On the Distribution of Complex Numbers
According to Their Transcendence Types (*).

FRANCESCO AMOROSO

Summary. — For each complex nwmber ils transcendence type is defined as a non-negative recl
number, which supplies a measure of ils approximability by algebraic numbers. The dis-
tribution of complex numbers according to their transcendence types is studied and the exis-
tence of complex nwmbers with o given transcendence type is proved.

Sunto. — Per ogni numero complesso é definilo il suo tipo di trascendenza come un numero reale
non negativo che fornisce una misura della sua approssimabilits mediante numeri algebrici.
8i studia la distribuzione dei numeri complessi in relazione al loro tipo di transcendenza e
viene dimostrata Uesistensa di nwmeri complessi aventi tipo di trascendenza assegnato.

1. — Intreduction.

Let e € and let E, denote the set of non-negative real numbers 7 for which
there exizts some positive constant 0 = C{«, 7) such that

W | Log |P()| > — Ct(P)*

holds for any polynomial P with integer coefficients and such that P(x)=%0. By
i(P), as usually, we mean the size of P, i.e. the maximum between log H(P) and
deg P, where H(P), the height of P, is the maximum of the absolute values of its
coefficients. We define the transcendence type z(x) of « as the infimum of ¥, (with
T(o) = + oo if B, =@). It is easy to see (see[7] p. 4.34) that the transcendence
type 7(x) ean also be defined as the infimum of the exponents 7 such that (1) holds
only for irreducible polynomials P with integer coefficients and such that P(e) 5% 0.
The transcendence type also supplies a measure of the approximability of a com-
plex number by algebraic numbers. For, the inequality

(2) Log | — | > — #B)
holds for any real number v > 7(x) and for any algebraic number 8, provided that

#(B) is a sufficiently large real number. Here #(8) is the size of the minimal
equation of § over Z.

(*) Entrata in Redazione il 22 aprile 1987.
Indirizzo dell’A.: Via dei Pensieri 65, 57100 Livorno (Italy).
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For any 7, let A: be the set of all complex numbers with transcendence type 7.
Of course x ¢ 4, if and only if « is a rational integer or a non-real algebraic integer
of degree two over (J. A, consists of all algebraic numbers which are not in 4,. Also
A= 0 for any 7€ (0,1) U (1,2) (see[7] p. 4.2). On the other hand, almost all
complex numbers lie in A,.

The situation is very similar to the case of the irrationality measures. The expo-
nent 7 in (1)-(2) plays the same role as the exponent 2 in the inequality

(3) > 0Olgl™, p,qeZ.

p
oo —=
q

The irrationality measure of an irrational number « is defined to be the infimum of
the exponents A for which (3) holds for any p, g and for a suitable ¢ = C(x, 1) > 0.
By Roth’s theorem, every irrational algebraic number « has irrationality measure 2,
and by Khinchin’s theorem almost all irrational numbers again have irrationality
measure 2. '

In the study of irrationality measures, a powerful tool is given by the theory of
continued fractions, which provide an optimal estimate of the approximability by
rational numbers. For example, the problem of the existence of real numbers with
a fixed irrationality meagure is solved by the use of continued fractions.

The corresponding problem for the transcendence measure seems to be more
difficult, since algorithms similar to the continued fractions are lacking. The main
purpose of the present paper is to prove the following theorem.

THEOREM 1. — For any real number v>2, the set 4; has the cardinality of the
continuum.

In addition, in the final part of the paper we shall give some results about the
topological properties of A-.

2. — The case 7> (3 -+ vB)/2.
We start from a simple case, in which we can exhibit some numbers which lie in 4.,
LeEMMA 1. — Let ae R. If there exists a sequence of integers p,, g, satisfying

ged(pny ¢a) = 1
0 < gt o0
log ¢ui<e(log )t (d> i)
— ¢(log g.)A<1og |oe — pafgal <— exlog g.)* (4> 2)

for some constants e, ¢, ¢;, then A<7(e)<max (4,1 4 d/(A—1)).
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Proor. — We may verify the condition on the transeendence type of « only for
irreducible polynomials (see [7] p. 4.34).

