
Asymptotic Expansions 
Obtained by a Center Manifold Theorem (*). 

FLAVIAkNO ]~ATTELLI - CLAUDIO LAZZAI~I 

S u n t o .  - Viene presentato un  nuovo metodo per la determinazione degli svi luppi  asintotici della 
soluzione esterna di sistemi di equazioni di]ferenziali ordinarie singolarmente 19erturbati. 
I I  metodo proposto, basato sulla teoria geometrica delle perturbazioni singolari e in partico- 
late su un  teorema di esistenza di variet~ eentrale, permette di ottenere le equazioni di/]eren- 
ziali  ehe de]iniseono le variabili (< lente )> senza la preventiva conoscenza dei corris1~ondenti 
svi luppi  per le variabili (~ veloei ~). Inoltre, se i sistemi vengono dati con eondizioni iniziali ,  
aleune ]ormule ehe esprimono le eorrette condizioni inizial i  da assegnare atle equazioni di]- 
]erenziali trovate - -  ]ormule gi~t note nel (~ caso stabile >) - -  vengono estese al (~ easo condi- 
zionalmente stabile ~); il  procedimento qui usato risulta anehe p i~  sintetieo rispetto a quelli 
preeedentemente proposti. In]ine viene studiata un'applicazione ad ~tna elasse assai generale 
di equazioni derivanti dalla cinetiea delle reazioni enzimatiehe. 

1 .  - I n t r o d u c t i o n .  

Consider  t h e  s ingu la r ly  p e r t u r b e d  s y s t e m  of o r d i n a r y  d i f fe rent ia l  equa t ions  

(1.1) s$ = ~(~ ,  ~, ~) , ~ = e (~ ,  ~, ~) , (') = a /d t  

w h e r e  ~, T G R ~, ~], G G R s, (~, ~]) G t9 c R ~+s, s ~ [0, So) c R,  a n d  F ,  G G Cr+~(/2 • [0, so)), 
r > 0 .  

I t  is k n o w n  [8, T h e o r e m s  1 a n d  2] t h a t ,  u n d e r  su i t ab le  e o n d i t i o n s ~ s u m m a r i z e d  
in a s imple r  f o r m  in  t h e  n e x t  Sec t ion  2 wh ich  con ta ins  Mso bas ic  n o t a t i o n s  ~nd  
h y p o t h e s e s - - ,  t h e  sohl t ion  of (1.1) can  be  w r i t t e n  ss :  

(~(t)  ~))) ~- I ' ( t l s ,  s) ~- y ( t ,  s) 
~(t, 

w h e r e  P,  7 a re  U ~+~ in t he i r  a r g u m e n t s ,  a n d  IF(v, s) l<  C exp  {-- ~v}, C, 8 > 0. ! ' ( t / s ,  s) 

a n d  y(t, s) a re  cal led << inner  so lu t ion  >> a n d  << ou t e r  so lu t ion  >> of (1.1), r e spec t ive ly .  

(*) Entrat~ in Redazione il 28 febbrMo 1987. 
Lavoro eseguito nell 'ambito dei programmi del gruppo di ricerca <~ Equ~zioni di Evolu- 

zione e Applicazioni ,>, M.P.I., e del Gruppo Nazionale Fisica-Matema~ie~ del C.N.R. 
Indirizzo degli AA. : Ist i tuto di Biomatematica,  Universit~ di Urbino, Via Saffi 1, 1-61029 

Urbino (Italy). 
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In Section 3 of this paper we will present a new method of finding the coeffi- 
u 

cients y,(t) of the smooth expansion y(t, e ) =  ~ , ( t ) e ~ - ~  O(e~+l). This method 
i = 0  

depends on the existence of a center manifold C for the system (1.1) such that  
y(t, e) is the solution of (1.1) restricted to C [4, Theorem 9.1]. Even if C is, in 
general, not unique, the coefficients y~(t) are unique [5, 8]. 

Differential equations defining the y2s are then obtained using approximations 
of C, whose equations are computed in terms of ~ and G, provided that  the jaco- 
bian of F is non-singular, moreover, this procedure will also allow us to obtain the 
differential equations for the asymptotic expansions of the <~ slow variables )> ~(t, ~) 
without involving the corresponding expansions of the (~ fast variables ~ ~(t, e) (see 
formula (3.9) of the present paper). This Can be helpful in many applications when 
one is mainly interested in the behaviour of the slowly varying components. 

Previously developed results (see, for example, [8, 13]) gave the coefficients of 
the asymptotic expansions of the slow variables by means of the differential equa- 
tions involving the coefficients of the asymptotic expansions of the fast variables 
too, these last being obtained by solving suitable algebraic equations. 

Section 4 deals with a problem which is strictly related to the previous part:  
consider the Cauchy problem given by (1.1) with the initial condition, say p(e) 
= (~~ ~~ it is quite natural to ask which is the correct initial condition to 
assign to the differential equation defining the i-th coefficient ~t(t) of the expansion 
of 7(t, e). 

