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On the Asymptotic Behaviour of Solutions 
of Nonlinear Kinetic Equations (*). 

MIROSLAW LACHOWICZ 

Summary. - The asymptotic behaviour of solutions of the kinetic equations on the level of the 
Euler fluid dynamics is studied. In contrast to the previous studies in Sobolev spaces, the 
analysis is carried out in C o (with respect to the space variable) setting. Thus, one needs to 
use only few Hilbert and initial layer terms, and consequently a lower smoothness is re- 
quired for the solution of the Euler system. 

1.  - I n t r o d u c t i o n .  

The asymptotic relationship between solutions of singularly perturbed Boltzmann 
equation (with Knudsen number s as a small parameter) and of the system of com- 
pressible Euler equations was studied in [4], [13], [15], [24], [25]. 

The approach used in [4], [13], [15] as well as [16] and [17] was proposed by 
CAFLISCH and PAPANICOLAOU in [3], where a solution to the model Boltzmann equa- 
tion was found in the form of a sum of a truncated power series in ~ and of the remain- 
der term. 

This approach enabled to replace the singularly perturbed equation by a system of 
~-independent equations and a weakly nonlinear equation for the remainder. Thus, 
the analysis has led to investigating the linearized form of the weakly nonlinear equa- 
tion, and next to using the method of successive approximations. 

However, the norm of the functional space has to be appropriate in order to deal 
with both the linear (L2-norm) and nonlinear (L~-norm) terms. This has led to consid- 
ering the Sobolev spaces with respect to the space variable x. On the other hand, to 
control the x-derivatives, one had to use a large number of terms in the truncated 
power series in ~ (high number of Hilbert and initial layer terms). The approach need- 
ed a high smoothness of the solution of the Euler system and, therefore, it does not 
seem to be suitable for the usual asymptotic procedure. 

(*) Entrata in Redazione il 23 luglio 1988. 
Indirizzo dell'A.: Dipartimento di Matematica Pura ed Applicata, Universita dell'Aquila, Ita- 

ly (on leave from Wydzial ~ Matematyki, Uniwersytet Warszawski, Poland). 
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Moreover, use of Sobolev spaces is not suitable for the study of the validity of the 
Euler equations (cf. the discussion in [17]). This paper deals with the approach in C O_ 
space with respect to x-variable, by applying an idea suggested by HEINTZ ([11], 
[12]). 

The space C o seems to be natural to study the asymptotic behaviour and in this 
setting it is possible to use only few Hilbert and initial layer terms and consequently 
to require a lower smoothness on the solution of the Euler system. 

The crucial point of the present work is Lemma 8.2 which allows us to combine C ~ 
estimates with relevant L2-properties of the linearization of the collision operator. 
This approach enables us to formulate a new theorem on the Euler limit and on the in- 
itial layer behaviour for the Boltzmann equations (Section 9). It can be also applied to 
other kinetic equations. In Sections 10 and 11 the Euler limit and initial layer be- 
haviour for the Enskog and Povzner equations are investigated. However, to proceed 
with these equations, one has to control the x-derivative of the solution of the Boltz- 
mann equation. In this case, the analysis is also realized in CS-space (s > 0) with re- 
spect to x-variable. 

The attempt can be also applied to the study of the asymptotic behaviour on the 
level of the Navier-Stokes fluid dynamics on the time interval on which a smooth so- 
lution of the Navier-Stokes system exists. This problem will be discussed in the 
forthcoming paper. 

2. - The  B o l t z m a n n  equat ion .  

The Boltzmann equation, well-known and studied for more than 100 years, has a 
quite vast literature. The reader is referred to [6], [8], [9] and [23] for a review of 
physical and mathematical results. Let us only point out that referring to the analysis 
of existence of solutions, a very important result has been recently obtained by 
DIPERNA and LIONS [7]. Throughout the paper we assume that all functions are peri- 
odic with respect to the space variable x with fundamental domain t~ r R d where 
d = 1, 2 or 3 (for details see [15]). Thus t) can be treated as a d-dimensional torus. The 
dimensionless Boltzmann equation singularly perturbed by a small parameter z > 0, 
representing the scale of the mean free path is studied. Consequently, the problem 
investigated is the following: 

(2.1a) Df= 1 -~ Jo (f, f ) ,  

(2.1b) f]t=o = F ,  

where D is the free-streaming operator: 

a 
D = -~  + v. grad~ 

and Jo is a bilinear, symmetric collision operator. 
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f=f ( t ,  x, v) is an one-particle distribution function; t ~> 0 is time; x e t2 is the posi- 
tion (on the d-dimensional torus) of a particle and v �9 R s is its velocity. Usually, refer- 
ring to the asymptotic analysis of the Boltzmann equation, the collision operator J0 
corresponding to Grad's cutoff hard potentials ([10]) is assumed (cf. [4], [5], [13] and 
[15]). However, up to now, the Enskog equation has no physically consistent formula- 
tion for softer potentials than the hard-spheres potential (see [2] for details). 

Thus in the sequel the notations for the hard-spheres potential will be used, al- 
though whole mathematical analysis is also valid for Grad's cutoff potentials. Keeping 
this in mind, we can define 

1 + 
Jo(f~, f2) = 7 ( J ~  (f~,f~) + Jo (f~, f ~ ) -  Jo ( f l , f ~ ) -  Jo (f~,A)) , 

where 

and 

J0 �9 (71, )(x, v) = f f 71 (x, ) (x, v,) - v), n) dn dv, 
R ~ S z 

Jo (fl ,  f2) = fl'~o(f2) , 

v0(f)(x ,v)= f f f ( x ,  v l ) + ( ( V l - V ) ' n ) d n d v  1. 

