
A Model for Hysteresis of  Distributed Systems (*). 

A. V I s I ~ I ~  (Pavia) 

Summary .  - Memory effects o/ hysteresis type are taken into account as constitutive relations 
for parabolic and hyperbolic problems, also with jree boundaries; existence results are proved. 
A scheme of construction of functionals representing hysteresis phenomena is presented and 
examples are given; in particular ferromagnetism is considered. 

Introduct ion .  

In  this paper  we present  an approach to the modelizat ion of some hysteresis 

phenomena.  
In  w 1 we give an axiom~tizat ion oi the essential propert ies  in the  case of two 

reM variables connected by  such a funct ional  relation. For  dis t r ibuted systems, 
this is coupled with a par t ia l  differential equat ion;  in w 2, 3 we prove existence results 
for some parabolic and hyperbolic problems, also with free boundaries.  

Then in w 4 we introduce a procedure for the  construct ion of examples of such 
<( hysteresis funetionMs >4 by  means of the resolution of a family  of Cauehy problems 
for an ordinary  differential equation. Some explicit  examples are given in w 5. 

Final ly  in w 6 we present  a generalization of the  mathemat ica l  mode] in order 
to fit i t  be t t e r  to the  phenomenology of fe r romagnet i sm.  

~a thema t i cM studies about  hysteresis have been conducted by  KRASNOSEL~SKg 
and co-workers in recent  years ;  we refer to [5] and [6] for surveys of results and 
for a large collection of references. 

Some control  problems exhibit ing hysteresis arising in the  theory  of thermosta ts  
have been s tudied  by  GAS~OFF and SPnEKELS, cf. [3] and [4]. 

1. - F u n c t i o n a l s  represent ing  m e m o r y .  

Let  the functions v, z: [0, T ] - ~ R  be related by  a condit ion of the  following 
type :  z(t) depends on the restr ict ion of v to [0, t] and on the  init ial  value z(O), i.e. 
formally 

(1.1) z(t) =/(~(')IEo,,~, z(o)) o < t < T. 

(*) Entrata in Redazione il 18 matzo 1982. 
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We are going to state this in a precise form. Let  a couple (S~ 5") be given such tha t  

(~.2) 

(1.3) 

(1.~) 

(1.5) 

(1.6) 

5': R x [0, T] -+ ~'(R) 

Dora (~) = {(~, t, ~)t~ ~ co([o, r ] ) ,  o < t < T ,  ~ ~ ~(v(o), o)); 

V(v, t, ~) ~ Dom (~-), 5(% t, ~) ~ $(v(t), t) 

I Vy e C~ :T]), V8 e S(v(O), 0), the function t ~ ~(v, t, ~) is continuous 
in [0, T] 

v~ e co([o, T]), v~ e ~(~(o), o), x(v ,  o, ~) = 

{ Vt ~ ]0, T[, V%, v ~  C~ T]) such tha t  vx = v2 in [0, t], 

V~ e S(v~(O), 0), 5(v~, t, 8) = ~-(v~, t, ~) (causali ty).  

We assume v e C~ Y]) and replace (1.1) by the more rigorous relation 

(]_.7) z(t) = 8r(v('), t, z(0)) for 0 < t < 2 ~ . 

Actually, this last is more general th~n (1.1): i t  corresponds to a dependence of 
the form 

(1.s) z(t) = i(~(')t~o,,], t, ~(o)) for o < t < i" 

in which the consti tutive law m a t  change with time. 

EXA~LE s (trivial). - Y reduces to a function. 
Le t  g ~ C~ x [0, T]) and set 

(1.9) { ~(y, t) = {g(y, t)}, v y e  R ,  Vt z [0, ~] 

~(~, t, g(~(o), o)) = g(~(t), t), w e co([o, i,]), vt ~ [o, /~] .  

(1.2), ...~ (1.6) are trivially satisfied. 

EXA~:PLE 2. -- Convolution. 
Le t  b e C~ T]~), g ~ C~ and set 

(1.10) 

S(y, t) =- R ,  Vy e R, Vte  [0, T] 

t 

~(~, t, ~) = f b ( t -  7, t)g(~(~)) aT + ~,  v~ e co([o, z]) ,  vt e [o, T], v~ e n .  
0 

(1.2), ..., (1.6) hold. 
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This type  of functional  is used for the description of viscosity and many  other 
memory effects (cf.[2], e.g.). 

EXAi~I:PLE 3. -- Description of hysteresis. 
This arises in ferromagnetism (in this case v and z are the  modulus of the  

magnetic field H and of the  induction field B, respectively), in plasticity (then v 
is the strain s, z is the  stress a), etc. 

Conditions (1.2), ..., (1.6) fit to the  phenomenology of hysteresis, when jumps 
are smoothed; however cases with jumps are considered in problems (P2) and (Pd) 
(cf. w 2 and w 3, respect.). 

We can assume also the  following property, which discriminates hysteresis from 
memory effects represented by convolution 

(1.11) I V(v, t, ~) e Dom (2), Vs: [0, T] -~ [O, T] monotone homeomorphism,  

t 5-(v, t, ~) = 5-(vos -~, s(t), ~) (invariance for t ime-homeomorphism) . 

Throughout  this paper, a functional fulfilling properties (1.3), ..., (1.6), (1.11) 
will be named (( hysteresis functional ~. 

I f  moreover the consti tutive law does not  depend on time, then  also the follow- 
ing condition holds 

Yt', t"e [0, 2"] wi th  t ' <  t", Vv ~ C~ T]) such tha t  ~(t) = constant  for 
(1.12) t'<<.t<<.t", V ~ S ( v ( 0 ) , 0 ) ,  5 ( v , t , ~ ) = e o n s t a n t  for t'<~t<~t". 

Hysteresis can appear also in phase transit ions;  an example is given by super- 
cooling and superheating in change of state. However these phenomena seem to 
require a different approach; an  ~ttempt in this  sense is performed in [10]. 

Now consider the following property 

(1.13) 

V~ e ]0, T[, 3(S ~, 5-*) fulfilling properties (1.2), ..., (1.6) (with T replaced 
by 2' -- 3) and such tha t  set t ing ~.(/~) ~ 2 + # V2, # ~ R, 

S(,~, t) = S~(,~, t - 3 ) ,  V), ~ R ,  Vt ~ [3, 2"] 

5-(v, t, ~) = 5-'(vo:r t - -  3, 5-(v, T, ~)), V(v, t, ~) e Dora (5-) with t > 3 
(transition proper ty) .  

This has the  following meaning:  for any  3 ~ ]0, T[, in order to evaluate 5-(v, t, $) 
for t > ~, the information contained in 5-(v, v, $) can replace tha t  given by ~ and 
by the  evolution of v in [0, z]. Among other things this implies t ha t  t = 0 is not a 
privileged instant .  

14 - A n n a ~ i  eli _~ Ia temat i ca  
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In genera.1 (1.13) is not fulfilled by  the convolution functional. 
The above properties can be easily extended to the case of vector valued variables 

v, z: [0, T]--> R M ( M  > 1). However in this case the phenomenology of hysteresis 
is more complex. In ferromagnetism, for instance, hysteresis by rotation depends 
also on the rotational velocity (cf. [9], pag. 553, e.g.); hence it is not invariant by  
time-homeomorphism (cf, (1.11)). This phenomenon is due to viscosity; it can be 
neglected for low rotational velocities, hence in the approximation of quasi-static: 
narity. 

