Asymptotic Expansions
Obtained by a Center Manifold Theorem (*).

FLAviANO BATTELLI - CLAUDIO LAZZARI

Sunte. — Viene presentato un nuovo meiodo per la determinazione degli sviluppi asintotici della
soluzione esterna di sistemi di equazioni differenziali ordinarie singolarmente perturbati.
Il metodo proposio, basato sulla teoria geomelrica delle perturbazioni singolari e in partico-
lare su un teorema di esistenzo di varielt centrale, permeite di ottenere le equazioni differen-
ziali che definiscono le variabili «lente» senza la preventiva conoscenza dei corrispondenti
sviluppi per le variabili « veloci ». Inoltre, se ¢ sistemi vengono dati con condiziowi iniziali,
aleune formule che esprimono le correlie condizioni iniziali da assegnare alle equazioni dif-
ferenziali trovate — formule gia note nel « caso stabile » — vengono estese al « caso condi-
zionalmente stabile »; il procedimento qui usato risulia anche. pil sintetico rispetto a quelli
precedentemente proposti. Infine viene studiata un’applicazione ad una classe assai generale
di equazioni dervivanti dulla cinetica delle reazioni enzimatiche.

1. - Introduction.
Consider the singularly perturbed system of ordinary differential equations
(1.1) b =& n,6), 1= me), ()=djdt

where &, Fe R, n, Ge R, (&, ) Qc R, c€[0, &)C R, and F, Ge 0+2(2 X[0, &)),
7>0.

It is known [8, Theorems 1 and 2] that, under suitable conditions—summarized
in a simpler form in the next Section 2 which contains also basic notations and
hypotheses—, the solution of (1.1) can be written as:

&(t, e)
=1t Y it
(’7('57 ) (tley &) -yt €)
where I, y are (r+in their arguments, and |I'(z, ¢)|< C exp {— d7}, 0, § > 0. I'(t/e, ¢)
and y(¢, &) are called «inner solution » and «outer solution» of (1.1), respectively.

(*) Entrata in Redazione il 28 febbraio 1987.

Lavoro eseguito nell’ambito dei programmi del gruppo di ricerca « Equazioni di Evolu-
zione e Applicazioni», M.P.I., e del Gruppo Nazionale Fisica-Matematica del C.N.R.

Indirizzo degli AA.: Istituto di Biomatematica, Universitd di Urbino, Via Saffi 1, 1-61029
Urbino (Ttaly). '
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In Section 3 of this paper we will present a new method of finding the coeffi-
* N
cients y,(f) of the smooth expansion p(f, &) = > y.(f)e‘ + O(ert?). This method
i=0

depends on the existence of a center manifold C for the system (1.1) such that
y(¢, &) is the solation of (1.1) restricted to C[4, Theorem 9.1]. Even if C is, in
general, not unique, the coefficients y,(f) are unique [b, 8].

Differential equations defining the /s are then obtained using approximations
of C, whose equations are computed in terms of F and ¢, provided that the jaco-
bian of F is non-singular. Moreover, this procedure will also allow us to obtain the
differential equations for the asymptotic expansions of the «slow variables » #(t, ¢)
without involving the corresponding expansions of the «fast variables » £(2, &) (see
formula (3.9) of the present paper). This can be helpful in many applications when
one is mainly interested in the behaviour of the slowly varying components.

Previously developed results (see, for example, [8,13]) gave the coefficients of
the asymptotic expansions of the slow variables by means of the differential equa-
tions involving the coefficients of the asymptotic expansions of the fast variables
too, these last being obtained by solving suitable algebraic equations.

Section 4 deals with a problem which is strietly related to the previous part:
consider the Cauchy problem given by (1.1) with the initial condition, say p(e) ==
== (&%e), 7°(¢)); it is quite natural to ask which is the correct initial condition to
assign to the differential equation defining the ¢-th coefficient y,(f) of the expansion
of y(1, &).

The answer is given by the formula (4.3) of this paper; the same formula has
been also obtained in [13] for the stable case, i.e. when the jacobian of the so-called
« boundary layer system » (the system (2.1) in the following) has all the eigenvalues
with negative real part. We shall prove that the validity of those formulae can be
extended to the «conditionally stable case», i.e. when the quoted jacobian has no
eigenvalues with zero real part. Our proof, based on the existence of a center-stable
manifold [4], is also simpler than the one given in [13].

Finally, Section 5 is concerned with an application of the results of the previous
part to the differential equations describing the kinetics of a wide class of enzyme-
catalyzed reaction systems for which biochemists are commonly interested in the
temporal behaviour of the slow species. Usually, for these systems the zerc-approxi-
mation y,(f) is studied.