R~ S 2 

The standard notation has been used: a particle with the centre at x �9 t~ and the veloci- 
ty v e R 3 collides with a particle with the centre at x and velocity Vl, and after the in- 
teraction the velocities are v' and v~, respectively. 

Note that as a function ~ we can use both 

Ol(y)=max{y, 0}, y c R  ~ and ~2(y)=]yl y e R  ~ 

provided that the collision operator J0 is divided by 2 in the second case (cf. [6], II.3, 
p. 57). In the sequel the abbreviation BE for the Boltzmann equation, defined with 
both ~1 and r as ~ will be used. 

3. -~The Enskog equation. 

The BE model assumes the overall dimensions of particles can be neglected. In the 
case of dense gases, one has to replace this mass-point model by models which tal~e 
into account the overall dimensions of particles. One of such an attempt leads to the 
Enskog equation model in which each particle is regarded as a hard sphere with a 
nonzero diameter. The reader is referred to the review [2] for a detailed analysis of 
the mathematical problems and results of various versions of the Enskog equation. 
Following the line of[16], one can formulate the problem for the Enskog equation in 
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dimensionless form as follows 

(3.1a) 

(3.1b) 

where : is a 
diameter, 

D f ~  1 -[ J~(f, f )  + -~ E~,~(f ; f, f ) ,  

f]t=o=F, 
dimensionless parameter representing the scale of the hard-sphere 

1 -4- J:(f~, fz) = -~(J: (f~,f2) + J+ (f2, f ~ ) -  JJ (f~, f 2 ) -  J/- (f2, f~)), 

J~+ (f~, fe)(x, v) = f f fl (x + an, v~) f2(x, v ' )~((v~-v) .n)dndvl ,  
R 3 S 2 

J; (fl, A) =fl'~:(A), 

~(f)(x, v)= f f f ( x - ~ n ,  Vl )~( (v , -v ) 'n)dndvl ,  
R 8 S 2 

1 + 
E:,~ (fl ; f2,f~) = -~(E:,~ (f~ ; f2, fs) + E+~ (f~ ; f3 , f2) - Ej,~ (fl ; f2, f~) - E~,~ (f~ ; fs, f2)) , 

E+~(fl"f2,f8)(x, = f f ~:,~(fl+ ) "f2( x +zn, v;) ' f i3(x,v ')~((vl-v)n)dndvl ,  
R 8 S 2 

and 

E ~  (fl; f2, fs)( x, v) = fa(x, v) f f V~,~ (fl)'f2( x - z n ,  vl )~((v~-v) .n)dndvl .  
R 8 S 2 

The functionals "9~ are such that 1 + (z/D ~,~ (f) represent the pair correlation func- 
tions due to the overall dimensions of particles (cf. [16] and [2]). According to physical 
theories available in the literature, the following assumption can be proposed 

ASSUMPTION 3.1. - 

( i )  0 < ~ ~< r ~< 1,  

(ii) ~,~ (0) --= 0, 

(iii) Y f e  D*~: I~,~(f)] ~< ~9", 

(iv) Vfl , f2  eD*~: I ~ ( f l ) - ~ ( f 2 ) [  ~</.sup f(f,-A)dv , 
~2 R~ 

where D~*~ is a set of physical consistency of the Enskog description (cf. [2] and [16]) 
and "9", l* are the constants independent of ~ and ~. 

In contrast to BE, the Enskog equation can be physically justified only when as 
the function ~1 (introduced in the previous Section) is used. However, some proofs 
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are valid only for �9 = ~2 ([1] and [16]). The abbreviation EEl for the Enskog equation 
(3.1a) with �9 defined by ~1 and the abbreviation EE2 for the Enskog equation with 

~ ~2 will be used. 
A simplified model can be obtained simply by putting + - ~,~ = 0. This model is called 

the Boltzmann-Enskog model. 

4. - T h e  P o v z n e r  e q u a t i o n .  

The Povzner equation has been introduced as opposed to the Enskog equation for 
purely mathematical purposes. This equation can be regarded as a modification of BE 
which differs from the classical version (BE) as it allows for a spatial ,,smearing- pro- 
cess of collisions. Such an idea has been used first by MORGENSTERN [19] and next, 
more generally, by POVZNER [22]. Although the latter has provided some consistent 
justification of this model, the Povzner equation is ignored by physicists. 

Assuming that the smeared collision is possible if the distance between two parti- 
cles is not greater than r, we can formulate the problem for the Povzner equation as 
follows: 

(4.1a) Dr= 1 -[ P~(f, f )  , 

(4.1b) fit=o = F ,  

where 

9 ~ 

1 f ~3j~ (f, f )  d~, P~(f' f )  = 7 
o 

with J~ as introduced in the previous Section. The classical formulation of the 
Povzner equation leads to (4.1a) after a change of the variables y--~ x + ~n where 
x ~ ~ is fixed and ~ e R 1, n e S 2 (cf. [17]). 

Analogously as in the previous Section by PE1 we denote the Povzner equation 
with ~ = ~1 and by PEe the Povzner equation with ~ -  ~2. 

5. - T h e  E u l e r  s y s t e m .  

