q}_{3}^{+}\right)^{\lambda} .
$$

We remark that $\hat{\mathbb{E}}^{+}$is analytic in σ, if $\operatorname{Im} \sigma>0$.
As in the proof of Lemma 4.3 in [18], we have:

$$
\left\|v^{\prime} ; H_{Q / 2 ; e,-\lambda, \lambda_{i} ; \gamma}(]-\frac{1}{2} \log \delta,+\infty\left[\times \boldsymbol{R}^{n}\right)\right\|^{2}=\int_{-\frac{1}{1} \log \delta}^{+\infty}\left(\int_{R^{n}}\left|E^{+}\left(l w^{\prime}\right)\right|^{2} d x\right) d t,
$$

where $l w^{\prime}=e^{-\gamma t} t_{0} v^{\prime}$ and $l_{0} v^{\prime}$ is an arbitrary continuation of v^{\prime} in $H_{e^{\prime 2 ;}, \rho,-\lambda, \lambda_{i} ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$.
As in the proof of Proposition 2.2 .8 in [8], if $\psi(t, x)=S_{i}\left(\psi_{j}(t, x)(\alpha(t, x)\right.$ -$\left.-\alpha(0,0)) \circ T^{-1}\right)$, we have:

$$
\begin{aligned}
\hat{E}^{+}(\tau, \xi)(\tilde{\psi} * \widetilde{l w})(\tau, \xi)=\left(\tilde{\psi} *\left(\hat{E}^{+} \widetilde{l w}\right)\right)(\tau, \xi)+ & \\
& \quad+\int_{R^{n+1}}\left(\int_{0}^{1} \nabla \hat{E}^{+}(\theta+\mu(\tau-\theta), \eta+\mu(\xi-\eta))\right. \\
& \cdot(\tau-\theta, \xi-\eta) \tilde{\psi}(\tau-\theta, \xi-\eta) \widetilde{l w}(\tau, \xi) d \mu) d \theta d \eta= \\
& =\left(\tilde{\psi} *\left(\hat{E}^{+} \widetilde{\imath w}\right)\right)(\tau, \xi)+(B \widetilde{l w})(\tau, \xi) .
\end{aligned}
$$

Then, (2.1.29.b) follows by arguments analogous to those in Lemma 1.2 in [10] and Proposition 2.2.8 in [8]. Now, by (2.1.29.b), $I_{j}(j>1)$ can be estimated analogously to I_{1}. So, the assertion is completely proved.

In an analogous way, we can prove the following
Pboposition 2.1.30. - Suppose $s+r+l \geqslant 0$; then, $\forall \varepsilon>0$, there exists $\delta>0$, such that

$$
(u)_{((s+r+l) / 2 ; s, r, l) ; \gamma+1}^{*} \leqslant \varepsilon(u)_{((s+r+l) / 2 ; s, r, l) ; \gamma}^{*}
$$

for every $\delta \leqslant \bar{\delta}$; here the norms are computed in $\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta}$.
Definition 2.1.31. - Let $u \in \mathcal{H}_{((s+r+l) / 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)$; then, if $v=u \circ T^{-1}$, $\left(\varphi_{j} v\right) \circ T$ belongs to a corresponding $\mathfrak{J e}$. or \mathcal{M}-space with fixed indices. Let $k \in N_{0}$, $s_{j}>k+\frac{1}{2}$ if $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$; then there exists the k-th order trace of $\left(\varphi_{j} v\right) \circ T$ on the hyperplane $x_{n}=0$. Set

$$
\gamma_{k} u=\sum_{\substack{j=1 \\ U_{j} \cap\left(\boldsymbol{R}^{j-1} \times\{0\}\right) \neq \emptyset}}^{m} \gamma_{k}\left(\left(\varphi_{j} v\right) \circ T\right) .
$$

We note that, if u is a smooth function, $\left(\gamma_{k} u\right)\left(t, x^{\prime}\right)=\left(\partial_{n}^{k} u\right)\left(t, x^{\prime}, 0\right)$.
Proposition 2.1.32. - Let $k \in N_{0}, s_{j}>k+\frac{1}{2}$, if $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$; then γ_{k} is a bounded operator from $\mathbb{M}_{((s+r+l) / 2 ; s, r, t) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)$ into

$$
\mathcal{M}_{\left(\left(s+r+l-k-\frac{1}{2}\right) / 2 ; 3+r-k-\frac{1}{2}, l\right) ; \gamma+k}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}^{n-1}\right) .
$$

Proof. - We have

$$
\gamma_{k}\left(\left(\varphi_{j} v\right) \circ T\right)=\gamma_{0}\left(\partial_{x_{n}}^{k}\left(\left(\varphi_{j} v\right) \circ T\right)\right)=t^{-k / 2} \gamma_{0}\left(\left(\partial_{\omega_{n}}^{k}\left(\varphi_{j} v\right)\right) \circ T\right)
$$

and so, by Propositions 2.1.13 and 2.1.22,

$$
\begin{align*}
& \left(\gamma_{k} u\right)_{\left(\left(s+r+l-k-\frac{1}{2}\right) / 2 ; s+r-k-\frac{1}{2}, l\right) ; \gamma+k}^{* 2} \leqslant \tag{2.1.32.a}\\
& \quad \leqslant C_{1} \sum_{j=1}^{m}\left(\sum_{i=2}^{m}\left\|S_{i}^{\prime}\left(\left(\gamma_{0} \varphi_{i}\right) e^{k \tau} \gamma_{k}\left(\varphi_{j} v\right)\right)\right\|_{\left(s_{i} \div r_{i}+l_{i}-k-\frac{1}{2}\right) / 2 ; s_{i}+r_{i}-k-\frac{1}{2}, l_{i} ; \gamma+k}^{2}+\right. \\
& \left.\quad+\left(\left(\gamma_{0} \varphi_{1}\right) e^{k \tau} \gamma_{k}\left(\varphi_{j} v\right)\right)_{\left(s_{1}-l_{s-\frac{1}{2}}^{2}\right) / 2 ; s_{1}-k-\frac{1}{2} ; \gamma+k}^{2}\right) .
\end{align*}
$$

Now, we have:
$\left\|S_{i}^{\prime}\left(\left(\gamma_{0} \varphi_{i}\right) e^{k \tau} \gamma_{k}\left(\varphi_{j} v\right)\right)\right\|_{\left(s_{i}+\gamma_{i}+l_{i}-k-\frac{1}{2}\right) / 2 ; s_{i}+n-k-\frac{1}{2}, l_{i} ; \gamma+k}^{2}=$

$$
=\int_{\boldsymbol{R}} \|\left(\left\|_{\left(\mathcal{S}_{i}^{\prime}\left(\left(\gamma_{0} \varphi_{j}\right) e^{k \tau} \gamma_{k}\left(\varphi_{j} v\right)\right)\right.}^{)}(\gamma+k+i \sigma, \cdot)\right\|_{s_{i}+r_{i-k-1}, l_{i}}^{2} d \sigma \leqslant\right.
$$

$$
\begin{aligned}
& \left.\leqslant C_{2} \int_{\boldsymbol{R}} \| \widehat{\left(S_{i}^{\prime}\left(\left(\gamma_{0} \varphi_{i}\right) \gamma_{k}\left(\varphi_{j} v\right)\right)\right.}\right)(\gamma+i \sigma, \cdot) \|_{s_{i}+r_{i}-k-\frac{1}{2}, l_{i}}^{2} d \sigma \leqslant \\
& \leqslant C_{3} \int_{\boldsymbol{R}}\| \| S_{i}\left(\varphi_{i} \partial_{n}^{k}\left(\widehat{\varphi_{j}} v\right)(\gamma+i \sigma, \cdot)\right) \|_{s_{i}-k, k_{2}, l_{i}}^{2} d \sigma \leqslant \\
& \leqslant C_{3}\left(\partial_{n}^{k}\left(\varphi_{j} v\right)\right)_{((s-k+r+l) / 2 ; s-k, r, l) ; \gamma}^{2} \leqslant C_{4}(u)_{((s+r+l) / 2 ; s, r, l) ; \gamma}^{* 2}
\end{aligned}
$$

The last inequality is obtained by the continuity of the spatial derivatives in the space $M_{((s+r+l) / 2 ; s, r, l) ; \gamma}$, which is almost obvious.

The other terms in (2.1.32.a) can be handled analogously.
Remark 2.1.33. - Let $k \in N_{0}, \gamma-n / 2-1+2 s_{1} \leqslant 0, s_{1}>2 k+1$, and let $u \in$ $\in C^{\infty}\left(\overline{\boldsymbol{R}_{+}} \times \overline{\boldsymbol{R}_{+}^{n}}\right) \cap \mathcal{H}_{((s+r+l) / 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)$. Then, if we put $\left(\gamma_{0}^{(k)} u\right)(x)=\left(\partial_{t}^{k} u\right)(0, x)$, we have $\gamma_{0}^{(k)} u=0$. Indeed, $u=\sum_{j=1}^{m}\left(\varphi_{j} \circ T\right) u$; now, if $x \in \boldsymbol{R}^{n} \backslash\{0\}$, then $|\omega|=t^{-\frac{1}{2}}|x| \rightarrow$ $\xrightarrow[t \rightarrow 0+]{ }+\infty$, so that $\left(\varphi_{i} \circ T\right)(t, x)=0$ for $j=2, \ldots, m$, provided t is small enough. On the other hand, $\left(\varphi_{1} \circ T\right) u \in K_{\gamma-n / 2-1}^{s_{1}}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)$, so that, by Proposition 2.16 in [9], $\partial_{t}^{k}\left(\left(\varphi_{1} \circ T\right) u\right)(0, x)=0$. This justifies to set

$$
\gamma_{0}^{(k)} u=0
$$

$\forall u \in \mathcal{M}_{((s+r \div l) / 2 ; s, r, l) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)$, provided $\gamma-n / 2-1+2 s_{1} \leqslant 0, s_{1}>2 k+1$.

2.2. Elliptic estimates depending on a parameter.

In this section we shall recall some known results.
In what follows, $L(\partial)=\sum_{i, j=1}^{n} c_{i j} \partial_{i} \partial_{j}$ will denote a differential operator with constant real coefficients such that the matrix $\mathcal{C}=\left(c_{i j}\right)_{i, j=1, \ldots,{ }_{i n}}$ is positive definite. Furthermore, we set

$$
\begin{aligned}
& E_{1}=\gamma_{0}\left(\sum_{j=1}^{n} c_{j n} \partial_{j}\right) \\
& E_{0}=\gamma_{0}
\end{aligned}
$$

THEORFM ${ }^{2} 2.2 .1$ ([7], Theorems 4.1, 4.2). - Let $s \geqslant 2$; if $\operatorname{Re} q^{2}<q_{0}$ (q_{0} suitable) the operator $\left(L(\hat{\partial})+x \cdot \nabla+q^{2}\right) \oplus E_{k}$ is an isomorphism from $M_{s}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ onto $M_{s-2}^{q}\left(\boldsymbol{R}_{+}^{n}\right) \times$ $\times M_{s-k-\frac{1}{2}}^{q}\left(\boldsymbol{R}^{n-1}\right), k=0,1$; furthermore, it has, together with its inverse, a norm uniformly bounded in q.

Theorem 2.2.2 ([12]; see also [8]). Let $s \geqslant 2, l \geqslant 0$; if Re $q^{2}<0,|q| \geqslant q_{0}\left(q_{0}\right.$ suitable), $\left(k_{1}+k_{2}\right) / 2<s-l<\left(k_{1}+k_{2}\right) / 2+1$,

$$
j \in H_{s-2,-l, l}^{\dot{Q}}\left(\boldsymbol{R}_{+}^{n}\right), \quad g_{1} \in H_{s-l-k_{1}-\frac{1}{2}, l}^{\alpha}\left(\boldsymbol{R}_{+}^{n-1}\right), \quad g_{2} \in H_{s-l-k_{2}-\frac{1}{2}, l}^{q}\left(\boldsymbol{R}_{-}^{n-1}\right)
$$

then there exists a unique solution $u \in H_{s,-l, l}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ of the problem
$(2.2 .2 . a)_{\left(k_{1}, k_{\mathrm{z}}\right)} \quad \begin{cases}\left(L(\partial)+q^{2}\right) u=f, & \text { in } \boldsymbol{R}_{+}^{n}, \\ E_{k_{1}} u=g_{1}, & \text { in } \boldsymbol{R}_{+}^{n-1}, \\ E_{k_{2}} u=g_{2}, & \text { in } \boldsymbol{R}_{-}^{n-1},\end{cases}$
where $k_{i} \in\{0,1\}, i=1,2$.
Furthermore, the following a priori estimate holds

$$
\|u\|_{s,-l, l} \leqslant O\left(\|f\|_{s-2,-l, l}+\left\|g_{1}\right\|_{s-l-k_{1}-\frac{1}{2}, l}+\left\|g_{2}\right\|_{s-l-k_{2}-\frac{1}{2}, l}\right),
$$

where O is independent of q.
Theorem 2.2 .3 (cfr. [6], Theorems 3.3.2, 3.3.3 and 3.3.4). - Let $s \geqslant 2, l \geqslant 0$; if Re $q^{2}<0,|q| \geqslant q_{0}$ (q_{0} suitable), then the operator $\left(L(\partial)+q^{2}\right) \oplus E_{k}$ is an isomorphism from $H_{s,-l, l}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ onto $H_{s-2,-l, l}^{q}\left(\boldsymbol{R}_{+}^{n}\right) \times H_{s-l-k-\frac{1}{2}, l}^{q}\left(\boldsymbol{R}^{n-1}\right), k=0,1$; furthermore, it has, together with its inverse, a norm uniformly bounded in q.

Analogously, $L(\partial)+q^{2}$ is an isomorphism from $H_{s,-l, l}^{q}\left(\boldsymbol{R}^{n}\right)$ onto $H_{s-2,-l, l}^{q}\left(\boldsymbol{R}^{n}\right)$; furthermore it has, together with its inverse, a norm uniformly bounded in q.
2.3. Existence theorems and a priori estimates for elliptic problems depending on a parameter.

Theorem 2.3.1. - Let $q \in \boldsymbol{C}, \operatorname{Re} q^{2}<0, s, l: \overline{\boldsymbol{R}_{+}^{n}} \rightarrow \boldsymbol{R}$ such that
i) the triple $(s,-l, l)$ satisfies all the conditions of Definition 2.1.5;
ii) $s_{j} \geqslant 2, l_{j} \geqslant 0, j=1, \ldots, m$;
iii) $\left(k_{1}+k_{2}\right) / 2<s_{j}-l_{j}<\left(k_{1}+k_{2}\right) / 2+1$, if $j=2, \ldots, m^{\prime}$.