2. - P a r a b o l i c  prob lems .  

Let an open bounded subset D of R "~' (N~I) be occupied by a homogeneous 
system; set Q ~- D • ]0, T[. 

We shall consider two variables ~, w: Q -~ R related by a condition of the form 

(2.0) 'w(x, t ) =  ~-(u(x, "), t, w(x,  O)) for (x , t )  e Q  

(where u ( x , . )  denotes the restriction of u to {x} X [0, T]). 
This relation will be coupled with a partial differentiM equation of the form 

or  

~w 
8---{ + A u  ~- ] in ~)'(Q) 

(w § s) + _du = t 

s e sgn (w) 

in ~'(Q) 

in Q (sgn-~ signum graph) 

(where A is a linear elliptic operator, / is ~ datum); suitable boundary conditions 
will be given. 

Let V c ~D(D) be a dense and compact real Hilbert subspace of L2(D). Let 
(S, ~) fulfilling (1.2), ..., (1.6) be given. Let 

(2.1) 
A: V-~  V' be linear, bounded, symmetric a.nd such that  

3#1, #3> 0 constant: Vv ~ V v , ( A v  , v}v ~ #l][V]l~.(v)~>#2]]v][~ coerciveness) 

(for instance, V -~ H~(D), A = --  A --  a I  with a > O; then take # i >  a , /~2~  min (/zl--  

- . ,  1)). 

(2.2) u% w": D -+ R measurable; w~ ~ S(u~ 0) a.e. in D, w~ V'  

(2.3) I c LI(0, r;  V'). 
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(PI) 

(2.4) 

(2.5) 

and~ sett ing 

(2.6) 

(2.7) 

(2.8) 

F ind  u e ZI(0, T; V) such tha t  

u(x, .) e c~([0, T]) 

u(x, O) = u~ 

a.e. in D 

a.e. in D 

w(x , t )  = ~ (u (x ,  .) , t ,  wo(x)), Vte[o,  T], a.e. in .D, 

w(',  t) is measurable in D Vte [0, T], w e Wx,~(0, T, V') 

Ow 
3t ~ Au  = ] in V', a.e. in ]0, T[ .  

REmArKS. -- i) U and w are regarded as functions of t taking values in a space 
of functions of % as we]l as functions of x taking values in a space of functions of t. 

ii) By  (1.5)~ (2.6) contains the  initial condition w(x, O) = we(x) a.e. in D. 

We introduce the set of piecewise linear continuous functions 

(2.9) 
{ C~ T]) = {v e C~ Y])l~{tk}k= 0 ..... ,, with t o=  0 < t~< ... < t ~ =  T 

such tha t  v is linear in [tk, tk+~], for k = 0~ ..., m - -  1}. 

THEOREM 1. - Assume tha t  (1.2), ..., (1.6), (1.12), (2.1), ..., (2.3) hold and 
moreover 

(2.10) 
3c~: [0, T] ~ R+ (i = 1, 2): Vt e [0, T], Vy e R, Yz e S(y, t) ,  

Izl<e~(t)ly t § e~(t) 

(2.~1) 3c3, c4, ~ constant  (2 > 0): Vv e C~ T]), V$ ~ S(v(O), 0), 

V i 

(2.1~) 

Let  {v,e 0o([0, T])},~N , v e C~ T]) be such tha t  v.(0) -~ v(0), Yn e N 

and v~ ~ v in Co(J0, T]) strong. Then Y~ e S(v(0), 0), 

~-(v~, ., ~) --> 5(v,  ., ~) in Z~(0, T) weak 

(2.z3) 

3a: constant  > 0: Vt', t "e  [0, T] with t ' <  t", Vvl, v~E Co([0, T]) 

with vl = v2 in [0, t'], v~ and v~ linear in [t', t'~], Y~e ~(vl(0), 0), 

[~(v,, t", r - ~-(~, t", r [v~(t") - v~(t")] > ~ [ ~ ( t " ) -  v~(t")]~. 
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(2.14) 

(2.15) 

Let  m e N and to = 0 < t~< ... < t~---- T; Vyo, ..., y ~ R  let y(.)  = 
z(Yo, ..., Y~) e C~ T]) denote the  function obta ined interpolat ing li- 
nearly {y(tkl -~ Yk}k=o ..... ~ in [0, T]. 

Then Vyo e R,  ~/~ ~ S(yo, 0), Vt ~ [0, T], the  function R ~ -> R:  (y~, ..., 
y~) ~ ~(7~(yo, ..., y,~), t, $) is continuous 

Vv e C~ T]), Vt ~ [0, T], the  function S(v(0), 0) -+ R:  ~ --> ~-(v, t, ~) is 
continuous 

(2.16) U ~ ~ V 

(2.17) ] : ]1-~ ]~ with ]~eL~(Q) , ]2e WI'I(0, T; V ' ) .  

Under  these assumptions (P1) has at least one solution, such tha t  moreover 

(2.1s) 
u e Hi(o, r;  L~(D)) n L~(0, T; V) 

1:~ E]KAI~KS: 

i) (2.18) yields u e C~([0, T]; V) (cf. [8], ch. 3, lemma 8.1): 

ii) (2.13) gives a (( parabolic character  ~> to (2.8). 

iii) (2.13) is not  fulfilled by  the convolution l~perator (1.10); on the other hand 
(2.10), ..., (2.15) are compatible with (1.11) and one-dimensionM h y s -  
teresis phenomena (ef. w167 4, 5). 

iv) If  ~- is a function, as in example 1 of w 1, then theorem 1 reduces to a 
well-known result (cf. [7], ch. 2, e.g.). 

:PRooF. - 1) Approximation. 

(P1)~  

(2.19) 

(2.20) 

Let  m e N ,  k :  Tim. 

Find u~e  V for n ~ 1, ..., m, such that ,  sett ing 

[ u~(x, .) is the function obtained interpolating linearly the  values u~(x, 
nk) = u~(x) fo r  n = 0, . . . ,  m ( u~  u~ a.e. i n  D 

w~(x) = 3:(u~(x, "), nl~, w~ a.e. for x ~ D, for n = 1, ..., m, 

then w~, is measurable in D, w~ e V' Vn and  

(2.21) w~--w~-l -~Au.~-- - -]~  in V', for n : l , . . . , m  
k 
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where 

(2.22) 

n~ 

= #  ~,(x,t) dt a.e. i n O ,  
(n- ~)~ 

,, _ _  V ~ o - . .o / ~ -  ]~(nk) i n  , w ~ -  - -  w a . e .  i n  D .  

Vm e N, we solve (P1)~ step by step. F ix  n ~ {1, ..., m} and assume tha t  the 
u~ s are known for 1 = 0, ..., n - - 1 ;  then by (1.6) W(u~(x, .), nk, w~ depends 
only on u:(x) a.e. in D, i.e. (2.20) is of the form 

(2.23) w:(x) = ~(%(x) ,  ..., u : (x) ,  a.e. 

By (2.14) and (2.15), ~b~: {(Y0, .-., Y~+I) e R "+=) e R"+~]y "+1 e S(y ~ 0)} -+ R is con- 
t inuous;  therefore~ as u~ ..., u:,  w ~ are measurable in D, also w:  is measurable in D. 

By  (2.10), Vv ~ L~(D)~ gt:(v)~ L~(D); moreover by (2.13) the *unctional ~ is 
strictly and cyclicly monotone. Therefore gt:  is the subdifferential of a lower semi- 
continuous, strictly convex functional O~: Z2(D) -+ R, i.e. gt:  = ~0~. 