The answer is given by the formula (4.3) of this paper; the same formula has 
been also obtained in [13] for the stable case, i.e. when the jacobian of the so-called 
<{ boundary layer system }> (the'system (2.1) in the following) has all the eigenvalues 
with negative real part. We shall prove that  the validity of those formulae can be 
extended to the << conditionally stable case }>, i.e. when the quoted jacobian has no 
eigenvalues with zero real part. Our proof, Based on the existence of a center-stable 
manifold [4], is also simpler than the one given in [13]. 

Finally, Section 5 is concerned with an application of the results of the previous 
part to the differential equations describing the kinetics of a wide class of enzyme- 
catalyzed reaction systems for which biochemists are commonly interested in the 
temporal behaviour of the slow species. Usually, for these systems the zero-approxi- 
mation yo(t) is studied. 

Here, for the very general case considered, we are able to write down explicitly 
the differential equations (with initial conditions) for the first approximation y0(t) -[- 
-}- e),1($) of t he  outer solution. 

2. - Notat ions and hypotheses.  

For a funct ion  2~ of several  variables,  D~F will  denote  the  /r derivat ive  o f / ~  
wi th  respect  to the  i-th variable.  
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We make the following assumptions on (1.1): 

(i) F(8, ~, 0) ---- 0 has the solution 8---- ~0(~), for ~ ~ D c  R ' ,  D being a com- 
pact  set. 

(if) There exists ~ e D such tha t  G(~(~), ~, 0)----0, and D~/v(~(~), 4, 0) has 
no eigenvalues with zero real part .  

From (if) we deduce the  existence of a compact neighbourhood U c D, such tha t  
~ U, and D~F(~(fl), ~, 0) has no 6igenvalues with zero real par t  for ~ny ~ E U. 

Without  loss of generali ty one can then  suppose: 

(iii) For  any  ~ e D, D~F(~(~), ~, 0) has no eigenvalues with zero real part .  

From (iii) it  follows tha t  the  boundary  layer system: 

(2.1) 8 ' =  ~(8,  ~, o ) ,  8' = a s / d a ,  (~ = t / e ,  

has a hyperbolic equilibrium at  ~(~), for any  ~ e D, and then  ~(~) is an  isolated 
roo~ of the equation ~(8, ~, 0) = 0 in D. Let  us summarize the previous arguments  
as follows: 

H1) F(8, vj, 0 ) =  0 has the  isolated root 8 = ~(~)~ ~ e D ;  such a root is a 
hyperbolic fixed point of the boundary  layer system (2.1), for any  fl~ D. 

It2) There exists q ~ 1) such tha t  G(q(q), q, 0) = 0, i.e. the degenerate system: 

(2.2) ~ = ~(~(v), ~, o) 
o 

has a fixed point  at  ~ D .  

From the Implicit  Funct ion Theorem and HI)  we get the existence of ~(~, s) such 
tha t  ~ (~  0) = q~(~) and /~(~(N, s), ~, ~) --~ 0. Consider then  the change of variables 

J x = 8 -  ~(v, ~), (2.3) / y = ~ - - q ,  

(2.4) 

and 

(2.5) 

where: 

by  means of which (1.1) and  (2.2) read, respectively: 

e2 = ](x, y, 8) ,  

= g(x, y, s) ,  

~ =  g(O, y, O) 

](x, y, s) = F(x  + q~(y + 4, e), y -[- 4, s) -- eDI~(y -~ 4, e)G(x + ~(y + 4, e), y + 4, s ) ,  
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and 

g(x, y, 8) : G(x + ~v(y -~ 4, 8), y + 4, 8) . 

We will also need the following auxiliary system 

(2.6) 

x '=] (x ,  y, e), 

y ' : s g ( x ,  y, ~), 

~t=-O,  

resulting from (2.4) by  the  t ime change a = tie. The system (2.6) has the manifold 
of fixed points s = {(0, y, 0): (0, y) r {0} • R ~ ~ Q}. The gacobian matr ix  of (2.6) 
evaluated at  (0, O, 0) ~ R ~ •  ~ • is: 

J(0, O, 0 ) =  
/)1](o! 0, o) o ~il 

0 

0 

System (2.6) reads also: 

(2.7) 

where 

I x'= Ax + h(x, y, e) , 
y ' =  eg(x, y, 8) , 

e r =  O, 

A : =  D~/(0, O, 0) : D~/~(~v(4) , 4, O), h(0, y, 0) -- 0 ,  Djh(O, O, O) ----- 0 

for j = 1, 2, 3, and g(O, 0, 0) = O. 
Let  K be t h e  image of D by the change of varia.bles (2.3). From Theorem 9.1 

in [4], we can deduce the existence of a C~+~-center-manifold C for the system {2.6) 
near K (in the  rest of this paper we shall simply say (~ a center manifold C }>). Fol- 
lowing J.  C A ~  ([2], formula (1.3.6)), we can locally define C as the graph of a 
C~+2-funetion x = X(y,  e) such tha t :  

(2.s) ~{x(y, 8)} : =  ~DIX(y, ~)g(X(y, 8), y, 8) - AX(y, 8)-- a(X(y,  ~), y, 8) = O, 

and 

X(y,  0) = 0 ,  D1X(y, 0) --~ 0 ,  D~X(0, 0) = 0 ,  

for any  y in a suitable Compact set K l c  K. 
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D~T~I~IO~. - A C~-function u = u(y, s), (y, s) e ~ x [0, So) c R" •  K c Y2~, is 
a q-approximation of a center  manifold C if: 

uni formly  in y ~ K. 