Furthermore, let $f \in \mathcal{M}_{(s-2,-l, l)}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$,

$$
\begin{aligned}
& g_{1} \in M_{\left(s-l-k_{1}-\frac{1}{2}, l\right)}^{q}\left(\left\{x^{\prime} \in \boldsymbol{R}^{n-1} ;{ }_{s}^{\prime \prime}\left|x^{\prime}\right|<1\right\}\right) \\
& g_{2} \in M_{\left(s-l-k_{2}-\frac{1}{2}, l\right)}^{q}\left(\left\{x^{\prime} \in \boldsymbol{R}^{n-1} ;\left|x^{\prime}\right|>1\right\}\right)
\end{aligned}
$$

Let u. be a solution of the problem
$(\text { 2.3.1. } a)_{\left(k_{1}, k_{2}\right)} \quad\left\{\begin{array}{c}\left(L(\partial)+x \cdot \nabla+q^{2}\right) u=\dot{f}, \quad \text { in } \boldsymbol{R}_{+}^{n}, \\ E_{k_{1}} u=g_{1}, \quad \text { in }\left\{x^{\prime} ;\left|x^{\prime}\right|<1\right\}, \\ E_{k_{\mathrm{a}}} u=g_{2}, \quad \text { in }\left\{x^{\prime} ;\left|x^{\prime}\right|>1\right\},\end{array}\right.$
where $k_{i} \in\{0,1\}, i=1,2$. Then, if $\operatorname{Re} q^{2} \leqslant q_{0}<0$, the following a priori estimate holds

$$
\begin{equation*}
((u))_{(s,-l, l)} \leqslant C\left(((f))_{(s-2,-l, l)}+\sum_{i=1}^{2}\left(\left(g_{i}\right)\right)_{\left(s-l-k_{i}-\frac{1}{2}, l\right)}\right) \tag{2.3.1.b}
\end{equation*}
$$

where C is independent of q.
Proof. - We agree that all the constants appearing throughout this proof will be independent of q.

1) Multiply the first equation in (2.3.1.a) $)_{\left(k_{1}, k_{2}\right)}$ by φ_{1} and the third one by $\gamma_{0} \varphi_{1}$; we obtain

$$
\left\{\begin{array}{l}
\left(L(\partial)+x \cdot \nabla+q^{2}\right)\left(\varphi_{1} u\right)=\varphi_{1} f-T_{1} \psi_{1} u=\Phi_{1} \\
E_{k_{3}}\left(\varphi_{1} u\right)=\left(\gamma_{0} \varphi_{1}\right) g_{2}-F_{k_{2}}^{(1)}\left(\psi_{1} u\right)
\end{array}\right.
$$

where

$$
\begin{aligned}
& T_{1} v=\left(L(\partial) \varphi_{1}\right) v+2\left(\mathrm{C} \nabla \varphi_{1}\right) \cdot \nabla v+\left(x \cdot \nabla \varphi_{1}\right) v, \\
& F_{0}^{(1)} v=0, \quad F_{1}^{(1)} v=\gamma_{0}\left(\left(\sum_{j=1}^{n} c_{j n} \partial_{j} \varphi_{1}\right) v\right) .
\end{aligned}
$$

By Theorem 2.2.1, we have

$$
\left(\left(\varphi_{1} u\right)\right)_{s_{1}} \leqslant C_{1}\left(\left(\left(\varphi_{1} f\right)\right)_{s_{1}-2}+\left(\left(T_{1} \psi_{1} u\right)\right)_{s_{1}-2}+\left(\left(\left(\gamma_{0} \varphi_{1}\right) g_{2}\right)\right)_{s_{1}-k_{2}-\frac{1}{2}}+\left(\left(F_{k_{2}}^{(1)}\left(\psi_{1} u\right)\right)\right)_{s_{1}-k_{2}-\frac{1}{2}}\right),
$$

provided $\operatorname{Re} q^{2}<\gamma_{0}<0$ (γ_{0} suitable).
Now, as $\varphi_{1}=$ const. outside of a compact set, by Lemma 2.13 and Proposition 2.12 in [7], we get

$$
\left(\left(T_{1} \psi_{1} u\right)\right)_{s_{1}-2} \leqslant C_{2}\left(\left(\psi_{1} u\right)\right)_{s_{1}-1} \leqslant C_{2} \sum_{k=1}^{m}\left(\left(\psi_{1} \varphi_{k} u\right)\right)_{s_{1}-1}=C_{2}\left(\left(\left(\varphi_{1} u\right)\right)_{s_{1}-1}+\sum_{k=2}^{m}\left(\left(\psi_{1} \varphi_{k} u\right)\right)_{s_{1}-1}\right) .
$$

By Proposition 2.17 in [7],

$$
\left(\left(\varphi_{1} u\right)\right)_{s_{1}-1} \leqslant C_{3}\left(1+\left|\operatorname{Re} q^{2}\right|\right)^{-\frac{1}{2}}\left(\left(\varphi_{1} u\right)\right)_{s_{1}}
$$

furthermore, we remark that, if $\psi_{1} \varphi_{k} \neq 0$, by (2.1.i) and (2.1.l), $U_{k}=\operatorname{supp} \varphi_{k} \nsubseteq W$, and this implies that $y_{(k)} \in \mathrm{CW}$, by (2.1.4.c); so $s_{k}=s_{1}$ and $l_{k}=0$. Hence, by (2.1.b) and Propositions C.2, C. 3 in [6],

$$
\sum_{k=2}^{m}\left(\left(\psi_{1} \varphi_{k} u\right)\right)_{s_{1}-1} \leqslant C_{4} \sum_{k=2}^{m}\| \| S_{k} \psi_{1} \varphi_{k} u\left\|_{s_{k}-1,-l_{k}, l_{k}} \leqslant C_{5}|q|^{-1} \sum_{k=2}^{m}\right\| S_{k} \varphi_{k} u \|_{s_{k},-t_{k}, l_{k}}
$$

Finally, we get

$$
\begin{equation*}
\left(\left(T_{1} \psi_{1} u\right)\right)_{s_{1}-2} \leqslant C_{6}\left(1+\left|\operatorname{Re} q^{2}\right|\right)^{-\frac{1}{2}}((u))_{(s,-l, l)} . \tag{2.3.1.c}
\end{equation*}
$$

In an analogous way, if $k_{2}=1$, by Theorem 2.14 and Lemma 2.13 in [7],

$$
\left.\left(\left(F_{1}^{(1)}\left(\psi_{1} u\right)\right)\right)_{s_{1}-\frac{3}{2}} \leqslant O_{7}\left(\left(\psi_{1} u\right)\right)_{s_{1}-1} \leqslant O_{7}\left(\left(\varphi_{1} \psi_{1} u\right)\right)_{s_{1}-1}+\sum_{k=2}^{m}\left(\left(\varphi_{k} \psi_{1} u\right)\right)_{s_{1}-1}\right),
$$

which can be estimated as above. At last, we get

$$
\begin{equation*}
\left.\left.\left.\left(\left(\varphi_{1} u t\right)\right)_{s_{1}} \leqslant C_{8}\left(\left(\left(\varphi_{1} f\right)\right)\right)_{s_{1}-2}+\left(\left(\left(\gamma_{0} \varphi_{1}\right) g_{2}\right)\right)_{s_{1}-k_{2}-1}+\langle 1+| \operatorname{Re} q^{2} \mid\right)^{-\frac{1}{2}}((u)\rangle\right)_{s,-l, l}\right) . \tag{2.3.1.d}
\end{equation*}
$$

2) $A s$ in [12] and in [6], Theorem 4.1, we can prove that, for every $\varepsilon>0$, if the partition of unity $\left\{\varphi_{j} ; j=1, \ldots, m\right\}$ is sufficiently refined,

$$
\begin{align*}
& \left\|S_{j} \varphi_{j} u\right\|_{s_{j},-l_{j}, l_{j}} \leqslant C_{9}\left(\left\|S_{j} \varphi_{j} f\right\|_{s_{j}-2,-l_{j}, l_{j}}+\right. \tag{2.3.1.e}\\
& \left.+\sum_{i=1}^{2}\left\|S_{j}^{\prime}\left(\gamma_{0} \varphi_{j}\right) g_{i}\right\|_{s_{j}-l_{j}-k_{i}-\frac{1}{2}, l_{j}}+\left(1+\mid \operatorname{Re} q^{2}\right)^{-\frac{1}{2}}((u))_{(3,-l, l)}+\varepsilon\left\|S_{i} \varphi_{j} u\right\|_{s_{j},-l_{j}, l_{j}}\right)
\end{align*}
$$

$j=2, \ldots, m^{\prime}$. We note that, by Proposition 2.1.16 in [8], we may refine the partition of unity as we want, without changing the spaces; hence (2.3.1.e) is proved in our spaces.
3) As in [6], Theorem 4.1, we can prove that, if $j=m^{\prime}+1, \ldots, m$,
(2.3.1.f) $\quad\left\|\varphi_{j} u\right\|_{s_{j},-b_{j}, l_{j}} \leqslant C_{10}\left(\left\|\varphi_{j} f\right\|_{s_{j}-2,-l j, l_{j}}+\right.$

$$
\left.+\sum_{i=1}^{2}\left\|\left(\gamma_{0} \varphi_{j}\right) g_{i}\right\|_{s_{j}-l_{s}-k_{i}-\frac{1}{k}, l_{j}}+\left(1+\left|\operatorname{Re} q^{2}\right|\right)^{-\frac{1}{2}}((u))_{(s,-l, l}\right) .
$$

4) Summing up (2.3.1.a)-(2.3.1.f), we obtain
$\left((u)_{(s,-l, l} \leqslant C_{11}\left((f f)_{(s-2,-l, l)}+\sum_{i=1}^{2}\left(\left(g_{i}\right)\right)_{\left(s-l-k-k-\frac{1}{2}, l\right)}+\left(\varepsilon+m\left(1+\left|\operatorname{Re} q^{2}\right|\right)^{-\frac{1}{2}}\right)((u)\rangle_{(s,-l, l}\right)\right.$.
As C_{11} does not depend on ε, m, q, we can choose ε, q in such a way that $C_{11}\left(\varepsilon+m\left(1+\left|\operatorname{Re} q^{2}\right|\right)^{-\frac{1}{2}}\right)<1$.

Thus, (2.3.1.b) is completely proved.
Theorem 2.3.2. - Let the hypotheses of Theorem 2.3.1 be satisfied; then there exists a unique solution $u \in M_{(s,-l, \eta)}^{q}\left(\boldsymbol{R}_{+}^{n}\right)$ of the problem (2.3.1.a) $)_{\left(k_{1}, k_{2}\right)}$.

Proof. - The proof is the same as that of Theorem 4.2 in [6].
2.4. The parabolic problem.

THEOREM 2.4.1. - Let $s, l: \overline{\boldsymbol{R}_{+}^{n}} \rightarrow[0,+\infty[$ satisfy the hypotheses of Theorem 2.3.1 and let $\delta \in] 0,+\infty]$. Suppose that
i) $f \in \mathcal{M}_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta}\right)$;
ii) $g_{i} \in \mathcal{M}_{\left(\left(8-k_{i}-\frac{1}{2}\right) / 2 ; s-l-k_{i}-\frac{1}{2}, l\right): \gamma+k_{i}}\left(\left(\boldsymbol{R}^{n-1}\right)_{0, \delta}\right), i=1,2$.

Then there exists $\gamma_{0} \in \boldsymbol{R}$ such that, if $\gamma \leqslant \gamma_{0}$, there is a unique function u satisfying the following conditions:
iii) $u \in \mathcal{M}_{(\delta / 2 ; s,-l, l) ; \gamma}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta}\right)$;
iv) $\left(\partial_{t}-L\left(\partial_{x}\right)\right) u=f$, in $\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta}$;
v) $E_{k_{k_{1}}} u=g_{1}$, in $\left\{\left(t, x^{\prime}\right) \in\left(\boldsymbol{R}^{n-1}\right)_{0, \delta} ;\left|x^{\prime}\right|^{2}<t\right\}$;
vi) $E_{k_{2}} u=g_{2}$, in $\left\{\left(t, x^{\prime}\right) \in\left(\boldsymbol{R}^{n-1}\right)_{0, \delta} ;\left|x^{\prime}\right|^{2}>t\right\} ;$
vii) $\gamma_{0}^{(0)} u=0$.

Furthermore, the following a priori estimate holds:

$$
\begin{equation*}
(u)_{(s / 2 ; s,-l, l) ; \gamma}^{*} \leqslant C\left((f)_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}^{*}+\sum_{i=1}^{2}\left(g_{i}\right)_{\left.\left(\left(s-k_{i}-\frac{1}{2}\right) / 2 ; s-l-k_{i}-\frac{1}{2}, l\right) ; \gamma+k_{i}\right)}^{*}\right) \tag{2.4.1.a}
\end{equation*}
$$

where O is independent of δ.
Proof. - Suppose, first, $\delta=+\infty$. By Remark 2.1.33, if

$$
u \in \mathscr{H}_{(s / 2 ; s,-l, l) ; \gamma}\left(\boldsymbol{R}_{+} \times \boldsymbol{R}_{+}^{n}\right)
$$

then $\gamma_{0}^{(0)} u=0$. We use the notations of section 2.1 and put

$$
U=u \circ T^{-1}, \quad F=-\exp (-2 \tau)\left(f \circ T^{-1}\right), \quad G_{j}=\exp \left(-k_{j} \tau\right)\left(g_{j} \circ T^{-1}\right)
$$

$j=1,2$; then u satisfies iii)-vi) iff
iii') $U \in M_{(s / 2 ; s,-l, l) ; \gamma}\left(\boldsymbol{R} \times \boldsymbol{R}_{+}^{n}\right)$;
iv') $\frac{1}{2} \partial_{\tau} U+\frac{1}{2} \omega \cdot \nabla_{\omega} U+L\left(\partial_{\omega}\right) U=\boldsymbol{F}, \quad$ in $\boldsymbol{R} \times \boldsymbol{R}_{+}^{n} ;$
$\left.\mathrm{v}^{\prime}\right) E_{k_{1}} U=G_{1}$, in $\left\{\left(\tau, \omega^{\prime}\right) \in \boldsymbol{R} \times \boldsymbol{R}^{n-1} ;\left|\omega^{\prime}\right|<1\right\}$;
vi') $\boldsymbol{E}_{k_{2}} U=G_{2}$, in $\left\{\left(\tau, \omega^{\prime}\right) \in \boldsymbol{R} \times \boldsymbol{R}^{n-1} ;\left|\omega^{\prime}\right|>1\right\}$.
By means of a bilateral Laplace transform, $1 i i^{\prime}$)-vi') are equivalent to
$\left.\mathrm{iii}^{\prime \prime}\right) \hat{U} \in M_{(s,-l, l)}^{\sqrt{p}}\left(\boldsymbol{R}_{+}^{\mu}\right) ;$

$$
\begin{aligned}
& \text { iv") } \frac{1}{2} p \hat{U}+\frac{1}{2} \omega \cdot \nabla_{\omega} \hat{U}+L\left(\partial_{\omega}\right) \hat{U}=\hat{F}, \quad \text { in } R_{+}^{n} \\
& \left.\mathrm{v}^{\prime \prime}\right) \quad E_{k_{1}} \hat{U}=\hat{G}_{1}, \quad \text { if } \quad\left|\omega^{\prime}\right|<1 ; \\
& \left.\mathrm{vi}^{\prime \prime}\right) E_{k_{2}} \hat{U}=\hat{G}_{2}, \quad \text { if } \quad\left|\omega^{\prime}\right|>1
\end{aligned}
$$

where Re $p=\gamma$ and by \sqrt{p} we mean the square root of p with positive real part.
Due to our hypotheses, $\hat{H} \in M_{(s-2,-l, l)}^{\sqrt{p}}\left(\boldsymbol{R}_{+}^{n}\right), \hat{G}_{j} \in M_{\left(s-k_{j}-l-\frac{1}{2}, l\right)}^{\sqrt{\bar{p}}}\left(\boldsymbol{R}^{n-1}\right)(j=1,2)$, so that the problem iii")-vi") has a unique solution satisfying (2.4.1.a), by Theorems 2.3.1 and 2.3.2.