Introduce the lower semi-continuous, strictly convex functional 

(2.2~) 4 J~: V--->R: v ~On(v)  +~v,<Av,  v>v w~-~vdx--kv,<]~,v>v; 

D 

by (2.2) and (2.13), if k<~/tt ~ then  J~, is coercive; therefore it  has a unique minimiz- 
ing argument  u : ,  which is also the unique solution of (P1)m. 

2) Estimates. Multiply (2.21) against u : - -  u~ -~ and sum for n = 1, ..., l, for a 
generic I e {1, ..., m}. Notice tha t  by (1.12) and (2.13) 

(2.25) W m -  "tOm ~ m -  

,~=~ ,I ~ ( u ~ -  u~ -~) dx>~.l~ ,~=~ 1~ II~'(D) 
1) 

by (2.2) A ~-#~I  is the subdifferential of a lower semi-eontinnons~ conyex and 
coercive functional A :  V --> R;  therefore 

(2.26) . A n n  u n _ _  v ~('x. .rn~ n - 1  _ _  u~ > ~ -  ~ ~ ' < ( X . +  ~ , I ) ~ ,  u ~ - ~,--~\ 
r ~  m . ~ m  / I  7 ~  

--  tt~fu~(u;~-- u~ -i) dx>>A(u~) A(u~ -1) ~ 2 , , '  I ,,as . 

D 

fm'thermore 

(2.27) ~ /~(u~--<~l)dx< ~<1/~[1~,,~, �9 l k  u ~ - - ~  
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(2.2s) 
l 

n = l  
l 

~=2 n=O,...,1 

thus  we get 

(2.29) = 1 k ~ const. 

(2.30) m~x ]lu~il~<eonst. 

(2.31) 

Let  w~(x, t) be the function obtained interpolating linearly the va]ues 

w~(x, n k ) =  w~(x) for n = 0, ..., m a.e. in D; let din(x, t)----u~(x) a .e . in  

D and f ~ ( t ) =  ]~ in V' if ( n - - 1 ) k <  t<nk, for n----1, ..., m .  

(2.21) becomes 

(2.32) ~Wm 
~t q- Ad~ = f~ in V ' ,  a.e. in ]0, T[ 

and (2.29), (2.30) yield 

(2.33) 

(2.3~) 

[] u,~]rw(o, r; L,(D)) o L=(o, z; v) < cons t ,  

II~Jr~(o,T; v)<const, 

by (2.32), (2.34) we have 

(2.35) I W 1 <~ COIISt  m~H (0,T V') 

and by (2.11), (2.33) 

(2.36) H 5z(u,~( x, "), t, w~ w~.,~(o, r; ~'(D))< const .  

3) Limit. By the above ~ priori estimates there exist u, w such that ,  possibly 

taking subsequences, 

(2.37) u~ -+ u 

(2.38) 4~ -+ u 

(2.39) w~ --~ w 

in Hi(0! T; L2(D)) (3 L:~(O, T; V) weak star 

in L~(0, T;  V) weak star 

in H~(0i T; V') weak .  



A, VISINTIN: A model ]or hysteresis o/ distributed systems 211 

Taking m - +  ~ in (2.32) we get (2.8). By (2.37) we have 

(2.4o) urn(x, ") ~ u(x, ") in C~ T]) strong, a.e. in D 

then by (2.12) 

(2.41) ~(um(x, "), t, w~ -> ~-(u(x, .), t, wO(x)) in LX(0, T) weak, a.e. in D 

thus by (2.36) and Lemma 1 (see below) we get 

(2.42) a-(u,~(~, .), t, ~o(~)) - ,  5(u(x,  .), t, ~o(~)) i~ L~(0, f ;  L~(1))) we~k.  

By (2.20) and Lemma 2 (see below) we have 

(2.43) []w~(x, t) - X(u~(~,  .), t, w0(~))L~(o,~;,(,)) < 

< ck~ll 5:(u,,~(x, .), t, w~ l],~,.~(o,~ ~(,)) 

with U positive constant; the last two formulas and (2.36) yield 

(2.44) w,. ~ 5-(u(x, .), t, wO(x)) in L~(O, T; Z*(D)) weak 

then by (2.39)we get (2.6). [] 

Lmf~A 1. - Let (v.}~N be such that []v~lrL~(o,r;~,(m)<eonst, v,(x, .) ~ v(x, ") 
in L~(0, T) weak a.e. in D. Then v~-~ v in LI(0, T; L2(D)) weak. 

T T 

PlCOOF. - Fix ~v e L~(0, T), set U.(x) =fv~(x,  t)q)(t) dr, U(x) = f v ( x ,  t)q)(t) dt; thus 
0 0 

we have II U,,I!L'(D)~<const, U,,-+ U a.e. in D; this yields (cf. [7] pag. 13) U~-+ U 
in L~(D) weak; i.e. 

Q D 

�9 2 )  Q 

whence the thesis, as {F(t)y~(x)lF ~ L~(o. T), F e z~(D)} is dense in L| T; L~(D)) = 
= . 

LEivnvtA 2. - Let X be a reflexive Bana.ch space; let r > O, 1 4 p  < ~ .  Then there 
exists a constant C such that  for any ] e W~'~(O, T;X) ,  denoting by lm the piece- 
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wise linear function obtained interpolating ] in t = 0, k, ..., mk -~ T, 

r I 

For the  proof, cf. [1], ch. 3, e.g.. 

REmArKS. - i) We emphasize the  importance of using a t ime-discretization ap- 
proximation in order to prove the existence result. 

Assumptions are formulated using piecewise linear continuous functions in view 
of this approach. But ,  whereas the  generalization of (2.11), (2.12), (2.14) and (2.15) 
to continuous functions v would not be l imitative,  the  extension of (2.13) presents 
some difficulties. 

The monotonic i ty  condition 

Yv~, v2e C~ T]) with v~(0) = v~(0), V~ e S(v~(O), 0 ) ,  

(2.46) T 

t[5(v~, t, ~ ) -  5(v~, t, ~)]. Ivy(t)- v~(t)] dt> 0 
0 

and even the order preservation property.  

[ Vv~, vse C~ T]) with vl(0) = v~(0) and v~>v2 in [0, T ] ,  
(2.r / V~ e ~(v~(0), 0), Vte [o, ~], ~(v~, t, ~)> 5(v~, t, ~) 

are not  compatible with some important  hysteresis phenomena like as ferromagnetism. 
Wha t  in general seems right to require is a proper ty  of the  form 

(2.~s) 
f Vt', t"e [0, T] with t ' <  t", Vvl, v ~  C~ T]) such tha t  v~= v~ in [0, t']. 

v~>v~ and both  are monotone in [t',t"], V~e~(v~(0), 0), 
5(v~, v, ~)> 5(v~, t", ~) 

(or also ~-(v~, t '~, ~) -- 5(v2, t I', ~)>~[v~(V)-  v2(t'~)], wi th  ~ positive constant) ;  indeed 
(2.13) is the  reduction of this proper ty  to vl and v~ piecewise linear (what is sufficient 
for the  proof of the  existence result when a t ime-diseretization approximation is 

used). 

if) Uniqueness of so lu t ion  of (P1) is an open question. By  the above con- 
siderations it does not  seem immediate.  

iii) Numerical  resolution of problems (P1)~'s can be performed by  s tandard 

methods. 

vi) In  the above developments 11o assnmtpion has been used concerning the 
direction of rotat ion of hysteresis loops; therefore these apply to both  cases in 
which w lags or ant ic ipates  w . r . t . u .  
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Now we take into account a free boundary  parabolic problem. Let  G: R -+ ~(R) 
be a maximal  monotone graph with bounded range: 

(2.49) G(R) ---- U G(~): bounded .  
SeR 

Let  

(2.50) s~ D -> R measurable ,  s~ e G ( R )  a.e. in D; 

assume tha t  (1.2), ...~ (1.6), (2.1), ..., (2.3) hold and set 

(2.51) 

(P2) 

(2.52) 

(2.53) 

(2.54) 

P o - ~ w ~ 2 4 7 1 7 6  ~. 