Here, for the very general case considered, we are able to write down explicitly
the differential equations (with initial conditions) for the first approximation () +
-} eyi(t) of the outer solution:

2. — Notations and hypotheses.

For a function I of several variables, D*I" will denote the k-th derivative of F
with respect to the i-th variable.
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We make the following assumptions on (1.1):

(i) F(&, 7, 0) = 0 has the solution & = ¢(5), for 5 e Dc R*, D being a com-
pact set.

(ii) There exists 776_10) such that G(@(7), 7, 0) = 0, and D, F(p(7j), 7, 0) has
no eigenvalues with zero real part.

From (ii) we deduce the existence of a compact neighbourhood U c D, such that
7€ U, and D, F(gp(n), n, 0) has no eigenvalues with zero real part for any e U.
Without loss of generality one can then suppose:

(iii) For any neD, D.F(p(n),n,0) has no eigenvalues with zero real part.

From (iii) it follows that the boundary layer system:
(2.1) EF=F(é 90, & =dildo, oc=1tle,

has a hyperbolic equilibrium at ¢(y), for any ne D, and then ¢(n) is an isolated
root of the equation F(&, #, 0) = 0 in D. Let us summarize the previous arguments
as follows:

H1) F(, 1, 0) = 0 has the isolated root & = ¢(n), ne D; such a root is a
hyperbolic fixed point of the boundary layer system (2.1), for any e D.

H2) There exists 7 e D such that G(@(7), 7, 0) = 0, i.e. the degenerate system:
(2.2) 7 = G(gln); 7, 0)
has a fixed point at ﬁeﬁ.

From the Implicit Funetion Theorem and H1) we get the existence of ¢(#, &) such
that @(n,0) =@(n) and F(p(y,e), n,¢) = 0. Consider then the change of variables

{ »==E&—gne),
Yy=n—1,

(2.3)

by means of which (1.1) and (2.2) read, respectively:

&t = f(@, y, ),
(2.4) .

Yy = g9(, Yy &),
and
(2.5) g = 9(0, ¥, 0)
where

f(@, y, €) :F(w_l“l’(y"[‘ﬁ’ &)y ¥ 41, s)—eD1<p(y—{—17,e)G(w—|—<p(y 47y £)y ¥ -+ 7 8) ’
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and

9@,y 8) = Qo+ gy + 7, 8),y + 7 €) .

We will also need the following auxiliary system

x'= f(®, ¥, &),
(2.6) y'=eg(w, ¥y, €) ,
g=0,

resulting from (2.4) by the time change ¢ = t/e. The system (2.6) has the manifold
of fixed points F = {(0, ¥, 0): (0, y) € {0} X B* N .Q} The Jacobian matrix of (2.6)
evaluated at (0, 0, 0) e R*” X R* X R, is:
D, (0, 0, 0) 0 0
J(0,0,0)= 0 0 0
0 0 0

System (2.6) reads also:

#'= Aw + W@, y, &) ,
(2.7) y'=eg(#, y, e) ,

where

4:= le((), 0’ 0) = DlF((P(ﬁ)a 7, O) y h(()’ Yy 0) =0 y -D:'h’(oa 07 0) =0

for § =1, 2,3, and ¢(0, 0, 0) = 0.

Let K be the image of D by the change of variables (2.3). From Theorem 9.1
in [4], we can deduce the existence of a O7+*-center-manifold C for the system (2.6)
near K (in the rest of this paper we shall simply say «a center manifold C»). Fol-
lowing J. Carr ([2], formula (1.3.6)), we can locally define C as the graph of a
Or+2-function # = X(y, ¢) such that:

(2.8) Q{X(y, 8)} =D, X(y, S)Q(X(% &)y ¥, e) — AX(y, &) — h(X(?/; &)y ¥ 8) =0,

and

X(y,0)=0, D, X(y,0)=0, D, X(0,0)=0,

for any y in a suitable compact set K,c K.
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DrrFiniTION. — A C'-function u = u(y, &), (y, &) € £, X[0, 5) C R*X R, K £, is
a g-approximation of a center manifold C if:

{uly, &)} = O(e*t)
uniformly in ye K.

For example a 0-approximation of a center manifold is u(y, ¢) = 0, since
ﬁ{O} = — 0, y, &) = — eD; h(0, y, *) = O(¢)

uniformly in yeQ,c R* &* being a suitable point in [0, ). Note also that
u(y, €) = 0 is the so called «slow manifold » of the system (2.4).