By an argument quite analogous to that of [1], § 11, it follows that the problem considered has a unique solution in a cylinder of finite height, too, and that the constant appearing in the corresponding a priori estimate can be chosen independent of the height of the cylinder.

3. - The problem in the lower part of the cylinder.

3.1. Some preliminaries.

Denote by $\overline{\delta^{(0)}}, \overline{\eta^{(0)}}$ two, arbitrarily chosen, positive numbers and by $\delta^{(0)}, \eta^{(0)}$ two positive numbers such that $\delta^{(0)}<\overline{\delta^{(0)}}, \eta^{(0)}<\overline{\eta^{(0)}}$ and satisfying conditions $\left.\alpha_{0}\right)-\alpha_{3}$) specified below; moreover, set

$$
Q^{(0)}=\Omega_{0, \delta^{(0)}}, \quad \Gamma^{(0)}=(\partial \Omega)_{0, \delta^{(0)}}, \quad \Gamma_{i}^{(0)}=\Gamma_{i} \cap \Gamma^{(0)}, \quad i=1,2
$$

We shall suppose that
$\left.\alpha_{0}\right) \eta^{(0)}, \delta^{(0)}$ are small enough, so that $\gamma \cap\left(\left[0, \delta^{(0)}\right] \times S\left(x_{0}, 2 \eta^{(0)}\right)\right)$ is the graph of a C^{∞} real function defined on a subset of $\partial \Omega$.

Now, let $\left\{\varphi_{1}^{(0)}, \varphi_{2}^{(0)}\right\}$ be a partition of unity in $\bar{\Omega}$ subordinated to the covering $\left\{S\left(x_{0}, 2 \eta^{(0)}\right),\left[S\left(x_{0}, \eta^{(0)}\right)\right\}\right.$. We shall denote by the same symbo ${ }^{1}, \varphi_{i}^{(0)}$, the function $1_{i} \otimes \varphi_{i}^{(0)}, i=1,2$. Obviously, $\left\{\varphi_{1}^{(0)}, \varphi_{2}^{(0)}\right\}$ is a partition of unity in $\overline{Q^{(0)}}$.

Multiply by $\varphi_{i}^{(0)}$ problem (P) in $Q^{(0)}$ (i.e. multiply by $\varphi_{i}^{(0)}$ the differential equation, by $\gamma_{0} \varphi_{i}^{(0)}$ the boundary conditions and by $\gamma_{0}^{(0)} \varphi_{i}^{(0)}$ the initial condition). Thus, we obtain the problem
$\left(\mathbf{P}_{i}^{(0)}\right) \quad \begin{cases}\left(\partial_{t}-P\left(t, x, \partial_{x}\right)\right)\left(\varphi_{i}^{(0)} u\right)=\varphi_{i}^{(0)} f+T_{i}^{(0)}\left(t, x, \partial_{x}\right) u, & \text { in } Q^{(0)}, \\ E_{k_{j}}\left(t, x, \partial_{x}\right)\left(\varphi_{i}^{(0)} u\right)=\left(\gamma_{0} \varphi_{i}^{(0)}\right) g_{j}+S_{i}^{(0)(0)}(t, x)\left(\gamma_{0} u\right), & \text { in } \Gamma_{j}, j=1,2, \\ \gamma_{0}^{(0)}\left(\varphi_{i}^{(0)} u\right)=0,\end{cases}$
where $T_{i}^{(0)}$ is a first order differential operator and $S_{i}^{(j)(0)}$ is the multiplication operator by a suitable smooth function, if $k_{j}=1,2$, and is zero if $k_{j}=0, i=1,2$.

We suppose that
$\left.\alpha_{1}\right) \eta^{(0)}$ is sufficiently small so that there exists a C^{∞}-diffeomorphism $h_{x_{0}}$ from $\bar{\Omega} \cap S\left(x_{0}, 2 \eta^{(0)}\right)$ onto $U^{(0)} \subseteq\left\{y \in \boldsymbol{R}^{n} ;|y| \leqslant 1, y_{n} \geqslant 0\right\}$, such that $h_{x_{0}}\left(x_{0}\right)=0$ and y_{n} is the distance from $\partial \Omega$; hence $h_{x_{0}}\left(\partial \Omega \cap \operatorname{supp} \varphi_{1}^{(0)}\right)=\left\{y \in U^{(0)}, y_{n}=0\right\}$.

Problem ($\mathrm{P}_{1}^{(0)}$) is transformed, by $h_{x_{0}}$, into the following one:
$\left(\mathrm{P}_{\mathbf{1}}^{(0)^{\prime}}\right) \quad \begin{cases}\left(\partial_{t}-P_{0}^{\prime}\left(t, y, \partial_{y}\right)\right)\left(\varphi_{1}^{(0)^{\prime}} u^{\prime}\right)=F^{\prime}, & \text { in }\left(U^{(0)}\right)_{0, \delta^{(0)}}, \\ E_{k j}^{\prime}\left(t, y, \partial_{y}\right)\left(\varphi_{1}^{(0)^{\prime}} u^{\prime}\right)=G_{i}^{\prime}, & \text { in } \Gamma_{j}^{(0)^{\prime}}, j=1,2, \\ \gamma_{0}^{(0)}\left(\varphi_{1}^{(0)^{\prime}} u^{\prime}\right)=0, & \end{cases}$
where $P_{0}^{\prime}, E_{k_{j}}^{\prime}$ are the operators $P, E_{k_{j}}$ written in the new variables and $\varphi_{1}^{(0)^{\prime}}, u^{\prime}$ are the functions $\varphi_{1}^{(0)}, u$ written in the y-variables. The functions $F^{\prime}, G_{i}^{\prime}$ are obtained via $h_{x_{0}}$, from the right-hand-side terms of ($\left.\mathrm{P}_{1}^{(0)}\right)$ and $\Gamma_{j}^{(0)}$ is the image, through $h_{x_{0}}$, of $\Gamma_{j} \cap \overline{\left(S\left(x_{0}, 2 \eta^{(0)}\right)\right)_{0, \delta^{0}}}, j=1,2$.

Set $\gamma^{\prime}=h_{x_{0}}\left(\gamma \cap \overline{\left(S\left(x_{0}, 2 \eta^{(0)}\right)\right)_{0, \delta^{(0)}}}\right) ;$ by hypothesis $\left.\alpha_{0}\right)$,

$$
\gamma^{\prime}=\left\{(t, y) ; t \in\left[0, \delta^{(0)}\right], y \in U^{(0)}, y_{n}=0, t=\Phi\left(y^{\prime}\right)\right\}
$$

where Φ is a real C^{∞}-function defined in a neighbourhood of the origin in \boldsymbol{R}^{n-1}. We remark that, by hypotheses iii), iv) of section $1, \Phi(0)=0,(\nabla \Phi)(0)=0$ and $\mathfrak{H}_{\phi}(0)$ is positive definite.

We now make the following assumption:
$\left.\alpha_{2}\right) \eta^{(0)}$ is so small that in $h_{x_{0}}\left(\partial \Omega \cap S\left(x_{0}, 2 \eta^{(0)}\right)\right)$ there exists a C^{∞} change of variables $y^{\prime}=\chi\left(z^{\prime}\right)$, such that $\left(\Phi_{\circ} \chi\right)\left(z^{\prime}\right)=\left|z^{\prime}\right|^{2}$ (Morse Theorem).

Hence, we may now make the following change of variables:

$$
\left(y^{\prime}, y_{n}\right) \mapsto\left(z^{\prime}, z_{n}\right), \quad \text { where } \quad z^{\prime}=\left(\chi \otimes 1_{z_{n}}\right)^{-1}\left(y^{\prime}\right), \quad z_{n}=y_{n} .
$$

Problem ($\mathrm{P}_{1}^{(0)^{\prime}}$) is transformed into the following one

$$
\left(\mathrm{P}_{1}^{(0)^{\prime \prime}}\right) \quad \begin{cases}\left(\partial_{t}-P^{\prime \prime}\left(t, z, \partial_{z}\right)\right)\left(\varphi_{1}^{(0)^{\prime \prime}} u^{\prime \prime}\right)=F^{\prime \prime}, & \text { in }\left(\left(\chi \otimes 1_{z_{n}}\right)^{-1}\left(U^{(0)}\right)_{0, \delta^{(0)}},\right. \\ E_{k_{j}^{\prime \prime}}\left(t, z, \partial_{z}\right)\left(\varphi_{1}^{\left.()^{\prime \prime} u^{\prime}\right)}=G_{j}^{\prime \prime},\right. & \text { in } \Gamma_{j}^{\prime \prime}, \quad j=1,2, \\ \gamma_{0}^{(0)}\left(\varphi_{1}^{(0)^{\prime \prime}} u^{\prime}\right)=0, & \end{cases}
$$

where the new symbols have an obvious meaning. Here

$$
\left.\left.\Gamma_{1}^{\prime \prime}=\left\{(t, z) \in \boldsymbol{R}^{n+1} ; t \in\right] 0, \delta^{(0)}\right], z=\left(z^{\prime}, 0\right), z \in\left(\chi \otimes 1_{z_{n}}\right)^{-1}\left(U^{(0)}\right), t>\left|z^{\prime}\right|^{2}\right\} .
$$

Furthermore, we note that $\Gamma_{2}^{\prime \prime}$ is the complement in $\left.] 0, \delta^{(0)}\right] \times\left(\left(\chi \otimes 1_{z_{n}}\right)^{-1}\left(U^{(0)}\right) \cap\right.$ $\left.\cap\left\{z \in \boldsymbol{R}^{n} ; z_{n}=0\right\}\right)$ of $\overline{\Gamma_{1}^{\prime \prime}}$.

At last, we suppose that
α_{3}) we choose $\delta^{(0)}$ such that

$$
\left(\left(1_{i} \otimes h_{x_{0}}\right)^{-1} \circ\left(1_{t} \otimes \chi \otimes 1_{z_{n}}\right) \circ T^{-1}\right)\left(\left[-\frac{1}{2} \log 2 \delta^{(0)},+\infty\left[\times\left(\bigcup_{j=2}^{m} U_{i}\right)\right) \subset\left(S\left(x_{0}, \eta^{(0)}\right)\right)_{0,2 \delta^{(0)}}\right.\right.
$$

This hypothesis implies, in particular, that the boundary condition corresponding to $j=1$ in problem $\left(\mathrm{P}_{2}^{(0)}\right)$ is empty.

3.2. Function spaces.

Definition 3.2.1. - We denote by $\pi_{\gamma}^{((s \leftarrow r+l) / 2 ; \varepsilon, r, l)}\left(Q^{(0)}\right)$ the space of all functions u such that

$$
\left(\varphi_{1}^{(0)} u\right) \circ\left(\mathbf{1}_{t} \otimes h_{x_{0}}\right)^{-1} \circ\left(1_{t} \otimes \chi \otimes 1_{z_{n}}\right) \in \mathcal{M}_{((s+r+l) / 2 ; s, r, l) ; \gamma}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta^{0}}\right)
$$

and

$$
\varphi_{2}^{(0)} u \in K_{\gamma \sim n / 2-1}^{s_{1} / 2}\left(Q^{(0)}\right)
$$

equipped with the norm

$$
[u]_{(s, r, l) ; \gamma}=\left(\left(\left(\varphi_{1}^{(0)} u\right)\left(t, h_{x_{0}}^{-1}\left(\chi\left(z^{\prime}\right), z_{n}\right)\right)\right)_{((s+r+l) / 2 ; s, r, l) ; \gamma}^{* 2}+\left[\varphi_{2}^{(0)} u\right]_{s_{1} / 2 ; \gamma-\mu / 2-1}^{2}\right)^{\frac{1}{2}}
$$

Analogously, if $0<\alpha<\beta \leqslant \delta^{(0)}$, we can define the space

$$
\pi_{\gamma}^{((s+r+l) / 2 ; s, r, l)}\left(\Omega_{\alpha, \beta}\right),
$$

whose norm will be denoted by $[\cdot ; \alpha, \beta]_{(s, r, l) ; \gamma}$.
Since these spaces are isomorphic when γ varies, if $\alpha>0$, we shall omit γ in the symbol of the space.

Furthermore, let $\psi_{1}^{(0)}, \psi_{2}^{(0)} \in C^{\infty}(\bar{\Omega})$ be two functions such that

$$
\begin{gathered}
\psi_{i}^{(0)} \varphi_{i}^{(0)}=\varphi_{i}^{(0)}, \quad 0 \leqslant \psi_{i}^{(0)} \leqslant 1, \quad i=1,2, \\
\left.\operatorname{supp} \psi_{1}^{(0)} \subset \bar{\Omega} \cap S\left(x_{0}, 2 \eta^{(0)}\right), \quad \operatorname{supp} \psi_{2}^{(0)} \subset \bar{\Omega} \overline{S\left(x_{0}, \eta^{(0)}\right.}\right)
\end{gathered}
$$

We shafl still call $\psi_{i}^{(0)}$ the function $I_{t} \otimes \psi_{i}^{(0)}, i=1,2$.
We note that, if the boundary conditions in problem (P) are not both Dirichlet conditions, we may choose functions s, l such that $s-l \geqslant 1$; in this case, the spaces \AA are contained in Batocchi's [4] ones when $s \geqslant 2$.

Defintition 3.2.2. - Let $s+r+l \geqslant 1, \gamma-n / 2-1+s_{1}<0$. Then, by Proposition 2.16 in [9] and Remark 2.1.33, the functions $\varphi_{1}^{(0)} u$ and $\varphi_{2}^{(0)} u$ have null traces on the hyperplane $t=0$. So, if $u \in \mathcal{J}_{\gamma}^{((s+r+t) / 2 ; s, r, l)}\left(Q^{(0)}\right)$, we can put

$$
\gamma_{0}^{(0)} u=0
$$

Definition 3.2.3. - We denote by $\varkappa_{\gamma}^{((\sigma+e) / 2 ; \sigma, \rho)}\left(\Gamma^{(0)}\right)$ the set of all functions u such that

$$
\left(\left(\gamma_{0} \varphi_{1}^{(0)}\right) u\right) \circ\left(1_{t} \otimes h_{x_{0}}\right)^{-1} \circ\left(1_{t} \otimes \chi\right) \in \mathcal{M}_{((\sigma+\varrho) / 2 ; \sigma, \varrho) ; \gamma}\left(\left(\boldsymbol{R}^{n-1}\right)_{0, \delta(0)}\right)
$$

and

$$
\left(\gamma_{0} \varphi_{2}^{(0)}\right) u \in K_{\gamma-n / 2-\frac{1}{2}}^{\sigma_{1} / 2}\left(\Gamma^{(0)}\right)
$$

equipped with the norm

$$
[u]_{(\sigma, \varrho) ; \gamma}=\left(\left(\left(\left(\gamma_{0} \varphi_{1}^{(0)}\right) u\right) \circ\left(1_{t} \otimes h_{x_{0}}\right)^{-1} \circ\left(1_{t} \otimes \chi\right)\right)_{((\sigma+\varrho) / 2 ; \sigma, \varrho) ; \gamma}^{* 2}+\left[\left(\gamma_{0} \varphi_{2}^{(0)}\right) u\right]_{\sigma_{1} / 2 ; \gamma-n / 2-\frac{1}{2}}^{2}\right)^{\frac{1}{t}} .
$$

In what follows we shall put

$$
\begin{aligned}
& \Lambda=\left(1_{t}^{\circ} \otimes \chi \otimes 1_{z_{n}}\right)^{-1} \circ\left(1_{t} \otimes h_{x_{0}}\right)=1_{t} \otimes \psi \\
& \Lambda^{\prime}=\left(1_{i}^{l} \otimes \chi\right)^{-1} \circ\left(\left(\left.1_{t} \otimes h_{x_{0}}\right|_{\Gamma^{(0)}}\right)\right.
\end{aligned}
$$

By Proposition 2.6 in [9] and Proposition 2.1.29, we have:
Proposition 3.2.4. - Let $\alpha \in C^{\infty}\left(\overline{Q^{(0)}}\right)$; then, the map $u \mapsto \alpha u$ is continuous in $\mathcal{K}_{\gamma}^{((s+r+l) / 2 ; s, r, l)}\left(Q^{(0)}\right)$.