F ind  u ~ L~(0, T; V), s e L| such tha t  (2.4), (2.5) hold ~nd, sett ing (2.6), 
w(., t) is measurable in D a.e. for t ~ ]0~ T[, w + s E WU(0, T; V'), 

s ~ G(w) a.e. in Q 

(w + s) + Au = ] in V ' ,  a.e. in ]0, :/'[ 

(w + s)It~ o =  po in V ' .  

(2.55) ~- = {(~, t) e QIw(x, t) = 0}; 

assume tha t  s has no interior points and tha t  it  is smooth enough; then  formally 
(2.53) corresponds to 

~w 
(2.56) ~ T -  ~ u  = ] in  O \ ~  

(2.~7) 2v, § Evu~.v~= o on 

(where (v~, v~) ---- (v~, ..., v~,  vt) is normal  to s ~nd directed in the sense of increas- 
ing w, [[.~ denotes the jump across fi). 

T~EoRE~ 2. -- Assume tha t  (2.49), (2.50) and t h e  hypotheses of theorem 1 hold 
and tha t  

(2.58) 
if {v~(x, t)}~e~ is bounded in Co(J0, T]; V), 

then  {~-(v~(x, .), t, wO(x))},~;~, is bounded in LI(0, T, V). 

Then (P2) has at  least one solution, such tha t  moreover (2.18) holds. 

R]~[A~K. - If  G is a proper graph, then  (P2) is the weak formulation of a free 
boundary problem. 

For example, let G be the signum graph, V-~  H~(D), A = -- A and set 
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PROOF. -- Let  m ~ N,  ]c ~- T/m.  

(P2)~ F ind  u : e  V, s : ~ L ~ ( D )  for n :  1, ..., m, such that - - s e t t i n g  (2.19) ~nd 
(2.20)---w~ is measurable in D Vn~ 

(2.59) sUe G(w~) a.e. in D, Vn 

n 0 p 0  n ~nd~ sett ing Pm ~- w~,~ ~ s :  for n -~ 1, ..., m, p~ = a.e. in D~ then  p~ ~ V' and 

~]n ~Dn-1 

(2.60) ~'"--~ '~  ~ A u ~  ~ ~,~ in V' for n ---- 1, .., m ,  

with the position (2.22). 
Vm E N, existence and uniqueness of solution of (P2),, and ~ priori est imates 

(2.33), (2.34) can be shown as for (P1) .... 
Le t  s~(x, t) be the  funct ion obtained interpolat ing l inearly the values s,~(x~ nk) ~- 

~- s~(x) for n -~ 0, ..., m a.e. in D;  set 2,, : w., ~- s.~ ~nd use notat ions (2.31). (2.60) 

becomes 

(2.61) ~P" " 8t ~- Au,~ --- f~  in V'  , a.e. in ]0, T[ 

and then  by  (2.34) 

(2.62) IIJ%~m(0,T; V')< const;  

this last and (2.59) yield 

(2.63) I[ w~,~l[L~ (0. r; v') < cons t .  

Thus we get the existence of u, w, s such tha t  possibly taking subsequences (2.37), 

(2.38) hold and set t ing p ----- w -~ s 

(2.64) w~-~ w in L=(0, T;  V') weak star  

(2.65) s,,~ -> s in L~(Q) weak s tar  

(2.66) p~, - > p  in Hi(O, T ;  V') weak .  

Taking m - >  z~ in (2.61) we get (2.53). 
In  order to prove (2.6), notice t h a t  (2.33) ~nd (2.58) yield 

(2.67) il x ( u A z ,  "), t, w~ v) <const  
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therefore, using also (2.36) and (2.42), 

(2.68) ~(Um(X, "), t, w~ --> ~-(u(x, "), t, w~ 

then~ by (2.43), 

(2.69) w~ --> X(u(x,  �9 ), t, wO(x)) 

in Z~(0, T; L2(D)) strong 

in L~(0, s L2(D)) strong 

in ~D'(Q) ; 

for this the procedure of the next  section can be used. 

3. - Hyperbol ic  problems.  

We are going to s tudy  the case in which the relation (2.0) between u, w: Q --> R 
is coupled with a part ial  differential equation of the form 

~ - ~ - v ~  - t - A u = ]  in O'(Q) 

w.r.t, t this reduces to 

and this yields (2.6). Moreover, as s is the subdifferential of a lower semi-continuous 
convex functional  R~ we have 

(2.70) ff[R(w, )--R(v)Jdxdt<fj's,.(w. --v)dxdt, Vv LI(Q); 
Q Q 

taking m - +  cr by  (2.65) and (2.69) we get 

(2.,71) ffER(w)--R(v)]dxdt<ffs( -- )dxdt, W  LI(Q) 
Q Q 

i.e. (2.52). �9 

Also for (P2) uniqueness of solution is an open question. 

RE~A~K. - Let  (2.0) be coupled with an equation of the form 

(2.72) ~u q- .Au -k w : ] in ~D'(Q), 
~t 

in which the (( hysteresis functional ~) is not  in the principal p~rt. Af ter  derivation 
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o r  

+ w + s  + 

s e sgn (w) 

A u  = f in ~)'(Q) 

in Q (sgn = signum graph) 

(where A is a linear elliptic operator,  f is a da tum);  suitable init ial  and boundary  
conditions will be given. 

Assume tha t  (1.2), ...~ (1.6), (2.1), ...~ (2 .3 )ho ld  and t h a t  

(3.1) co ~ E V ' .  

(P3) F ind  ueL~(0 ,  T;  V) such t h a t  

(3.2) u(x, .) e Co([o, T]) a.e. in D 

(3.3) u(x, O) = u~ a.e. in D 

and, set t ing 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

w(x, t )  = 5r(u(x, "),t ,w~ Vte[O,T] ,  a.e. in D ,  

3u 
w(. , t )  is measurable in D V t e [ 0 , 1 ' ] ,  ~ - - [~ -we W~.~ (O ,T ;V  ') 

) ~t~ '~  + w  + A u = f  in V ' ,  a.e. in ]0, T[ 

] w = co o in V ' .  
t=O 

R ~ R K .  - By  (1.5), (3.4) contains the initial condition w(x, O) = w~ a.e. in D. 

THEORE~ 3. -- Under  the  same assumptions as in Theorem I i i L m o r e o v e r  z ~  
= coo_ wOe L2(D), then  (P3) has at lea.st one solution such tha t  moreover  

(3.8) { ~t e wl,~(o, T; L~(D)) m L~(0, T; V ) ;  

w E W'~'I(o, T} L2(D)) . 

RES~ARK. -- (3.8) yields u E C~([0, T]; V) (ef. [8], ch. 3, lemma 8.1). 