3. — Asymptotic expansions by a g-approximation of a center manifold.

Firstly, we prove the following

THEOREM 1. — Let u(y, &) be a g-approximation of a center manifold C. Then
a (outer) solution of the gystem (2.4) on C satisfies:

x(t, &) = ’M/(Q/(t, £), 8) 4+ O(s?tY),

(3.1)
y(t, &) = g('“(?/“? &)y E)a y(t, &), 8) =+ O(e?th) .

Furthermore, if 4(t, &) is Or+! with respect to &, and 4(t, &) — u(y(t, ¢), &) = O(ert?),
then the coefficients (,(t), y:(t)) of the Taylor expansions:

x(t, &) = 2 @i(t) e 4 O(e?+Y)
i=0
q
yt, &) = 3 y{t) e+ O+,  gq<r,
i=0
satisfy:
1 0,
x,(1) = 150 (t, &)} o
(3.2) )

-
S
jab)
)

S
w,
I
(=]

for any i<q.
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REMARKS. — (i) If we assume u(y, &) € Cr+1(£, X [0, &)), the passage to the fune-
tion 4(t, &) is obviously superfluous, and the thesis (3.2) still holds true with 4
replaced by u.

(ii) Formulae (3.1) and (3.2) hold true, generally, only on those finite time
intervals [0, T} such that the zero-approximation belongs to K for ¢ € [0, T], since,
in this case, O(e*t') is surely uniform in ¢. In case the zero-approximation belongs
to K for any te[0, 4~ oo), the validity of (3.1) and (3.2), uniformly on [0, 4~ o),
requires other assumptions. A remarkable case was studied in [8], where a suitable
exponential dichotomy hypothesis on the degenerate system (2.5) is taken into
account.

The first part of the proof of Theorem 1 depends essentially on the following

LEMMA 1. — Let B;, B, be matrices with al_l eigenvalues with zero real part, and
A be a matrix with eigenvalues with non-zero real part. Consider the system:

@' = Aw 4 W@, Y1, Ys)
(3.3) y1 = By + Bys+ 0@, 41, 92)
Y= Bya + (@, 91, 92)
where h, g, ¢, represent higher order terms.
If @ = X(y,, ¥,) is a center manifold for the system (3.3) and u(y., y,) satisfies:

C{u(yy, ¥)} = O([ys|*+?), uniformly in g, (here € is defined in a way similar to (2.8)),
then:

X Y1y 92) — uy1y ¥2) = O(Iyzlﬁ_l)

uniformly in v,.
This Lemmsa is a simple generalization of Theorem 5, pag. 32, in [2]. So, we
omit the proof.

ProOF oF THEOREM 1. — Since K is compact in G, we can suppose, without loss
of generality, that C is defined near K as the graph of a C"**-function & = X(y, &)
such that the outer solution satisfies:

x(t, &) = X(?/(t, &), 5) )
git, &) = g(X(y(t, &), &), (t, €); &) -

An easy application of Lemma 1 with ¢, = y and y, = &, gives:

X(y, &) — u(y, &) = O(e=h),
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uniformly in y € Q,. Then,

g(X(?/a €); Uy 8) - g(“(% &)y Uy 3) = 0(e7+?)

and (3.1) is proved.
The assumptions on 4(t, ¢) also give, for any k<g,

%
g(X(?/(ty e), €), y(t, ), 3) - g(ﬁ(t, &), Z yi(t) ¢, 3) = O(e*) .

Then the k-th derivative of the left-hand side of this equality (which now exists
since 4 is 07 in &) vanishes at ¢ = 0. The definition of (1), i.e.

1 o®
velt) = 75 55 (0, ©)

e=0

gives immediately the thesis of the Theorem.

The next result gives us as iterative method to construct, in practice, a g-approxi-
mation u(y, &) of a center manifold C. This also increases the importance of the pre-
vious Theorem 1.

THEOREM 2. — Let U,(y) be the Cr—*tz-function in 2y, iteratively defined by:

= o7 J i
(3.4) -le( s Y, 0 g( ) —§)DU;_;_ 1(y )88 g(zl Uz(y):f‘,‘7 Y, 8)‘ -

ok fe=1 &t
_ﬁf(zl Uz(y),ﬁ y Y, 8) s=0’

where > :=0 if x<0. Then,

(3.5) u(yy £) 1= kzl Uuly) =

is a g-approximation on £2, of the center manifold C for any g<r. Moreover, setting:

a=k 5h et

Z Us(y(t ))=7f

then U,(t, &) is C° with respect to ¢, and U(t, &) = U(y(¥, &) + O(er*+1). Finally,
the function ‘
k

i te)

is 0% with respect to &, and d(t, &) — u(y(l, &), &) = O(e%¥?).
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Proor. — We prove that u(y, &) defined by (3.5) and (3.4) is a g-approximation
of C showing that