Proposition 3.2.5. - i) Let $s \geqslant 1$; then the map $u \mapsto \partial_{j} u$ is continuous from $\Pi_{\gamma}^{((s+r+l) / 2 ; s, r, l)}\left(Q^{(0)}\right)$ into $\Pi_{\gamma+1}^{((s+r+l-1) / 2 ; s-1, r, l)}\left(Q^{(0)}\right), j=1, \ldots, n$.
ii) Let $s+r+l \geqslant 2$; then the map $u \mapsto \partial_{t} u$ is continuous from

$$
\varlimsup_{\gamma}^{((s+r+l) / 2 ; s, r, l)}\left(Q^{(0)}\right) \quad \text { into } \quad \Pi_{\gamma+2}^{((s+r+l-2) / 2 ; s-2, r, l)}\left(Q^{(0)}\right) .
$$

Moreover, the norm of each one of these maps is uniformly bounded with respect to $\delta^{(0)}$.

Proof. - ii) is a straightforward consequence of Proposition 2.1.28 and Proposition 2.13 in [9].

Let us now prove i).

$$
\begin{aligned}
& {\left[\partial_{j} u\right]_{(s-1, r, l) ; \gamma+1}^{2}=\left(\left(\varphi_{1}^{(0)} \partial_{j} u\right) \circ \Lambda^{-1}\right)_{((s+r+l-1) / 2 ; s-1, r, l) ; \gamma+1}^{* 2}+} \\
&+\left[\psi_{2}^{(0)} \partial_{j} u\right]_{\left(s_{1}-1\right) / 2 ; \gamma-n / 2}^{2}=I_{1}^{2}+I_{2}^{2}
\end{aligned}
$$

Now, keeping in mind Proposition 2.1.28, we have:

$$
\begin{aligned}
& I_{1} \leqslant\left(\left(\partial_{j}\left(\varphi_{1}^{(0)} u\right)\right) \circ \Lambda^{-1}\right)_{((s+r+l-1) / 2 ; s-1, r, l) ; \gamma+1}^{*}+\left(\left(\left(\partial_{j} \varphi_{1}^{(0)}\right) u\right) \circ \Lambda^{-1}\right)_{((s+r+l-1) / 2 ; s-1, r, l) ; \gamma+1}^{*}= \\
& =\left(\nabla\left(\left(\varphi_{1}^{(0)} u\right) \circ \Lambda^{-1}\right) \cdot\left(\partial_{j} \Lambda\right) \circ \Lambda^{-1}\right)_{((s+r+l-1) / 2 ; s-1, r, l) ; \gamma+1}^{*}+ \\
& \quad+\left(\left(\left(\partial_{i} \varphi_{1}^{(0)}\right) \circ \Lambda^{-1}\right)\left(\left(\varphi_{1}^{(0)}+\varphi_{2}^{(0)}\right) \psi_{1}^{(0)} u\right) \circ \Lambda^{-1}\right)_{((s+r+l-1) / 2 ; s-1, r, l) ; \gamma+1}^{*} \leqslant \\
& \leqslant
\end{aligned}
$$

Let us now deal with J_{3}. Denote by $p_{\delta^{(0)}}$ a continuation operator from $K_{\gamma}^{s_{1} / 2}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta(0)}\right)$ into $K_{\gamma}^{s_{1} / 2}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0,+\infty}\right)$, with norm uniformly bounded in $\delta^{(0)}$. So, by Hypothesis $\left.\alpha_{3}\right)$, Proposition 2.1.24, Propositions 2.11, 2.12 in [9] and 2.1.5.i), we have

$$
\begin{aligned}
J_{3} \leqslant & \left(\left(p_{\delta^{(0)}}\left(\left(\varphi_{2}^{(0)} \psi_{1}^{(0)} u\right) \circ \Lambda^{-1}\right)\right) \circ T^{-1}\right)_{((s+r+l-1) / 2 ; s-1, r, l) ; \gamma+1} \leqslant \\
& \leqslant C_{2}\left[p_{\delta^{(0)}}\left(\left(\varphi_{2}^{(0)} \psi_{1}^{(0)} u\right) \circ \Lambda^{-1}\right)\right]_{\left(s_{1}-1\right) / 2 ; \gamma-n / 2} \leqslant C_{3}\left[\varphi_{2}^{(0)} u\right]_{\left(s_{1}-1\right) / 2 ; \gamma-n / 2} \leqslant C_{4}\left[\varphi_{2}^{(0)} u\right]_{s_{1} / 2 ; \gamma-n / 2-1}
\end{aligned}
$$

J_{2} can be handled in an analogous way. So, the estimate for I_{1} is obtained.
The estimate for I_{2} follows analogously.
Definition 3.2.6. - Let $u \in \mathcal{K}_{\gamma}^{((s+q+l) / 2 ; s, r, i)}\left(Q^{(0)}\right), k \in N_{0}, s_{j}>k+\frac{1}{2}$, provided $U_{j} \cap\left(\boldsymbol{R}^{n-1} \times\{0\}\right) \neq \emptyset$. We put

$$
\gamma_{k} u=\left.\left(\gamma_{k}\left(\left(\varphi_{1}^{(0)} u\right) \circ\left(1_{t} \otimes h_{x_{0}}\right)^{-1} \circ\left(1_{t} \otimes \chi \otimes 1_{z_{k}}\right)\right)\right) \circ\left(\left(1_{t} \otimes \chi^{-1}\right) \circ\left(1_{i} \otimes h_{x_{0}}\right)\right)\right|_{\Gamma^{(0)}}+\gamma_{k}\left(\varphi_{2}^{(\theta)} u\right)
$$

By Definition 2.1.31 and Theorem 2.15 in [9], this definition is well posed.
Remark 3.2.7. - It is easy to show that, if $u \in \mathbb{K}_{\gamma}^{((s+r+b) / 2 ; s, r, l)}\left(Q^{(0)}\right)$, then $\gamma_{k} u=$ $=\gamma_{0}\left(\partial_{v}^{k} u\right)$, where ∂_{ν} denotes the inward normal derivative to the hypersurface $\Gamma^{(0)}$. Furthermore, if $u \in C^{\infty}\left(\overline{Q^{(0)}}\right)$, we have $\gamma_{k} u=\left.\partial_{\nu}^{k} u\right|_{\Gamma^{(0)}}$.

Proposition 3.2.8. - Under the hypotheses of Definition 3.2.6, γ_{k} is a continuous operator from $\tilde{K}_{\gamma}^{((s+r+l) / 2 ; s, r, l)}\left(Q^{(0)}\right)$ into $\mathscr{K}_{\gamma+k}^{\left(\left(s+r+l-k-\frac{1}{2}\right) / 2 ; s+r-k-\frac{1}{2}, l\right)}\left(\Gamma^{(0)}\right)$.

Proof. - By Proposition 3.2.5, we need only to prove the assertion in the case $k=0$. We have

$$
\begin{aligned}
& {\left[\gamma_{0} u\right]_{\left(s \div r+l-\frac{1}{2}, l\right) ; \gamma}^{2} \leqslant 2\left(\left(\left(\gamma_{0} \varphi_{1}^{(0)}\right) \circ \Lambda^{\prime-1}\right)\left(\gamma_{0}\left(\left(\varphi_{1}^{(0)} u\right) \circ \Lambda^{-1}\right)\right)\right)_{\left(\left(s+r+l-\frac{1}{2}\right) / 2: s+r-\frac{1}{2}, l\right) ; \gamma}^{* 2}+} \\
&+2\left(\left(\left(\gamma_{0} \varphi_{1}^{(0)}\right) \circ \Lambda^{\prime-1}\right)\left(\gamma_{0}\left(\varphi_{2}^{(0)} u\right)\right) \circ \Lambda^{\prime-1}\right)_{\left(\left(s+r+l-\frac{1}{2}\right) / 2 ; s+r-\frac{1}{2}, l\right) ; \gamma}^{* 2}+ \\
&+2\left[\left(\gamma_{0} \varphi_{2}^{(0)}\right)\left(\gamma_{0}\left(\left(\varphi_{1}^{(0)} u\right) \circ \Lambda^{-1}\right)\right) \circ \Lambda^{\prime}\right]_{s_{1} / 2-\frac{1}{2} ; \gamma-n / 2-\frac{1}{2}}^{2}+ \\
&+2\left[\left(\gamma_{0} \varphi_{2}^{(0)}\right)\left(\gamma_{0} \varphi_{2}^{(0)} u\right)\right]_{s_{1} / 2-\frac{1}{4} ; \gamma-n / 2-\frac{1}{2}}^{2}=2 \sum_{j=1}^{4} I_{j}
\end{aligned}
$$

Now, by Propositions 2.1.32 and 3.2.4,

$$
\begin{aligned}
I_{1}=\left(\gamma_{0}\left(\left(\varphi_{1}^{(0) 2} u\right) \circ \Lambda^{-1}\right)\right)_{\left(\left(s+r+l-\frac{1}{2}\right) / 2 ; s+r-\frac{\beta}{2}, l\right) ; \gamma}^{* 2} \leqslant & \leqslant C_{1}\left(\left(\varphi_{1}^{(0) 2} \hat{\psi}\right) \circ \Lambda^{-1}\right)_{((s+r+\eta) / 2 ; s, \varphi, b) ; \gamma}^{* 2} \leqslant C_{2}[u]_{(s, r, i) ; \gamma}^{2}
\end{aligned}
$$

furthermore, by Hypothesis α_{3}), (2.1.5.i) and by Proposition 2.6 in [9], we have

$$
\begin{aligned}
& I_{2}=\left(\left(\gamma_{0}\left(\varphi_{1}^{(0)} \varphi_{2}^{(0)} u\right)\right) \circ \Lambda^{\prime-1}\right)_{\left(\left(s+r+l-\frac{1}{2}\right) / 2 ; s+r-\frac{1}{2}, l\right) ; \gamma}^{* 2} \leqslant \\
& \leqslant C_{3}\left[\left(\gamma_{0}\left(\varphi_{1} \circ T\right)\right)\left(\left(\gamma_{0}\left(\varphi_{1}^{(0)} \varphi_{2}^{(0)} u\right)\right) \circ \Lambda^{\prime-1}\right)\right]_{\left(s_{1}-\frac{1}{2}\right) / 2 ; \gamma-n / 2-\frac{1}{2} \leqslant}^{2} \leqslant \\
& \leqslant C_{4}\left[\gamma_{0}\left(\varphi_{1}^{(0)} \varphi_{2}^{(0)} u\right)\right]_{\left(s_{1}-\frac{1}{2}\right) / 2 ; \gamma-n / 2-\frac{1}{2}}^{2} \leqslant C_{5}\left[\varphi_{1}^{(0)} \varphi_{2}^{(0)} u\right]_{s_{1} / 2 ; \gamma-n / 2-1}^{2} \leqslant \\
& \leqslant C_{6}\left[\varphi_{2}^{(0)} u\right]_{s_{1} / 2 ; \gamma-n / 2-1}^{2} \leqslant C_{6}[u]_{(s, r, l) ; \gamma}^{2}
\end{aligned}
$$

I_{3} and I_{4} can be estimated in an analogous way. So, the assertion is proved.
3.3. Solution in the lower part of the cylinder.

Theorem 3.3.1. - Suppose that the functions $s, l: \overline{\boldsymbol{R}_{+}^{n}} \rightarrow \boldsymbol{R}$ satisfy the bypotheses of Theorem 2.3.1 and that $\eta^{(0)}, \delta^{(0)}$ satisfy Hypotheses $\left.\alpha_{0}\right)-\alpha_{3}$).

Then, there exists $\bar{\gamma}$, such that, if $\gamma \leqslant \bar{\gamma}$, the operator \mathcal{A} corresponding to the problem
$(3.3 .1 . a)_{\left(k_{1}, k_{2}\right)} \quad\left\{\begin{array}{l}\left(\partial_{i}-P\left(t, x, \partial_{x}\right)\right) u=f, \quad \text { in } Q^{(0)}, \\ E_{k_{i}}\left(t, x, \partial_{x}\right) u=g_{i}, \quad \text { in } \Gamma_{i}^{(0)}, i=1,2, \\ \gamma_{0}^{(0)} u=0, \quad \text { in } \Omega,\end{array}\right.$
is an isomorphism from $\mathscr{K}_{\gamma}^{(s / 2: s,-l, l)}\left(Q^{(0)}\right)$ onto

$$
\pi_{\gamma+2}^{((s-2) / 2 ; s-2,-l, l)}\left(Q^{(0)}\right) \times\left({\left.\underset{i=1}{2} \pi_{\gamma+k_{i}}^{\left(\left(s-k_{i}-\frac{1}{2}\right) / 2 ; s-l-k_{i}-\frac{1}{2}, l\right)}\left(\Gamma_{i}^{(0)}\right)\right), ~}_{\text {, }}\right.
$$

provided $\eta^{(0)}, \delta^{(0)}$ are small enough.
Froof. - In the sequel, by $\varphi \mathcal{A}$ we mean the "product» of the C^{∞}-function φ by the operator \mathcal{A} (see Section 3.1). We write the operator $\psi_{1}^{(0)} \mathcal{A} \varphi_{1}^{(0)}$ in the local coordinates defined by Λ^{-1}; let us now call it $\psi_{1}^{(0)^{\prime}} \mathcal{A}_{1}^{\prime} \varphi_{1}^{(0)^{\prime}}$, where $\psi_{1}^{(0)^{\prime}}=\psi_{1}^{(0)} \circ \Lambda^{-1}$, $\varphi_{1}^{(0)}{ }^{\prime}=\varphi_{1}^{(0)} \circ \mathcal{A}^{-1}$ and \mathcal{A}_{1}^{\prime} is a parabolic operator with coefficients suitably continued by constants outside $\bar{K}_{0, \delta^{(0)}}$, where K is a compact subset of $\overline{\boldsymbol{R}_{+}^{n}}$.