B~OOF. - 1) Approximation. As an approached problem (P3),,, consider (P1)~ 
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with (2.21) replaced by  the  following equat ion 

n"  ~,n--i n q D n - - 1  
Z m - -  ~ m  W m  - -  ~ m  

(3.9) k -~ 1r -~ Au~ = ]% in V ' ,  for n -~ 1, . . . ,  m 

o ~ .  u . ~ - - u ~  ( n = l ,  m) ~.e. in D Where z m ~ Z ~ ~ Z r n  k " " "  ~ " 

Ym, existence and uniqueness of solution can be shown ~s for (P1)~. 

2) Estimates. Multiply (3.9) against  u : - -  u~ -~ and sum for n = 1, ..., 5, for a 

generic 1 e {1, ..., m}. l~otice tha t  

(3.10) i f $--I z ; - -  z~  . ( ~ _  ~ _ ~ )  d x  = 
n = l . ]  ]~ 

D 

n n--1 n n 2 

=I ~=I 
/) 

~ � 8 9  ~ ~ 

using also (2.25), ..., (2.28) we get 

(3.11) m ax  llz~llL~v)< cons t ,  

(3.12) m a x  Ilu~[I v < cons t .  
n=0,...,m 

Let  w,,,, u~, d~,]m be defined as in (2.19), (2.31). Le t  z~ be the  funct ion obtained 
interpolat ing l inearly the  values zm(x, nk) = z%(x) for n = 0, ..., m ,  a.e. in D;  let  
~'~(x, t) -~ z%(x) a.e. in D if ( n - -  1)k < t<~nk, for n = 1, ..., m. 

(3.9) becomes 

(3.13) ~t (zm ~- win) + Ad~ = f,~ in V ' ,  a.e. in ]0, T [ .  

(3.1t) and (3.12) yield 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

il 2~[Jz~(o, T; ~(D)) < const 

Jf %l]w~. ~(o, T: Lo(~)) n ~ ( o ,  r~ v) < const 

~tnd by  (3.13), (3.17) 

(3.18) l]z,~ ~- w,,ll~,(o,T ~ V,)<~const 
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whence by  (3.14) 

(3.19) []w~!lL~(o, T; V')< eons t .  

3) Limit. B y  the above estimates,  there  exist  u, z, w such tha t  possibly tak- 
ing subsequences 

(3.20) zm -~ z in L| T; L~(D)) weak star 

(3.21) z~ ->z  in L~(0, T; L2(D)) weak star 

(3.22) u~ -~ u in W~,~(0, T; Lz(D)) (~ L~(0, T; V) weak star 

(3.23) ~ --> u in L~(0, T; V) weak star  

(3.24) w,~ --> w in L~(O, T; V') weak star  

as Vm ~ N ~,. = ~u,@t a.e. in Q, we get z = ~u/~t a.e. in Q, thus recalling (3.18) 

au 
(3.25) z ~ +  w~-->-~ + w in H~(0, T; V') weak 

and taking m -~ ~ in (3.13) we get (3.6), as well as (3.7). 
(3.4) can be deduced as in the  proof of theorem 1. [] 

Also for (1)3) uniqueness of solution is an open question. 
Assume tha t  (1.2), ..., (1.6), (2.1), ..., (2.3), (3.1) hold. 

(Pd) Find u ~ L~(O, T; V), s e L~(Q) such that ,  set t ing (3A), then (3.2), (3.3), (3.5) 

hold ~nd 

(3.24) s e sgn (w) a.e. in Q 

) (3.25) ~ ~ -t- w + s -t- Au  = ] in V', a.e. in ]0,  T[ 

(3.26) 
i - -  

R E ~ A ~ .  - Analogously to (P2), also (1)4:) is the  weak formulation of u free 
boundary  problem, with (2.56) and (2.57) replaced by  

(3.27) ~ u  aw ~t~ + - ~ - -  Au = ? in q \ ~ ,  

(3.28) (~-~~+2]~ , ,+EVu~.~=o on ~. 
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THEOREM 4. -- Under the  assumptions of theorems 2 and 3, (1)4) has at  least one 
solution such tha t  moreover (3.8) holds. 

Proof follows the procedures used for theorems 2 and 3. 
Also for (1)4) uniqueness of solution is an open question. 

Generalizations. - i) Theorems 1, ..., 4 can be e~sily extended to the case in which 
u(x, t), w(x, t ) ~ R  M (M > 1). In  particular existence results can be proved if in 
(2.13) strict  monotoniei ty is replaced by strict cyclic monotonicity.  

ii) Similar results can be obtained for other boundary  conditions, for instance 
of type of l~eumann, of Diriehlet non-homogeneous, or of mixed type. 

iii) If  D is occupied by a non-homogeneous system, we may  consider a couple 
(S~, 5-~) depending on x, a.e. for x e D. More precisely let (S, ~ )  be given such tha t  

(3.29) ~: R •  -+ ~(R) 

Dora (~) -~ ((v,x , t ,~)lveC~ T]), x e D ,  te[O,  T], Se~(v (O) ,x , t } ;  
(3.3O) 

I V(v, x, t, ~) e ])om (~) ,  ~(v,  x, t, ~) e ~(~(t), x, t ) .  

Set, a.e. for x ~ D, 

(3.31) { S~(y, t) -~ ~(y, x, t ) ,  V(y, t) e R • [0, T ] ,  

~ ( v ,  t, ~) = if(v, x, t, ~), V(v, t, $) such tha t  v e C~ T]) , 

We assume (S, 5-) to be such tha t  the corresponding (S~, ~-~)'s fulfill properties 
(].2), ..., (1.6), a.e. for x e D  and tha t  ~- is globally measurable. 

Extension of problems (1)1), ..., (1)4) is immediate.  Existence theorems 1, ..., 4 
hold also in this case if properties (2.10), ..., (2.13) are assumed to hold uniformly 
w.r.t, x (possibly with the exception of a set with vanishing measure). 

4. - A scheme  o f  construction o f  hysteresis  functionals .  

Let  (S, G) be such that 

(4.1) S: R - ~  if(R)\{0}; Vy ~ R,  S(y) is closed 

(for the sake of simplicity, we assume S to be time-independent) 

(4.2) / Dora (G) = {(~, ~, e ) l~R ,  ~e~(~), eeR}; 

t V(~, ~, e) e Dom (G), G(~, ~, e) ~ S(e) 
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(4.3) 

(4.4) 

(4.5) 

V~ ~ R,  V~ ~ S($), o~ ~ G(~, ~, ~) is continuous in R 

G(~, ~, ~) -~ G(e, G(~, $, e), ~) (transition proper ty  for G).  