The following moments of the distribution function f, corresponding with fluid-dy- 
namics will be called fluid-dynamic parameters of f :  

(5. la) 
f 

pf(t, x) = j f(t,  x, v) dv 
R3 
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is the local density 

(5.1b) uf(t, = f  f(t, x, v) dv 
~i(t, x) 

R 3 

is the macroscopic velocity vector and 

i f  (5.1c) Tf(t, x) = 3pf(t, x--------~ Ivl2f(t' 
R8 

x, v) dv - ,~I (t, x) u] (t, x) 

is the macroscopic temperature. 
In this paper asymptotic relationships between the parameters ,of, uf and T (where 

f i s  a solution of BE, EEl ,  EE2, PE~, PE2) and the corresponding quantities ~, u and 
T obtained as a solution of the compressible Euler equations (in the paper called 
SCEE) are investigated. In the scope of this program a more general formulation is 
proposed, as a search of asymptotic relationships between solutions of the kinetic 
equations and the local Maxwellian M, whose fluid-dynamic parameters are ~, u and 
T: 

(5.2) M(t, x, v) = ~(t, x)(27cT(t, x)) -3/2 exp Iv : u(t: x)121 
2T(t, x) ]" 

The analysis of such a problem needs existence theorems for both the kinetic equa- 
tion and SCEE in a common time interval. The reader is referred to the book by 
MAZDA [18] for a review of results on existence of solutions for SCEE. The starting 
point is the following assumption 

ASSUMPTION 5.1. - Let to e]0, + ~ [  and let (~0, u0, To) be such that a sufficienly 
smooth solution (p, u, T) of SCEE with the initial data (,~0, u0, To) exists in the time 
interval [0, to] and satisfies 

(5.3) Y(t ,x)  e[O, to]x~:,~(t ,x)>~c~>O, T ( t , x ) ~ C T > O .  

6 .  - N o t a t i o n s .  

Throughout the paper, w~ is the following function 

w~(v) = (l + lvl2) ~/2, a e R 1. 

Some functional spaces can be also defined. L2 (R 3) denotes the Lebesgue space of 
measurable, real-valued functions, square integrable in R 8 with the norm I!'; L2 (R 3 )11 
and the inner product (. ,')L~(R~). Let ~RS, ~ ,  o~ • 8 be strictly positive, smooth func- 
tions on R 3, Q and t~ •  3, respectively. B~(oJR~) denotes the space of continuous, 
real-valued functions on R ~ with the norm IIf;B~(~R~)II = sup Io~R~fl. Moreover, 

v E R  ~ 
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B~ = B~ (w=) and B~ (~R~) = B= (w~. ~R 3). C ~ (~9; ~ ) is the space of the functions which 
are continuous together with all their derivatives of orders I Y I ~< s and equipped with 
the norm 

gYrf sup ~o~ - -  I[f; C%9; ~)]t = o~<j./<~ Sx~" 
xe~Q 

Naturally, Cs(t~) = C s (t~; 1). Lp(~9) is (for 1 < p < ~) the space of measurable, real val- 
ued functions whose p-th power is integrable on ~9 and with the norm IIf; Lp (t~) H. In 
addition, consider the following space consisting of functions on ~ • R ~ : 

1) X~,% equipped with the norm 

~ 8  fJ-It=,  = ll(ff.; cs( )lJ); B=[f ,  

2) Xs equipped with the norm 

tl.lJ=+ = llCll'; Lp (~)ll); B=II, 
3) X~,~ equipped with the norm 

II.ll ?= = 11(11-; L (R )II, 

4) X2,p equipped with the norm 

I1.11 ,  = tl(ll.; L (R )II. 

Now, let M be a local Maxwellian, whose fluid-dynamic parameters are ~, u and 
T-as in Assumption 5.1. Let 

(6.1) 3/o = MIt=o, 

i.e. Mo is a local Maxwellian with ~o, uo and To as the fluid-dynamic parameters. Let 
M+ be a global Maxwellian (i.e. Maxwellian, whose parameters are constant) such 
that for all t e [0, to], x e ~ ,  v e R  3 and ~ e R  ~ we have 

(6.2) w~ (v) M(t, x, v) <~ c~ M+ (v) 

where the constant c~ depends only on a. 
Let Y~'~ and Y$'~ be the spaces equipped with the norms 

N~ '~ {'} = I[(t1" ; CS(D; Mo~/2)ll); Bs 

N~ '~ ('} = I[(ll" ; C~(f~); B :  (M+~/2)[I. 

Finally, recall the idea of (extrinsic or free-streaming) trajectories (cf. [23]). For t and 
v fixed, let ~'(t,~) be the translation on f~ defined by 

(6.3) y(t,~)x = x + tv (rood period). 
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The (extrinsic) trajectory in R l x  ~ • R s is the line defined parametrically: 

(6.4) t ~ (t, ~,(~, v) x, v). 

Now let f t  be one-parameter family of operators 

(6.5) (ft f)(x,  v) = f (  ~(t, ~) x, v). 

f #  is the function considered along the (extrinsic) trajectories, i.e. 

(6.6) f ~ (t) = Ft f( t) .  

Moreover, the following (~ and z-depending) two-parameters family of operators can 
be introduced 

) 
For z = 0 one writes simply U~ instead of U~,o. 

7. - Hilbert  and init ial  layer expans ions .  