Let $\left\{\varrho_{j}^{\prime} ; j=0, \ldots, N\right\}$ be a C^{∞} partition of unity in $\overline{\boldsymbol{R}_{+}^{n}}$, such that $\varrho_{j}^{\prime} \in C_{0}^{\infty}\left(\overrightarrow{\boldsymbol{R}_{+}^{n}}\right)$, $j=1, \ldots, N$. Let $\left\{\sigma_{j}^{\prime} ; j=0, \ldots, N\right\},\left\{\chi_{j}^{\prime} ; j=0, \ldots, N\right\}$ be two sets of C^{∞}-functions
such that $\chi_{j}^{\prime}, \sigma_{j}^{\prime} \in C_{0}^{\infty}\left(\overline{\boldsymbol{R}_{+}^{n}}\right), j=1, \ldots, N$, and $0 \leqslant \sigma_{j}^{\prime} \leqslant 1,0 \leqslant \chi_{j}^{\prime} \leqslant 1, \sigma_{j}^{\prime} \varphi_{j}^{\prime}=\varphi_{j}^{\prime}, \chi_{j}^{\prime} \sigma_{j}^{\prime}=\sigma_{j}^{\prime}$, $j=0, \ldots, N$. Let $z_{j} \in \operatorname{supp} \varrho_{j}^{\prime}, j=0, \ldots, N$.

Denote by $\mathfrak{A}_{1(0)}^{\prime}$ the parabolic principal part of \mathcal{A}_{1}^{\prime}. We have

$$
\begin{equation*}
\sigma_{i}^{\prime} \mathcal{A}_{1}^{\prime}=\sigma_{j}^{\prime}\left(\mathfrak{A}_{1(0)}^{\prime}\left(0, z_{j}\right)+K_{1 j}^{\prime}+T_{1 i}^{\prime}\right), \quad j=0, \ldots, N, \tag{3.3.1.b}
\end{equation*}
$$

where $\mathfrak{A}_{1(0)}^{\prime}\left(0, z_{j}\right)$ is the operator $\mathfrak{A}_{1(0)}^{\prime}$ with coefficients frozen at the point $\left(0, z_{j}\right)$,

$$
\begin{aligned}
& \sigma_{j}^{\prime} K_{1 j}^{\prime}=\sigma_{j}^{\prime}\left(\mathfrak{A}_{1(0)}^{\prime}-\mathfrak{A}_{1(0)}^{\prime}\left(0, z_{j}\right)\right) \\
& \sigma_{j}^{\prime} T_{1 j}^{\prime}=\sigma_{j}^{\prime}\left(\mathscr{A}_{1}^{\prime}-\mathscr{A}_{1(0)}^{\prime}\right), \quad j=0, \ldots, N
\end{aligned}
$$

We can think of $K_{1 j}^{\prime}$ and $T_{1 j}^{\prime}$ as defined everywhere.
Since $\mathcal{A}_{1(0)}^{\prime}\left(0, z_{j}\right)$ has constant coefficients, then, if γ is suitable, by Theorem 2.4.1 it has an inverse operator $R_{1(0) j}^{\prime}$ which is a bounded operator between the spaces where it naturally operates. For instance, if, for a given j, ($\left.\left(\operatorname{supp} \varrho_{j}^{\prime}\right)_{0, \delta^{(0)}}\right) \cap$ $\cap \Lambda(\gamma) \neq \emptyset$, we have:

$$
\begin{aligned}
& R_{1(0) j}^{\prime}: \mathcal{M}_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta(0)}\right) \times \\
& \times\left({\left.\underset{i=1}{2} \mathcal{M}_{\left(\left(s-k i-\frac{1}{2}\right) / 2 ; s-k_{i}-l-\frac{1}{2}, l\right) ; \gamma+k_{i}}\left(\left(\boldsymbol{R}^{n-1}\right)_{0, \delta(0)}\right)\right) \rightarrow \mathcal{M}_{(s / 2 ; s,-l, l) ; \gamma}\left(\left(\boldsymbol{R}_{+}^{n}\right)_{0, \delta(0)}\right)}\right.
\end{aligned}
$$

Let us now consider the «differential equation component» $P_{1 j}^{\prime}$ of $K_{1 j}^{\prime}$; an analogous argument holds, if necessary, for the other components. We get (the norms are computed in $\left.\left(\boldsymbol{R}_{\stackrel{+}{\prime}}^{n}\right)_{0, \delta(0)}\right)$:

$$
\left.\left(\chi_{j}^{\prime} P_{1 j}^{\prime}\left(t, z, \partial_{z}\right) v\right)_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}^{* 2} \leqslant C_{|\alpha|=2} \sum_{\mid \chi_{j}^{\prime}} a_{\alpha j}^{\prime}(t, z) \partial_{z}^{\alpha} v\right)_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}^{* 2}
$$

where $a_{\alpha j}^{\prime}$ are the coefficients of $P_{1 j}^{\prime}$.
So, by Proposition 2.1.29 and 2.1.28, if we shrink supp χ_{j}^{\prime} (and hence supp σ_{j}^{\prime} and supp ϱ_{j}^{\prime}, we have, provided $\delta^{(0)}$ is small enough,

$$
\left(\chi_{j}^{\prime} P_{1 j}^{\prime}\left(t, z, \partial_{z}\right) v\right)_{(s-2) / 2 ; s-2,-l, l) ; \gamma+2}^{* 2} \leqslant \varepsilon(v)_{(s / 2 ; s,-l, l) ; \gamma}^{* 2}
$$

By Propositions 2.1.28, 2.1.29 and 2.1.30, an analogous estimate holds for $T_{1 j}^{\prime}$, provided $\delta^{(0)}$ is small enough.

Thus, $\mathcal{A}_{1(0)}^{\prime}\left(0, z_{j}\right)+\chi_{j}^{\prime} K_{1 j}^{\prime}+\chi_{j}^{\prime} T_{1 j}^{\prime}$ has a continuous inverse $R_{1, j}^{\prime}$, which operates between the same spaces as $R_{1(0) j}^{\prime}$. Let $F=\left(f, g_{1}, g_{2}\right)$ belong to the "space of data», and put

$$
\overline{R_{1}^{\prime}} F=\sum_{j=1}^{N} \sigma_{j}^{\prime} R_{1 j}^{\prime} \rho_{j}^{\prime} F
$$

we have

$$
\mathcal{A}_{1}^{\prime} \bar{R}_{1}^{\prime} F=\sum_{j=1}^{N} \sigma_{j}^{\prime} \mathcal{A}_{1}^{\prime} R_{1 j}^{\prime} \varrho_{j}^{\prime} F+\sum_{j=1}^{N}\left[\sigma_{j}^{\prime}, \mathscr{A}_{1}^{\prime}\right] R_{1 j}^{\prime} \varrho_{j}^{\prime} F=F+\mathscr{B} F .
$$

Let us now estimate the «differential equation component» $B F$ of $\mathscr{B} F$; the other components can be estimated analogously. We get, by Proposition 2.1.30,

$$
\begin{aligned}
(B F)_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}^{*} & \leqslant C_{2} \sum_{|x| \leqslant 1}\left(\partial_{z}^{\alpha} R_{1 j}^{\prime} \varrho_{j}^{\prime} F\right)_{((s-2) / 2 ; s-2,-l, l) ; \gamma \div 2}^{*} \leqslant \\
& \leqslant C_{3}\left(R_{1 ;}^{\prime} \varrho_{j}^{\prime} F\right)_{((s-1) / 2 ; s-1,-l, l) ; \gamma+1}^{*} \leqslant C_{4} \varepsilon\left(R_{1 j}^{\prime} \varrho_{j}^{\prime} F\right)_{(s \mid 2 ; s,-l, l) ; \gamma}^{*} \leqslant \\
& \left.\leqslant C_{5} \varepsilon\left[(f)_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}^{*}+\sum_{i=1}^{2}\left(g_{i}\right)_{((s-k i-1)}^{*} * / 2 ; s-k i-l-\frac{1}{2}, l\right) ; \gamma+k_{k}\right]
\end{aligned}
$$

provided $\delta^{(0)}$ is small enough.
So, $\mathfrak{A}_{1}^{\prime} \bar{R}_{1}^{\prime}$ has an inverse; analogously, $\bar{R}_{1}^{\prime} \mathfrak{A}_{1}^{\prime}$ has an inverse, too. Furthermore,

$$
\bar{R}_{1}^{\prime}\left(\mathcal{A}_{1}^{\prime} \bar{R}_{1}^{\prime}\right)^{-1} \quad \text { and } \quad\left(\bar{R}_{1}^{\prime} \cdot \mathfrak{A}_{1}^{\prime}\right)^{-1} \bar{R}_{1}^{\prime}
$$

are a right and a left inverse of $\mathfrak{A}_{1}^{\prime}$, respectively. Denote by R_{1}^{\prime} the inverse of $\mathfrak{A}_{1}^{\prime}$ and by R_{1} the operator in the (t, x)-variables obtained by R_{1}^{\prime} changing back coordinates via the map Λ^{-1}; in other words, R_{1} is such that $\psi_{1}^{(0)} R_{1} \varphi_{1}^{(0)}$ is the operator $\psi_{1}^{(0)^{\prime}} R_{1}^{\prime} \varphi_{1}^{(0)^{\prime}}$ written in the original variables.

Let $\mathcal{A}_{2}=\left(\partial_{t}-P\left(t, x, \partial_{x}\right)\right) \oplus E_{k_{2}}\left(t, x, \partial_{x}\right) ;$ by $\left.\alpha_{3}\right)$, we have $\psi_{2}^{(0)} \mathcal{A} \varphi_{2}^{(0)}=\psi_{2}^{(0)} \mathcal{A}_{2} \varphi_{2}^{(0)}$. If $\gamma \leqslant \gamma_{1}, \gamma_{1}$ suitable, by Theorem 3.1 in [9], \mathcal{A}_{2} is an isomorphism from $K_{\gamma}^{3,12}\left(Q^{(0)}\right)$ onto $K_{\gamma+2}^{\left(s_{1}-2\right) / 2}\left(Q^{(0)}\right) \times K_{\gamma+i+\frac{1}{2}}^{\left(s_{1}+i-\frac{1}{2}\right) / 2}\left(\Gamma^{(0)}\right)$, where i is either 0 or 1 , depending on the order of the boundary operator $E_{k_{2}}$ in problem (3.3.1.a) $)_{\left(k_{1}, k_{2}\right)}$. If $R_{2}=\mathcal{A}_{2}^{-1}$, set

$$
R=\psi_{1}^{(0)} R_{1} \varphi_{1}^{(0)}+\psi_{2}^{(0)} R_{2} \varphi_{2}^{(0)}
$$

We shall prove that $A \in R$ and $R \mathcal{A}$ have an inverse, provided $\delta^{(0)}$ is small enough.
Let $\chi_{j}^{(0)}(j=1,2)$ a function enjoying the same properties as $\psi_{i}^{(0)}$ and such that $\chi_{j}^{(0)} \psi_{j}^{(0)}=\psi_{j}^{(0)}, j=1,2$. We have

$$
\mathcal{A} R=\sum_{j=1}^{2} \chi_{j}^{(0)} \mathcal{A} \psi_{j}^{(0)} R_{j} \varphi_{j}^{(0)}
$$

Let us write the first term in the local coordinate system; we get, with an obvious meaning of the notations,

$$
\chi_{1}^{(0)^{\prime}} \mathscr{A}_{1}^{\prime} \psi_{1}^{(0)^{\prime}} R_{1}^{\prime} \varphi_{1}^{(0)^{\prime}}=\psi_{1}^{(0)^{\prime}} \mathcal{A}_{1}^{\prime} R_{1}^{\prime} \varphi_{1}^{(0)^{\prime}}+\chi_{1}^{(0)^{\prime}}\left[\mathcal{A}_{1}^{\prime}, \psi_{1}^{(0)^{\prime}}\right] R_{1}^{\prime} \varphi_{1}^{(0)^{\prime}} .
$$

Let $\chi_{1}^{(0)} N_{1} \varphi_{1}^{(0)}$ be the operator $\chi_{1}^{(0)^{\prime}}\left[\mathcal{L}_{1}, \psi_{1}^{(0)}\right] R_{1}^{\prime} \varphi_{1}^{(0)}$ written in the original coordinates; arguing as above, the norm of $\chi_{1}^{(0)} N_{1} \varphi_{1}^{(0)}$ in the space of data turns out to be small, if $\delta^{(0)}$ is small enough.

Furthermore,

$$
\chi_{2}^{(0)} \mathcal{A} \psi_{2}^{(0)} R_{2} \varphi_{2}^{(0)}=\varphi_{2}^{(0)} I+\chi_{2}^{(0)}\left[\mathcal{A}, \psi_{2}^{(0)}\right] R_{2} \varphi_{2}^{(0)}
$$

where the norm in the space of data of the second term in the right hand side is small if $\delta^{(0)}$ is small enough. Thus, by a suitable choice of $\delta^{(0)}, \mathcal{A} R$ has an inverse. Analogously, $R \mathcal{A}$ has an inverse, too. Furthermore, $R(\mathcal{A} R)^{-1}$ and $(R \mathcal{A})^{-1} R$ are a right and a left inverse of A, respectively.

This completes the proof of the assertion.

4. - The parabolic problem in the whole cylinder.

4.1. Geometric preliminaries.

Aim of this section is to construct a diffeomorphism which "eylindrizes» the separating surface γ far away from $t=0$. Actually, the exhibited diffeomorphism has further good properties; indeed, it maps the upper part of the cylinder (i.e. the cylinder we obtain by cutting off a layer near $t=0$) onto itself, it maps the boundary onto itself and it leaves time unchanged. Furthermore, it allows to define function spaces in the upper part of the cylinder which fairly fit those we have constructed in the lower part.

Let δ_{1} be a real positive number verifying Hypotheses $\left.\alpha_{0}\right)-\alpha_{3}$) in Section 3.1. If $\left.t_{0} \in\right] 0, \delta_{1}\left[\right.$, denote by $L_{t_{0}}$ the map

$$
(\tau, \omega) \mapsto\left(\exp (-2 \tau), \sqrt{t_{0} / 2} \omega\right)
$$

Theorem 4.1.1. - There exists a 0^{∞} diffeomorphism $r_{t_{0}}$ from $\overline{\Omega_{t_{0} / 2, T}}$ onto itself, such that
i) $r_{t_{0}}\left(\overline{\left.(\partial \Omega)_{t_{0} / 2, T}\right)}=\overline{(\partial \Omega)_{t_{0} / 2, T}}\right.$;
ii) $r_{i_{0}}\left(\gamma \cap \overline{\Omega_{t_{0} / 2, T}}\right)=\left[t_{0} / 2, T\right] \times\left\{x \in \boldsymbol{R}^{n} ;\left(t_{0}, x\right) \in \gamma_{t_{0}}\right\}$;
iii) $r_{t_{0}}\left(\bar{S}_{t}\right)=\bar{S}_{t}, \quad \forall t \in\left[t_{0} / 2, T\right]$;
iv) $\left.r_{t_{0}}\right|_{\left(\operatorname{supp} \varphi_{1}^{(0)}\right)_{t_{0} / 2, \delta_{1}}}=\left.\left(\Lambda^{-1 \circ} L_{t_{0}} \circ T \circ \Lambda\right)\right|_{\left(\operatorname{supp} \varphi_{1}^{(0)}\right)_{t_{0} / 2, \delta_{1}}}$.