ﬁ{u(?/y 8)} = { i Uiy) ;} = 0(e*) ,
=1 !

uniformly in y e £,. This last condition explicitly writes:

4] k1 q k
{3.6) Z Sk' g(E Uk(y)%, Y, 8) (z Uy 7 =1 Y€ ) O(erty),

For any function ¢ of class O+ we firstly prove that

i—1

(8.7) (p(i Us(y) ]%!‘7 Y, 5) —Dig(0, y, 0) Us(y )——90(2 U (?/)7;9—1‘:, Y, 6) = O(eft),

=1

for any j<q. In fact:

’<P (kgl Uw(y) %, Y e)—<p (kgl Uly) ,j—!, Yy 8) +

+ l(p(kgl Uily) ]%y Y, 3) (E Uuly '7 Y, e ) D90, 3, 0) U,(y)——‘

Ui(v)edlit

i—1 k
<omen+| | [chp(kglUk(m,%ﬂ,y,e)—~D1¢<0,y,0>]dn1<
0

Ui(weifit
<Cly) et + [Ciy) e + Caly)n] dn <Cly) et = O(e7+1) .

From (3.7) we obtain the following equalities, for any h<<j<g<r,

= Dyp(0, %, 0) Us(y) +

(680 g (z Uuly k,,y,e)

on q gk
(3.8b) —3;6-;‘99 (kgl Uily) Ak Y 5)-

ah 13 ek
= @?’ (kzl U.y) Ak Y, 8)

Conditions on the U,(y) for (3.6) holds true, are now found imposing that the j-th
derivative with respect to e of the left-hand side of (3.6) vanishes at ¢ =0, for
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any j =1, ..., ¢ Taking into account (3.5) and (3.7), this is equivalent to:

o7 7 DU b+l sq‘ ek o7 Q o ek
5:6—]{k§1 w(Y) m‘g(kzl U}c(?/)my Y, 8)} 620—8_67 (kgl k(f/)k"p Y, 3) o =

oi

i=1 gkt a &
=l 2o o (3 v o)

i—1 gk
R O EC] BTSN
k=1 .

=5 (Nj—mwov " A% v |
—;;o(h)(?— ) i—h_l(y)a_shg("g k(y)m’% 8) .

)

59
—D,f(0,y, 0) Uy )“ (]Z Uly) k!’J’ )

for j<q. This proves the first part of the Theorem. The last part is an easy com-
putation and follows from the definition of U,(t, ¢).

ReMARKS. — (i) The results of both Theorem 1 and 2 can be used in order to
find the differential equation that the si-component w,(f) of y(t, &) has to satisfy.
Let u(y, ), 4(t, ¢) be as in Theorem 2. For the computation of (3.2) we only need
the I-th derivative of 4(¢, ¢) at ¢ = 0, 0<l<i. Then we have:

q Sk

(g k.) o

=3 () 2 0 (S )

This last quantity is exactly the same as the [-th derivative, with respect to g,
-1

evaluated at ¢ = 0, of u(zyj(t) &, a) when the U,(y) are considered as C"-func-
=0

! Q&
0 - kg ( ) Ogit UIE(t, 9 e=0

= 3 ()5 vatote o)

&=

E==

tions. We can give then the following formal equations for (w,(3), ¥.(t)):

1 of =1 i

yz\ ) 7/1 aé‘i{ (u ( Z ?//c(t) gki 8)’ kgo yk(t) 8107 8)}
10| [ic

wll) =31 ay{ (Z yell )}

where u(y, ¢ 2 U.(y)(e¥/k!) is considered as a C"-function in (y, &). This gives

’
=0

(3.9)

g=0

no problem since in the above expressions only the derivatives of eorrect orders
oceur. '

(ii) Observe that (3.9) define the equations for (z.(t), y.(t)) only by means
of the slow components %(t), %(t), ..., ¥:_4(t). Previous conventional methods (see,
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for example [8] and its references) need to find also the equations which define the
fast components x,(t), %(f), ..., x:4(t).

As an example of application of the above results, let us write explicitly the
differential equations defining the first approximation w,(?) + eyy(t). From (3.8)
one easily find:

Polt) = g(O, Yo(t), 0)

and, using also (3.5):

(3.10) h(t) = ng(O, Yolt), O) Ul(?/o(t)) + ng(07 Yo(?), 0) y.(t) + D39(07 Yolt), 0)

where, from (3.4), one has to put: U,(y) = — [Df(0, y, 0)]*Ds f(0, y, 0).