The solution f(t) to BE has been searched in [15] in the form of the following 
sum 

(7.1) f(t) = ~ ~Jhj(t) + ~ ~Jlj + sb Z(t) , 
j=O j=O 

where hj are Hilbert expansion terms,/j-initial layer terms and z is a remainder term. 
The reader is referred to [15] for details; here are only recalled some preliminary re- 
sults. We can start from the following assumption on initial data F (in (2.1b), (3.1b) 
and (4.1b)). 

ASSUMPTION 7.1. - Let F be decomposed into the hydrodynamic and the non-hy- 
drodynamic parts as follows: 

(7.2) F = Mo + G 

where Mo is a local Maxwellian whose fluid-dynamic parameters are ~0, Uo and To-as in 
Assumption 5.1 (cf. (6.1)), and G is a function with null fluid-dynamic parameters 
i .e.  

(7.3) 

with 

(7.4) 

f~ iGdv = 0 ( i=  0, . . . ,4) 

'~o(v)= l ,  ~i(v)=% ( i=1 ,2 ,3 ) ,  ~4(v)=v z, 



MIROSLAW LACHOWICZ: On the asymptotic behaviour of solution etc. 49 

and such that  

(7.5) G e Y~'~ 

with ~ and s large enough and 

(7.6) N4'~ {G} < 0 

where 0 is a critical constant independent of ~. 
In [15] it has been shown that  if Assumption 7.1 is satisfied then the following is 

true: 

7.A) There exist Hilbert expansion terms ho, hi, ..., h~ sufficiently smooth with 
respect to t e [0, to ] and x e t2 such that 

ho= M (7.7a) 

and 

(7.7b) w~ 0k+ Y h ~< 3tk Ox r 3[ c~ 

for all ~ > 0 ,  k~>0, I~,] ~>0 t e [0, to], x e ~  and v e R ~ j = l , . . . , a .  

7.B) there exist initial layer terms lo, ..., l~ and numbers ~j, Sy, 4 > 0 such 
that 

(7.8a) lj-~ C1 ([0, +~[;  Y~J'~J) 

and 

(7.8b) sup N~J' ~J {exp (~j z) lj (z)} ~< const 

for j = 0 , . . . , a .  

7.C) BE with initial data F is equivalent to the following nonlinear equation for 
the remainder z: 

Dz = 2 Jo(M,z) + 2 Jo(lo,z) + 2 2 sJ-lJo(hj+ lj,z) + ~b-~Jo(z,z) + ~a-b~ 
j= l  

(7.9a) 

with initial data 

(7.9b) z i t~o  = 0 

where ~ is a complicated tel'm ,~regular~ when ~ $ 0 and depending on the Hilbert 
terms as well as on the initial layer terms. 

The nonlinear and nonhomogeneous terms are multiplied by numbers b - i  and 
~-b.  Therefore, for a and b being properly chosen, the equation (7.9a) is weakly non- 
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linear. Thus, its classical approach is based on the analysis of its linearized 
form. 

8. - L i n e a r i z e d  e q u a t i o n  for the  remainder .  

To deal with the linearized equation for the remainder the Grad's idea can be ap- 
plied consisting in that  the operator J0 (M, .) is symmetrized to get the non-positive in 
L2 (R 8 ) operator 

Lo = M-1/2 Jo (214, M 1/2 .). 

Moreover, the main mathematical difficulties can be overcome when the equation 
(7.9) is replaced by the following system of equations: 

(8. la) Dzo= lLozo + 1  ~ y_{.2zM-1/20~oZ~, 

(8.1b) Dzl + lvo(M).z~ = -M+I/2(DM1/2)Zo + 

+ 1(1~ - z )  M~-~/2~oZ~ + 2M~-l/2Jo(lo,M~+/2Zl) +A(M1/2Zo +M1/2zl +M~+/2z2) + a ,  

1 (S.lc) Dz2+ lvo(M).zz  = 7(1-z)M~_i/2PCoZ2+ 2M~_l/2Jo(lo,M~+/2z2+M1/2z o) 

with initial data 

(8 .14 )  Zo I~=0 = z~ it= o = z~ I~= o = o .  

z = z(v) is a characteristic function of the ball of the radius • with center at the origin 
in R a, where • must  be propertly chosen. The operator :Xo is given by 

~o z = J4- (M, M I+/2 z) + J~ (M ~+/2 z, M) - M . vo (M ~+/2 z) . 

Moreover, 
a, 

Az  = 2 M ;  1/2 E ~5- 'Jo (h~ + lj, z) .  
j = l  

The term d corresponds to the sum of the nonlinear and nonhomogeneous terms, and 
is assumed to be known. Now, it is easy to see that  after decomposition 

z = M1/2Zo + Ml+/2z1 + Ml+/2z2, 

the system (8.1) is equivalent to the linearized equation for the remainder. 
The following integral version of the system (8.1) 

(8.2) z~ (t) = j U~ (t, t') Z~ [z0, zl, z2, el; z](t') dt ' ,  i = O, 1, 2, 
0 
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can now be analyzed, where  Z1 and Ze are the r ight-hand side of equations (8.1b) and 
(8.1c), respectively,  and Zo is defined as follows 

with 

1 ~ zM-U2:~oZi, Z ~  1K~176 + -[i=1,2 

K 0 ---- M -1/2 (J~ (M, M-I/2 .) + j~- (M-1/~ ", M) - M~o (M-1/2 .)). 