Proof. - Let $\varepsilon>0$ sufficiently small. In $\left(\bar{\Omega} \cap S\left(x_{0}, 2 \eta^{(0)}\right)\right)_{0, \delta_{1}+\delta}$ we define a C^{∞} vector field as follows: put

$$
\Phi=L_{i_{0}} \circ T \circ A
$$

By definition, $\Lambda(t, x)=(t, \psi(x))$, where ψ is a C^{∞} diffeomorphism from $\bar{\Omega} \cap$ $\cap S\left(x_{0}, 2 \eta^{(0)}\right)$ into $\overline{\boldsymbol{R}_{+}^{n}}$. So, we have

$$
\Phi(t, x)=\left(t, \sqrt{t_{0} / 2} t^{-\frac{1}{2}} \psi(x)\right)
$$

Then, we define the vector field X_{0} in the following way:

$$
X_{0}(t, x)=d \Phi^{-1}(\Phi(t, x))(1,0)=\left(1, d \psi^{-1}(\psi(x))(\psi(x) / 2 t)\right)
$$

Obviously, the restriction of X_{0} to the lateral boundary of the cylinder is a tangent vector field and the restriction of X_{0} to γ is tangent to γ itself.

Let now $(\bar{t}, \bar{x}) \in \gamma, \delta_{1}+\varepsilon \leqslant \bar{t}<T$; by 2. iii), there exists a neighbourhood $U_{(\bar{t}, \bar{x})}$ of (\bar{t}, \bar{x}) in $\overline{\Omega_{\delta_{1}+\varepsilon / 2, T}}$ and a C^{∞} diffeomorphism $\varrho_{(\bar{t}, \bar{x})}: U_{(\bar{t}, \bar{x})} \rightarrow \boldsymbol{R} \times \overline{\boldsymbol{R}_{+}^{n}}$, such that

$$
\begin{align*}
& \varrho_{(\bar{t}, \bar{x})}\left((\partial \Omega)_{\delta_{1}+\varepsilon / 2, T} \cap U_{(\bar{t}, \bar{x})}\right) \subseteq \boldsymbol{R} \times \boldsymbol{R}^{n-1} \times\{0\} ; \tag{4.1.1.a}\\
& \varrho_{(\bar{t}, \bar{x})}\left(\gamma \cap U_{(\bar{t}, \bar{x})} \subseteq \boldsymbol{R} \times \boldsymbol{R}^{n-2} \times\{(0,0)\}\right.
\end{align*}
$$

By a slight modification of the above formulas, we can recover the case $\vec{t}=T$. Without loss of generality, we may suppose that

$$
\begin{align*}
& \varrho_{(\bar{t}, \bar{x})}(t, x)=\left(t, \psi_{(\bar{t}, \bar{x})}(t, x)\right), \tag{4.1.1.c}\\
& \left(\varrho_{(\bar{t}, \bar{x})}\right)^{-1}(\tau, y)=\left(\tau, \chi\left(\tau, y^{\prime}\right)+y_{n} \nu\left(\chi\left(\tau, y^{\prime}\right)\right)\right), \tag{4.1.1.d}
\end{align*}
$$

where χ is a coordinate system of Γ at (\bar{t}, \bar{x}) and ν denotes the unit inward normal field to Γ. We also suppose that:
(4.1.1.e) the $(n-1)$-th component of $\varrho_{(\bar{t}, \bar{x})}(t, x)$ is equal to the geodetic distance in Γ between the orthogonal projection of (t, x) and $\gamma \cap \bar{S}_{b}$.

Now, $\left\{U_{(\bar{t}, \bar{x})} ;(\bar{t}, \bar{x}) \in \gamma \cap \overline{\Omega_{\delta_{1}+\varepsilon / 2, T}}\right\}$ is an open covering of $\gamma \cap \overline{\Omega_{\delta_{1}+\varepsilon / 2, T}}$; call $\left\{U_{1}, \ldots, U_{p}\right\}$ a finite subcovering and $\varrho_{1}, \ldots, \varrho_{p}$ the corresponding diffeomorphisms.

Let us now define the vector fields

$$
X_{j}(t, x)=d \varrho_{j}^{-1}\left(\varrho_{j}(t, x)\right)(1,0), \quad(t, x) \in U_{j}, j=1, \ldots, p
$$

It turns out that X_{j} is a C^{∞}-vector field tangent to $\bar{\Gamma}$ on $U_{j} \cap \bar{\Gamma}$ and to γ on $U_{j} \cap \gamma$; furthermore, by (4.1.1.c), the t-component of X_{j} is always equal to 1 and, by (4.1.1. d), X_{j} is parallel to Γ. Let $\left\{\omega_{j} ; j=1, \ldots, p\right\}$ be a C^{∞}-partition of unity subordinated to the covering $\left\{U_{j} ; j=1, \ldots, p\right\}$; we agree to think of the ω_{j} 's as continued in a C^{∞} way to all of $\overline{\Omega_{0, T}}$, so that $0 \leqslant \omega_{j} \leqslant 1, \omega_{j} \equiv 0$ in $\overline{\Omega_{0, \delta_{1}}}, j=1, \ldots, p$. If we put $\omega_{0}=1-\sum_{j=1}^{p} \omega_{j}$ in $\left(\bar{\Omega} \cap S\left(x_{0}, 2 \eta^{(0)}\right)\right)_{0, \delta_{1}+\varepsilon}$, then it turns out that $\left\{\omega_{0}, \ldots, \omega_{p}\right\}$ is at partition of unity in

$$
B=\left(\bar{\Omega} \cap S\left(x_{0}, 2 \eta^{(0)}\right)\right)_{\delta_{1} \div \varepsilon} \cup \bigcup_{j=1}^{\eta} U_{j} .
$$

Set

$$
\tilde{X}(t, x)=\sum_{j=0}^{p} \omega_{j}(t, x) X_{j}(t, x), \quad(t, x) \in B
$$

Obviously, the vector field \tilde{X} is tangent to Γ (or to γ) at every point of Γ (or of γ) and its t-component is always positive. Let now V be a neighbourhood of $\gamma \cap \bar{\Omega}_{0, T}$ in $\bar{\Omega}_{0, T}$, such that

$$
\left(\operatorname{supp} \varphi_{1}^{(0)}\right)_{0, \delta_{1}+8} \subset \bar{V} \cap \bar{\Omega}_{0, T} \subset B
$$

and let $w \in C^{\infty}\left(\overline{\Omega_{0, T}}\right), 0 \leqslant w \leqslant 1, w \equiv 1$ in $V, \operatorname{supp} w \subset B$; then define, in $\overline{\Omega_{0, T}}$,

$$
X(t, x)=w(t, x) \tilde{X}(t, x)+(1-w(t, x))(1,0)
$$

The vector field X has the same properties as \tilde{X}.
If X_{t} is the t-component of X, put $Y=\bar{X} / X_{t}=(1, \tilde{Y})$. Let $x \in \bar{\Omega}$ and consider the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{\eta}=Y(\eta) \tag{4.1.1.f}\\
\eta\left(t_{0} / 2\right)=\left(t_{0} / 2, x\right)
\end{array}\right.
$$

The solution of (4.1.1.f) has the form $t \mapsto(t, \tilde{\eta}(t ; x))$, where $\tilde{\eta}(\cdot ; x)$ is the solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{\eta}(t)=\tilde{Y}(t, \tilde{\eta}(t)) \\
\tilde{\eta}\left(t_{0} / 2\right)=x
\end{array}\right.
$$

Since $\bar{\Omega}$ is a compact manifold and \tilde{Y} is tangent to $\partial \Omega$ in $\partial \Omega, \tilde{\eta}(\cdot ; x)$ can be continued to all of $\left[t_{0} / 2, T\right]$.

Denote now by $r_{t_{0}}$ the map $(t, x) \mapsto(t, y)$, where y is such that $\tilde{\eta}(t ; y)=x$. Obviously, $r_{t_{0}}$ is a O^{∞} diffeomorphism from $\overline{\Omega_{t_{0} / 2, T}}$ onto itself and verifies conditions i), ii), iii) of the assertion.

To prove that condition iv) holds, it is enough to show that

$$
r_{t_{0}}(t, x)=\left(t, \psi^{-1}\left(\sqrt{t_{0} / 2} t^{-\frac{1}{2}} \psi(x)\right)\right)
$$

$\forall(t, x) \in E=\left(\operatorname{supp} \varphi_{1}^{(0)}\right)_{t_{0} / 2, \delta_{1}}$. Since $Y=X_{0}$ in E, this is easily accomplished by remarking that, in E,

$$
r_{t_{0}}(t, x)=\left(\mathcal{R}_{i} \circ \Phi^{-1} \circ \pi_{t_{0} / 2} \circ \Phi\right)(t, x)
$$

where

$$
\begin{aligned}
& \pi_{t_{0} / 2}(s, y)=\left(t_{0} / 2, y\right) \\
& \Re_{i}\left(t_{0} / 2, z\right)=(t, z)
\end{aligned}
$$

So, the assertion is completely proved.
Remark 4.1.2. - Since the vector field Y is independent of the choice of t_{0}, it easily follows by assertion iv) in the preceding theorem that, if $\delta^{\prime}>\delta>0, \forall(t, x) \in$ $\in\left(L_{\delta^{\prime}}^{-1} \circ \Lambda\right)\left(\left(\operatorname{supp} \varphi_{1}^{(0)}\right)_{\delta^{\prime} / 2, T}\right)$,

$$
\left(L_{\delta}^{-1} \circ \Lambda \circ r_{\delta} \circ r_{\delta^{\prime}}^{-1} \circ \Lambda^{-1} \circ L_{\delta^{\prime}}\right)(t, x)=(t, x) .
$$

4.2. Function spaces.

Definition 4.2.1 (see [8], § 2.1). We use the notations of Section 2.1. Set

$$
\zeta_{j}(t, x)=\varphi_{j}\left(\sqrt{t_{0} / 2} \psi(t, x)\right), \quad j=2, \ldots, m
$$

and continue them by zero to all of $\bar{\Omega}$,

$$
\zeta_{1}=1-\sum_{j=2}^{m} \zeta_{j}
$$

Furthermore, put

$$
k_{j}(t, x)=\left(t, h_{j}\left(\sqrt{t_{0} / 2} \psi(t, x)\right)\right), \quad j=2, \ldots, m
$$

If $t_{0} / 2 \leqslant a<b \leqslant T$, we shall denote by $H_{(s / 2 ; s,-l, l)}\left(\Omega_{a, b}\right)$ the space of functions u such that

$$
\|u ; a, b\|_{(s / 2 ; s,-l, l)}^{2}=\left\|\zeta_{1} u ; a, b\right\|_{s_{1} / 2 ; s_{1}}^{2}+\sum_{j=2}^{m}\left\|\left(\zeta_{j} u\right) \circ k_{j}^{-1} ; a, b\right\|_{s_{j} / 2 ; s_{j},-l_{j}, l_{j}}^{2}<+\infty
$$

where the norms in the right hand side for $j>1$ are computed either in $\left(\boldsymbol{R}_{+}^{n}\right)_{a, b}$ or in $\left(\boldsymbol{R}^{n}\right)_{a, b}$, according to $\operatorname{supp} \zeta_{j}$ meets or not Γ. We note explicitly that s_{j}, l_{j} are the same as in Definition 2.1.5.

Whenever there is no way to misunderstanding, we shall omit the end-points of the time interval in the notation of the norm.

In an analogous way, spaces on the lateral boundary of the cylinder are defined.
Properties of these spaces (in particular trace theorems and continuity of the derivatives) are established in [8]; § 2.1.

Definition 4.2.2. - Let $t_{0} / 2 \leqslant \alpha<\beta \leqslant T$; denote by $\mathcal{R}_{(s / 2 ; s,-l, 7)}\left(\Omega_{\star, \beta}\right)$ the space of functions u such that

$$
\{u ; \alpha, \beta\}_{(s / 2 ; s,-l, l)}=\left\|u \circ r_{t_{\mathrm{o}}}^{-1} ; \alpha, \beta\right\|_{(s / 2 ; s,-l, l)}<+\infty
$$

Spaces on the lateral boundary of the cylinder are defined analogously.
Whenever there is no way to misunderstanding, we shall omit the end-points of the time interval in the notation of the norm.

Proposition 4.2 .3 ([8], Proposition 3.2.2). - i) Let $s \geqslant 1$; then the operator ∂_{i} is bounded from

$$
\mathcal{R}_{(s / 2 ; s,-l, l)}\left(\Omega_{\alpha, \beta}\right) \quad \text { into } \quad \mathcal{R}_{((s-1) / 2 ; s-1,-l, l)}\left(\Omega_{\alpha, \beta}\right), \quad i=1, \ldots, n ;
$$

ii) Let $s \geqslant 2$; then the operator ∂_{t} is bounded from

$$
\mathcal{R}_{(s / 2 ; s,-l, l)}\left(\Omega_{\alpha, \beta}\right) \quad \text { into } \quad \mathcal{R}_{((s-2) / 2 ; s-2,-l, l)}\left(\Omega_{\alpha, \beta}\right) .
$$

Lemma 4.2.4. - Let $t_{0} / 2 \leqslant \alpha<\beta \leqslant t_{0}$; then

$$
\mathcal{R}_{(s / 2 ; s,-l, b)}\left(\Omega_{\alpha, \beta}\right)=\Pi^{(s / 2 ; s,-t, l)}\left(\Omega_{\alpha, \beta}\right),
$$

algebraically and topologically.
Proof. - Let $u \in K^{(s / 2 ; s,-l, b)}\left(\Omega_{\alpha, \beta}\right)$ and set $v=u \circ r_{i_{0}}^{-1}$. We have

$$
\begin{aligned}
\{u ; \alpha, \beta\}_{(s / 2 ; s,-l, l)}^{2}=\|v ; \alpha, \beta\|_{(s / 2 ; s,-l, b)}^{2} & = \\
& =\left\|\zeta_{1} v ; \alpha, \beta\right\|_{s_{1} / 2 ; s_{1}}^{2}+\sum_{i=2}^{m}\left\|\left(\zeta_{j} v\right) \circ k_{j}^{-1} ; \alpha, \beta\right\|_{\beta_{j} / 2 ; s_{j},-l ; l_{j}}^{2}=\sum_{j=1}^{m} I_{j}^{2}
\end{aligned}
$$