4. — Computation of initial conditions.

In this Section we will find a formula giving the initial conditions to associate
with the equations (3.2) when the original problem (2.4) has the initial condition
p(e) = (2°(e), ¥°(e)). The formula is the same as the one given in [13, pag. 29]
where only the «stable case» was considered, i.e. the case where the Jacobian
D f(0, 9, 0) has all eigenvaluesv with negative real part. Here the validity of the
formula (4.3) is extended to the more general case where D, f(0, y, 0) has no eigen-
values with zero real part (« conditionally stable case »), provided that p(e) is suit-
ably chosen. Thus consider the Cauchy problem:

(4.1)

{ et = f(», ¥, &) , #(0) = a°(e) ,
g =9@ 9y e, ¥(0) = 9°(e) -

- Setting ¢ =t/¢, (4.1) can be written as:

#'= f(w, y, 3)_1 #(0) = a°(¢) ,

(4.2) y'=eg®,y,e), YO0)=y),
g=0,

where the last equation reflects the fact that ¢ is a parameter.

Let (a:(o, &, p(e)), y(o, a,p(e))) be the solution to (4.2), and (x%a, &), y%(o, ¢)) be
its g-truncation, that is:

w(oye) = 3 ao)et,
i=0
y%(o, &) = ZO yido) &',
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where x,(0) = (1/k!)(0/0e*) 2(0, & P(e))|s—, €te. By @ = u(y, ¢) we will denote again
a g-approximation of the center manifold C, for example the one constructed in
Theorem 2. The problem of finding a «suitable» initial condition for the outer
solution consists in the determination of a point (4*(¢), y*(e), ¢) € C such that the
difference between the solution to (3.1) with initial conditions (#*(e), y*(¢)) and the
solution to (41) is bounded above. in modulus, by Cexp {— dtfe}, C, 6> 0.
Obviously, having the equation of C, we only need y*(¢). Moreover, since we are
interested in the construction of the y,(¢), 0<i<q, we only need the &-component
of y*(g) in its expansion in power of &:

q
y*e) = 2 yie' + 0@ .
i=0
For a set Sc R’ let

A+(S) = {po = (2%, ¥°): (x(07 & p°), y(o, & po)) €8, for any 0>0} .

AT(8) is the positively invariant subset of §. Let C¢ be the COr+i-center-stable
manifold near K, whose existence has been established in [4]. We shall assume the
following:

(H) p(e) = (2°(e), y°(e)) € A¥(C) .

For example, if y = 0 is exponentially stable for the degenerate system and
D, (0, y, 0) has all eigenvalues with negative real part, then (H) is certainly sat-
isfied by any point belonging to the domain of influence of the equilibrium of the
boundary layer system.

Let (97(0, &, p*(e)), 7(o, ¢ p*(e))) be the solution to (4.2) with p*(e) € C.

The aim of this Section is to show the following:

THEOREM 3. — Suppose (H) hold. Then there exists p*(e) = (#*(¢), y*(€)) such
that:

Im(da & p(e)) - 7?(6; & p*(e))l + ‘?/(07 &y _’p(e)) - g(d’ & p*(e))l< O exp {_ 5‘7} , 0,6>0.

Furthermore, setting

a

yHe) = X g+ 0™ and  av(e) = uf 3 yie) + 0,
. k=0

k=0
we have:
Yo =4°(0),
+co
N 1 -1
Ye = iv_'l: Dei—1 {g(mk_1(07 g), yk_1(07 &), 8) -+
(4.3) 0

e=0

ol S0 e St o

+ Drye)

], for k>1.
&=0
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REMARKS. — (i) For the computation of the integral in (4.3) we have to evaluate
the derivatives Diu, 0<j<q¢— 1, and a priori it is not guaranteed their existence.
Nevertheless, we can change % by an 4 as in Theorem 1. Taking u(y, &) as in
Theorem 2, we may apply the arguments of the Remark (i) following that Theorem,
hence we may suppose that all derivatives of # we need, exist.

(ii) In (4.3) we may change *%(c, ), y*~Yo, &) by #(o, &, p(¢)), 4(o, &, p(e)).
We prefer the form (4.3) because it emphasizes the fact that 27, y* depend only on
the (k— 1)-truncation of the inner solution. Differential equations for these can be
found taking the derivatives with respect to ¢ of the equation (4.2) and evaluating
the result at ¢ = 0. Furthermore, having the equation # = X(y, &) of G, we may
obviously change # by X in Theorem 3.