Using similar est imations as in [15] the following lemma can be proved.  

LEMMA 8.1. - I f  s > 0 is sufficiently small then the solution (z0 (t), zl (t), ze (t)) of the 
linear sys tem (8.2) satisfies the following a priori estimation: 

(8.3a) sup IIzoll~k~ ~< const sup tlZol]~ + c~.. • sup[[zi]l~k~, 
[0, t] [0, t] z = 1 , 2  [0, t] 

/ ~ - l k  (8.3b) sup IIzlll~k~ < cons t .~ . sup  IIzo[l~ + const-~-sup I~]l~,| , 
[o, t] [o, t] [o, t] 

(8.3c) I]z2 (t)ll~,k~ < const .  0 .exp - -~ . sup I[Zo [[~k~ + c, .s  . sup I~[[:~1~ k 
[o, t] [o, t] 

for all t ~]0, to ], fl I> 0, k t> 0, where  0 < 8, < 80, 8o has been defined in (7.8b) and c~ is a 
constant  depending on x. " 

The following lemma is the crucial point in our analysis. 

LEMMA 8.2. - If  ~ > 0 is sufficiently small, then  the solution (Zo (t), zl (t), z2 (t)) of the 
sys tem (8.2) satisfies the following a priori est imation 

(8.4) suplizot[~?~ ~< const  suptlzoll2,2+const S suptlz~lt~~ 
[0, t] ~ [0, t] i = 1, 2 [0, t] ' 

for all t e]0, to], where  d is the space dimension. 

PROOF. - Assume tha t  (Zo (t), z~ (t), z2 (t)) is a solution of the sys tem of equations 
(8.2). Thus 

Z o = $ Z o +  ~ gCz~ 
i =  1,2 

(8.5a) 

where  

t lj 5"z(t)= T U~(t,t')Koz(t')dt' 
o 
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and 

1 f U~(t, t')zM-I/2Y~oz(t')dt'. ~z( t )  = T 

0 

Z has been introduced in this Section as a characteristic function of the ball of radius x 
(with z-large, but  independent of ~). In the proof, Z (or 1 - Z) denote both the charac- 
teristic function and the operator  defined as multiplication by  the function Z (or 
1 - z). 

From (8.5a) it follows 

(8.5b) Zo = z$zZo + z~'(1 - z) Zo + (1 - z) $Zo + ~ ~z~.  
i =  1,2 

Then 

(8.5c) Zo = (Z2)2ZZo+(z~P)2(1 -z )Zo+Z$(1-z )zo+  

+ (1 - X) t~Zo + 

Next  

4 

(8.5d) Zo = (z2)~zzo+ F~ ( z # ) 5 ( 1 - z ) z o + ( 1 - x ) ~ ' Z o +  
j = l  i=1,2 

Applying estimations the same as in [14] and [15], one has 

(8.6a) 

and 

(8.7a) 

Z ~ z i +  ~ ~ z i .  
i=1,2 i = 1 , 2  

sup I1(1 - Z) 5'Zo I I~  ~ const sup 11(1 Z) SZo I1~ ~ <~ const - I h  ~ ,  s u p  IIZ0 1 0 
[o, t] [o, t] [o, t] 

sup IIZ$(1 - Z) Zo [ [~  ~ const sup 115(1 - Z) Zo ]b,2~ 
[o, t] [o, t] 

o const 
~< const sup ll(1 - Z) Zo I[~, ~ ~ sup I[Zo t[~,~162 

[o, t] ~ [0, t] 

In the same way 

eonst 1, 0 (S.7b) sup N(z~')~(1 -z)Zoll < ~ sup I[Zo ~, ~, 
[o, t] [o, t] 

By (8.3a) one has 

(8.6b) 

for j = 2, 3, 4. 

const , o 
sup [IZo 112, o~ + c~. E sup llzi I [ ~ ~  sup II(1- x)O'zoll~?~ ~< ~ Eo,~l ~=1,2 ~o,~ 

[o, t] 
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and 

(8.7c) const sup IlZo II~?~ + G E sup IIz~]l~ o 
s u p  ]](Z~J~)J(1--Z)ZoII~Ow ~-~ ~ [O,t] i=1,2  [O,t] [o, t] 

for j = 1, 2, 3, . 
Moreover,  (cf. [14] and [15]), 

(8.8) sup II~P)JazlI~~ <~ G sup ltzll~;, ~ . 
[o, t] [o, t] 

Consider now the operator  (Z~)2Z: 

ii;; ( / ) 1 exp - 1 vo (M)(t",  x - (t - t ')  v, v) dt '  �9 
(z$)2 zz(t ,  x, v) = -~o o R~R3 t' 

(/ 1 ~o (M)(t", x - (t - ~;) �9 exp - T 
t" 

v - (t' - t") ~, ~) d t"}  x(v)  ko (t ' ,  x - (t - t ')  v, v, O" 

�9 Z(~)ko( t" ,  x - ( t -  t ' ) v -  (t' - t")~, ~,Vl )Z(Vl )"  

�9 z(t", x - (t - t ')  v - (t' - t") ~, V 1 ) d~dv l  d t " d t ' ,  

where ko is the kernel of the operator  Ko (cf. [21], (2.9)). By (6.2) and the Grad's esti- 
mations ([21], (2.13) and (2.16)) one obtains 

t t '  