Let P be an irreducible polynomial of Z[z] with i{(P) large. Let n e IV such that

1) log g, <t(P) < 10g ¢nss -

If P{p,/¢.) =0 then P(»)=q,»— p, and so log [P(x)|>— ¢ {(P)*. Similarly, if
P(Ppt1/@ut1) = 0 we have log [P(e)]>— ¢;{(P)* Thus we may assume P(p,[/q,)=+#0
and P(pui1/qnts) 7 0.

We distinguish two cases:

Case 1: assume that

¢,(log gq,)*
") < 3 T Tog (] 7 D] ¢

Then, using also inequalities (1)

L <G| P(pafgn)| < | — Paldal-exp ([2 + 1og (jo + 1)](P) logg,) +
+ [P -exp ((F) log4,) <exp— 2 log qnv) - [P()]-exp (UP)?) .
Hence
log |P(e)|>— §U(P)*>— FH(P)
Case 2: assume now

cy(log q,)+1
2[2 + log (Ju| +1)] °

HP)>
We have

1<EDP(Puia/Tsa)| < |2 — Puta/gural exp ([2 + log (Ja + 1) HP) log gua) +
+ [P(e)| exp (t(P) log gni1) <} -+ |P(e)]-exp (cat(P)' ¥~ .

Hence
log |P(a)|>— ¢, ¢(P)'*¥¢~Y . Q.E.D.
PropOsITION 2. — Let (3 +4/5)/2<7 < + oco. The map
+ oo "
p: {0, 3N >4,, jf—> 327" 1=1(0)
k=1

is well-defined and one-to-one.
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ProoF. — Let fe {0, 13" and for any integer n>2 define p,, ¢, as follows:

% e k- ' Tn
p,= z 92t 1+ f(n)—2l J—f(k), q,= o2 1+1(n) .
=1

The hypotheses of lemma 1 are satisfied with 1 =d = v (note that 2+ p‘n, whence
gcd(pvn Qn) = 1)' Hence

relplf) <max(n 14 -2 )=

and o(f) € As.
Finally, if f, ge {0, 1}" and fs£g, let k= min {k € N: f(k) # g(k)}. Then

ko + oo L
lp(f) — p@)|>27*""—2 3 27¥'>0. QED.

k=ky+1

COROLLARY 1. — If v> (3 ++/B)/2 then Card (4:) = ¢

Proor, — If 7€ [(3 +v'5)/2, + oo) we apply proposition 2. If 7= 4 co we
need only to consider the map y:

+ oo

p: {0, N4, ., f-»Y270, QED.

k=1

3. — The general case.

For the proof of theorem 1 we will show that for each 7> 2 there exists a se-
quence (a,) of algebraic numbers, with #(«,)<exp [(r— 1)*] and

— Bexp [t(r — 1)"]<log |a, — otpps| < — A exp [7(v — 1)7] .

Then the number & = lim o, must lie in A, by theorem 2 of [5] or theorem 2 of [1].
‘We need some lemmas:

LemMA 2. — Let weC, |¢|<1. Vh,de R with min (h, d)>12 3P e Z[z]— {0}
with log H{P)<h and deg P<d such that

|P(a)| < exp (— } dh)
(see [7] p. 1.35)

LEvMA 3. — Let «, fe Q with a4 p. If H(a) denotes the height of the minimal
equation of « over Z, then

log |« — Bl> — deg e deg § — log H(x) deg f — log H(f) deg o

(see [7] p. 1.30).
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LEMMA 4. - Let P,Qe Z[»]. If P|Q then log H(P)<log H(Q) + deg @ (see[7]
p. 4.11),

LemMA 5. — Let Pe Zlx]— {0} and e C. If P'(&) =0 then
L demP|P)
T T

Proor. - We can assume P(£) z20. Suppose

deg P

Pz)=a H (@ — o)

with 0 < |§ — oy <...< |6 — o;]. We have

deg P 1

deg PIP(§)]|
|& — ol

Q.E.D.