~{u(y, s)} = 0(e,+l) 

For  example a 0-approximation of a center  manifold is u(y, s) -~ 0, since 

~{0} = - -  h(O, y ,  e) = - -  sD3h(O, y ,  ~*) = O(s) 

uniformly in y E Y21c R ' ,  e* being a suitable point  in [0, So). Note also t h a t  
u(y, s) ~- 0 is the  so called <( slow manifold ~) of the  system (2.4). 

3.  - A s y m p t o t i c  e x p a n s i o n s  b y  a q - a p p r o x i m a t i o n  o f  a c e n t e r  m a n i f o l d .  

First ly,  we prove the  following 

TItEOlCEI~ 1. - Le t  u(y, e) be a q-upproximation of a center  manifold C. Then  
(outer) solution of the  system (2.4) on r satisfies: 

(3.1) 
x(t, s) = u(y(t, e), s) -+- O(eq+z) , 

~(t, s) = g(u(y(t, ~), ~), y(t, s), ~) + o(~+~). 

Fur thermore ,  if d(t, e) is C r+l with respect  to s, and 4(t, s ) -  u(y(t, s), s) = O(sq+l), 
then  the  coefficients (x~(t), yi(t)) of the  Taylor  expansions: 

x(t, e) = ~ xi(t)s~-~ - O(eq+1), 
4=0 

q 

y(t, e) = ~, yi(t)e~ + O(e~+l), 
i=O 

q ~ r  , 

satisfy:  

(3.2) 

I ~i {~(t, s)} ~L ' 
x i ( t )  - - i !  ~S ~ 0 

1 ~i["  /~ )} 

J~O e=O 

for any i~q. 
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REmArKS. -- (i) I f  we assume u(y, s)~ C'+~(#21X [0, so)), the  passage to the  func- 
t ion d(t, s) is obviously superfluous, and the  thesis (3.2) still holds t rue  with ~2 

replaced by  u. 

(if) Formulae  (3:1) and (3.2) hold tru% generally, only on those finite t ime 
intervals  [0, T] such t ha t  the  zero-approximation belongs to K f o r t  e [0, T],  since, 
in this case, 0(e ~+~) is surely uniform in t. In  ease the  zero-approximation belongs 
to K for any  t ~ [0, + cr the  val id i ty  of (3.1) and  (3.2), uni formly  on [01 -1- cr 
requires other  assumptions.  A remarkable  case was studied in [8], where a suitable 
exponent ia l  d ichotomy hypothesis  on the  degenerate  sys tem (2.5) is t aken  into 

account. 

The first par t  of the  proof of Theorem 1 depends essentially on the  following 

I ~ w ~  1. - Le t  B~, B~ be matrices with all eigenvalues with zero real par t ,  and 
A be a ma t r ix  with eigenvalues with non-zero real part .  Consider the  system: 

(3.3) 

x' -~ A x  ~ h(x, Yl, Y~) , 

y'~ = B~y~ + By~ ~- g~(x, yl, y~) , 

y'~ = B2y2 + g2(xl y~, y~) , 

where h, gl, g2 represent  higher order  terms.  
I f  x = X(y~, y~) is a center  manifold for the  system (3.3) and u(yl, Y2) satisfies: 

~{u(y~, y~)} ---- O({y~[q+~), uni formly  in yl (here ~ is defined in a way similar to (2.8)), 

t hen :  

x(y~, y~)- u(y, ,  y~) = o(]y21~+,) 

uniformly  in yl. 
This Lemma  is a simple generalizat ion of Theorem 51 pug. 32, in [2]. S% we 

omit  the  proof. 

[PI~0oF OF TttEOtCE~ 1. - Since K is compact  in C I we can suppose, wi thout  loss 
of generali ty,  t ha t  C is defined near  K as the  graph of a C~+~-funetion x -= X(y,  e) 
such t ha t  the  outer  solution satisfies: 

x(t ,  ~) = x ( y ( t ,  ~), ~) , 

~(t, ~) = g (x (y ( t ,  ~), ~), y(t,  ~), ~) . 

An easy application of Lemma  1 with Yl = Y and y~ = s, gives: 

X(y, ~ ) -  u(y, ~) ---- 0(~+~), 
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uni formly  in y ~ f2~. Then,  

g(X(y, e), y, e) -- g(u(y, e), y, e) = O(e ~+~) 

and (3.1) is proved.  
The assumptions on 4(t, e) also give, for any  k<q, 

= O(e~+~) . 

Then the k-th der ivat ive of the  lef t -hand side of this equal i ty  (which now exists 
since d is C ~ in e) vanishes a t  s = 0. The definition of y~(t), i.e. 

1 ~ e ) =  ~ 
y~(t) -- k ! ~ek y(t, 

gives immedia te ly  the  thesis of the  Theorem. 

The nex t  result  gives us as i terat ive me thod  to construct ,  in practice,  a q-approxi- 
mat ion  u(y, s) of a center  manifold C. This also increases the  impor tance  of the  pre- 
vious Theorem 1. 