I(XS)~zz(t, x,  v)l <- const v .  t ' ) ) .  --y-ffffexp(-v(t- 
0 0 R~R 3 

�9 exp - - Z  (t '  - t " )  Z(v) k+ + (v, $) Z(~) k+ + (E, vl )" 

�9 Z ( v l  )i z ( t ' ,  x - ( t  - t ' )  v - ( t '  - t") E, v l  )1 d ~  d v l  d t "  t i t ' ,  

where  ~, > 0 is a constant and 

(v 2 _ ~2)2 ) 
k + + ( v , $ ) =  l v - $ 1 - 1 e x p  - c l v - E t 2 - c  i v_$12  

with a constant c > 0. 
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Changing  the  variables  ~ x I - -  X - -  ( t  - -  t') v - (t' - t") ~ one ge t s  

t t' 
C x Y$ Y$ I(Z~)2zz(t,x,v)l~Tffffexp(-T(t-t'))e~p(--7(t'-t"))" 

00R~D 

�9 (t' - t") -d Z(v) k+ + (v, ~) X(~. ) k+ + (~, V 1 ) Z(Vl  )lz(t", x~, V 1 ) Idx l  dvl dr" d r ' ,  

where  n o w  ~ = (x~ - x + (t  - t ' ) v ) l ( t "  - t ' )  and c, is a constant  depend ing  on • For  sim- 
plicity,  the  notat ion  for the  case d = 3 has been  used.  W h e n  d = 1 or 2, it is nece s sary  
to integrate  addit ional ly  over  R a-e .  

N e x t  

t 

C• o I~a',~xz(t,~,v)l<--~ fexp(-~(t- t '))  
o 

�9 exp 1- -7- (t'  (X(v) k+ + (v, ~ ) Z(~ ) k+ + (~, v 1 ) X(Vl ) 
0 R 3 \~ 

�9 ]lz(t",., Vl ); Lp  (a)ll dvl dr" dt' 
W e  can change  variables  xl  ~ ~. = (x l  - x + (t  - t ' )  v )  /(t" - t ' )  and obtain  

t 

I(z~)~zz(t,x,v)l <-~ exp - T ( t - t ' )  �9 

o 

s ( -  ) s(s 7' �9 exp - -7 ( t ' - t " )  (t'-t") -dIp Z(v)kP+l~-l)(v,~)Z(~)kP+~-ll(~,vl)z(vl)d ~ �9 
0 R a \R a 

Then 

llz(t", ", Vl ); Lp (~)ll dr1 dt"dt'. 

t t '  

~fexp(-~(t-t '))fexp(-~(t'- t '))( t '- t")-~t~.  ll(z~>)~z~(t)ll~7~ 77 
o o 

(p-1)/p 2 . dv  

�9 dt" d r ' .  
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Assuming that  p > d, by  a s traightforward calculation it follows 

2 ,0 Cx sup ll(z~) zzl l~,  ~ <- - -  sup Ilzll~,~- 
[0, t] s d/p [0, t] 

z(v) kP+~ - 1) (v, ~ ) )~(~ ) kP+/(+ " - 1) (~, vl ) x(v~ ) d~ dr1 dv . 

R 

By the definition of k+ + one has 

c~ ( 
sup I](zs~)2xzll~,~ ~ J - -  sup ]fzll2,p sup I~-vl-P/(P-1).t~-Vll-P/(P-1)d~, 
[0, t] ~d/p [0, t] v, vl �9 R~t~ ~ (x) 

where  :~s (• is the ball of radius • in R 3. 
Thus if p > 3 then 

(8.9) sup II(z~)~zzll~ ~< ~ sup IIzll~,~. 
[o, t] ~ [0, t] 

Now estimate }l(X3)2zz(t)l]2,p. Like previously one has 

t t '  
C• V# ,l(zg')~zz(t, .,v); L~(~)ll <- -j f exp (- '~(t- t')) f exp (--T(t'- t"))(t'- t") -a" 

0 0 

: ! ( j (  f )p )lip 
)~(v)k++(v,~))~(~)k++(~,Vl) i i (vl)[z( t" ,xl ,vl) ldxl  dx d v l d t ' d t " ,  

with ~= ( x l - x +  ( t - t ' ) v ) / ( t ' - t " )  where  the notation for the case d = 3  has been 
used for simplicity. Young's theorem can now be applied: 

t t '  

~"fexp(-~-(t-t'))fexp(-~-(t'-t"))(t'-t") -~" J j ( Z a ' ) ~ z z ( t , . ,  v); L~ (~)Jr < 
0 0 

. lo.~ 7.2p/(~ +p) ( ~) X(~) k~+~(2 +p) (7), vl ) z(vl ) dx)  ~kr r~+ + \V~ 

�9 Nz(t", ", vl ); L2 (~)ll dvl dt '  dt",  

with 

x + (t - t') v 
r~ - t '  - t" 
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The substitution x --> ~ = (x + (t - t') v) /(t' - t") yields 

t 

II(x~)2xz(t, .,v); Lp(tg)ll < -~ exp 
0 

s( �9 (t' t") d((p 2)/2p) 

R a \ R  a 

Thus, as before 

(8.10) 

- ~ ( t - t ' ) ) f e x p ( - ? ( t ' - t " ) ) .  
o 

\ (2  + p)/2p 
/z" 2p/(2 +P) (~ ,  V 1 ) Z ( V l  ) dv) z(v) k2+~ (2 § (v, -~) z(~),~§ + 

