A Model for Hysteresis of Distributed Systems (*).

A, VisiNTIN (Pavia)

Summary. — Memory effects of hysieresis type are taken info account as constitutive relations
for parabolic and hyperbolic problems, also with free boundaries; ewistence results are proved.
A scheme of construction of functionals representing hysieresis phenomena is presented and
examples are given; in particular ferromagnetism is considered.

Intreduction.

In this paper we present an approach to the modelization of some hysteresis
phenomena.

In § 1 we give an axiomatization of the essential properties in the case of two
real variables connected by such a functional relation. For distributed systems,
this is coupled with a partial differential equation;in § 2, 3 we prove existence results
for some parabolic and hyperbolic problems, also with free boundaries.

Then in § 4 we introduce a procedure for the construction of examples of such
« hysteresis functionals », by means of the resolution of a family of Cauchy problems
for an ordinary differential equation. Some explicit examples are given in § 5.

Finally in § 6 we present a generalization of the mathematical model in order
to fit it better to the phenomenology of ferromagnetism.

Mathematical studies about hysteresis have been conducted by KRASNOSEL’SKII
and co-workers in recent years; we refer to [6] and [6] for surveys of results and
for a large collection of references.

Some control problems exhibiting hysteresis arising in the theory of thermostats
have been studied by GasHoFF and SPREKELS, cf. [3] and [4].

1. — Functionals representing memory.
Let the functions »,2: [0, 77 — R be related by a condition of the following

type: 2(t) depends on the restriction of v to [0,?] and on the initial value 2(0), i.e.
formally

(1.1) a(t) = f(v(*) 0,0y 2(0)) O<i<T.

{(*) Entrata in Redazione il 18 marzo 1982,
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We are going to state this in a precise form. Let a couple (8§, &) be given such that

(1.2) 8: Rx[0, T] - §(R)
3 Dom (F) = {(v, ¢, &)jv € C°([0, T1), 0<t<T, &€ 8(v(0),0)};
(+5) V(v 1, &) € Dom (F), F(v,1, & € S(v(t), t)

Vv e 0°([0, T]), Y& € 8(v(0), 0), the function t i F(v,t,&) is continuons
(2:4) in [0, T]

(1.5) Yoe 0"([0, T]), Vée S(O(O), 0), F(0,0,8) = §&
( Vi €10, I, Vo,, v, C°([0, T]) such that »,= v, in [0,7],
1.6

) VE € 8(.(0), 0), F(oy,1,8) = F(v,, 1, ) (causality) .

We assume v & 0°([0, 77) and replace (1.1) by the more rigorous relation
X7 2(t) = F(v(-),%,2(0)) for 0<i<T.

Actually, this last is more general than (1.1): it corresponds to a dependence of
the form

(1.8) () = f(v(*)|io. 1, 2(0))  for 0<t< T

in which the constitutive law may change with time.

Exampre 1 (trivial). — F reduces to a function.
Let g O°(Rx[0, T]) and set

Sy, 1) = {gly, )}, Yy e R, V1[0, T]

(1.9)
F (0, 1, g(0(0), 0)) = g(v(t), 1), Yo e O([0, T1), Vi[O, T1.

(1.2), ..., (1.6) are trivially satisfied.

Exawrre 2. — Convolution.
Let b e ([0, T7), g€ C%R) and set

Sw,t)=R, VyeR,Vte[0,T]

(1.10) :
F,1, &) = J bt — 1, Hg(v(r)) dv -+ &, Yoe 0([0, T1), Vie [0, T], Ve R.
0

(1.2), ..., (1.6) hold.
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This type of functional is used for the description of viscosity and many other
memory effects (cf. [2], e.g.).

Examere 3. — Description of hysteresis.

This arises in ferromagnetism (in this case » and z are the modulus of the
magnetic field H and of the induction field B, respectively), in plasticity (then o
is the strain e, # is the stress o), ete. ,

Conditions (1.2), ..., (1.6) fit to the phenomenology of hysteresis, when jumps
are smoothed; however cases with jumps are considered in problems (P2) and (P4)
{cf. § 2 and § 3, respect.).

We ean assume also the following property, whieh discriminates hysteresis from
memory effects represented by convolution

Y(v,t, &) € Dom (), Vs: [0, T] —> [0, 7] monotone homeomorphism ,
(1.11)

F (0,1, &) = F(vos, (1), &) (invariance for time-homeomorphism) .

Throughout this paper, a functional fulfilling properties (1.3), ..., (1.6), (1.11)
will be named «hysteresis functional ».

If moreover the constitutive law does not depend on time, then also the follow-
ing condition holds

Vt',1"e[0, T] with t'<t', Vve 0°([0, T]) such that »(f) = constant for
r<i<t’, VEe 8(v(0),0), F(v,¢, & = constant for ¢’ <t<it”.

(1.12) {

Hysteresis can appear also in phase transitions; an example is given by super-
cooling and superheating in change of state. However these phenomena seem to
require a different approach; an attempt in this sense is performed in [10].

Now consider the following property

Yr e 10, T[, 3(8°, 57) tulfilling properties (1.2), ..., (1.6) (with 7 replaced
by T'— 7) and such that setting o,(u) =214 u V4, ucR,

(1.13) 8, 1) = 84 t—1), VieR, Vie[r, T

F(v, 8, &) = F*(vow,, t — 7, F(v, 1, &)}, V(v,¢, &) € Dom (F) with > ¢
(transition property) .

This has the following meaning: for any 7€ ]0, T[, in order to evaluate F(v,1, &)
for ¢ > v, the information eontained in F(v, t, £) can replace that given by & and
by the evelution of v in [0, 7]. Among other things this implies that ¢ = 0 is not a
privileged instant.

14 ~ dnnali di Matematica
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In general (1.13) is not fulfilled by the convolution funetional.

The above properties can be easily extended to the case of vector valued variables
v, 2: [0, T] > RM(M > 1). However in this case the phenomenology of hysteresis
is more complex. In ferromagnetism, for instance, hysteresis by rotation depends
also on the rotational velocity (ef. [9], pag. 553, e.g.}; hence it is not invariant by
time-homeomorphism (cf, (1.11)). This phenomenon is due to viscosity; it can be
neglected for low rotational velocities, hence in the approximation of quasi-statio-
narity.

2. - Parabolic problems.