For simplicity we will suppose that C has the equation z = X(y, &) for y ¢ K,
£€[0, &).
Let { = @ — X(y, ¢). In the new coordinates (7, ), (4.2) reads:
U=l y,8),  (0):=0a") — X(y(e), &) :=L"e)
(4.4) y=ep(, 9,8, y0)=9),
&=0, e0) =¢.
In these coordinates our center manifold has the simple equation { = 0 (near K),

and then, from its invariance, it follows (0, ¥, &) = 0.
The equations (4.4) restricted to C can be written:

(4.5) y'=ey(0, ¥, ¢)
(here we do not consider initial conditions). The invariant manifolds:
F0,9,0)={(,y, 00 C: e R, (,y) e 2}

can be extended [4] to & Cr+l-invariant family of Cr+2-submanifolds of Cs: F(0, v, &) C
c 2X[0, &) such that if p°(e) := ({°(e), ¥°(¢), &) € F(0, y*(¢), €), then

(C(O'a &, po(g))’ ?/((7: €, po(g)), 5) € 37(07 g(dy €y 3/*(8))7 5)

for any o3>0 such that (C(a, & 1°(2)), (o, & p°(e)), .9) € Cs. Turthermore the dis-
tance between (C (0, & p°(e)), ¥(oy &, p"(e))) and (0, #(o, ¢, y*(e))) is bounded above
by Cexp {— do} [4]. Here y(o, & y*(e)) is the solution to (4.5) with the initial con-
dition y(0) = y*(¢). From (0, y, &) = g(X(y, €), y, &) we get that F(t/e, ¢, y*(e)) is
the y-component of the outer solution.
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In the following we shall write F(y*(e), ), {(o, &) ete. instead of F(0, y*(e), &),
(o, & pole)) ete.; furthermore, unless otherwise specified, we shall refer to systems
(4.4) and (4.5).

From (H) it follows: ({(g, &), y(o, &), &) € fF(g(a, & 4*(e)), e) for any o>, if

(4.6) (C°(e), #°(e); 8) € F(y*(e), ¢) -

So, from the properties of & and the fact that F(y*(e), &) intersects trans-
versally C only in (0, y*(¢), ¢), the first part of Theorem 3 follows easily.

Now, the problem is to find y*(¢) in terms of ({°(e), 4°(¢)) in such a way that
(4.6) holds.

Owing to the transversality of F(y*, 0) to { = 0, we can write the local equa-
tion of F(y* &), for small . Let ({, y, ¢) € C°; then

(4.7) | (&5 9, &) € Fly*, 6) <>y = y* + £X(C, o),

where Y(,.&) is Cr with respect to e, and Or+! with respect to {, ¥(0,¢) =0
because of (0, y*, &) € F(y*, ¢). Condition (4.6) then becomes

(4.8) (o, &) =F(oy &, y*(e)) + X (L(oy 8)y6)  iE (e) = y¥(e) + e X (o), &)

Setting ¢ =0 in (4.8) we see that y}:= y*(0) =¢°(0) (and this is independent
of the equation of F(y*, ¢) because of the above stated properties of ¥({,¢)). This
means that the initial condition we have to give to the zero-approximation is
exactly ¥°(0).

In order %o clarify the proof of Theorem 3 we first show the way to compute ¥
Taking the derivative with respect to ¢ of (4.8) and evaluating at ¢ = 0, we obtain

(4.9) ¥1(0) = Dy(o, 0, 5°(0)) Dy*(0) -+ Doff(o, 0, 4°(0)) + ¥(¢(o, 0), 0) .

Obviously (4.9) holds only for those ¢ such that ({(s, &), y(c, ) belongs to a suit-
able neighbourhood of some point of K. Nevertheless, if we suppose o sufficiently
large, then (((o, &), ¥(o, ¢)) is sufficiently close to K, and it belongs to one of the
neighbourhoods where F(y*, ¢) has an equation like in (4.7). So, it will be sufficient

to show that every Y,(((c,0),0) decays to zero exponentially, as ¢ 0. In fact,
supposing this is true, from (4.9) it follows:

(4.10) lim {y,(¢) — Dy (o, 0, ¥°(0)) yF — D, (s, 0, y*(0))} = 0,

G- 00

and then the thesis will result from:

1) #(o, 0,y) =y = Dsfj(a, 0, °(0)) = Id;
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2) from 4,(0) = Dyy(0, o)l._, We get
(4.11) y = "I’(C a, 0), y(o, 0), ) = g(w(o'y 0), 4°(0), 0) )

3) from the definition of (o, ¢, 4°(0)) we have

{ D, (o, 0, ¥°(0))'= (0, 3°(0), 0) = g(0, 4°(0), 0) ,
(4.12)

D, (0, 0,5°(0)) = 0.