Exumples  will be given in the  next  section. 
At  first we define 5 7 reeursively for v e ~~ T]) (defined in (2.9)) 

(4.6) 

w e 0o([0, T]), V~ e S(v(0)), 57(~, 0, ~) = ~; 

V(t~}k= o .... . .  ~s in (2.9), Vk e {0, ..., m - -  1}, Vt e ]t~, t~.~], 

57(v, t, ~) = ~(~(t~), 57(v, t~, ~), ~(t)); 

by (4.5), this definition is independent  of the  subdivision {tk}k= o ..... ~. 
We require G to ~be such tha t  57 defined in (4.6) fulfills the  following eruciul 

proper ty  

(4.7) I 
v; e R, v~ e s(~), {v e 00([o, ~])I~(o) = ;} -~ co([o, T]): 

v ~ ~-(v, ..., ~) is uniformly continuous w.r.t, the  maximum norm; 

this implies tha t  if {v. 6 C~ T])},~N is u Cauchy sequence w.r.t, the  m~ximum 
norm und if v,(0) = v~(0) V n e N ,  then V~eS(v~(0)) ~lso ~-(v,, . ,  ~) is u C~uchy 
sequence w.r.t, the  same norm. This ~llows to extend ~- univoc~lly as follows 

(4.8) 

w e co([o, T]) ,  let ?~e  Co([0, T]) be such tha t  v.(0) = ~(0) V~ e N, 

% -> v in C~ T]) strong; Vte [0, T], V~ e S(v(0)), 57(v, t, ~) -~ 

-~ lim ~-(v~, t, ~); 
~ - - >  o o  

(1.3), ..., (1.6) are fulfilled, ~s well us (1.11), ..., (1.13) 
W e ]0, T[) ~nd (2.12), (2.14). 

If (2.10) holds, then 

(with (S ~, 5") = (S, ~-), 

(4.9) w ~ ~o([o, T]), V~ E ~(v(o)),  K157(v,., ~)ll,<o,~)<el]l<l~(o,T)+ ~ ;  

if 

(4.10) V ~ R ,  V ~ S ( ~ ) ,  ~o ~-* G(~, ~, ~) is Lipschitz-continuous, uniformly w.r.t..~, 
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then,  denoting by  L the IApschitz constant ,  

therefore, if both  (4-.9) and (4-.11) hold~ then  

(4.12) Vv e Oo([0, T]), v8 e s(v(0)), [Ix(~, ~, $)N.,(0,~)<max (c~, z)'i[vl].,(0,~)+ ~ 

which is stronger than (2.11). If  

3o~ c o n s t a n t > O :  V S e R ,  V~e S(~), V~, ~2~=R 

(4.~3) [~($, 8, a ) -  (7(~-, ~, a ) ] ' ( a -  ~ . , )>~(a -  Q~)~ 

then  (2.13) holds. If  

(4.14) V($, ~) ~ R 2, the  function R -+ R:  $ ~ G($, $, q) is continuous, 

then (2.15) holds. 
A class of functions G hllfilling the abova properties can be defined implicitly 

by  a family of Cauchy problems for an ordinary differential equation as follows. 
Let  S be us in (4-.1); set 8 ---- {($, $) e R2]~ e S($)}. 
IJet g~, g,: 8 -> R (not necessarily continuous) be such tha t  V($, ~) E 8 the fol- 

lowing problem has one and only one solution ~ ~ co(Q) = G(~, ~, q) piecewise of 
class C ~: 

(4.15) 

(~)IO~ft)(~lim\ h~o+~176 , V#<~ 

In  this case (4.2), ..., (4.5) hold. Set  (4.6); (4.7) must  be checked case by  case. 
For  a moment  assume tha t  i t  holds, so tha t  it is possible to extend ~- as in (4-.8). 

Fix  v a C~ 8 e •(v(0)) and set ](t) -~ 5(v, t, $), Vte [0, T]; we have 

(4.!6) 
{ ~ [dr 3 + 

( t )  = 1(t)) (t)j - 

t(0) = 8 

gz(v(t), ](t) ) [~  (t)]- a.e. in ]% T[; 

(formally: dr(t) = g,(t, ](t))[dv(t)] +- g~(t, ](t))[dv(t)]-, for t increasing, i.e. dt > 0). 

1 5  - AnnaZi  di  Matemat ica  
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This is the  differential form of the  (( hysteresis relat ion )>; notice tha t  it  requires 
more regular i ty  for v t han  the  integral  fo rm ](t) = 5-(v, t, ~). 

I t  is possible to modify  each one of the  above v~riational p rob lems- - say  (P1)--re-  

placing (2.6) by  

(4.~7) 

wcH~(O, T; L~(D)) 

Ow [ ~u\ + 

w(x, o) --- wO(x) 

(Ou) 
- 

g,(u, w)" ~ a.e. in Q 

a.e. in D 

which a priori is unrelated with the  corresponding (2.6), 
This problem can be ~pproxim~ted by  the  (P1)~'s of w 2, as the  differential and 

integral  forms of the  (~ hysteresis relat ion ~) are equivalent  for piecewise linear con- 
t inuous functions;  therefore the  same a priori estimates hold. Bu t  difficulties ~rise 

in the l imit  procedure (in par t icular  for proving t h a t  (~u.~/~t)+-. (~u/~t)+ in Z2(Q) 

weak). 
Analogous considerations hold for (P2), ..., (Pd). 
I f  [g~], Ig,.l<constunt, then  (4.10) is fulfilled; thus if also (2.10) holds, t hen  (4.12) 

is satisfied. I f  g~, g~>~: constant  > 0, t hen  (4.13) is fulfilled. If  g~, g~ are continuous,  

t hen  (4.14) holds. 
In  conclusion, sufficient conditions can be given so t h a t  the  assumptions of theo- 

rems 1 and 2 are satisfied for 5 constructed according to the  procedures ketehed 

in this section, i.e. (g~, g~) ~-~ G ~ ~-. 
In  principle this construction can be extended to the  vector  case. Bu t  i t  does 

not  seem easy to  define G by  a family of Cauchy problems as in (~.15). 

5. - Examples of  hysteresis functionals.  

We are going to specify some possible choices of g~, g~: $ - ~ R ;  if these are 

suitable, G and Y will be derived using the  procedure of w 4. 

ExA~P]~E 1. - Le t  0 < ~ < fl, q~< q2 (all constants).  Set 

(5.1) 

~(~) ~ [/~(e - g2),/~(o - q l ) ] ,  v e  e R 

g~(e, o )  = g,(e,  m) = ~ i f  ~(O - -  q2) < ~ < fl(o - -  q~) 

g,(o, o )  = ~, g~(e, m) = ~ if  o~ = ~ ( ~ - -  q~) 

In  this si tuation,  V~ ~ R, V~ ~ ~(~), (4.15) has one and only one solution; more- 
over the  construct ion of w 4 (g~, gr) ~-~ G ~ ~ can be carried out" as far  as (4.7) is 
concerned, 5 is even Lipschitz-continuous with Lipschitz constant  ft. 
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This procedure yields a functional ~- fulfilling (1.2), ..., (1.6), (2.10), ..., (2.14) 
as well as (2.47), (2.72). 

Fig. 1 represents the  graph of the  function ~o ~ G(~, ~, ~) for any  (~, ~) of the 
closed segment [A, B]. 

A 

OJ 

(q~, 

Figure 1 

- q l  

~//////////// K'J 

P 

q2 

~/////////~ 
Q. ~ - 1  

Figure 2 

Q 

In  the device drawn in fig. 2, the t ruck above carries along the one below, due 
to the shaft  coming down and to the two ends of the lower car; the lack of bilateral 
contact  causes the delay. Iner t ia  is neglected. ~(fl respect.) is the coordinate o f / )  
(Q respect.) and here :r = 1, fl = 2; ~(t) and cp(t) = ~(t) ~ fl(t) are related by the  
functional  ~ corresponding to g: and g~ as in (5.1). 
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EXAIVEPLE 2. -- See fig. 3 

(5.2) 

in  f f : g t = g ~ =  

o n  ] A ,  B [ :  g, = ~,  g~ = fl 

on ]D, E [ :  g~ = fl, g~ = o: 

g,(A)  = (~, g , (A)  = fl 

g , (D) = fl, g , (D) = (}~ 

on a i : g t = g , = ~ ,  ( i - - - -1 ,2 )  

on ]B, D[ :  g, = ~, g,----- ~, 

on ]E,  A [ :  gt -=- 7, g~-= o~ 

g~(B) = o:, g d B )  = y 

g , ( ~ )  = 7, g~(~) = ~ .  