Let an open bounded subset D of R¥ (N>1) be oceupied by a homogeneous
system; set @ = D x]0, T1.
We shall consider two variables u, w: Q — R related by a condition of the form

(2.0) w(x, 1) = F{ulw, -), t, wiw, 0)) for (x,1)cQ

(where u(x, ) denotes the restriction of u to {«}x[0, T7).
This relation will be coupled with a partial differential equation of the form

L au=7 in D

or

0 . ,

W@ T8+ dv=7 in D)

$ € sgn (w) in @ (sgn = signum graph)
{where A is a linear elliptic operator, f is a datum); suitable boundary conditions
will be given.

Let VcDD) be a dense and compact real Hilbert subspace of L%D). Let

(8, &) fulfilling (1.2), ..., (1.6) be given. Let ‘

A: V-V’ be linear, bounded, symmetric and such that
(2.1)
Jp, s> 0 constant: Yo € V. Av, 03, -+ py||v] s p) > pa]v)5 (coerciveness)

(for instance, V = Hy(D), A = — A— ol with a > 0; then take u,> @, g,= min (p,—
— a, 1)).

(2.2) u, w*: D — R measurable; «(z) € $(u’(x), 0) a.e. in D, w'e V'

(2.3) fe N0, T; V.
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(P1)  Find we L0, T; V) such that

(2.4) w(z, <) ([0, T]) a.e. in D

(2.5) u(x, 0) = u(x) a.e. in D

and, setting

(2.6) wix, 1) = F(ulz, *), 1, w@)), Vie[0,T], a.e. in D,

(2.7 w(+,t) is measurable in D Vte [0, T], we WLY0, T, V')
ow . , .

(2.8) —a—t—{— Aw=7Ff in V', a.e. in ]0,T].

REMARES. — i) 4 and w are regarded as functions of ¢ taking values in a space
of functions of x, as well as functions of » taking values in a space of functions of t.

ii) By (1.5), (2.6) contains the initial condition w(z, 0) = w’x) a.e. in D.

We introdunce the set of piecewise linear continuous funetions

) Oo([0, T)) = {we ([0, T1) |3t} pmo,..m With o= 0 <t,< ... <tp=1T
(2.9 ’
such that o is linear in [t;,%,.,], for k=0,..,m—1}.

THEOREM 1. — Assume that (1.2), .., (1.6), (1.12), (2.1), ..., (2.3) hold and
moreover

210 [ de;: [0, T]—> R, (i=1,2): Vte[0,T], Yy R, Yee S(y,1),
kel <et)ly] + ealt)

) { Jes, ¢, A constant (2> 0): Vo e C0([0, T]), V&€ 8(v(0), 0),
15 @, 5 Olwaaco,m<slvlmeo, 0+ ¢ -

Let {v,€ Co([0, T)},ens © € C°([0, T]) be such that v,(0) = v(0), Yne N

(2.12) and v, — o in C°([0, T7) strong. Then Y& e 8(v(0), 0),

F(Vny ., &) > F(v,., & in LY0, T) weak

Ja: constant > 0: V#', "€ [0, T] with ¢ <4, Vo, v,e C°([0, T1)

(2.13) y with o= v, in [0,?], v, and v, linear in [#,1"], V£ € 8(v,(0), 0),

[F s, V', &) — Foa, 1", ] [0a0") — v0,(t")] > afor(t') — 0a(t")]2 .
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Let me N and { = 0 <, <...<t,=T; Yyo, ..., ymc R let y(+) =
Yoy oy Yu) € C°([0, T]) denote the function obtained interpolating li-

(2.14) nearly {y(t) = Y}y, m i0 [0, T].
Then Yy, R, Y& e 8(y,, 0), YVt [0, T], the function R~ — R;: (Ysy ey
Yn) +> F(T(Yoy ..y Yn), 1, &) 18 continuouns

(2.15) Yo e C°([0, T1), Y1 &[0, T], the function S(v(0),0) — R: £ — F(v,1, &) is
’ continuous
(2.16) weV

(2.17) f=h+1 with felXQ), feW:(0,T;V).
Under these assumptions (P1) has at least one solution, such that moreover

w € HY(0, T; LxD)) N L0, T'; V)
(2.18)
we W0, T; (D)) .

REMARKS:
i) (2.18) yields w e Cy([0, T1; V) (cf. [8], ch. 3, lemma 8.1).

ii) (2.13) gives a «parabolic character » to (2.8).

iii) (2.13) is not fulfilled by the eonvolution gperator (1.10); on the other hand
(2.10), ..., (2.15) are compatible with (1.11) and one-dimensional hys-
teresis phenomena (cf. §§ 4, 5).

iv) If & is a function, as in example 1 of § 1, then theorem 1 reduces to a
well-known result (cf. [7], ch. 2, e.g.).

Proor. —~ 1) Approzimation. Let me N, k = T'[m.

(P1),, Find upeV for n =1,..., m, such that, setting

(2.19) Un(x, *) is the function obtained interpolating linearly the values u,(x,
' nk) = up(z) for n =0, ..., m (u(®) = u’(@)) a.e. in D
(2.20) (@) = F (Un(@, *), nk, w'(2)) a.e. for xe D, for n=1,...,m,

then wf, is meagurable in D, whe V' ¥n and

Wy, — Wikt .
At Adur=1fr inV,forn=1,..m,

(2.21) i .
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where
nk
1 .
2.22) fo=fint finr  Fal) =7 | A@ D dt ae. in D,
(n—1)k

fin=Ffank) in V', w)=w" a.e. in D.

Vme N, we solve (P1), step by step. Fix ne {1, ..., m} and assume that the
ul)s are known for [ =0,...,n— 1; then by (1.6) F(un(z, ), nk, w'(w)) depends
only on «’(z) a.e. in D, i.e. (2.20) is of the form

(2.23) wh (@) = Oy (Ul (@), ..., u(z), w'(@)) = IFZ(%@)’ #) ae in D.

By (2.14) and (2.15), D7: {(%o, ..., y***) € R™2) € R+2fy»+i e §(y0, 0)} — R is con-
tinuous; therefore, as u,,, ..., u, w° are measurable in D, also w, is measurable in D.

By (2.10), Yve L¥(D), ¥=(v) € L*(D); moreover by (2.13) the functional P ois
strictly and cyclicly monotone. Therefore ¥” is the subdifferential of a lower semi-
continuous, strictly convex functional @7: L*(D) - R, i.e. ¥ = 207,

Introduce the lower semi-continuous, strictly convex functional

(2.24) It V—>R: v 6L») g 74, v)V—f wi o de —k o Py 055 »
D

by (2.2) and (2.13), if k<a/u, then J” is coercive; therefore it has a unigue minimiz-
ing argument «”, which is also the unique solution of (P1),,.