In fact, from (4.10), we have
-+ oo
yi =lim {yl(o') —ng(ga 0, yo(o))} = J‘{?A(U) “ng(‘)’, 0, :’/0(0)),} do +
e 0 oo
+y2=f{g(W( 0), ¥°(0), 0) — g(0, 3°(0), 0)} do + 93,
0
which is exaetly (4.3) for k= 1.

The faet that |Y({(s, 0),0)]|< C exp {— do} follows easily from Y({,e) e Cr, and
[£(a, 0)] < C exp {— do}, this last inequality resulting from the fact that on the
center-stable manifold Csc @ the Jacobian D, f(z, y, 0), y € K, has all eigenvalues
with strictly negative real part. With these arguments in mind we can now prove
Theorem 3.

Proor oF THEOREM 3. — We shall show that, for k>1:

(4.13) lim{yk() ijaakk ( e,Zy ) 0}=0.

G— CO

This is sufficient to prove {(4.3), since

1 e
o D) a—eﬁg(“("? £); Y(0, &), €)

, 1 o
Yulo) = 1 a—akyw, €)

and

or B
=Y\ & Z?/z & —‘L i+
Oe i=0

2Rl S0l 50

(see also (3.8)). Taking the derivative, with respect to & of (4.8) and evaluating it
at ¢ =0, we get:

ar

=0

1 o

e=0 (k )Y agk—— (5(07 £)s 8)

1 0% & s
yk(a)"‘m gg,jy o, 87,520?/1:8

?
=0
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8o it is sufficient to show that the right hand side of this last equality tends to zero
exponentially fast. Because of the smootheness of Y({, ¢) and (o, &) this becomes
a consequence of

|DiL(o, 0)|<Cexp(—do), C,6>0, forany j=0,1,..,k—1.

Since p°(s) € AT(C*), we may suppose that D, f(0,y°(0), 0) has all eigenvalues with
negative real part; then [{(c, 0){<C exp {— do}, where § is any positive number
less than — Re 4, AeSpee D, f(0, ¥°(0),0). Suppose, first, j = 1. Taklng the deri-
vative of (4.4) and evaluating it at & = 0, we get:

(4.14) Dyl(o, 0)'= Dyg(0, 0) Dy (0, 0) + Dyp(o, 0)y:(0) + Dyp(o, 0),
where, for simplicity, D;g(o, 0) := D,p(l(s, 0), 4(c, 0), 0) ete.
From ¢(0, ¥, ¢) = 0 and |{(0, 0)]< C exp {— do} we have | D;p(c,0)|< C exp {— do}

when ¢ = 2, 3. Moreover, from (4.11) it follows that y,(c) = D,y(o, 0) is of bounded
growth, sinee (o, 0) =0 as ¢ — - co. Now, observe that ' ‘

-D1(P(U7 0) = qu’(o: yo(o)’ O) + [DIQD(C(O', 0)7 ?/0(0)? O) - Di‘P(O, yo(o)’:‘o)] B

and then, from the roughness of the exponentml dlchotomy (see [3, 6, 11]), we
obtain that the system: Co

?'= D,¢(o, 0)2

has a fundamental matrix satisfying: |@(o)|< C exp {— 8'c}, where &' is a positive
number less than 8. Let A(o):= D,¢(o, 0); then (4.14) becomes:

(4.15) D,{(0, 0)'= A(0) D:{(c, 0) - (o),

where |o(c)|< C exp {— do}. An easy application of the variation of constants for-
mula gives:

|D:{ (0, 0)| < C exp {— 6'0'} ’

and this is exactly what we wanted. Finally, taking the second derivative with
regpect to ¢ of (4.4) and evaluating it at ¢ = 0, we have:

yilo) = 533 p(L(o.2), y(o. &) 8)5=0=x(C(G,O),D2€(G, 0), ¥°(0), 11(0))

and then the growth of y,(o) is at most as ¥,(0), i.e. a8 o.
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We may then use induetion to show that, for any j =1, ..., k:

(1) Di~t¢(o, 0) satisfies an equation like (4.15) and then:

|D;7 (0, 0)|< Cexp {— &'a} ;

(2) y;(0) cannot grow faster than ¢/, as 0 — 4 oo,

‘Finally, if C and F(y*, ¢) have not a single equation around K, we may cover K
with a finite number of neighbourhoods where they have an equation. We need
then to consider a finite number of equations like (4.4) and relationships like (4.8).
Nevertheless the previous arguments show that

ak—l

m=— Yu(lulo, ¢), &)

p ot <Cexp{—do},

e=0

and then (4.13) is still valid. This proves completely the Theorem.