T m ~ o m ~  2. - Le t  U~(y) be the  Cr-~+2-function in D~, i tera t ively  defined by:  

(3.4) ) D~/(O, y, O) U~(y) = =o k]/ (k--j)I)Uk_j_~(y)-~e~g ~ U~(Y) i-[. , y, e ~=o@ 

) 
~e  \ i = 1  e = 0  

where ~:----0 if cr Then,  

q ~ 
(3.5) u(y, e):---- ~ Uk(y) ~.. 

k= l  

is a q-approximation on ~1 of the  center  manifold C for any  q<r. Moreover, set t ing:  

~ ( t ,  e) = ~: ~ ~ ( y ( t ,  
h = 0  

t hen  O~(t, e) is C ~ with respect  to e, and O~(t, e) = U~(y(t, e)) @ O(eq-k+l). Finally,  
the  funct ion 

8 ~ 
~(t, el : =  ~ v~(t, e)~! 

7r 

is C ~ with respect  to e, ~nd d(t, e)--  u(y(t, s), s) = 0(eq+l). 
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P~ooF. - We prove tha t  u(y, e) defined by  (3.5) and (3.4) is u q-approximation 
of ~ showing tha t  

uni formly in y ~ D~. This last condit ion explicit ly writes:  

(3.6) DU~(y)-~. g U~(y)-~.. , y, e - - ]  U~(y)~c~. , y, e = O(eq+~) , 
1r 

For  any  funct ion ~ of class C ~+~ we firstly prove t h a t  

(3.7) v ( ,~  v,~(y) V.,' y' ~! - D~v(o, y, o) ~(y)  7 . , -  v \~=~{ 2: V~(y) V.,'. y' ~} = o(~+~), 

for any  j < q. In  fac t :  

k=l  

) ) ;, e~ ~ U~(y)~,  y, e --DI~(O, y, O) U~(y) < 

U~ (v) d/.~ ! 

< C(y) d +' + D,~ v~=~ Us(y) ~.. -~ ~, y, e - -  D,q~(O, y, O) d~ < 
0 

y~(v)eJ/5! 

< C(y)d +~ + f [Cl(y) e + C~(y)~] d~ <C(y) d +~ = O(d+~). 
0 

F rom (3.7) we obta in  the  following equalities, for any  h<j<<.q<~r, 

(3.83) ~ V \~=1 | ~  Uk(y) ~.., y, e] -~ DI?(0, y, 0) Uj(y) -[- 
e~O 

) § -~dcf\~=l U,o(y)~, y, e ~=o' 

~ / ,, ~ ) ~,~ / h ~'~ )e=o" 

Conditions on the  Uk(y) for (3.6) holds true,  are now found imposing tha t  the  j- th 
derivat ive with respect  to ~ of the  lef t -hand side of (3.6) vanishes at  ~ ~--0, for 
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any  j = 1, ..., q. Taking into account  (3.5) and (3.7), this is equivalent  to:  

=~. g ( ~ I  U'~ ~ ' Y' e ~ ] ( k ~ l  Uk(y)~ ,  y, 
6 = 0  - -  

~j / J - 1  87~ t 
/ 

+ 
] 

- -  Udy)  s~ - - D j ( O ,  y, o) G(y)  ~-~/\,~=~ y, e , 

for j < q .  This proves the  first 1)art of the Theorem. The last pa r t  is an easy com- 
puta t ion  and follows f rom the  definition of O~(t, e). 

I~EMA~KS. -- (i) The results of bo th  Theorem 1 and 2 can be used in order to 
find the  differentia] equat ion t h a t  the  e~-component y~(t) of y(t, s) has to satisfy. 
Le t  u(y, e), d(t, e) be as in Theorem 2. For  the  computa t ion  of (3.2) we only need 
the  l-th der ivat ive  of 4(t~ e) a t  e ~ 0, O<~l<i. Then we have:  

This last quan t i ty  is exact ly  the  same as the  /-th derivative,  with respect  to e~ 
~--1  

evaluated  at  e----0, of u ( Z y ~ ( t ) e ~ , e  ) when the  U~(y) are considered ~s &-func- 
~i 

tions. We c~n give then  the  following ]ormal equations for (x~(t), y~(t)): 

~tdt) - -  i ! Oe ~ g u y~(t) e ~, e , ~ y~(t) e z:, e , 
k = O  (3.9) 

x~(t) = ~. ~ u y,o(t) G e 
\ k = 0  

q 

where u(y, e) ~ ~ U~(y)(e~/k!) is considered as a C~-function in (y~ e). This gives 
7c=1 

no problem since in the  above expressions only the  derivatives of correct  orders 

o c c u r .  

(ii) Observe ~hat (3.9) define the  equations for (x,(t)~ y~(t)) only by  means 
of the  slow components  yo(t)~ y~(t)~ ...~y~_dt). Previous convent ional  methods  (se% 



378 F. BAT~ELLI - C. LAzzA.~I: Asymptotic expansions, etc. 

for example [8] and its references) need to find also the  equations which define the  
fast  components  Xo(t), x:(t), ..., xi_:(t). 