2) Estimates. Multiply (2.21) against uy,— ' and sum for v = 1, ..., I, for a
geueric L€ {1, ..., m}. Notice that by (1.12) and (2.13)
wh—

k

! n___ anel I 2
(2.25) > fM-(u,’;—~ufn‘l) do>ok Y

’
n=1 k n=1 LA(D)

by (2.2) 4 -+ u, I is the subdifferential of a lower semi-continuous, conyex and
coercive functional A: V — R; therefore

l 1
(2.26) 2 pAup, un—un =3 (A 4 wI)ul, uh— utty,—
n=r- - : - on=1

— /»f Uy, — ) o> Awr) — AWE™) — a0 2y — |0 s [0 v
D

furthermore

14

4 . %+
@20 3 [inon—u do<( 3 Hifilin) o 3
D

ur,— ut

k

2 )%
D)

ne=1
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l
(2.28) z v foms Uy — Uy Dy = v'<féma UpDy — 7 famy WDp—
n=1

!
- 22 ylfam=Tom s % >y <CONSE [|fonllwrig, 2,5 max Jult];
s

n=0,...,1
thus we get
2o, | e — v |
(2.29) > k| < const.
n=1 k IXD)
(2.30) max |lup|y<const.
#=0,...,Mm

Let w,(xz, t) be the function obtained interpolating linearly the values
(2.31) W@, nk) = wi(x) for n =0, ..., m a.e. in D; let 4,(x,?) = u(x) a.e.in
Dand f () =fnin V' if (n— 1)k <t<nk, for n=1,..,m.

(2.21) becomes

oW,

{2.32) ¥

+ Ady=f, in V', ae. in 0,77

and (2.29), (2.30) yield

(2.33) lwlm, 7: ) a 1200, 7: ;y < COBSE,
(2.34) 1)l o, 7; vy < CODST

by (2.32), (2.34) we have

(2.35) 1 %n 0,7 vy < CODSY
and by (2.11), (2.33)
(2.36) 1 F (s, <)y by w)) [ a0, 7; aoy) < €OBSE .

3) Limit. By the above a priori estimates there exist u, w suéh that, possibly
taking subsequences,

(2.37) U —w in HY0, T; L¥D)) N L>(0, T; V) weak star

(2.38) B —u  in L™(0, T; V) weak star

(2.39) Wy—w in HYO,T; V') weak.
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Taking m —> oo in (2.32) we get (2.8). By (2.37) we have

(2.40) U@y *) = u(®, -) in O%[0, T]) strong, a.e. in D

then by (2.12)

(2.41) F(tm(zy )y t, w(@)) — F(u(z, -),t, w®)) in LY0, T) weak, a.e. in D
thus by (2.36) and Lemma 1 (see below) we get

(2.42)  F(wnl®, -), 1, w'(@)) — F(u(z, ), t, ww)) in L}0, 7; L D)) weak .

By (2.20) and Lemma 2 (see below) we have

(243)  wn(@, ) — F (@, )yt 0@) |s(0, ;22 <

< Ck‘“:}“(um(m, 137 wo(m)”W’n’(O,T;L“(D))
with ¢ positive constant; the last two formulas and (2.36) yield
(2.44) Wy, —> F(ulw, ), 4, w'(@)) in LY0, T; L¥D)) weak
then by (2.39) we get (2.6). =

Leyua 1. — Let {v,},.v be such that [v,] 5., r; pamy)<const, vz, -) —v(, *)
in L0, T) weak a.e. in D. Then v, in L0, T'; L¥ D)) weak.

Proor. - Fix ¢ e L0, 1), set U, fv xz, t)p(t) di, Uz fvm 1) p(t) dt; thus

we have | U,|pp<const, U,— U a.e. in ]) this yields (cf. [7} pag. 13) U,—- U
in L¥D) weak; i.e. '

Yy e L¥D ff (z,1) x) do dt = jU o(z) do —

—»fU(aa) ) dw _ff z, t) x) de dt
D .

whence the thesis, as {p(t)p(®)[p € L=(0, T), y € L¥(D)} is dense in L°(0, T; L¥(D)) =
- (Ll(O, T LE(D)))’. ~ :

LeEMMA 2. ~ Let X be a reflexive Banach space; let » > 0, 1<p < co. Then there
exists a constant ' such that for any fe W"?(0, T; X), denoting by f,, the piece-
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wise linear function obtained interpolating f in ¢t = 0, k, ..., mk = T,
(245) hf - f'mHLZ’(O,T;X)< Okr”f”Wm’(O,T;X) 4
For the proof, cf. [1], ch. 3, e.g..

REMARKS. — i) We emphasize the importance of using a time-diseretization ap-
proximation in order to prove the existence result.

Assumptions are formulated using piecewise linear continuous functions in view
of this approach. But, whereas the generalization of (2.11), (2.12), (2.14) and (2.15)
to continuous functions v would not be limitative, the extension of (2.13) presents
some difficulties.

The monotonicity condition

Yoy, vy€ C([0, T1) with 0,(0) = ,(0), Y& € 8(v4(0),0),

(2.46) r
[15@:, 6,8 — 5o, 1, H1 () — (0] di>0

0

and even the order preservation property.

Yo,, v,€ 0°([0, T1) with v,(0) = v,(0) and v,>wv, in [0, T],

(2.47)
V& € 8(vy(0), 0), VE€ [0, T], F(vs,t, 8)> F(vas 1, §)
are not compatible with some important hysteresis phenomena like as ferromagnetism.
What in general seems right to require is a property of the form

Vi, t"e [0, T] with #'<t’, Yo,, v,€ €°([0, T]) such that v,= v, in [0, ¢'].
(2.48) v, >0, and both are monotone in [¢,%"], Y&e 8(v:(0),0),
F(vi, 1", 8) > F(vs, 1", &)

(or also F(vy, 1", &) — F(vy, t', §) > afvi(t") — 0,(1")], with o positive constant); indeed
(2.13) is the reduction of this property to v, and v, piecewise linear (what is sufficient
for the proof of the existence result when a time-discretization approximation is
used). )

ii) Uniqueness of solution of (P1) is an open question. By the above con-
siderations it does not gseem immediate.

iii) Numerical resolution of problems (P1),’s can be performed by standard
methods. '

vi) In the above developments no assumtpion has been used concerning the
direction of rotation of hysteresis loops; therefore these apply to both cases in
which w lags or anticipates w.r.t. u. :
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Now we take into account a free boundary parabolic problem. Let ¢: R — F(R)
be a maximal monotone graph with bounded range:

(2.49) G(R) = U G(&): bounded .
geR
Let
(2.50) §°: D - R measurable, sz)e G(R) a.e. in D;
assume that (1.2), ..., (1.6), (2.1), ..., (2.3) hold and set
(2.51) Po= w4 ¢ V'.