Let us consider the case $j>1$. We have

$$
\begin{aligned}
& I_{j} \leqslant \sum_{k=1}^{2}\left\|\left(\zeta_{j}\left(\varphi_{k}^{(0)} u\right) \circ r_{t_{0}}^{-1}\right) \circ k_{j}^{-1} ; \alpha, \beta\right\|_{s_{j} / 2 ; s_{j},-l_{j}, l_{j}} \leqslant \\
& \leqslant C_{1} \sum_{k=1}^{2}\left\|\left(\varphi_{j}\left(\left(\varphi_{k}^{(0)} u\right) \circ \hat{t}_{t_{0}}^{-1}\right) \circ \Lambda^{-1} \circ L_{\varepsilon_{0}}\right) \circ h_{j}^{-1} ;-\frac{1}{2} \log \beta,-\frac{1}{2} \log \alpha\right\|_{s_{j} / 2 ; s_{j},-l_{j}, l_{i}},
\end{aligned}
$$

by Proposition 2.1.4 in [8]. As, by Hypothesis α_{3}) and condition iv) of Theorem 4.1.1,

$$
\left[-\frac{1}{2} \log \beta,-\frac{1}{2} \log \alpha\right] \times U_{j} \subset L_{t_{0}}^{-1} \circ \Lambda \circ r_{t_{0}}\left([\alpha, \beta] \times S\left(x_{0}, \eta^{(0)}\right)\right)
$$

the term corresponding to $k=2$ vanishes. We have now only to deal with the term corresponding to $k=1$; so, by condition iv) of Theorem 4.1.1, we get
$I_{j} \leqslant C_{1}\left\|\left(\varphi_{j}\left(\left(\varphi_{1}^{(0)} u\right) \circ \Lambda^{-1} \mathrm{o} T^{-1}\right)\right) \circ h_{j}^{-1} ;-\frac{1}{2} \log \beta,-\frac{1}{2} \log \alpha\right\|_{s / 2 ; s_{j},-l_{j}, l_{j}} \leqslant C_{2}[u ; \alpha, \beta]_{(s,-l, t) ; \gamma}$.
Let us now consider the case $j=1$; we have

$$
I_{1} \leqslant \sum_{k=1}^{2}\left\|\zeta_{1}\left(\varphi_{k}^{(0)} u\right) \circ r_{t_{0}}^{-1} ; \alpha, \beta\right\|_{s_{1} / 2 ; s_{1}}=J_{1}+J_{2}
$$

J_{2} is easily estimated by $\left\|\varphi_{2}^{(0)} u ; \alpha, \beta\right\|_{s_{1} / 2 ; s_{1}} \leqslant C_{3}[u ; \alpha, \beta]_{(s,-l, l) ; \gamma}$.
In order to estimate J_{1}, we note that $\zeta_{1}=\varphi_{1} \circ L_{i_{0}}^{-1} \circ A$, on $r_{t_{0}}\left(\overline{\left(\operatorname{supp} \varphi_{1}^{(0)}\right)_{\alpha, \beta}}\right)$, so that, using condition iv) of Theorem 4.1.1, we get

$$
\begin{aligned}
& J_{1} \leqslant C_{4}\left\|\varphi_{1}\left(\varphi_{1}^{(0)} u\right) \circ r_{t_{0}}^{-1} \circ \Lambda^{-1} \circ L_{t_{0}} ;-\frac{1}{2} \log \beta,-\frac{1}{2} \log \alpha\right\|_{s_{1} / 2 ; s_{1}}= \\
& =C_{4}\left\|\varphi_{1}\left(\varphi_{1}^{(0)} u\right) \circ \Lambda^{-1} \circ T^{-1} ;-\frac{1}{2} \log \beta,-\frac{1}{2} \log \alpha\right\|_{s_{1} / 2 ; s_{1}} \leqslant C_{5}[u ; \alpha, \beta]_{\left(s_{0},-l, l\right) ; \gamma}
\end{aligned}
$$

This proves the inclusion $\pi^{(s / 2 ; s,-l, l)}\left(\Omega_{\alpha, \beta}\right) \subset \mathcal{R}_{(s / 2 ; s,-l, l)}\left(\Omega_{\alpha, \beta}\right)$; the converse inclusion is proved analogously.

Definition 4.2.5. - We denote by $\mathcal{Q}_{\gamma}^{(s / 2 ; s,-1, t)}(Q)$ the space of all functions u such that

$$
|[u]|_{(s / 2 ; s,-l, l) ; \gamma}^{2}=\left[u ; 0, t_{0}\right]_{(s,-l, l) ; \gamma}^{2}+\left\{u ; t_{0} / 2, T\right\}_{(s / 2 ; s,-l, l)}^{2}<+\infty .
$$

Analogously we define the lateral boundary spaces $\mathcal{Q}_{\gamma}^{((\sigma+e) / 2 ; \sigma, Q)}(T)$.
We remark that, by Lemma 4.2.4, the squared and curl bracket norms give the same "regularity» on the layer $\Omega_{t_{0} / 2, t_{\mathrm{a}}}$. Furthermore, \mathcal{Q}-spaces are embedded in Baiocch's [4] ones, provided K-spaces are (see, e.g., Definition 3.2.1).

The following proposition asserts that \mathbb{Q}-spaces do not depend on the choice of t_{0}; in fact

Proposition 4.2.6. - Let $\left.t_{1} \in\right] 0, \delta_{1}[$; then the norms

$$
\begin{equation*}
\left(\left[u ; 0, t_{1}\right]_{(s,-l, l) ; v}^{2}+\left\{u ; t_{1} / 2, T\right\}_{(s / 2 ; s,-l, l)}^{2}\right)^{\frac{1}{2}} \tag{4.2.6.a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\left[u ; 0, t_{0}\right]_{(s,-l, l) ; \gamma}^{2}+\left\{u ; t_{0} / 2, T\right\}_{(s / 2 ; s,-l, l)}^{2}\right)^{\frac{1}{2}} \tag{4.2.6.b}
\end{equation*}
$$

are equivalent.

Proof. - We suppose, for instance, that $t_{0}<t_{1}$. Let u be such that (4.2.6.a) is finite. Then, trivially,

$$
\left[u ; 0, t_{0}\right]_{(s,-l, l) ; \gamma} \leqslant\left[u ; 0, t_{1}\right]_{(s,-l, l) ; \gamma} .
$$

Now,

$$
\begin{aligned}
&\left\{u ; t_{0} / 2, T\right\}_{(s / 2 ; s,-l, l)}=\left\|u \circ r_{t_{0}}^{-1} ; t_{0} / 2, T\right\|_{(z / 2 ; s,-l, l)} \leqslant \\
& \leqslant C_{1}\left(\left\|u \circ r_{t_{0}}^{-1} ; t_{0} / 2, t_{1}\right\|_{(s / 2 ; s,-l, l)}+\left\|u \circ r_{t_{0}}^{-1} ; t_{1} / 2, T\right\|_{(s / 2 ; s,-l, l)}\right)
\end{aligned}
$$

The first term in the r.h.s. of the above inequality is easily estimated, by Lemma 4.2.4, with the first term in (4.2.6.a). Let us estimate the second one; we have:

$$
\begin{aligned}
\left\|u \circ r_{t_{0}}^{-1} ; t_{1} / 2, T\right\|_{(s / 2 ; s,-l, l)} \leqslant \| \zeta_{1}\left(u \circ r_{i_{0}}^{-1}\right) & ; t_{1} / 2, T \|_{s_{1} / 2 ; s_{1}}+ \\
& +\sum_{j=2}^{m}\left\|\left(\zeta_{j}\left(u \circ r_{t_{0}}^{-1}\right)\right) \circ{k_{j}^{-1}}_{-1} t_{1} / 2, T\right\|_{s / 2 ; s,-l_{j}, l_{j}}=\sum_{j=1}^{m} I_{j}
\end{aligned}
$$

Now,
$I_{1} \leqslant C_{2}\left\|\left(\zeta_{1} \circ r_{t_{0}} \circ r_{t_{1}}^{-1}\right)\left(u \circ r_{t_{1}}^{-1}\right) ; t_{1} / 2, T\right\|_{s_{1} / 2 ; s_{1}} \leqslant$

$$
\leqslant C_{2} \sum_{k=1}^{m}\left\|\bar{\zeta}_{k}\left(\zeta_{1} \circ r_{t_{0}} \circ r_{i_{1}}^{-1}\right)\left(u \circ r_{t_{1}}^{-1}\right) ; t_{1} / 2, T\right\|_{s_{1} / 2 ; s_{1}}=O_{2} \sum_{k=1}^{m} J_{k}
$$

where $\left\{\bar{\zeta}_{k} ; k=1, \ldots, m\right\}$ is a partition of unity in $\bar{\Omega}$, defined quite analogously to $\left\{\zeta_{k} ; k=1, \ldots, m\right\}$ in Definition 4.2.1, replacing t_{0} by t_{1}. Now,

$$
J_{1} \leqslant O_{3}\left\|\xi_{1}\left(u \circ r_{t_{1}}^{-1}\right) ; t_{1} / 2, T\right\|_{s_{1} / 2 ; s_{1}} \leqslant C_{3}\left\|u \circ r_{t_{1}}^{-1} ; t_{1} / 2, T\right\|_{(s / 2 ; s,-l, l)}
$$

On the other hand, since $\operatorname{supp} \bar{\zeta}_{k e} \subset\left[t_{1} / 2, T\right] \times S\left(x_{0}, \eta^{(0)}\right)$, if $k>1$,

$$
\begin{aligned}
J_{k}=\| \bar{\zeta}_{k}\left(\varphi_{1} \circ L_{t_{0}}^{-1} \circ \mathcal{A} \circ r_{i_{0}} \circ r_{t_{1}}^{-1}\right)\left(u \circ r_{t_{1}}^{-1}\right) & ; t_{1} / 2, T \|_{s_{1} / 2 ; s_{1}}= \\
& =\left\|\left(\left(\left(\varphi_{1} \varphi_{k}\right) \circ L_{t_{1}}^{-1} \circ \Lambda\right)\left(u \circ r_{i_{1}}^{-1}\right)\right) \circ h_{k}^{-1} \circ h_{k} ; t_{1} / 2, T\right\|_{s_{1} / 2 ; s_{1}}
\end{aligned}
$$

by Remark 4.1.2. So, by (2.1.4.c) and (2.1.5.i),

$$
J_{k} \leqslant C_{4}\left\|\left(\bar{\zeta}_{k}\left(u \circ r_{t_{1}}^{-1}\right)\right) \circ \bar{k}_{j} ; t_{1} / 2, T\right\|_{s_{k} / 2 ; s_{k},-l_{k}, l_{k}} \leqslant C_{4}\left\|u \circ r_{t_{1}}^{-1} ; t_{1} / 2, T\right\|_{(s / 2 ; s,-l, l)}
$$

where $\vec{k}_{j}, j=2, \ldots, m$, is defined quite analogously to k_{j} in Definition 4.2.1, replacing t_{0} by t_{1}. Let us now estimate the term $I_{j}, j>1$. We get, by Remark 4.1.2,

$$
\begin{aligned}
& I_{j}=\left\|\left(\left(\varphi_{j} \circ L_{t_{0}}^{-1} \circ \Lambda\right)\left(u \circ r_{t_{1}-1}^{-1} \circ r_{l_{1}} \circ r_{t_{0}}^{-1}\right)\right) \circ \Lambda^{-1} \circ L_{t_{0}} \circ h_{j}^{-1} ; t_{1} / 2, T\right\|_{s_{j} / 2 ; s_{j},-l_{j}, l_{j}}= \\
&=\left\|\left(\varphi_{j}\left(\left(u \circ r_{t_{1}}^{-1}\right) \circ \Lambda^{-1} \circ L_{t_{1}}\right)\right) \circ h_{j}^{-1} ; t_{1} / 2, T\right\|_{s_{j} / 2 ; s_{j},-l_{j}, l_{j}}= \\
&=\left\|\left(\varphi_{j}\left(\left(u \circ r_{t_{1}}^{-1}\right) \circ \Lambda^{-1} \circ L_{t_{1}}\right)\right) \circ L_{t_{1}}^{-1} \circ \Lambda \circ \bar{k}_{j}^{-1} ; t_{1} / 2, T\right\|_{s / 2 ; s_{j},-l_{j}, l_{j}}= \\
&=\left\|\left(\bar{\xi}_{j}\left(u \circ r_{t_{1}}^{-1}\right)\right) \circ \bar{k}_{j}^{-1} ; t_{1} / 2, T\right\|_{s / 2 ; s_{j},-l_{j}, l_{j}} \leqslant\left\|u \circ r_{t_{1}}^{-1} ; t_{1} / 2, T\right\|_{(s / 2 ; s,-l, l)}
\end{aligned}
$$

Thus, (4.2.5.b) is finite. Analogously we prove the converse inequality.

Let us now recall some trace results about \mathfrak{N}-spaces.
Proposition 4.2.7 (See Proposition 3.2.5 in [8]). - Let $t_{0} / 2 \leqslant \alpha<\beta \leqslant T, \ell_{k} \in N_{0}$, $s>k+\frac{1}{2}$; we define the k-th order trace on $(\partial \Omega)_{\alpha, \beta}$ as follows:

$$
\begin{equation*}
\gamma_{k} u=\left.\left(\gamma_{0}\left(\left(\partial_{\nu}^{k} u\right) \circ r_{i_{0}}^{-1}\right)\right) \circ r_{t_{0}}\right|_{(\partial \Omega)_{\alpha, \beta}} \tag{4.2.7.a}
\end{equation*}
$$

where ∂_{v}^{k} denotes the k-th order inward normal derivative (see Definition 3.2.3 in [8]). Then γ_{k} is a bounded operator from

$$
\mathcal{R}_{(\delta / 2 ; s,-l, l)}\left(\Omega_{\alpha, \beta}\right) \quad \text { into } \quad \mathcal{R}_{\left(\left(s-k-\frac{1}{2}\right) / 2 ; s-k-l-\frac{1}{2}, l\right)}\left((\partial \Omega)_{\alpha, \beta}\right) .
$$

Lemma 4.2.8. - Let $k \in N_{0}, s>k+\frac{1}{2}$ and $u \in \mathcal{Q}_{,}^{(s / 2 ; s,-l, \nu)}(Q)$. For sake of simplicity and only in this lemma, we shall denote by $\gamma_{i}^{(1)}$ and $\gamma_{i}^{(2)}$ the i-th order trace operator in π - and \mathbb{R}-spaces respectively. Then, we have

$$
\begin{equation*}
\gamma_{i}^{(1)}\left(\left.u\right|_{\left[t_{0} / 2, t_{0}\right] \times \Omega}\right)=\gamma_{i}^{(2)}\left(\left.u\right|_{\left[t_{0} / 2, t_{0}\right] \times \Omega}\right), \quad i=0, \ldots, k . \tag{4,2.8.a}
\end{equation*}
$$

Proof. - We need only to prove the assertion in the case $i=0$, as otherwise we can replace the function u by $\partial_{v}^{i} u$. Put

$$
w=\left.u\right|_{\left[t_{0} / 2, t_{0}\right] \times \Omega}
$$

as $w \in \mathcal{R}_{(s / 2 ; s,-T, l)}\left(\Omega_{t_{0} / 2, t_{0}}\right)$, we have

$$
\gamma_{0}^{(2)} w=\left.\sum_{k=1}^{2}\left(\gamma_{0}\left(\left(\varphi_{k}^{(0)} w\right) \circ r_{t_{0}}^{-1}\right)\right) \circ r_{i_{0}}\right|_{(\partial \Omega)_{t_{0} / 2, t_{0}}}=I_{1}+I_{2}
$$

Now, $I_{2}=\gamma_{0}\left(\varphi_{2}^{(0)} w\right)$, where γ_{0} is the trace operator in the usual Sobolev spaces. On the other hand, by condition iv) in Theorem 4.1.1,

$$
I_{1}=\left(\gamma_{0}\left(\left(\varphi_{1}^{(0)} w\right) \circ \Lambda^{-1}\right)\right) \circ \Lambda_{|\partial \Omega\rangle_{t_{0} / \Omega, t_{v}}}
$$

since $A, T, L_{t_{0}}$ commute with the ordinary trace operator.
Thus, the assertion is proved.
Definition 4.2.9. - Let $k \in N_{0}, s>k+\frac{1}{2}$ and $u \in \mathcal{Q}_{\gamma}^{(s / 2 ; s,-l, l)}(Q)$; then, by Propositions 3.2 .8 and 4.2.7, both $\left.u\right|_{\Omega_{0,2_{0}}}$ and $\left.u\right|_{\Omega_{0} I_{2}, T}$ have k-th order traces on the lateral boundary of the cylinder. Furthermore, by Lemma 4.2.8, the restrictions of these traces to the common layer $(\partial \Omega)_{t_{0} / 2, t_{0}}$ coincide. This justifies the following definition of k-th order trace:

$$
\gamma_{k} u= \begin{cases}\gamma_{k}\left(\left.u\right|_{\Omega_{0, t_{0}}}\right), & \text { in } \Omega_{0, t_{0}} \\ \gamma_{k}\left(\left.u\right|_{\Omega_{t_{0} / 2, T}}\right), & \text { in } \Omega_{t_{0} / 2, T}:\end{cases}
$$

where the first trace is understood to be a K-space one, while the second trace an \mathcal{R}-space one.

