Convergence to a Stationary State and Stability
for Solutions of Quasilinear Parabolic Equations (*).

DAVIDE GUIDETTI

Summary. — In this paper some aspects of the asymplotic behavior of solutions of quasilinear
(generally nonautonomous) parabolic equations are considered. Specifically o result of con-
vergence o o stalionary state is given and, under more restrictive conditions, some sharper
descriptions of converging solutions are oblained. Finally a saddle point situation is exam-
ined. The employed lechniques are abstract and imspired by the papers of Sobolevskii and
Da Prato -Grisvard.

0. — Introduction.

The theory of abstract quasilinear parabolic equations has been studied fairly
completely from the point of view of the problem of the existence of solutions.
I can mention the fundamental paper of SOBOLEVSKIi[18] and the more recent
results of POTIER-FERRY [15] and LUNARDI [10].

A rather interesting subject is also the investigation of asymptotic properties
of solutions; this problem has been studied rather extensively for semilinear equa-
tions (see in particular the book [7]), while not much has been done in the general
quasilinear case (see [15], [16], [11]). '

The aim of this paper is to extend to this case some results of stability of solu-
tions and convergence to a stationary state which, as far as I known, have been
proved only in more particular situations (see [7], ¢h. 5, [14], [12] for the semilinear
case, [20], [13] for the linear case, [15] for the autonomous case).

The plan of the paper is the following: the first section containsg some linear
estimates which will be useful in the sequel. The second section is dedicated to the
study of the convergence to a stationary state and contains some abstract results
related to this problem and to the description of the behavior of solutions converg-
ing to the limit point. The third section contains some applications of the results
of the previous one. The fourth section describes an abstract saddle point situation
which is applied to a concrete example in the fifth and last section.

(*) Entrata in Redazione il 24 gennaio 1987.

Indirizzo dell’A.: Dipartimento di Matematica, Universitd di Bologna, Piazza di Porta
8. Donato 5, Bologna (Italy).
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1. — Some estimates for the linear case.

By now, X will be a complex Banach space with norm | |. The same symbol
will be used for the norm in the space £(X). Also, C will be a generic positive con-
stant depending on the assumptions made in each occasion. If A is a linear oper-
ator in X, p(4) and o(4) will be the resolvent set and the spectrum of A.

Now, let {A(f): {,<t<+ oo} be a family of linear operators in X satisfying the
following assumptions:

(A1) Vi>t, o(A(D) 2 {Ae C: Re i<0}, 30, > 0 such that

[(A—4@) <G + 12)~
for ty,<t<+ oo, Re <O,
(A2) Vt>1,, D(A(f)) = X, independent from ¢, with X, dense in X.
(A3) 4C,> 0, 0 < u<1 suech that

[(A(F) — A(s)) A(x) 1| < Coft — sl¢ Vi, 8, v € [t, + ool .
A4) |A@)— A(OO))A(OO)“‘H = () 7==> 0.
under the stated conditions, the operators — A(f) are infinitesimal generators of
analytic semigroups {exp (— sA(t)): s>0I, such that
lexp (— sd(t)) | < Csexp (— dys), [|A()exp (— sA())] <Oy~ exp (— 6y $)

for suitable constants C;, J,> 0, depending on C; (see[19], [4]). These estimates
allow to define the fractional powers A(¢)—>, Voc>0:]

+oo

Ay = (o) f so-1exp (— sA(f) ds, A(f) = identity .

0

The operators A(?)-* are injective and bounded. One defines
A@)r= (4@))*

A(?)* is a closed densely defined operator and, if « < 8, D(4#) C D(A4*); the folowing
interpolation estimate is available:

JA@F 2] < Clay By y) | A@) @] P~ F=2 [ A(t)* | = PI=
Voee D(A@ty), ifa<f<y.

The constants O(e, B, y) depend only on C; (see [4], part 2, 14).
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We denote with U(f,s) (f,<<s<t<C oo) the evolution operator generated by
{A(@): 1>1,}.
We have the following estimates:

ProrosrmioN 1.1, — If 0<y < <1, §<7, t<+ oo, the conditions (A1)-(A3) are
satisfied and sup |[A@)A(r) ] < -+ oo, one has

4@y Alz)=#] < Culy, B)
with Oy, B) depending on Oy, Cs, sup [A@)A{r)|.
t,T

PrRoOOF. ~ One has
+ oo

| @) A(r)-p] = |D(B) f SB-LA(1)7 exp (— 54 (7)) ds| <
0 + oo
T(6) 010, 6,1) f 971 140) exp (— sA() | exp (— s4(1)) [*7ds =
(V] + oo
<L'(p)710(0, B, 1) C4(1, 1) Gy f s~ exp (— dy8) ds = O4(f, y) ,

0

(C.(1,1) = sup [A(1)A(v)7]) -

PROPOSITION 1 2 — Assume the operators A(t) satisfy (A1)-(A3) and moreover
4@ A(r)] < ) for th<?, T<+ oo

Then, for 0</3<oc< 14y 6< 68— (G50, I(w))Ye 30, >0, depending only on
0y, Oy, 6, Cy, B,y ct, Cy(1,1) such that

| A(0)* Ut, 7) A(z)#] < Ot — 7)5~= exp (— St — 7)) .
Proor. — See [16], theorem 1.