(P2) Find w e L¥0, T'; V), s € L*(@)) such that (2.4), (2.5) hold and, setting (2.6),
w(, 1) is measurable in D a.e. for te 10, T[, w -+ s € WL1(0, T'; V"),

(2.52) seGw) ae in @
(2.53) a%(w +s8)+Au=Ff in V', ae in 0, 7]
(2.54) (w+ 8)|og=p"in V'.

REMARK. — If ¢ is a proper graph, then (P2) is the weak formulation of a free
boundary problem.
For example, let & be the signum graph, V= H}D), 4 = — 4 and set

(2.55) L= {(#1) eQwlz,t) =0}

assume that £ has no interior points and that it is smooth enough; then formally
(2.53) eorresponds to

ow

(2.56) ’ T Au=1f in ON\EL
(2.57) 2y, 4+ [Vu]v.=0 on €
(where (v, »,) = (4, ..\ Vays V) 18 normal to £ and directed in the sense of inereas-

ing w, [-] denotes the jump across £).

THEOREM 2. — Assume that (2.49), (2.530) and the hypotheses of theorem 1 “hold
and that

( it {0,,(@,1)},,cn is bounded in C([0, T1; V),
2.38)
then {F(v,(», ), 1, w(@))}, v is bounded in L0, T, V).

Then (P2) has at least one solution, such that moreover (2.18) holds.
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Proor. ~ Let me N, k= T/m.

(P2),, Find u, eV, ste L*(D) for n=1, ..., m, such that —setting (2.19) and
(2.20)—u™ is measurable in D Va,

(2.59) s" e G(u}) a.e.in D, Vn

and, setting p = w” + s” for n =1,..., m, p), = p° a.e. in D, then p’ec V' and

Pn—Pn’

(2.60) .

+Aup=1fr inV, formn=1,..,m,

with the position (2.22).

V¥m e N, existence and uniqueness of solution of (P2), and a priori estimates
(2.33), (2.34) can be shown as for (P1),.

Let s,(x,t) be the function obtained interpolating linearly the values s,(z, nk) =
= §i{x) for n = 0, ..., m a.e. in D; set p,,= w, + S, and use notations {2.31). {2.60)
becomes

(2.61) %+ Abdp=1Ff, in V', ae in 10, T]
and then by (2.34)
(2'62) H.meHl(o,T; V:)QCODSt;

this last and (2.59) yield
(263) |[wm,I[L°°(0,T; V')<COI1St :

Thus we get the existence of u, w, s such that possibly taking subsequences (2.37),
(2.38) hold and setting p = w -+ s

(2.64) ' w,—>w in L=(0, T3 V') weak star
(2.80) 8, —> 8 in L®(Q) weak star
(2.66)  p.—p in HY0,T; V') weak.

Taking m —> co in (2.61) we get (2.33).
In order to prove (2.6), notice that (2.33) and (2.58) yield

(2.67) [ F (4, (0 )y b W' (@) |5 o, p; yy<COBSE
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therefore, using also (2.36) and (2.42),

(2.68)  F(un(m, *), 1, w(x)) - F(ulz, -),t, ww) . in LY(0, T'; L¥D)) strong
then, by (2.43),

(2.69) W, — Flu(z, ), ¢, wd(®)) in L(0, T; L¥D)) strong

and this yields (2.6). Moreover, as s is the subdifferential of a lower semi-continuous
convex functional R, we have

(2.70) f [R(w,) — R(v)] do di < f [snlton—v) dwdt, Voe LNQ);
Q Q

taking m — oo, by (2.65) and (2.69) we get

2.71) f f [R(w) — R(v)] do di< J fs(w — o) dedi, VoeI(Q)
Q Q

ie. {2.52). =&

Also for (P2) uniqueness of solution is an open question.

REMARK. — Let (2.0) be coupled with an equation of the form
. ou ) ,
(2.72) = +Adu+w=f in D(Q),

in whiech the « hysteresis functional» is not in the principal part. After derivation
w.r.t. ¢ this reduces to

- o (ou cw  of . A
(2.73) at(-é-t—-i—’bU)-!—Agt‘-—éi in DQ) ;

for this the procedure-of the next gection can be used.

3. - Hyperbolic problems.

We are going to study the case in which the relation (2.0) between u, w: 9 - R
is coupled with a partial differential equation of the form

0 (ou : i
E(E_;_w)—]—fiu:f in D'(Q)
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or
o (@
(Frrts)tdu=s o
s € sgn (w) in @ (sgn = signum graph)

(where 4 is a linear elliptic operator, f is a datum); suitable initial and boundary
conditions will be given.

Assume that (1.2), ..., (1.6), (2.1), ..., (2.3) hold and that
(3.1) wle V.
@ Find % e LY0, T'; V) such that
(3.2) u(z, +)e ([0, T]) ae. in D

(3.3) w(w, 0) = u(x) a.e. in D

and, setting

(3.4) w(z, 1) = Flu@, +),t, w@) Viel0,T], ae. in D,

(3.5)  w(-,t) is measurable in DV¥te[0, T], | %‘-Jr we Wi, T; V')

(3.6) éa—t(%% -+ w) 4+ Au=1¢Ff in V', a.e. in J0,7[

(3.7) [%4-@0] =" in V.
ot £=0

REMARK. — By (1.5), (3.4) contains the initial condition w(z, 0) = w(x) a.e. in D.
THEOREM 3. — Under the same assumptions as in Theorem 1, if'moreover 2% =

= w'— w'e L*(D), then (P3) has at least one solution such that moreover

{ we Wh(0, T5 IX(D)) N L2(0, T; V),
(3.8)

we W0, T; IA(D)) .
REMARK. - (3.8) yields w e 0°([0, T7; V) (cf. [8], ch. 3, lemma 8.1).