As an example of application of the  above results, let  us write explicitly the  
differential equations defining the first approximation yo( t )~  sy:(t), From (3.8) 
one easily find: 

~0(t) = g(0, yo(t), 0) 

and, using also (3.5): 

(3.10) ~l(t) = D:g(0, yo(t), 0) U:(yo(t)) + D2g(0, y0(t), 0) yl(t) + D3g(0, y0(t), 0) 

where, from (3.4), one has to put :  U~(y) = -- [DJ(0,  y, O)]-:D3](O, y, 0). 

4. - Computation of  initial conditions. 

In  this Section we will find a formula giving the initial conditions to associate 
with the  equations (3.2) When the original problem (2.4) has the  initial condition 
p(s)----(x~ y~ The formula is the  same as the  one given in [13, pag. 29] 
where only the  << stable case >) was considered, i.e. the  case where the  Jacobian  
D:/(0, y, 0) has all e igenvalues with negative real part .  Here  the  val idi ty of the  
formula (4.3) is extended to the  more general case where D:](O, y, 0) has no eigen- 
values with zero real par t  (<< conditionally stable case >>), provided tha t  p(e) is suit- 
ably chosen. Thus consider the  Cauehy problem: 

(4.1) 
[ s& = ](x, y, s ) ,  x(0) = x~ 

~/ -~ g(x, y, e),  y(O) =- y~ 

Sett ing a----t/s, (4.1) can be wr i t ten  as: 

x ' =  /(x, y, s) , 

(4.2) y ' =  8g(x, y, e), 

x(O) = x~ 

y(O) = y~ 

where the  last equation reflects the  fact  tha t  s is a parameter .  
Let  (x(a, e, p(e)), y(a, e, p(e))) be the solution to (4.2), and (x~(~, e), yq(a, e)) be 

its q-truncation, tha t  is: 
q 

x~(~, ~) = ~ x~(~)~, 

q 

i = 0  
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where x~(a)= (1/k!)(~k/~~ e,p(s))[~= 0 etc. By  x = u(y, s) we will denote again 
a q-approximation of the center manifold C, for example the  one constructed in 
Theorem 2. The problem of finding a ~ suitable )> initial condition for the outer 
solution consists in the determinat ion of a point (x*(r y*(~), r ~ C such tha t  the 
difference between the solution to (3.1) with initial conditions (x*(s), y*(s)) and the 
solution to (4.1) is bounded above, in modulus, by  C exp {--(St~s}, C, ~ >  O. 
Obviously, having the equation of C, we only need y*(e). Moreover, since we are 
interested in the construction of the y~(t), 0 < i <  q, we only need the e~-component 
of y*(s) in its expansion in power of s: 

q 

y*(s) -~ ~ y* s ~ ~- O(e~+l) . 
i = 0  

l%r a se t  S c R "+~, let 

A+(S) : =  {po = (x o, yO): (x(~, s, pO), y(~, s, pO)) e S ,  for any  ~ > 0 } .  

A+(S) is the positively invar iant  subset of S. Le t  C ~ be the C~+~-center-stable 
manifold near K~ whose existence has been established in [4]. We shall assume the 
following: 

(H) p(e) = (x~ y~ e A+(C~). 

For  example, if y = 0 is exponentially stable for the  degenerate system and 
Dxf(O, y, O) has all eigenvalues with negative real part, then  (H) is certainly sat- 
isfied by any  point belonging to the  domain of influence of the equilibrium of the 
boundary  layer system. 

Let  (~(~, s, p*(s}), Y((5 s, p*(s))) be the solution to (r wi th  p*(s) e e. 
The aim of this Section is to show the following: 

TKEOgE~ 3. -- Suppose (H) hold. Then there exists p*(s )=  (x*(e), y*(s)) such 
t h a t  : 

Ix(~, ~, p(~)) - ~(~, ~, p*(~)) I + ly(~, ~, p(~)) - ~(~, ~, p*(~)) I < c e~p ( -  ~ } ,  

Furthermore ,  sett ing 

y*(s) = ~ y* ~ + O(s ~+~) 
k = 0  

we have:  

(4.3) 

q 

and + 0( o+1) 
x k  = 0 

y* = y~ , 

1[ 
y~ = ~ 

C~ ~ > 0 .  

f ~ k - 1  f _7_  lg(x~-~(~ ' ~), y~-l(~, ~), ~) + 
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RE~AlCI{S. -- (i) For the  computat ion of the  integral in (4.3) we have to evaluate 
the derivatives D~u, 0 < j < q - - 1 ,  and a priori it is not  guarantee4 their existence. 
Nevertheless, we can change ~ by  an ~ as in Theorem 1. Taking ~(y, ~ ) a s  in 
Theorem 2, we may  apply the arguments  of the  l~emark (i) following tha t  Theorem, 
hence we may  suppose tha t  all derivatives of u we need, exist. 

(if) In  (4.3) we may  change xT~-~(a, e), yZ~-x(a, e) by  x(a, e, p(e)), Y((5 e,p(e)). 
We prefer the form (4.3) because it emphasizes the  fact  tha t  x,,  Yz: depend only on 
the (/c -- 1)-truncation of the inner solution. Differential equations for these can be 
found taking the derivatives with respect  to e of the eqI~ation (4.2) and evaluating 
the result  a t  e = 0. Fur thermore ,  having the equation x = X(y,  e) of r we may  
obviously change u by  X in Theorem 3. 