Moreover, the above mentioned Propositions guarantee that γ_{k} is bounded from $\mathcal{Q}_{\gamma}^{(s / 2 ; s,-l, l)}(Q)$ into $\mathcal{Q}_{\gamma+k}^{\left(\left(s-k-\frac{1}{2}\right) / 2 ; s-l-k-\frac{1}{2}, l\right)}(\Gamma)$.

Remark 4.2.10. - Let $s>1, \gamma-n / 2-1+s_{1}<0$; then, by Definition 3.2.2, if $u \in \mathfrak{Q}_{\gamma}^{(s / 2 ; s,-l, l)}(Q)$, it is quite natural the following position

$$
\gamma_{0}^{(0)} u=0
$$

4.3. Solution of the global problem.

Let us consider the problem (P) described in Chapter 2. The results obtained in Section 3.3 and in [8], Theorem 3.3.1, allow to prove an existence, uniqueness and "regularity" theorem; namely, we have

Theorem 4.3.1. - Let $s \geqslant 2, \gamma \in \boldsymbol{R}_{-}$; then the operator associated to problem (P) is an isomorphism from

$$
\mathfrak{Q}_{\gamma}^{(s / 2 ; s,-l, l)}(Q) \quad \text { onto } \quad \mathcal{Q}_{\gamma+2}^{((s-2) / 2 ; s-2,-l, l)}(Q) \times\left(X_{i=1}^{2} \mathbb{Q}_{\gamma+k_{i}}^{\left(\left(s-k_{i}-\frac{1}{2}\right) / 2 ; s-l-k_{i}-\frac{1}{2}, l\right)}\left(\Gamma_{i}\right)\right)
$$

provided $|\gamma|$ is large enough.
Furthermore, we have the a priori estimate

$$
\begin{align*}
&|[u]|_{(s / 2 ; s,-l, l) ; \gamma} \leqslant C\left(\left|\left[\left(\partial_{t}-P\left(t, x, \partial_{x}\right)\right) u\right]\right|_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}+\right. \tag{4.3.1.a}\\
&\left.+\sum_{i=1}^{2}\left|\left[E_{k_{i}}\left(t, x, \partial_{x}\right) u\right]\right|_{\left(\left(s-k i-\frac{1}{2}\right) / 2 ; s-k_{i}-l-\frac{1}{2}, l\right) ; \gamma+k_{i}}\right)
\end{align*}
$$

Proof. - By Theorem 3.3.1, there exists a function $u^{(0)} \in \Pi_{\gamma}^{(s / 2 ; s,-l, l)}\left(Q^{(0)}\right)$, which is a solution of problem (P) in $Q^{(0)}$, the lower part of the cylinder, such that

$$
\begin{align*}
& {\left[u^{(0)}\right]_{(s,-l, l) ; \gamma} \leqslant C_{1}\left(\left[\left(\partial_{t}-P\left(t, x, \partial_{x}\right)\right) u^{(0)}\right]_{(s-2,-l, l) ; \gamma \div 2}+\right.} \tag{4.3.1.b}\\
&\left.+\sum_{i=1}^{2}\left[E_{k_{i}}\left(t, x, \partial_{x}\right) u^{(0)}\right]_{\left(s-l-k_{i}-\frac{1}{2}, l\right) ; \gamma+k_{i}}\right)
\end{align*}
$$

provided $|\gamma|$ is large.
Let l be a continuation operator to all of Q, which is continuous from $\tilde{K}_{\gamma,}^{(\beta / 2 ; s,-l, l)}\left(Q^{(0)}\right)$ into $\mathfrak{Q}_{\gamma}^{(s / 2 ; s,-l, l)}(Q)$. Now, put

$$
\begin{aligned}
& f^{*}=f-\left(\partial_{t}-P\left(t, x, \partial_{x}\right)\right) l u^{(0)} \\
& g_{i}^{*}=g_{i}-E_{k_{i}}\left(t, x, \partial_{x}\right) l u^{(0)}, \quad i=1,2
\end{aligned}
$$

then,

$$
\begin{aligned}
& \left.f^{*}\right|_{\Omega_{d}^{(0)} / 1, T} \in \mathcal{R}_{((s-2) / 2 ; s-2,-l, t)}\left(\Omega_{\delta^{(0)} / 2, T}\right), \\
& \left.g_{i}^{*}\right|_{\Gamma_{d}^{(0)} / 2, T} \in \mathcal{R}_{\left(\left(s-k_{i}-\frac{1}{2}\right) / 2 ; s-k_{i}-l-\frac{1}{2}, l\right)}\left(\Gamma_{\delta^{(0) / 2, T}}\right), \quad i=1,2,
\end{aligned}
$$

and f^{*} and g_{i}^{*} are zero when $\left.t \in\right] \delta^{(0)} / 2, \delta^{(0)}[$; hence, in particular, they are consistent with zero at $t=\delta^{(0)} / 2$ (see Definition 3.2.6 in [8]). So, by Theorem 3.3.1 in [8], there exists a unique solution $u_{1} \in \mathbb{R}_{(s / 2 ; s,-l, l)}\left(\Omega_{\delta^{(0)} / 2, T}\right)$ of the problem

$$
\begin{cases}\left(\partial_{t}-P\left(t, x, \partial_{x}\right)\right) u_{1}=f^{*}, & \text { in } \Omega_{\delta^{(0)} / 2, T} \\ E_{k_{i}}\left(t, x, \partial_{x}\right) u_{1}=g_{i}^{*}, & \text { in } \Gamma_{i} \cap(\partial \Omega)_{\delta^{(0)} / 2, T}, \quad i=1,2\end{cases}
$$

which is consistent with zero at $t=\delta^{(0)} / 2$. Furthermore, the following estimate holds:

$$
\begin{align*}
&\left\{u_{1} ; \delta^{(0)} / 2, T\right\}_{(s / 2 ; s,-l, l)} \leqslant C_{2}\left(\left\{f^{*} ; \delta^{(0)} / 2, T\right\}_{((s-2) / 2 ; s-2,-l, l)}+\right. \tag{4.3.1.c}\\
&\left.+\sum_{i=1}^{2}\left\{g_{i}^{*} ; \delta^{(0)} / 2, T\right\}_{\left(\left(s-k_{i}-\frac{1}{2}\right) / 2 ; s-k_{i}-l-\frac{1}{2}, l\right)}\right)
\end{align*}
$$

By the corrisponding property of data, u_{1} is zero in $\Omega_{\delta(0) / 2, \delta(0)}$, and we shall think of it as continued by zero in $\Omega_{0, \delta^{(\alpha)} / 2}$. Set

$$
u=l u^{(0)}+u_{1}
$$

It is obvious, by definition, that u is a solution of the problem (P). Moreover, we have, by (4.3.1.b) and (4.3.1.c)

$$
\begin{aligned}
|[u]|_{(s / 2 ; s,-l, l) ; \gamma} \leqslant & \mid\left[\left.\left[u^{(0)}\right]\right|_{(s / 2 ; s,-l, l) ; \gamma}+\left|\left[u_{1}\right]\right|_{(s / 2 ; s,-l, l) ; \gamma} \leqslant\right. \\
& \leqslant C_{3}\left(\left[u^{(0)}\right]_{(s,-l, l) ; \gamma}+\left\{u_{1} ; \delta^{(0)} / 2, T\right\}_{(s / 2 ; s,-l, l) ; \gamma}\right) \leqslant \\
& \leqslant C_{4}\left(\left[f ; 0, \delta^{(0)}\right]_{(s-2,-l, l) ; \gamma+2}+\left\{f^{*} ; \delta^{(0)} / 2, T\right\}_{((s-2) / 2 ; s-2,-l, l)}+\right. \\
& \left.+\sum_{i=1}^{2}\left(\left[g_{i} ; 0, \delta^{(0)}\right]_{\left(s-k_{i}-l-\frac{1}{2}, l\right) ; \gamma+k_{t}}+\left\{g_{i}^{*} ; \delta^{(0)} / 2, T\right\}_{\left(\left(s-k_{i}-\frac{1}{2}\right) / 2 ; s-k_{i}-l-\frac{1}{2}, l\right)}\right)\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
&\left\{f^{*} ; \delta^{(0)} / 2, T\right\}_{((s-2) / 2 ; s-2,-l, l)} \leqslant\left\{f ; \delta^{(0)} / 2, T\right\}_{((s-2) / 2 ; s-2,-l, l)}+C_{5}\left\{l u^{(0)}\right\}_{(s / 2 ; s,-l, l)} \leqslant \\
& \leqslant\left\{f ; \delta^{(0)} / 2, T\right\}_{((s-2) / 2 ; s-2,-l, l)}+C_{6}\left[u^{(0)} ; 0, \delta^{(0)}\right]_{(s,-l, l) ; \gamma} \leqslant \\
& \leqslant\left\{f ; \delta^{(0)} / 2, T\right\}_{((s-2) / 2 ; s-2,-l, l)}+C_{7}\left(\left[f ; 0, \delta^{(0)}\right]_{(s-2,-l, l) ; \gamma+2}+\right. \\
&\left.+\sum_{i=1}^{2}\left[g_{i} ; 0, \delta^{(0)}\right]_{\left(s-k i-l-\frac{1}{2}, l\right) ; \gamma+k_{i}}\right) \leqslant \\
& \leqslant C_{8}\left([f f]_{((s-2) / 2 ; s-2,-l, l) ; \gamma+2}+\sum_{i=1}^{2}\left|\left[g_{i}\right]\right|_{\left.\left(s-k_{i}-\frac{1}{2}\right) / 2 ; s-k i-l-\frac{1}{2}, l\right) ; \gamma+k_{i}}\right) .
\end{aligned}
$$

In an analogous way, $\left\{g_{i}^{*} ; \delta^{(0)} / 2, T\right\}_{\left(\left(s-k_{-1}-\frac{1}{2}\right) / 2 ; s-k_{i}-l-\frac{1}{2}, l\right)}, i=1,2$, can be estimated.

So, (4.3.1.a) is proved.
The uniqueness of the solution is an immediate consequence of Theorem 3.3.1 and Theorem 3.3.1 in [8].

REFERENCES

[1] M. S. Agranovič - M. I. Višrk, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk, 19, no. 3 (1964), pp. 53-162 (Russian) $=$ Russian Math. Surveys, 19, no. 3 (1964), pp. 53-157.
[2] C. Baiocchi, Sul problema misto per l'equazione parabolica del tipo del calore, Rend. Sem. Mat. Univ. Padova, 36 (1966), pp. 80-121.
[3] C. Baiocchi, Soluzioni deboli dei problemi ai limiti per le equazioni paraboliche del tipo del calore, Ist. Lombardo Accad. Sci. Lett. Rend., A 103 (1969), pp. 704-726.
[4] C. Baiocchi, Problemi misti per l'equazione del calore, Rend. Sem. Mat. Fis. Milano, 4.1 (1971), pp. 19-54.
[5] M. L. Bernardi, Sulla regolarità delle soluzioni di equazioni differenziali lineari astratte del primo ordine in domini variabili, Boll. Un. Mat. Ital., (4), 10 (1974), pp. 182-201.
[6] A. Bove - B. Franchi - E. Obrecht, An initial-boundary value problem with mixed lateral conditions for heat equation, Ann. Mat. Pura Appl., (4), 121 (1979), pp. 277-307.
[7] A. Bove - B. Franchi - E. Obrecht, Boundary value problems for operators like $\Delta+x \cdot \nabla$, Rend. Mat., (7), 1 (1981), pp. 95-120.
[8] A. Bove - B. Franchi - E. Obrecht, Parabolic problems with mixed time dependent lateral conditions,, Comm. Partial Differential Equations, 7 (1982), no. 11.
[9] A. Bove - B. Franchi - E. Obrecht, Parabolic problems in weighted Sobolev spaces, Ricerche Mat., to appear.
[10] G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations (Russian), Nauka, Moscow, 1973.
[11] G. I. Eskin - Chang Zuy Ho, Boundary value problems for parabolio systems of pseudodifferential equations, Dokl. Akad. Nauk SSSR, 198 (1972), pp. 50-53 (Russian) $=$ Soviet Math. Dokl., 13 (1972), pp. 739-743.
[12] A. G. Gjul'misarjan, on general discontinuous boundary value problems for elliptic equations with parameter and parabolic equations of the second order, Izv. Akad. Nauk Armjan. SSR, Ser. Mat., 5 (1970), pp. 3-31 (Russian).
[13] L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, 3rd ed., 1969.
[14] V. A. Kondrat'ev, Boundary problems for parabolic equations in closed domains, Trudy Moskov Mat. Obšč., 15 (1966), pp. 400-451 (Russian) = Trans. Moscow Math. Soc., 15 (1966), pp. 450-504.
[15] E. Magenes, Sull'equazione del calore: teoremi di unicità e teoremi di completezza connessi col metodo di integrazione di M. Picone, $I I$, Rend. Sem. Mat. Univ. Padova, 2l (1952), pp. 136-170.
[16] E. Magenes, Problemi al contorno per l'equazione del calore, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 1-28.
[17] M. I. Višik - G. I. Eskin, Equations in convolution in a bounded region, Uspehi Mat. Nauk, 20, no. 3 (1965), pp. 89-152 (Russian) = Russian Math. Surveys, 20, no. 3 (1965), pp. 86-151.
[18] M. I. Višik - G. I. Eskin, Parabolic convolution equations in a bounded region, Mat. Sb., 71 (113) (1966), pp. 162-190 (Russian); Engl. transl.: Amer. Math. Soc. Transl., (2), 95 (1970), pp. 131-162.
[19] L. P. Voleyič - B. P. Panejait, Certain spaces of generalized functions and embedding theorems, Uspehi Mat. Nauk, 20, no. 1 (1965), pp. 3-74 (Russian) $=$ Russian Math. Surveys, 20, no. 1 (1965), pp. 1-73.