PrOOF. — 1) Approzimation. As an approached problem (P3),, consider (P1),
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with (2.21) replaced by the following equation

n'__ pn—1 _,wn—l X
(3.9) Zm kz"‘ +w % + Aut=1fr in V', foran=1,...,m

where 20, = 2", 2f=-"—"-(n=1,...,m) ae.inD.

Ym, existence and uniqueness of solution can be shown as for (P1),,.

2) Bstimates. Multiply (3.9) against «” — «7 ' and sum for n=1,...,1, for a
generic 1€ {1, ..., m}. Notice that

(3.10) z o —kz (Ut — wt ) dy =
=1

D
14 1
g (#n— 2 )& do>} g (“%Hmm— len | 2em) = Henliw— 121 5w

D

using also (2.2b), ..., (2.28) we get

(3.11) max ||#n| ;1< const,
n=0,...,m

(3.12) max |uy|,<const.
7=0,...,m

Let Wy, U, G, [ De defined as in (2.19), (2.31). Let 2z, be the function obtained
interpolating linearly the values z,(x, nk) = 2h(») for n =0, ..., m, a.e. in D; let
2w, t) = dp(r) ae. in D if (n— 1)k <<tgnk, for n=1,...,m

(3.9) becomes

(3.13) gt(zm—{— w,) + Ad,=f, in V', ae in 10, T[.

(3.11) and (3.12) yield

(3.14) 12z (0, 7; £2(py) < CODSH

(3.15) , 12lz(0, 7; 120y < cODSE

(3.16) [l o, 7: 33y om0, 7; vy < CODSE
3.17) 4 200, 7; 7)< cONSE

and by (3.13), (3.17)

(3.18) 125+ wal g, 7; 7y<const
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whence by (3.14)
(3'19) me”Lw(O, T; V')<001.18t‘ .

3) Limit. By the above estimates, there exist u, 2, w such that possibly tak-
ing subsequences

(3.20) Zw —2 in IL™(0, T; I*(D)) weak star

(3.21) Zn —»2 in L*(0, T; IA(D)) weak star

(8.22) Uy — % in WE2(0, T5 L¥D)) N L2(0, T; V) weak star
(3.23) Gm —uw in L®(0, T; V) weak star

(3.24) Wy —w in L0, T; V') weak star

as Yme N 2, = 0u,/0t a.e. in @, we get 2 = oufot a.e. in ¢, thus recalling (3.18)

(3.25) 2+ wm»%%—}« w in HY0,T; V') weak

and taking m — oo in (3.13) we get (3.6), as well as (3.7).
(3.4) can be deduced as in the proof of theorem 1. m

Also for (P3) uniqueness of golution is an open gquestion.
Assume that (1.2), ..., (1.8), (2.1), ..., (2.3), (3.1) hold.

(P4)  Find we LY(0, T; V), s € L*(Q) such that, setting (3.4), then (3.2), (3.3), (3.5)
hold and

(3.24) sesgn (w) a.e. in @
(3.25) %(%—?: + w - s) +Au=f in V', ae. in J0,T]

(3.26) (a—%—l—w—i—s)‘ = in V',
3t lt=0

REMARK. — Analogously to (P2), also (P4) is the weak formulation of a free
boundary problem, with (2.56) and (2.57) replaced by

otu . ow .
(3.27) w7 g du=1 in g\ ¢,

(3.28) ({[%]+2)vt+ [Vu]-5=0 on¢.
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THEOREM 4. — Under the assumptions of theorems 2 and 3, (P4) has at least one
solution such that moreover (3.8) holds.

Proof follows the procedures used for theorems 2 and 3.

Algo for (P4) uniqueness of solution is an open question.

Generalizations. — i) Theorems 1, ..., 4 can be eagily extended to the cagse in which
u(x, 1), wix, t) e R® (M > 1), In particular existence results can be proved if in
(2.13) strict monotonicity is replaced by strict cyclic monotonicity.

ii) Similar results can be obtained for other boundary conditions, for instance
of type of Neumann, of Dirichlet non-homogeneous, or of mixed type.

iii) If D is occupied by a non-homogeneous system, we may consider a couple
(8., F,) depending on #, a.e. for # € D. More precisely let (S, &) be given such that

(3.29) §: RxQ — T(R)
Dom (F) = {(v, @, 1, &)jv € 0°([0, T), ze D, t [0, T1, & € S(v(0), «, t};

(3.30) !‘_ - N
Y(v, z,t, &) € Dom (F), F (v, m,t, & € S(v(t), z,1) .

Set, a.e. for ze D,

(3.31) Sw(?/’ )= S(yy @,1), V(% t)e RX [0, 77,
' Falv,1, &) = F(v, 0, 1, &), (v, 1, &) such that v e 09([0, T))
We assume (S, %) to be such that the corresponding (8., &.)’s fulfill properties
(1.2), ..., (1.8), a.e. for x€ D and that F is globally measurable.
Extension of problems (P1), ..., (P4) is immediate. Existence theorems 1, ..., 4

hold also in this case if properties (2.10), ..., (2.13) are assumed to hold uniformly
w.r.b. @ (possibly with the exception of a set with vanishing measure).

4. -~ A scheme of construction of hysteresis functionals.

Let (8, @) be such that
(4.1) 8: R > T(R\{0}; VyeR, S(y) is closed
(for the sake of simplicity, we assume § to be time-independent)

Dom (6) = {(, §, )|l e R, £ € 8(0), 0 € R};
V(6 & 0)eDom (G), G, & 0) € So)

(4.2)
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(4.3) VieR, Yee 8(8), o — G, & o) is continuous in R
(4.4) VieR, Ve 8(0), G, §0) =¢

VieR, Ve 8(), Yo,0e R with {<o<g or § < o<{,
G(, & 8) = G(o, H((, &, ), 0) (transition property for G).