For simplicity we will suppose tha t  C has the  equation x ---- X(y,  e) for y ~ K, 
e [0, so).  

Let  ~ : x - -  X(y,  e). In the  new coordinates (~, y), (4.2) reads:  

(~.~) 

{ ~ ' =  9(~',y, e) ,  

y ' =  e~f(~, y, e) ,  

,~r~--- 0 ~ 

$(o) : =  xo (~) -  X(y~ ~) : =  ~o(~), 

y(o) = yo(~), 

e(o)  = ~. 

In  these coordinates our center  manifold has the  simple equation $ = 0 (near K), 
and then,  from its invariance, it follows ~0(0, y, e) -~ O. 

The equations (4.4) restr icted to C can be wri t ten:  

(4.5) y ' =  ey,(O, y, e) 

(here we do not  consider initial conditions). The invariant  manifolds: 

5-(0, y, O) = {(~', y, O) e C~: ~ e R  ~, (~', y) e.(2} 

can be extended [4] to a Cr+l-invariant family of C~+~-submanifolds of C~: :T(0, y, e) c 
r Q • [0, So) such tha t  if p ~  (t~ y~ e) e 5-(0, y*(s), s), then 

(~(~, ~, po(~)), y(~, ~, po(~)), ~) ~ ~-(o, ~(~, ~, y,(~)), ~) 

for any  a > 0  such tha t  ($(a, e, p~ y(a, e, p~ e) ~ C'. Fur thermore  the  dis- 
tance between (~(~, ~, p~ y(~, ~, p~ and (0, ~(~, ~, Y*/*I)) is bounded above 
by  C exp {-- ~a) [4]. Here  y(~, e, y*(e)) is the  solution to (4.5) with the  initial con- 
dition y(0) : y*(e). From ~(0, y, e) = g(X(y, e), y, e) we get tha t  ~(t/e, e, y*(e)) is 
the  y-component  of the  outer  solution. 
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In  the  following we shall write 5.(y*(s), s), r s) etc. instead of X(0, y*(s), s), 
~(a, s, po(s)) etc. ; furthermore,  unless otherwise specified, we shall refer to systems 
(4.4) and (4.5). 

From (It) it follows: (~(~, e), y(a, e), s) ~ 5(~(~, e, y*(s)), e) for ~ny 0 > 0 ,  if 

(4.6) (~o(~), yo(~), ~) e 5.(y*(~), ~). 

So~ from the propert ies of 5- and the fact  tha t  5(y*(s), e) intersects trans- 
versally ~ only in (0, y*(e), s), the  first par t  of Theorem 3 follows easily. 

l~low, the  problem is to find y*(s) in terms of (~~ y~ in such a way  tha t  
(4.6) holds. 

Owing to the  t ransversal i ty  of 5(y*, 0) to ~ ~- 0, we can write  the  local equa- 
tion of 5.(y*, s), for small e. Let  (~, y, e)~ ~ ;  then 

(4.7) (~, y, s) e 5.(y*, s) <:~ y = y* -~ sY(~, e) , 

where Y(~,s) is C ~ with respect  to e, and C ~+z with respect  to $, ~(0, s ) ~  0 
because of (0, y*, e) ~ 5.(y*~ s). Condition (4.6) then becomes 

(4.8) y((~, s) -~ ~((r, e, y*(s)) + sY(~((~, s), s) if y~ = y*(s) -~ s:Y(~~ s). 

Set t ing s = 0 in (4.8) we see tha t  y* : =  y * ( 0 ) =  y~ (and this is independent  
of the  equat ion of ~(y*~ s) because of the  above s ta ted  propert ies of :Y(~, s)). This 
mea~s tha t  the  initial condition we have to give to the  zero-approximation is 
exact ly  y~ 

In  order to clarify the  proof of Theorem 3 we first show the w~y to compute  y~. 
T~king the  derivat ive with respect  to s of (4.8) ~nd evaluating a t  s ~ 0, we obtain 

(4.9) y~(cr) = D3~((~, 0, y~ Dy*(O) ~- D ~ ( a ,  0, y~ -~ Iz(~((~, 0), 0) . 

Obviously (4.9) holds only for those a such tha t  (~(~, s), y((~, s)) belongs to a suit- 
able neighbourhood of some point  of K. l~levertheless~ if we suppose a sufficiently 
large, then (~(~, s), y((~, s)) is sufficiently close to K, and it belongs to one of the 
neighbourhoods where 5.(y*, s) has an equation like in (4.7). So, it will be sufficient 
to show tha t  every Y~(~(a, 0), 0) decays to zero exponentially,  as a - >  0. I~_I fact, 
supposing this is true,  from (4.9) it follows: 

(4.!0) lira {Yl (a ) - -D~(a ,  0, y~ O, y~ = 0 ,  
a - ->  o o  

and then the thesis will result  from: 

1) ~((r, 0, y) --~ y ~ Ds~(a, 0, y~ ----- Id ;  
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2) from y1(o)=  Dzy(o, s)l~= o we get 

(4.11) y~(o) ~(~(o, o), y(o, o), o) =g(x(o, o), yo(o), o); 

3) from the  definition of if(o, s, y~ we have 

(4.12) 
{ D~ff(o, 0, y~ F(0, y~ 0) ----- g(0, y~ 0) ,  

D2 if(0, 0, y~ = 0 .  