�9 [[z(t",., v~ ); L2 (t~)ll dvt dr' dr". 

sup II(z~) ~ zzll2,~ < c= ~-~<*- ~)/~)sup Ilzll~,~, 
[o, t] [o, t] 

provided that  3 < p  < 6. Now choosing p such that 3 < p  < 6 by (8.9) and (8.10) one 
obtains 

(8.11) sup II(Z~P) 4 zzlI'2?~ ~ C~e-d/2sup IIzlk~. 
[o, t] [o, t] 

At the end, we can choose • sufficiently large and by the estimations (8.6b), (8.7c) and 
(8.11), applied to the eq. (8.5d) we can obtain a priori estimation (8.4). Thus, the proof 
of Lemma 8.2 is completed. �9 

Lemmas 8.1 and 8.2 imply the following lemma 

LEMMA 8.3. - If ~ > 0 is sufficiently small then the solution (Zo (t), zi (t), z2 (t)) of the 
system (8.2) satisfies the following a priori estimation 

(8.12a) sup IlZollS~ ~< const sup IIzoll~,~ + const ~ sup IIdll:~ ~ 
[o, t] ~ [o, t] [o, t] 

(8.12b) sup tlzl II~~ ~ const 1 - d / 2  sup IlZo112,2 + const ~ sup I~[~=:~ '~ , 
[o, t] [o, t] [o, t] 

(8.12c) IIz2(t)ll~~ <<- ~ 0exp ( -  t ~*) supllz~176 ~ s u p l l d l l ~ ~  [o,t~ 

for all t e]0, to] and ~>~ 0 where the constants denoted by ~const, can depend on x. 

PROOF. - Inequalities (8.4), (8.3b) and (8.3c) imply 

sup Ilzoll~~ ~ const sup IlZolL2 + const. (~ + 0) sup IlZoll~~ + const ~ sup I~ll~la ~ 
[o, t] ~ [o, t] [o, t] ' [o, t] ' 
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Since 0 and ~ are small enough 

(8.13) sup Ilzoll ?  - -  
[o, t] 

const sup I]Zo]]2,2 + const r sup t ll: 2. 
~ - ~  [o, t] [o, t] 

Now (8.3) together with (8.13) give (8.12) and the proof is completed. [] 

Now, the main lemmas can be formulated 

LEMMA 8.4. - Let (~#e L~ ([0, to]; ~(z-l,0~ for some fl~>2. If ~ is sufficiently small 
then a unique solution (Zo,Z~,Z2) of the linear system (8.2) exists in 
(L~ ([0, to ]; X~',~ ))8. Moreover, 

z/~ e C~ to]; X~2'~  d z/~ e L.([0, to]; y#-2,o) 

for i = 0, 1, 2 and the following estimations are satisfied 

(8.14) sup Ilzill{;~ <- const suplldll~, ,~-1o, 
[o, t] ~ [o, t] 

where the constant denoted by ,,const, depends (exponentially) on to. 

PROOF. - Using the same arguments as in [15] (cf. [15, (5.36)]) one can prove 
that 

(8.15) sup [[Zo ]12,2 ~< % sup [NtI~ ~o. 
[o, t] [o, t] 

Then (8.14) follows by (8.12) and (8.15). 
Existence and smoothness of the unique solution can be proven in the same way as 

in [14]. " 

Differentiating system (8.2) formally with respect to x, we can obtain the system 
for the derivatives of z0, Zl, z2. Now, requiring higher smoothness properties in As- 
sumptions 5.1 and 7.1 the analogous estimations as in [15] (cf. [15, (5.39)]) can be ap- 
plied to see that with each differentiation one power of ~ is lost. Thus we have 

LEMMA 8.5. Let d: # eL~([0, to]; ~-1 k) ~ >  - X~, ~' for some 2 and k >i 0. If ~ is suf- 
ficiently small then a unique solution (z0, Zl, z2) of the linear system (8.2) exists in 

~#'~ ~ The solution satisfies (L.  ([0, to ]; .~., . ; ; .  

z? e c~  to]; 

for i = 0, 1, 2, and 

d z # y f l -2 , k  --~ ~ eL~([O, to];.~,~ ) 

<8.16) sup const ~-~ k sup Ilafl  �9 
[0,6] [0, to] 
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Moreover, if in addition k ~ 2 and eL ~ C O ([0, to ]; Y~- 2, ~ - 1 ) then 

Z~ e C~ to]; X~2'k-1)nCl([O, to]; X{,~'k-2).  I 

9. - T h e  E u l e r  l i m i t  for  BE. 

If a and b in (7.1) are such that 

d b , = b - l - ~  > k ,  (9. la) 

and 

d (9.1b) a . = - a - b  - -~ >~k -b .  , 

with k = 0, 1, 2, ... then Lemma 8.5 can be used to construct a solution of equation 
(7.9) by the successive approximation method. In this way the Euler limit theorem 
for BE is obtained 

THEOREM 9.1. - Let k >~ 0 and let Assumptions 5.1 and 7.1 be satisfied with ~ and s 
depending on k (cf. (7.5)). If 0 < ~ ~< ~0, where ~o is a critical value depending on to, 
then a solution fB of BE with initial data F exists in L~([0, to]; y~+,k) and 

(9.2a) f ~  e C~ to];Y~+'k), 

(9.2b) d # 
--~ f B ~ Lo~ ([0, to]; y~+,k), 

(9.3) 
t e[0, to] ( 

for all ~ >t 0. Moreover, if k/> 2 then 

(9.4) f B e C O ([0, to]; y~+, k - 1 )  (3 C 1 ([0, to]; y~k-2 ) .  