Examples will be given in the next section.
At first we define F recursively for » e C°([0, T1) (defined in (2.9))

Vo e C°([0, T1), V& € 8(v(0)), F(v, 0, &) = &;
(4.6) Vit bimo, . m a8 in (2.9), Yk € {0, ..., m — 1}, Vi € T, tipal,

3:(”’ t 5) = G(’”(tk)a ?(”a Try é)a ”(t))i

by (4.5), this definition is independent of the subdivision {f.},_o .-
We require G to f;be such that & defined in (4.6) fulfills the following crucial

property

W Ve e R, YE € 8(0), {ve O°([0, TN)w(0) = £} — C°([0, T):
. v = F(v, ..., &) is uniformly continuous w.r.t. the maximum norm;

this implies that if {v, € 0°([0, T])},n is a Cauchy sequence w.r.t. the maximum
norm and if v,(0) = v;,(0) Yn e N, then V&e 8(v,(0)) also F(v,,.,&) is a Cauchy
sequence w.r.t. the same norm. This allows to extend F univocally as follows

Vo e 0o([0, T1), let v,eCo([0, T]) be such that v,(0) =v(0) VneN,
(4.8) v, —>v in O%[0, T']) strong; Vie [0, T1, V& € 8(v(0)), F(v,1,£)
= lim F(va, 1, §);

> 00

(1.3), ..., (1.6) are fulfilled, as well as (1.11), ..., (1.13) (with (87, %) = (8, ¥),
Yz €10, T[) and (2.12), (2.14).
If (2.10) holds, then

(4.9) Yo e €°([0, T1), Ve S(D(O)), |F (v, ., ‘S)”L“(O,T)<~01HUHL=(0,T)+ %25
if

(4.10) VeeR, VEe8(8), 0 — G, & o) is Lipschitz-continuous, uniformly w.r.t. f, &
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then, denoting by L the Lipschitz constant,

0 . dv
'éid'(?’; t, &) <L yr

13(0,T)

(4.11) VYo e 0°([0, T1), V£ € 8(v(0)),

L’(O,T);
therefore, if both (4.9} and (4.11) hold, then

(412) Voe @o([()’ T7), V& € 8(v(0)), | F(v. ¢. &)l my<max (61, L) [0, + ¢
which is stronger than (2.11).‘ If

Jo. constant > 0: V0 e R, V& € 8(0), Vo,, 0. R
[G(C, 57 Q )_ G(Cy 5, 92)](91'_ Qz))“(@r_ Qz)z

(4.13)

then (2.13) holds. If
(4.14) Y({, 0) € R?, the function R — R: & — G((, &, ) is continuous,

then (2.15) holds.

A class of functions G fulfilling the above properties can be defined implicitly
by a family of Cauchy problems for an ordinary differential equation as follows.

Let 8 be as in (4.1); set 8 = {({, &) e R2|E € 8(0)}.

Let ¢;,¢.: S - R (not necessarily continuous) be such that V({, &) e 8§ the fol-
lowing problem has one and only one solution ¢ + wl(g) = G({, & ¢) piecewise of
clags C:

— (o —h
%gi(@)laem(flim M(Q )

h—0+ h

)——— g0, w(e)), Vo<

d h) —
(4.15) ﬂ(e)faighc)(-ziinol wfo + k) — w(p)

do e A ):gr(97w(9)); Vo=>¢

w(l) =4§.

In this case (4.2), ..., (4.5) hold. Set (4.6); (4.7) must be checked case by case.
For a moment assume that it holds, so that it is possible to extend F as in (4.8).
Fix v e ([0, 11), & € S(v(0)) and set f(t) = F(v,¢t, &), Ve [0, T]; we have

d d + ¥ -
(4.16) Eg(t) = g,(v(0), /(1)) [d—: (t)] —gz(v(t),f(t))[d—? (t)] ae. in 10, 7[;
f0) = ¢

(formally: af(t) = g.(t, (1)) [do(®)1* — g.(t, f())[dv(t)]-, for ¢ increasing, i.e. di > O).

15 — Annali di Matematica
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This is the differential form of the « hysteresis relation »; notice that it requires
more regularity for o than the integral form f(f) = F(v,t, &).
It is possible to modify each one of the above variational problems—say (P1)—re-
placing (2.6) by

we HY(0, T; I¥(D))

0 ou\*" ou\~
(4.17) % = ¢,(u, w)(—g—?) — g (%, w)- (ai;) a.e. in @
w(x, 0) = w(z) a.e, in D

which a priori is unrelated with the corresponding (2.6).

This problem can be approximated by the (P1),’s of § 2, as the differential and
integral forms of the « hysteresis relation » are equivalent for piecewise linear con-
tinuous functions; therefore the same a priori estimates hold. But difficulties arise
in the limit procedure (in particular for proving that (Gu./ot)" — (oufot)* in L¥Q)
weak).

Analogous considerations hold for (P2), ..., (P4).

If |g,], l9-] <constant, then (4.10) is fulfilled; thus if also (2.10) holds, then (4.12)
is satisfied. If g, g,>a: constant > 0, then (4.13) is fulfilled. If g;, g. are continuous,
then (4.14) holds. .

In conclusion, sufficient conditions can be given so that the assumptions of theo-
rems 1 and 2 are satisfied for F constructed according to the procedures ketched
in this section, i.e. (¢, 9,) — G — F.

In principle this construction can be extended to the vector case. But it does
not seem easy to define G by a family of Cauchy problems as in (4.15).

5. — Examples of hysteresis functionals.

We are going to specify some possible choices of g, g,: § — R; if these are
suitable, ¢ and & will be derived using the procedure of § 4.

ExaMPLE 1. — Let 0 << f, ¢:<< ¢ (all constants). Set

8(0) = [flo— @), Ble— @)1, VeeR
9:(0y ) = g,(0; ®) = « it flo— ) <o <plo—q)
(5.1) g9,(0, ) = &, g,(0, w) = g it o=p— ¢
g0, 0) =B, g0, 0) = i o=pe—a).
In this situation, V7 e R, V& € 8({), (4.15) has one and only one solution; more-

over the construction of § 4 (g;, 9,) — G — F can be carried out: as far as (4.7) is
concerned, F is even Lipschitz-continuous with Lipschitz constant B.



A. VISINTIN: A model for hysteresis of distribuied systems 223

This procedure yields a functional F fulfilling (1.2), ..., (1.6), (2.10), ..., (2.14)
as well as (2.47), (2.72).

Fig. 1 represents the graph of the function ¢ — G({, & ¢) for any (£, &) of the
closed segment [4, B].

b w
B
(£ 8
A
/ (4, 0) (925 0) g
Figure 1
A
) P
Y77
ST -
n
Y
4
-4 W @
“ 9
Yoy %47
\_/ Q AN o
4
Figure 2

In the device drawn in fig. 2, the truck above carries along the one below, due
to the shaft coming down and to the two ends of the lower car; the lack of bilateral
contact causes the delay. Inertia is neglected. o(y respect.) is the coordinate of P
Q respect.) and here a =1, f = 2; o(t) and w(t) = o(¢) 4 7(f) are related by the
functional & corresponding to ¢, and g, as in (5.1).
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ExampLE 2. - See fig. 3

in §:9,=¢, =« on a;: @;=¢,=06; (1=1,2)
on J4,B[: g,=oa,g,=f on 1B, D[:g,=o0g,=y
(5.2) on 1D, E[: g,=§,¢.=a on B, A[: ¢g,=19,¢0.=«
gi(d) = 8, g.(4) = p guB) = o, g,(B) =y
9.(D) =B, g.(D) =0, IE) =y, g,(H) = «.