In  fact, from (4.10), we have 
+co 

y~ = l im {y1(o) - -  D~ff(G, 0, y~ = l- {y~'(o) - -  .D2ff(G, O, y~ /} do + 
0 +co  

yO = j- {g(x(o, 0), y~ 0) - -g(0,  y~ 0)} go q- y0, + 
I v  

0 

which is exact ly (4.3) for k = 1. 
The fact  tha t  I Y(~(o, 0), 0) l< C exp {-- (~o} follows e~sily from Y($, e) e C ~, and 

[r 0 ) l<Cexp{- - f io} ,  this last inequali ty resulting from the  fact  tha t  on the  
center-stable manifold C ~ c Q the  Jacobian D~/(x, y, 0), y ~ K, has all eigenvalues 
with strictly negative real part .  With  these arguments  in mind we can now prove 
Theorem 3. 

Pl~OOr oF Tm~ol~E~ 3. - We shall show that~ for k > l :  

(4.13) l im y~(o) k! ~d ~ o, s, ~ y*e ~ = O. 
a--* ~ t i = 0  / / * = o J  

This is sufficient to prove (4.3), since 

kll ~-~ y(o,3~ II 1 ~k-~ s) y~(o) --  e ) -  ~-:7-z_1 g(x(o, s), y(o, s), 
( k - 1 ) ~  8=0 8=0 

and  

~=o l [ e = O  

+J 7- lgU '  ooX 
0 

(see also (3.8)). Taking the  derivative, with respect to e of (4.8) and evaluating it 
at  e = O, we get:  

y~(o)--~.  T ~ski  0, s, y*~i __ 1 - ( k -  z ) !  os~-~ :Y(~(o, 8), , 
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so it is sufficient to show that  the right hand side of this lust equality tends tO zero 
exponentially fast. Because of the smootheness of Y(~, e) and ~(a, e) this becomes 

consequence of 

ID~(a,O)l<Oexp('M), O,a>0, for any ~=O, 1 , . . . , k - -1 .  

Since p~ e A+(r we may suppose that  D~](O, y~ 0) has all eigenvMues with 
negative real part;  then [~(a, 0)[ < C exp {-- M), where ~ is any  positive number 
less than ~-/~e2, 2eSpecD~](0, y~ 0). Suppose, first, ] -~  1. Taking the deri- 
vative of (4.4) and evaluating it at e = 0, we get: 

(4.1~) D2~(~, 0)'= D~(a, 0)D~$(~, 0) § D.~(~, 0)y~(a) + D.~(a, 0), 

where, for simplicity, / )~(a ,  0) : :  D~(~(a, 0), y(a, 0), 0) etc. 
From 9(0, y, e) -- 0 and It(g, 0)l < C exp {-- ~a} we have ID,~(a,: 0)t< V exp {-  ~a} 

when i = 2, 3. Moreover, from (4.11) it follows that  y~(a) = D~y(a, 0) is of bounded 
growth, since ~(a, 0) -~  0 as a--> + c~. Now, observe that  

D,~(g, 0) ----- D~(0 ,  y~ 0) -{- [D~T(~(r 0), y~ 0) -- Dl~(0, y~ 

and then, from the roughness of the exponential dichotomy (see [3, 6, 11]), we 
obtain that  the system: . . . . .  

z '=  Dlq~(a, O)z 

has a fundamental  matrix satisfying: 1~5(a)I~<C exp{--(~'a}, where ~' is a positive 
number less than ~. Let A(G):~ DI~(~, 0); then (4.14) becomes: 

:(4:15) D~$(a, 0 ) ' :  A(o)D~(a,  0) + @(~), 

where le(*l< c exp {- ~). 
mulu gives: 

An easy application of the variation of constants for- 

ID2$(~, 0)1< C exp {-- Xo}, 

and this is exactly what we wanted. 
respect to ~ of (4.4) and evaluating it at e = 0, we have: 

1 8 ~),=o y',(a) ---- ~ ~ ~(~(a, ~), y(~, ~) = Z(~(a, 0), D2$(g, 0), y"(0), Yl(~)) 

and then the growth of y2(a) is at most as yl(a), i.e. as a. 

Finally, taking the second derivative with 



384 F .  BATTELLI - C. IJAZZARI: Asymptotic expansions, etc. 

We may then use induction to show that,  for any i = 1, . . . ,  k: 

(1) D~-'((a, 0) satisfies an equation like (4.15) and then: 

IDi-'r 0)l<C exp { -  ~'.} ; 

(2) yj(a) cannot grow faster than a~, as ~-~-t-  c~. 

l~inally, if C a n d  ~-(y*, e) have not a single equation around K, we may cover K 
with a finite number of neighbourhoods where they have an equation. We need 
then to consider a finite number of equations like (4.4) and relationships like (4.8). 
]~Tevertheless the larevious arguments show that  

0~-1 r~(r ~), ~)o=o < O c x p { - ~ ' ~ } ,  

a n d  then (4.13) is still valid. This laroves comlaletely the Theorem. 