T 
Z 

'O 

/ 
a 2 

D 

E C 

F B 

/ a  1 

Figure 3 

(~: slope of a i ( i =  1,2) a:  slope of [~ ,B] ,  [E ,C]  

fl: slope of [A, B], [E, D] y: slope of [A, El ,  [B, D] 

with O < ~ < f l < 7 < ~ ;  O < ~ < c o  ( i = 1 , 2 )  

9" = open paral lelogram A B D E ;  8 = -~ U a~ U a~ 

Also in this  case t he  cons t ruc t i on  of w 4 (gz, gr) ~ G ~+ 5- can  be  car r ied  ou t ;  t he  

p roper t i es  of • are  s imilar  to  those  of the  p reced ing  example .  

A dif ferent  mode l  for  t h e  s i t ua t i on  co r respond ing  to  ~ ~ fl~ y ~ q- oo is in t ro-  

duced  in [10]. 

EXA~n~LE 3. -- See fig. 4 

(5.3) 

in  '3~w ]A, D[ :  g, = fl, g , =  a 

on ]A, B[  W ]C, D[ :  gz ---- g~ = 

on ]B, 2)[: g~ = g, = fl 

g~(A) -= 81, g~(A) ---- 

g~( r  = ~, g~( r  = (32 

in  ~'2w ]B, ~[:  g~ = a, g, = fl 

on a~: g ~ =  g l =  d~ (i = 1, 2) 

go(B) = o:, gr(B) -= fl 

gz(D) = fl, g~(D) = o:. 
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~ Z 

/ 

Figure 4 

~: slope of a, (i = I, 2) 
a: slope of [A, B], [D, O] fi: slope of [A, D], [B, C] 

with 0 < z c < f l <  o% 0 < ~ <  oo ( i =  1,2) 
'3~ (resp. ff~) = open ~riangle ABD (resp. BCD) 
if------ ~'IU ff2U ]B, D[ 8 = Y l U a l U a 2  

Also in this case (4.15) has a unique solution; here we cannot carry out the construc- 
t ion of w 4 (g~, g,,) ~ G ~ ~', since (4.7) does not  hold, as we are going to show. 

Set 

~(~)=[ 1 if o<~<1 
l --I if 14~<2 

and extend it  periodically to the whole R+; Vn s N, set Cn(0) = 0, ~',(t) = ~(nt) for 
t>0 .  The graph of r176 T]) is drawn in fig. 5 a. 

Let  ($, 2) c if2 (e.g.), set v,(t) = $ Jr q~(t), for 0 < t < T .  I t  is easy to check tha t  
if T is large enough then  (v~(T), 5(v~, T, ~)) e ]C, D[ (see fig. 5 b); thus as n --> c~, 
v~ tends in C~ T]) strong to the  function identically equal to $, but  5 ( v , , . ,  ~) 
does not  tend  to the  function identical ly equal to 2. 

Therefore (4.7) does n o t  hold in this case. 
As a mat te r  of fact,  defining 5(v, t, ~) for v e C~ Ti) a.s i n  (4.6), here we have 

(cf. 

(5.4) 
is uniformly continuous w.r.t, the  varist.ion norm 

we remind tha t  Yv e C~ T]) the var ia t ion  is  defined as follows: if {t~}~=o,.:., ~ 
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1 

'v,(r 

0 ~, 1 2 3 4 

Figure 5a 

/ 
1 ~  a~ 

C 

D 
\ I " -  

\~ ~==V /I /- 
", /i  / 

o s  o, ,, ) 
Figure 5b 

are as in (2.9), then r = ~ Ivk-- v~_l[); this allows to extend the definition of 

~(v, t~ ~) to a]l v E Co([0, T])~ BV(O, T) (BV(O, T) being the space of functions 
with bounded variation endowed with the norm cU). However we cannot extend 

the proof of the above theorems to this 3 7, as we do not have estimates for u(x~ .) 
in a compact subspace of /~2(D: BV(O, T)). 

:ExA:~fPLE 4. -- See Fig. 6. 
The path A B C D A  represents the hysteresis cycle of a one dimensional magnetic 

body (% z corresponding to the fields H, B respect.). A B C D A  is covered by the 
(~ state point ~> (v, z) in the anticlockwise versus. 

Consider the system of oriented curves obtained starting from a generic point of 
the branch A B C  (CDA, resp.) and letting v to decrease to v~ (to increase to vc, , resp.), 
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Z 

Figure 6 

~ = o  

Figure 7 

these curves are assumed to be of class C ~ and with ~ slope uniformly bounded 
inferiorly by 1 > 0, superiorly by 2] < ~-c~. 

:For a n y  point (% z) ~ S, there are two oriented curves passing through it;  the 
two oriented branches gett ing out of (~, 5) define a curve @ ~ w(~) = G(~, 5, ~) (see 
fig. 6). 
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l~otice t ha t  (2A7) cannot be expected to hold in general. 
Let  5 r he defined by (4.6); for this  functional it  is possible to express considera- 

tions analogous to those presented for the preceding example: however small 
oscillations of v(t) around a value ~ can move the ~ state point ~ (v, z)(t)-~ (v(t), 

~))(~ e E(v(0))) far from its init ial  value (see fig. 5~(v, t, 7). 
Thus also in this case (4.7) does not  hold. 
In  the next  section we shall deal with a modification of the last two models in 

order to cope with the difficulties encountered here. 

6. - A general izat ion o f  the  model .  

<~ Transition property ~ (1.13) is not consistent with the phenomenology of hys- 
teresis for ferromagnetic materials, even in the  case in which the direction of H(t) 
and B(t) does not  change with time. For instance for a virgin material,  hence with 
H(0) = 0, B ( 0 ) =  0, if H changes monotonically then  the  ~ state point ~> (H(t), 
B(t)) e R 2 moves along the so-called first magnetizat ion curve; if after  a generic 
pa th  (H(t), B(t)) comes back to (0, 0), then  in general i t  will no longer describe the 
first magnetizat ion curve (cf. [9], pag. 548, e.g.). Moreover small oscillations of 
H(t) cannot cause large changes of B(t). 

We are going to show how the  difficulties encountered in the examples 3, 4 of 
w 5 may  be overcome by the introduction of something like an (( internal  parameter  ~>. 

Instead of considering the complicate pa t tern  of the hysteresis cycle of ferro- 
magnetism, we prefer to introduce this  procedure in the  simpler si tuation of ex- 
ample 3 of w 5. 

Let  g~,g~ be as in (5.3); fix k~]~, f l[ .  Y(e, co)eS,  Vp e [ - - 1 , 1 ] ,  set 

(6.1) j~(~o, 09, p) -~ g,(o~, co) 

(6.~) j~Co, o), p) = g~(e, co) 

if (~o, c o ) ~ f f ~ ) ] B , C [ u j C D [  a n d p ~ - - I  

otherwise 

if ( ~ , c o ) ~ f f U ] A , B [ U ] D , A [  a n d p ~ e l  

otherwise.  