Figure 3
d;: slope of @, (1=1,2) «: slope of [F, B, [E, (]
B: slope of [4, B], [E, D] y: slope of [4, F], [B, D]

with 0 <a<f<y<oo; 0<Cd,< o0
§ = open parallelogram ABDE; 8=75Ua,Ua,

Also in this case the construction of § 4 (g;, 9.) — G — F can be carried out; the
properties of & are similar to those of the preceding example.

A different model for the situation corresponding to @ = §, y = + oo is intro-
duced in [10]. '

ExAMPLE 3. ~ See fig. 4

in S, U4, Dl: .= 8, 9,= « in S,UIB,0[: g,=0o, ¢, = f
on 14,B[U]0,D[: ¢;= g =0

5.3) on |B,D[: ¢:=¢,= f on a;: g,=¢;=6, (1=1,2)
gi(4) = by, g(4) = « ~ 9(B) = g.(B) =f
9(0) = a, g,(0) =0, 9dD) = §, g,(D) = o
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Figure 4

d;: slope of a; (t =1, 2)
a: slope of [4, B], [D, (] B: slope of [4, D}, [B, 0]

with 0 <a<f< oo, 0< ;<00 (4=1,2)
¥, (resp. T,) = open friangle ABD (resp. BOD)
F=9UT,VUI1B, D[ §=3UaqUa

Algo in this case (4.15) has a unique solution; here we cannot carry out the construe-
tion of § 4 (g,, 9,) — @ — &F, since (4.7) does not hold, as we are going to show.
Set '

1 if <<l
a(t) =
—1 i 1gz<?

and extend it periodically to the whole R*; Yn € N, set ¢,(0) = 0, @,(t) = a(nt) for
{>0. The graph of @,e (°([0, T1) is drawn in fig. 5 a.

Let (£, &) € T, (e.g.), set v,(t) = § + @a(t), for 0<i<T. It is easy to check that
if 7 is large enough then (v,(T), F(v,, T, £)) €10, D[ (see fig. 5b); thus as n — oo,
v, tends in C°([0, T']) strong to the function identically equal to ¢, but F(v,, ., &)
does not tend to the function identically equal to &. . '

Therefore (4.7) does not hold in this case. '

As a matter of fact, defining F(v,t, &) for v e C°([0, T1) ds in (4.6), here we have
(ct. (4.7)).

s ¥z e R, VE e 8(0), {oe C0, TN (0) = £} ~ Co([0, T]): v = F (v, -, &)
e4 s uniformly eontinuous w.r.t. the va;riation“norm

(We remind that Vo e C°([0, T) the variation is defined as follows: if {t;}; ¢,  m
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va(t)

1
i
7
ol 1 2 3 4 T
n I ” n
Figure 5a

graph of t+> (2a(t), F(va, b )

Figure 5b

1
are as in (2.9), then V) = Y |v,— vk_ll); this allows to extend the definition of
k=1

F(v,1,€) to all ve C°[0, T]) N BV(0, T) (BV(0, T) being the space of functions
with bounded variation endowed with the norm ‘U). However we cannot extend
the proof of the above theorems to this &, as we do not have estimates for u(z, *)
in a compact subspace of L*(D:BV(0, T)).

Examrir 4. — See Fig. 6.

The path ABCDA represents the hysteresis cycle of a one dimensional magnetic
body (v, 2 corresponding to the fields H, B respect.). ABCDA is covered by the
« state point» (v,2) in the anticlockwise versus.

Consider the system of oriented curves obtained starting from a generic point of
the branch ABC (DA, resp.) and letting v to decrease to v, (to increase to v, resp.),
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e

C = (vg, %)

sv

a 4 = (/UAa zA)

Figure 6

A=

@

Figure 7

these curves are assumed to be of clags C* and with a slope uniformly bounded
inferiorly by [ > 0, superiorly by L < 4 oo.

For any point (v,2) € §, there are two oriented curves passing through it; the
two oriented branches getting out of (%, Z) define a curve g > w(p) = G(7, 2, 0) (see
fig. 6).
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Notice that (2.47) cannot be expected to hold in general.

Let & be defined by (4.6); for this functional it is possible to express considera-
tions analogous to those presented for the preceding example: however small
oscillations of o(f) around a value { can move the «state point» (v, 2)(t) = (v(t),
F(v, 1, £))(£ € 8(0(0))) far from its initial value (see fig. 7).

Thus also in this case (4.7) does not hold.

In the next section we shall deal with a modification of the last two models in
order to cope with the difficulties encountered here.

6. — A generalization of the model.

« Transition property » (1.13) is not consistent with the phenomenology of hys-
teresis for ferromagnetic materials, even in the case in which the direction of H(t)
and B(t) does not change with time. For instance for a virgin material, hence with
H(0) =0, B(0) =0, if H changes monotonically then the «state point» (H(t),
B(f)) € R* moves along the so-called first magnetization curve; if after a generic
path (H(¢), B(t)) comes back to (0, 0), then in general it will no longer describe the
first magnetization curve (cf.[9], pag. 548, e.g.). Moreover small oscillations of
H(t) cannot cause large changes of B(?).

We are going to show how the difficulties encountered in the examples 3, 4 of
§ 5 may be overcome by the introduction of something like an «internal parameter ».

Instead of considering the complicate pattern of the hysteresis cycle of ferro-
magnetism, we prefer to introduce this procedure in the simpler situation of ex-
ample 3 of § 5.

Let g,,9, be as in (5.3); fix kelx, fl. Vi, w)e 8, Vpe[—1,1], set

) k if (p,w)eTU]B, 0[U]0D] and p%—1
(6.1)  Jilo,wyp) = .
¢.(0, w)  otherwise
k if (pyw)eTUI4, B[U]ID, A and p5~1

(6.2) Jelgy @y p) = .
g-{0, w) otherwise.