S E—a; -

LEMMA 6. — Let ae Q with H(x) deg «>2. Assume that 3Q € Z[x]— {0} with
— oo < log |@(«)| < 6 deg c{log H(x) 4 log deg «) . Then 38 @ with

deg f<max (deg «, deg Q)
log H(f)<max (deg o, deg @) + max (log H(x), log H(Q)) - log 2
such that
— oo <log |« — B < log[2 max (deg o, deg @)] + §log [Q(x)|
Proor. ~— If [Q'(x)|>V |@(«)| then the assertion directly follows from lemma 5.
Assume |Q'(a)] <V |Q(a)] - 0 =Q - P, where P is the minimal equation of o
over Z. Then P and P’ are coprime. By using their resultant we find that
[P’ (o) > [H (o) deg o] 2%

On the other hand

Q' (2)] < [H(ax) deg o] 2% * < L [H () deg o] 2 %"

hence
|G ()| >} [H (o) deg o] 2% *> 1 |G(a) -

Using lemma 5 again (with P = @), we complete the proof. Q.E.D.
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‘We are now ready to prove a proposition which will allow us to define the se-
quence (o) inductively.

PRrOPOSITION 3. — Let 1, s, ke R with k>1, s>1, t>>8-10Fks.
Let aeQ, |o| <%, with
slk<<dega<s logH(a)<ks
then Iy e Q with
1(2-10%k) < degy <t ldgH(y)<2kt
such that

1

— 4kst < log |y — | < — 158t.
ProOF. — Lemma 2 asserts the existence of a polynomial Q € Z[z]— {0} with

deg@<s/k, logH(Q)<kt
which satisfies

— o< log [Qa)|<— dst .

By lemma 6 we can find an algebraic number § with

2) degf<s, logH(B)<s+ ki -+ log2
satisfying
3) — oo < log |f— a|<log 2 - log s — st < — ygst.

Now lemma 3 shows that st/10<s® -+ ks® -+ slog H(f), thus

(4) log H(8)>1/10 — (k --1)s > #/15 .

Using lemma 3 again, we have:

(5) log | — o] > — 3kst .

We have lifted the height of «; we now want to lift its degree. As before, we can
choose a polynomial @ € Z[x]— {0} with zt(Q)<t/30 satisfying log |@(8)| <— t2/3600.
Inequality (4) and lemma 4 ensure that @(8)s~0; hence, using (2), lemma 6 yields

an algebraic number y with

(6) degy<i/30, log H(y)<2kt
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which satisfies
(8) log ly — f| < — 2/8000 .
Again using lemma 3 with inequalities (2), (7) and (8), we find

12/8000 < 2Ft(s 4 degy) .
Thus

degy > t/(20 000 k)
Finally, (3), (4) and (8) show that
logly—a|<—1sst, logly—a|>—4kst. Q.E.D.
COROLLARY 2. — Let d>1. Put ¢ = 20log10/d(d —1) and, for each ne N,
k,= 105" s, — exp (¢ d") .

Then for each ne N and f: N — {0, 1}, there exists o/ € Q such that:
I) ta) <K ™M1,
D) — 4 HOHGT < log o] — o] < — SHVEG Vel
ITT) fliym= Glam = of = of for k=1, ..., n.
Proor. - We repeatedly apply proposition 3 with the choices
k=%

vy 8=, t=35 K1Y QED.

PROOF OF THEOREM 1. — For each f: N - {0, 1} with f(1) = 0 we put &, = lim o,
where the o are as in corollary 2. From IT) of corollary 2 we find

©) log Jfy— af| < — SEOKSTIAT, loglf— of] > — BB,
If P, is the minimal polynomial of o , it is easy to see that

log |P,(¢)] <—dssytt,  log [P (&)] > — 10010757+
(use (9) and see [7] p. 4.40).