W e  conclude this Section observing that  from (4.13) other formulae for y~ 
could be obtained. Zet  us give for example an alternative formula for y*. In  this 
case (4.13) writes (see also (4.10)): 

(4.16) y~* -~ lim (yl(0) --  D2~(a, O, y~ 

But from (4.12) it follows: 

9~y(~, o, vo(o)) = g(o, vo(0), o)~; 

moreover, 

I 

~)' Y(~' ~)' ~)}[.=0 (~y~(a) = ~ ---- g(x(a, 0), y~ O) or. 

Since x(~, O) -> 0 as a -+ -}- 0% we may combine these two last equations to obtain: 

Then, from (4.16): 

(see also [7, 13]): 

y* = lira {yx(~) -- ~y~'(o')} 
a--3. co 

5. - I st approximation for a c lass  o f  e n z y m e  react ion systems.  

I t  is known (see for example [1, 7, 12]) that  the temporal evolution of a great 
number of enzyme reaction systems is described by differential equations whose 
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adimensionM form can be wri t ten  as 

d~ _ Ao(S)~ 4- ao(S) , 

(Sn) (Sn) 
-t = Bo(s)~ 4- bo(s) 4- v(s) s(O) = s o 

~ 2 : =  {(~1, ..., ~ ) ~  R-~+: i ~ J < l }  is the vector of the independent  enzyme w h e r e  

concentrations (the fast  variables) and s ~Rg  is the vector of the independent  
ligand concentrations (the slow variubles). Ao(s), ao(S), Bo(s), bo(s) describe the 
internal  kinetics; v(s) describes the input /output  exchanges. 

Let  D be an open domain containing a compact set K c R~. In  [1, 10] i t  is 
proved that ,  if K c R~, then  Ao(s) is an invertible matr ix  with all eigenvMues with 
negative real par t  for any  s belonging to a neighbourhood of K (usually the same 
conclusion holds even if K c R~). 

Suppose tha t  the  degenerate system 

ds 
(5.2) d-t = Bo(s)q~(s) 4- bo(s) 4- v(s) , of(s) = --Ao(S)-~ao(s) 

has a fixed point  ~ ~ K.  In  [1] i t  has been proved that ,  under  widely satisfied 
hypotheses,  system (5.2) takes the  simple form 

d8 
(5.3) d-t = ~V(s)  4- v(s) , 

where V(s) is a scalar function, V: / ~ - + R ,  and  ~ c R ~ is a constant  vector. 
In  this Section we will give a convenient expression for the component s~(t) of 

the first approximation so(t)4- eSs(t), So(t) being the solution to the degenerate 
problem (5.3) (or (5.2)). By the change of variables (2.3) we can transform the 
given system (5.1) into the form (2.4), where now it  is: 

(5.~) 
](x, y, s) Ao(y Jr ~)x--  sDcf(y 4- ~)[aV(y 4- ~) @ v(y @ ~)], 

g(x, y, ~) = ~V(y + ~) + v(y + ~) . 

The differential equation (3.10) for s~(t) reads now: 

(5.5) 

where 

(5.6) 

~(t) = M(so(t)) sl(t) + N(s0(t)) , 

M(s) = D[.~'(s) + v(s)], 

2r = Bo(s) Ao(s)-lDcf(s)[aV(s) Jr v ( s ) ]  . 
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The  scalar  func t ion  V(s), d e t e r m i n e d  b y  t he  i n t e rna l  mechan i sm,  is t he  so-cMled 

(~ p seudo - s t eady - s t a t e  ve loc i ty  ~>; t he re  exis t  s t a n d a r d  rules to  c o m p u t e  i t ;  for  example  

t h e  K i n g  a n d  A l t m a n  g raph ica l  rules  [9]. The  o the r  t e r m s  in  (5.6), such as Bo(s) 
a n d  v(s) are  expl ic i t ly  given,  a priori ,  in (5.1), a n d  have  genera l ly  a s imple  form.  

To de t e rmine  now the  ini t ia l  condi t ion  assoc ia ted  wi th  (5.5), we m u s t  consider  the  
solut ion of t h e  b o u n d a r y  l a y e r  s y s t e m  

dx 
- ~  = Ao(y + ~)x ,  x(0) = ~ ~ 1 7 6  x ~ , 

dy 
d - ~ :  0 ,  y(0) : s ~  

t h a t  is 

~,X 
d-~ = Ao(sO) x ,  x ( 0 )  = xO 

whose  solut ion is x(a, 0) = exp {Ao(s~ ~ Since t he  ini t ia l  condi t ions  ~o and  s o are 

* *" (4.3) w i th  k = 1, gives t h e n  i n d e p e n d e n t  of s, we have  s~ = Yl, 

+co 

(57) 8~ ----jBo(s~ O) da = --  Bo(s~176 ~ = --  Bo(s~176 ~ - -  (p(s~ 
" 0 

I n  m a n y  cases i t  is possible to  choose the  i n d e p e n d e n t  e n z y m e  species in such ~ w a y  

t h a t  ~ o =  0. T h e n  (5.7) r eads :  

s* = Bo(sO)Ao(s~176 ) ----- - -  Bo(s~176176 
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