Fix a A>0; Ype[—1,1], Vue R, set

min (p 4 Ag, 1) if u>0
(6.3) v(p, ) = )
max (p + Ag, —1) if u<0

thus y(p, p) €[— 1, 1]; notice that the following transition property holds

(6.4) Vp € [—1,1], Vi, i€ R with oy > 0, (D, py F ) = 7(?’(197 )y ‘u?) .
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Set
{ Vi, )€ 8, Vpe[—1,1], V. e R,
(6.5) 3 . '
Gio, @, p, {) E.?z’(@? @, Y(P; 0~ Z)) (t=1,7)
¥i&, 6 e 8, ¥Ype[—1,1], let o > w{o) = @(C, £, 0, p) be the solution (existing and

unique) of problem (4.15) with g,(g, w(0)) replaced by §i(e, w(e),»,C) (i =1,7);
that is

k it (g, w(0))€ §U 1B, C[U IC, D[ and
i e<? . 14p
do %{p+x<9—5)>~1 (l‘e' ‘T <9<C)
{6.6) @(Q)i(leﬁ)Z _
g.(g, wle)) it (g, w(0)) €TV 1B, O[L 10, D[
or Q<C_1_—jli)
k it (0, w(0)) € $U 14, B[U 1D, A[ and
0>{ . 1—p
do {p+z(g—¢><1 ("e‘ KKHT)
(6.7) d_g'(g)l(right):
g,(p, w(@)) it (97 w(@)) ¢TV 14, B[y 1D, 4]
or p>{ +1%p
6.8) w(@l)=¢.

¥p e [— 1, 1], the function (£, & o) — G(¢, &, o) = (g, &, g, p) fulfills properties (4.2),
wry (4.4). We have also (cf. (4.5))

( { VieR, VEc 8(5), Vpe[—1,1], Vo, e R with (<o <5 or § < 0<{,
6.9) . o~
G, & 8, p) = G(o, G, & 0,p), 8, 7(p, 0— )} (transition property) .

We define JC (the evolution of the internal parameter) and F (the « hysteresis
functional ») at first in C°([0, T7):
Yo e Oo([0, 1), Vpe[—1,1], (v, 0,7) = ;5 Y{t,}pmo,.. n 28 iR (2.9),

(6.10)
{ Vi€ {0, ..., m— 1}, Vt € T, Byl , (0, b, ) = p(F(v, 1, 1), 2(t) — 0(t))

Yo e 60([07 T])’ Vée S(’U(O))? V"? e[—1, 1], §(”7 0, 5: 77) =£
(6.11) V{titemo,..m 88 i0 (2.9), VE€ {0, ..., m— 1}, Vt€ T, Trpal,
Flo,t, & m) = Go(te), F (0, 1y & n), v(D), B(o, i, 7))
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both definitions are independent of the subdivision {#},_,
of transition properties (6.4), (6.9).
The following crucial properties of Lipschitz-eontinuity w.r.t. v are fulfilled

m3 as a consequence

Vo, v,€ C([0, T]) with 0,(0) = v,(0), Vpe[—1,1],

(6.12) max |#(vy, ., n) — Ky, ., )| <A max v, — v,)

0,71 (0,71

Yoy, v,€ C°([0, T7) With v,(0) = v,(0) and {’Ul—-—’vzl<% y V&€ 8(v.(0)),
(6.13) Vyel—1,11, setting ¢ = max (f, d,, 9,),

max |F (v, ., & n) — Flv,, ., &)< 0 max |v,— v,
10,71 10,71

this last is due to reversibility for small oscillations. With reference to continuum
mechanies, hysteresis corresponds to a plastic behavior for large deformations: the
« internal parameter » p(t) = J(v, ¢, n) introduces elasticity for small oscillations.

(6.12) and (6.13) allow to extend 3 and F to all ve C°([0, T]) by continuity,
analogously to (4.8).

Setting X(I) = [— 1, 1] VI € R, the couple (2, X) fulfilly properties (1.2), ..., (1.6)
and also (1.11), ..., (1.13).

Fix ne[—1,1] and set (v,%,&) — F(v, ¢, ¢
properties (1.1), ..., (1.6) as well as (1.11}, (1.12), (

) = F(v, ¢, &7); then (8, F) fulfills
2.10), ..., (2.13). Moreover (cf. (1.13))

Vr €10, T[, (v, t, £ 7) € Dom (F) with ¢> 7,
(6.14) - - ~ .
F,t, & m) = F(voe,, a_ (1), F(v, 1, & 1), X(v, T, 7)) (transition property) .

As far as (2.15) is concerned, we can repeat the considerations expressed for example 1
of § 5.

An «internal parameter» X(v, ¢, n) can be introduced analogously for the ex-
ample 4 of § 5, corresponding to ferromagnetism. Notice that reversibility for small
oscillations of H corresponds to phenomenology (cir..9], pag. 549, e.g.); at micro-
scopic level this can be interpreted as the presence of an elastic part in the move-
ment of Bloch walls at any reversal in the direction.

Instead of a constant & we can also choose a function %: 8§ — R sueh that

(6.15) V{g,w)e S, (0<i<)min gi(e, w)<klo w)< max g,(0, w)(<L < co):

=1y i=l,r

further developments are similar to the ones above.
Therefore in particular we get a transition property in the form of (6.14), which
is consistent with the phenomenology of the hysteresis cycle.
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Added in proofs. — Remark concerning theorem 1 of § 2.

In (2.12) replace convergence in LY(0, T) weak by convergence in C%[0, T]) strong. This
implies (2.14). Moreover in thiy case (2.40) enfails

) F(t, +), 8, wO(m)) — F(ule, ), &, w%x)) in CY([0, T]) strong, a.e. in D

and then by (2.20) also

(11) Wy —w = F(u(w, -),f, w@x)) in O°({0, T]) strong, a.e. in D,
Now in (2.10) let ¢, be independent of ¢, for ¢ == 1, 2. Then by (2.33)

F(um(®, *),t, wO@)) |20, r; 2200 < CODSEL ,
(II1) { 5 ML (0, 73 LHDY)

lwiallzoo, 7; 22)y< const ,

and, possibly extracting further subsequences, in (I) and (II) convergences are in L*(0, T';
I*(D)) weak star, too.

In conclusion, this strengthening of (2.10), (2.12) allows to avoid assumptions (2.11)
and (2.14) in theorem 1, the regularity result we W*'(0,T; L*(D)) being replaced by
we LF(0, T; L¥D)). Similar considerations hold for theorems 2, 3 and 4.

Notice that the functionals F constructed in § 4 and 5 fulfill also these stronger prop-
erties.
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