Thus, by theorem 2 of [P] or theorem 2 of [4], & lies in 4;,,: We have proved
the map

¢ {f: ¥ —>{0,1} with (1) = ) R
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is well-defined for each d > 1. We claim that ¢, is one-to-one. Forlet f, g: N — {0, 1}
with f(1) = g(1) = 0, and assume fs~g. Then, if n,= min {ne N: f(n) £g(n)} — 1
and f(n,+ 1) =1, g(n,+ 1) = 0, from (9) and III} of corollary 2 we obtain:

15,— &,|>1&,— e | — |&— o, |>exp (— BE, T s+ ) — exp (— S5EI k40 5770 > 0.

Thus, if 7> 2, Card (4;) = ¢. Finally, we have claimed in the introduction that
almost all complex numbers lie in 4,. Hence Card (4,) =¢. Q.E.D. _

Let A c C, and let A be a subset of 4. We say that A is algebraically indepen-
dent if every finite subset of A is algebraically independent. If A is a maximal alge-
graically independent subset of 4, which exists by Zorn’s lemma, then

Acdc | U {aee C: Poty Ayy vvey An) = 0}

{Ar.. An}cd PeZlg,,..eal\{0}

hence

Card (1)< Card (4) <max (¥,, Card (4)) .
This proves:

CoROLLARY 3. — For each 7>2 there exists an algebraically independent sea
Ac A with Card (4) = e.

4. — Geometric properties.

We claimed in the introduction that C— A, is a negligible set. Moreover we
can . prove: :

THEOREM 2. ~ C— A, has d-dimensional Hausdorff measure (1) zero for any d> 0.

Proor. — For each k, ne N let

A,= {P e Z[#] irreducible: [#(P)] = n}
Qn,lc = U {OC eC: lP(oc)l < exp(— k,nz)}

Pednr

and define the set Q,=|J2,,. Then C— 4,c(| ;. For any d, &> 0 choose an
integer k with n>1 k

k>max (10,2/d + (2 + 4/d) log (1/¢), 10/d + 4) .

(1) I take the opportunity to thank Dr. Venturini for suggesting the possibility of using.
Hausdorff measure instead of Lebesgue measure in this context.
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For all ne N, Pe 4,, ze C, we have:

log |P(2)|>— 3n® - log min |¢ — «
P(a)=0

(see [T] p. 4.40).
Thus, if o« ... «; are the roots of P,

|z — a|>exp (— kn?2) i=1..t=1og|P()z|>— kn®.
Then, if B(x, o) = {z€ C: |z — o| < g},

Q.cU U U B exp(— kn?2))

nz2l Pedn P(x)=0
and

diam (B(oc, exp (— lm2/2))) <e
(diam (B(oc, exp (— lm2/2))))°‘ <e.

n=1 Pedn P(x)=0
This proves that € — 4, has d-dimensional Hausdorff measure zero. Q.E.D.

COROLLARY 4. — & — A4, is totally disconnected and therefore 4, is totally discon-
nected for any 7 > 2.

Proor. — See [3] Corollary 2.10.12, p. 176.

COROLLARY 5. — A, i8 arcwise connected.

ProOF. — See [4] Theorem IV 4, p. 48 and Theorem VII 3, p. 104. Finally we have:
THEOREM 3. — Let 2< v < -+ oo. Then A is a dense set of first category.

PROOF. — For the first statement, note that for any ae d; 4,20+ Q.
For the second, given any ¢ > 0 define, for each ne N,

Q.= {oc e C: YP e Z[z] — {0}|P(x)| > exp (— m(P)nLE)} _

Then £, is a closed subset of € with [‘jn: 0 (since Q,,h Q=90) and 4.cUQ,.
neN

Q.E.D.
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