In Theorem 9.1 the asymptotic relationship between BE and SCEE as well as the 
initial layer effect (cf. (9.3)) are defined. A smaller number of Hilbert and initial layer 
terms is used as compared to Theorem 3 of[15]. In fact, by (9.1), it is enough to 
take 

b > l +  d 
2 

and 

a = l + d .  
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However to prove that the solution f~ is a strong one, we have to take 

b > 3 +  ~ ,  a = 3 + d .  

10. - The Euler  l imit  for EE 1 and PE1. 

In this Section we follow the methods of[17] and [16]. A solution ful of EEl  is 
searched in the form 

(1O.1) fE1 = fB + ~Z, 

where f~ is the solution of BE given by Theorem 9.1 and the ~<remainder, z satisfies 
the following nonlinear equation 

(10.2a) Dz= 2J~( fB ,z )+ ~J~(z,z)+ 2 : E  (.fB+zz, f~ , z )+  

2 1 ^ (1) (fe) + IE~,~( fB+~z; f~ , fB)+ 7E, ,~( fe+~z;  z ,z)+ -TJ: , 
$ 

with initial data 

(10.2b) 

where 

Zl t=o = O ~ 

j~l) (f) = ~-~ (j~ (f, f )  _ Jo (f, f ) ) .  

By virtue of Theorem 9.1, one can considerfB to be sufficiently smooth with respect to 
x-variable and thus 

(10.3) sup N~- ~,0 r j ( 1 ) ~  )} < 1 ~ ",J B Ct 0 
[0, to ] 

(cf. estimations in [15] and [16]) where the constant ct0 is independent of ~ and ~ but 
depends on to. The methods from Section 8 cannot be used to study the problem 
(10.2), because the symmetrized version of the operator J~(M, .), (i.e. the operator 
L~ = M-1/2j~ (M, M 1/2 ") for the case ~-= ~1 ) does not have L2 (R a )-properties similar 
to those of L0. Thus, the theory given in [15] cannot be applied. However, under 
rather  restrictive assumption on relationship between ~ and ~, the following theorem 
can be proved using the ideas of[17]: 

THEOREM 10.1. - Let the conditions of Theorem 9.1 with k ~> 1 and let Assumption 
3.1 with ,u = 1 be satisfied. Moreover, let 

(10.4) 0 < ~exp ( - ~ )  < c, 
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where the constants denoted by c are properly chosen. Then a solutionfzl of EEl  with 
initial data F exists in L~ ([0, to ]; Y~+' k - ~ ), and 

(10.5a) 

(10.5b) 

(10.6) 

Moreover, if k ~> 3 then 

(10.7) 

f ~ l  e C ~  ( [0 ,  t o ] ;  y~+,k- 1), 

d 
-dr fE1 e L:r ([0, to ]; Y~ k- 1 ), 

sup N~+ '~-~ {fE1 - f 8  } < Cto: ~/~. 
[o, to] 

fE1 e C O ([0, to]; y~+,k-2) n C 1 ([0, to]; y~+,k-3). 

PROOF. - Under Assumption (10.4) with c properly chosen, the equation (10.2) be- 
comes weakly nonlinear. In fact, the nonlinear term is multiplied by a small number 
and nonhomogeneous term has no singularities with respect to ~. Thus, by Assump- 
tion 3.1 the existence (and uniqueness) can be proved by the approximation method, 
as it was done previously. The solution z is of the order o f - 1 -  d/2-k (~ is considered to 
be small but fixed). Thus, by (10.1) and again by (10.4) the relationship (10.6) can be 
established. �9 

REMARK 10.1. - By (9.3) and (10.4) the inequality (10.6) leads to 

t ~ [0, t o ] 

giving the asymptotic relationship between EEl  and SCEE. 

REMARK 10.2. - Existence of the solution fP1 can be proved exactly in the same 
way (cf. [17]). The formulation of the existence theorem is similar to the one for EEl .  
Moreover, 

(10.9) 
t ~ [0, to ] 

11. - The Euler limit for EE2 and PE2.. 

In contrast to the case �9 ~ ~ 1 ,  in the case �9 -= ~2 we can use L2-estimates of the op- 
erator L~ = M-1/2J~(M,M~/2.) (cf. Lemma 6.1 in [16]) and apply the methods from 
Section 8. Thus, following [16], one has 

THEOREM 11.1. - Let the condition of Theorem 9.1 with k ~> 1 and let Assumption 
3.1 with ~ >~ 6 + d + 2(k - 1) be satisfied. Then a solutionfE2 of EE2 with initial data F 
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exists in L~ ([0, to ]; Y~+' k - 1 ) and 

( l l . la )  f~2 e C~ to]; y~+,k-1), 

d ~ 1), (11.1b) -~ f E2 e L~ ([0, to]; y~+,k- 

(11.2) sup N~+ 'k-i  2 ( ~ ) - M ( t ) - l o  -g <~CtoS. 
t �9 [0, to ] l 

Moreover, if k I> 3 then 

(11.3) fE2eC~ to];yP+,k-2)nCl([O, to];y~,k-s). I 

In the same way the theorem for PE2 can be formulated. In this case it is enough 
to take ~ I> 4 + d + 2(k - 1). 
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