F ix  a , ~ > 0 ;  Vp e l - - l ,  1], V # e R ,  set 

(6.3) 
rain (p + ~#, 1) if # > 0  

7(P, #) = max (p ~ ,~u, -- 1) if # < 0  

thus 7(/),/,) ~ [ - - 1 ,  1]; notice tha t  the following transi t ion property holds 

(6.~) vp ~ [- 1, ~], v~, ~ e R with ~.~, > O, ~(p, ~ C ~) = ~(~(p, ~), ~,). 
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Set 

(6.5) { V(q,~) ~ 8, V p e [ - ~ ,  1], V ~ e R ,  

(i = l, r) 

V(~', ~) e $, Yp ~ [-- 1, 1], let e ~ ~(~o) : ~(~, ~, e, p) be the  solution (existing ~ncl 
unique) of problem (4.15) wi th  g,(~, o~(~)) replaced by gi(~, ~o(~), p,  ~) (i ---- l, r); 
t h a t  is 

e,(e,~(e))  

d6o 
(6.6) ~ Qo)I(te~t) -~ a~  

if (e, ~o(e)) e ~ u ]B, C[ w ]r D[ an~t 

i{ ( ~ i . e .~  l ~ - p  

i~ (e, ~(e))  r ~ u ]B, C[ u It ,  1)[ 

or ~ < ~  

< e < ~ )  

d(D 
u~ ~,(p,~o(z)) 

if (~, co(~)) e ff U ]A, B[ U ]D, A[ and  

[ ~ > ~  (i.e. ~ < ~ < ~  + ~ )  p § ~(~ - -  ~) < 

1 - - p  

(6.8) ~(~) = ~ .  

Vp e [-- 1, 1], the  funct ion (~, ~, ~) ~ G(~, ~, 0) ~- ~(~, ~, ~, P) fulfills propert ies  (4.2), 
..., (4.4). We have also (cf. (4.5)) 

[ V $ e R ,  V ~ S ( ~ ) ,  Vp e [ - -1 ,1 ] ,  Vo~,~ER with ~ < ~ < 5  or ~ <  o<~,  
(6.9) 

I ~(~, ~, ~, P) ---- ~(e, ~(~, ~, q, P), ~, Y(P, e -- ~)) ( t ransi t ion p roper ty ) .  

We define J~ (the evolut ion of the  internal  parameter)  and ~ (the (( hysteresis 
funct ional  ~>) ~t f irst  in C~ T]): 

(6.1o) 

(6.11) 

Vv e C~ T]), V~ ~ [ -  1, 1], JC(v, 0, ~) = ~; V{tk)~= o ..... ~ as in (2.9), 

Vk e {0, ..., m -  1},Vt e ]t,, t,~+l], ~r t, ~) = 7(~(~, t,, ~), v ( t ) -  v(t~)) 

Vv e 0~ T]), V~ e Z(v(O)), V~ e [ -  1, 1], ~(v, O, ~, 7) = 

V{t~}~=o ..... ~ as in (2.9), Vk e {0, ..., m -  1}, Vt e ]t,0, t~+~], 

~(v, t, ~, 7) = ~(v(t,J, ~(v, t~, $, ~), v(t), JC(v, t,, ~)) 
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both  definitions are independent  of the  subdivision (tk}k= o ..... ,~, as a consequence 
of t ransi t ion properties (6.4)~ (6.9). 

The following crucial properties of Lipschitz-continuity w.r.t, v are fulfilled 

(6.12) 

(6.13) 

Vv,, v~e C~([o, T]) with  s,(o) = s~(o), Vs e [ - 1 ,  1 ] ,  

max I~(v~, . ,  ~) - -  JC(v~,., 7)I < ~  max  Iv~-  v~! 
[0,T] [0,T] 

Vv~, v~eC0([0, T]) with vdO ) = v2(0) and [%--v~]<~ ,  V~eS(vdO)),  

V ~ e [ - - 1 , 1 ] ,  set t ing C =  max(fl ,  3~, ~) ,  

max  l~-(vt,., ~, ~) - -  2V(v~,., ~, .~)] < C max ivy-- v2] 
[0,T] [0,T] 

this last is due to reversibili ty for Small oscillations. Wi th  reference to cont inuum 
mechanics, hysteresis corresponds to a plastic behavior for large deformations: the  
t~ internal parameter  ~> p(t) = J~(v, t, 7) introduces elasticity for small oscillations. 

(6.12) and (6.13) allow to extend Jr and 5 to all v E C~ T]) by  continuity,  
analogously to (4.8). 

Set t ing X(1) = [-- 1, 1] Vl ~ R,  the  couple (X, J~) fulfills properties (1.2), ..., (1.6) 
and also (1.11), ..., (1.13L 

Fix f l e  [-- 1, 1] and set (v, t, ~) ~-. 2v(v, t, ~) = ~(v ,  t, ~,V); then (S, 87) fulfills 
properties (1.1), ..., (1.6) as well as (1.11)~ (1.12), (2.10), ...~ (2.13). Moreover (el. (1.13)) 

(6.14) 
Vr a ]0, ~[, V(v, t, ~, 7) ~ D ~  (~) with t > v ,  

Z(v, t, ~, U): = ~ ( v o G ,  ~_~(t), ~(v, t, ~, U), JC(v, r, U)) (transition property) 

As far as (2.]5) is concerned, we can repeat  the  considerations expressed for example 1 
of w  

An <~ internal parameter  }> J~(v, t, 7) can be introduced analogously for the ex- 
ample 4 of w 5, corresponding to ferromagnetism. Notice tha t  reversibili ty for small 
oscillations of H corresponds to phenomenol0gy (err..9], pag .  549, e.g.);  at  micro- 
scopic level this can be interpreted as the presence of an elastic pa r t  in the  move,  
ment  of Bloeh walls at  any reversal in the  direction. 

Ins tead  of a constant  k we can also choose a function k: 8 -> R such that 

(6.15) V(@, o)) e 8 ,  (0 < ~<) rain gd@, co)<k(@ ~o)< max g~(@, v~)(<L < oo); 
i~l,~" i=l,r 

ft~'ther developments are similar to the  ones above. 
Therefore in part icular  we get a transit ion proper ty  in the form of (6.14), which 

is consistent with the  phenomenology of the hysteresis cycle. 
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Added in proo]s. - Remark concerning theorem 1 of w 2. 

In  (2.12) replace convergence in L~(0, T) weak by convergence in ~~ T]) strong. This 
implies (2.14). Moreover in this case (2.40) entails 

(i) 5 (uAx, . ) , t ,  w0(z))-~5(u(x, .),t,  wo(~)) in ~~ T]) strong, a.e. in D 

and then by (2.20) Mso 

(ii) w ~ - ~ w  = y ( u ( x ,  . ) ,  t, ~o(x)) in 0~ ~] )  s trong,  a.e. in D .  

Now in (2.10) let e~ be independent of t, for i -~ 1, 2. Then by (2.33) 

ll~-(u,~(x, "), t, wo(x))II~(0, ~, ~(D)) < const, 
(III)  [ 

and, possibly extracting further subsequenees, in (I) and (II) convergenecs are in L~(O, T; 
L2(D)) weak star, too. 

In  conclusion, this strengthening of (2.10), (2.12) allows to avoid assumptions (2.11) 
and (2.14) in theorem 1, the regularity result w e W~"I(0, T; L~(D)) being replaced by 
w e L~(0, T; L2(D)). Similar considerations hold for theorems 2, 3 and 4. 

Notice that  the functionals ~ constructed in w 4 and 5 fulfill Mso these stronger prop- 
ertios. 
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