We conclude this Section observing that from (4.13) other formulae for yj
could be obtained. Let us give for example an alternative formula for y¥. In this
case (4.13) writes (see also (4.10)):

(4.16) y¥ = lim {9:(0) — D,(o, 0, ¥°(0))} -
.. .- 0> 00
But from (4.12) it follows:

D, (0, 0, 4(0)) = (0, 5°(0), 0) o ;

moreover, :

| oyL(o) = % {oeg(x(s, &), y(o, ¢), &)} o™ g9(z(a, 0), ¥°(0), 0) o .

Since (g, 0) — 0 a8 ¢ — -} oo, we may combine these two last equations to obtain:
 [DaF(o, 0, 9°(0)) — oyy(0)| < Olo| exp {— 0} -0, as ¢—>- co.

Then, from (4.16):

yt = 1im {y(0) — oyi(o)}
(see also [7, 13]).

5. — 1** approximation for a class of enzyme reaction systems.

It is known (see for example [1, 7,12]) that the temporal evolution of a great
number of enzyme reaction systems is described by differential equations whose
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adimensional form can be written as

-
di
ds
==

Ay(5)€ + ay(s), 50y =128,
(5.1)
By(8)& + bols) +0v(s),  8(0)=s°,

§j<1} is the vector of the independent enzyme
=1

where EeZ’:{(El, ey é‘”)elﬁ:.

K
concentrations (the fast variables) and se]?g{ is the vector of the independent
ligand concentrations (the slow variables). A,(s), @(s), Bo(s), bo(s) describe the
internal kineties; v(s) describes the input/output exchanges.

Let D be an open domain containing a compact set K CRZ. In [1,10] it is
proved that, if K c R, then Ay(s) is an invertible matrix with all eigenvalues with
negative real part for any s belonging to a neighbourhood of K (usually the same
conclusion holds even if K CRE).

Suppose that the degenerate system

ds

(5.2) =

= By(8)@(s) + bo(s) +- (), @(s) = — Ao(s)a(8)

has a fixed point € K. In[l] it has been proved that, under widely satisfied
hypotheses, system (5.2) takes the simple form

ds_

(5.3) i aV(s) 4 o(s),

where V(s) is a sealar function, V: RE — B, and e R* is a constant vector.

In this Section we will give a convenient expression for the component s,(f) of
the first approximation s,(f) + &s,(f), s,(f) being the solution to the degenerate
problem (5.3) (or (5.2)). By the change of variables (2.3) we can transform the
given system (5.1) into the form (2.4), where now it is:

5.4 { 1@, y, &) = Aoy + 8)z— eDoly + 5)[aV(y + 5) + vy +3)],
' 9(@, 9, &) = 2V (y +5) + o(y + 3) .

The differential equation (3.10) for s,(f) reads now:

(65 8,(1) = M(so(8)) 82(8) + N(s(t) ,

where

{ M(s) = D[aV(s) + v(s)],
(5.6)

N(s) = By(s) Ao(s) Dep(s)[V (s) + v(s)] -
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The scalar function V(s), determined by the internal mechanism, is the so-called
« pseudo-steady-state velocity »; there exist standard rules to compute it; for example
the King and Altman graphical rules [9]. The other terms in (5.6), such as By(s)
and o(s) are explicitly given, a priori, in (5.1), and have genemlly a simple form.
To determine now the initial condition associated with (b.5), we must consider the
solution of the boundary layer system

dz _
P Ay -+ 38w, @(0)=E—p(s*):=2a°,
dy —
%:Oa' y(0) =s—5,
that is
dw
=y a,  a(0)=ab

whose solution is w(c, 0) = exp {4,(s°)a}2°. Since the initial conditions & and s° are
independent of &, we have s = y¥; (4.3) with k = 1, gives then

+ oo
(5.7) s¥ :fBo(s")w(o‘, 0) do = — Bo(s°) Ao(s°)1a® = — By(s°) Ao(s°)(&* — @(s?)) .
S0

In many cases it is possible to choose the independent enzyme species in such a way
that £ = 0. Then (5.7) reads:

8T = Bo(s”) Ao(s°)(s") = — Bo(s")[Ao(s") 1% as(s") .
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