PRrOPOSITION 1.3. — Assume the conditions of proposition 1.2 are satisfied. Then,
Voo [0,1], 0<f<y <1+ u with 0<y— a<l, Y0 <, 6< 86— (CyCyl (1)) V2, there
exists Cg depending on Cy, Cy, Cy, p, 6, B, @, v, 0, satisfying

AT + by 7) — Ut 1)1 A(x) ] < Ooh=(t — 7)8-7 exp (— 8(t— 7)) .
Proor. — See [16], theorem 2.

PrOPOSITION 1.4. — Assume the conditions (A1)-(Ad) are satisfied.
Let f: [ty, + oof — X be such that Jae 10, 1[, N € R+ satisfying |j() — f(z)] <
SNt~ z* Vt, v21,.
Then, for t,<T<t< + oo, fUt $)f(s)ds € X, and
1

14| UG, 5)1(s) as] < 0+ Gl

T
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with C, and Oy depending only on Cy, Oy, iy 7, 6oy N. Moreover, assume that there exists
foe X such that |f(t) — f,]| === 0. Then

”A(t) ftU(t, 8) f(s) ds}

<09‘§1>1$ If(s) —foll* + Co [£(2) Iy

with C, depending on Cy, Ca, ty 7, 84y N, .

Proor. — One has

t

AW[U,s e ds—fA Utt, 9)s) — (0)1ds +

T

—{—fA [Uts—exp( (t— s)A@) ] d8+(1-exp(-—(t——r)A(t)))f(t).

From [A() UG, s)| <C(t— s)~* exp (— 6(t — s)) for 6 < &, (see [4], corollary of lem-
ma 13.1), it follows

MA U, $)[f(s) — fit ]dsH<Noft—sw—1exp( 8(t— 8)) ds < NC~T'(w) .

Moreover,
[A@[T(, s} — exp (— (E— s)A@D))]]| <Ot — s)/*1exp (— 0(t— )

(see [4], lemma 13.1) and so

i
|JA@LTG, 9 — exp (— (= 5).4() 1) ds | < OO D2 0] -

Finally,
1(1— exp (— (¢ — =) 4®)) /@) < (1 + Csexp (— 8¢ — 2))[F@)] -

So, the first estimate is proved.
It [0 — foll == 0, we pose £(1) = sup [f(5) — ful.
We have If(s) — f(t) | < (2N (7)) ¥ (¢t —s)*/2, from which
i

HA(t) ft U, $)if(s) — f0)] dsH < 0(2N¢(v)} f (t— )2/~ exp (— O — 8))ds <

OT'(o/2) 6-/2(2N ¢ (7)),

and the second estimate follows.
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2. — Absiract results of convergence and stability.

Now consider a real Banach space X. When it is necessary we shall identify X
with its complexification X, = {u; + 91y 4y, g€ X}.

Let — A be a linear operator in X, which is the infinitesimal generator of analytic
semigroup {exp (—tA):¢>0}, such that [exp (— t4)| <M, exp (— 1), with M,
d, positive.

We can use its fractional powers A*(x e R), which are closed densely defined
in X. If >0, we pose Xo= D(A%) and |z]|,= |A*z|, Vze Xs. Now, let Re
€10, + oo], such that Yue X, (for a fixed a0, 1[) with |u[s <R, Vi€ [0, + oo]
a linear operator A(f, w) is defined in such a way that:

(Bl) D(A(t, w) = D(4) = Xy;

(B2) o(A@t,u)2{AcC: Rei<0} and |(A(t, u)— A<
<const (Ju]a) (1 4 14) 7 [ A #)gx, x,) < const (Ju]);

(here and in the following const (#, s, ...) will mean a function depending on 7, s, ...,
which is increasing in each of its arguments)

(B3) Vs, te[0, 4 o], Yu,ve B, Ywe X;, (Bf = {ueXs: |u|sa< R})
(A, w) — Als, v) w] <const ([u]a, [v]a) ([t — s[* + |&— o) [o0]1;

(B4) | Alt, wyw — A(oo, w)w] <eonst (t; [1]s) ]y, with Jim eonst (7, s) = 0
Vs e [0, R[;

© Let f: [0, + oo]XB% — X, with

(F1) Vte[0, + oolu — f(¢, u) is of class C* from B (with the norm | [+) to X;
(F2) ”fa;( ©0, ) ”ﬁ(xa X)<0011St (““”a): Vu € By;

(F3) (5, ) — £, )| + 11ty ) — Fu(8, w) | gxn, < cOnSS (u],) [F — s}
Yue B, s,t€ [0, + oof; ‘

(F4)  [f(t, w) — f(oo, w)| + [t ) — fr{ o0, %) |g(xs, xy<CONSE (2, [u],), again converg-
ing to 0 (a8 ¢t -+ oo )
Consider now the problem:

(2.0) D) Al w)ult) = 1,0, 130>0  ult) =T e Xy By,
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A solution of (2.1) is, by definition, a mapping u € O([ty, I[; Xi) N C([%, T[; X),
with £>1,, which satisfies (2.1) pointwise.
For the existence and the unicity of local solutions, see [4], part 2, 16 and [18].
Now we prove the following

ProposITION 2.1. — Assume the conditions (B1)-(B4), (F1)-(F4) are satisfied and
let w be the maximal solution of (2.1), for some we X, N Bi. Suppose that

(@) w is defined on [ty, T[ (for some T € Jt,, + ool);

®) sup [u(®)ls< -+ oo for some fe 113

(X3

(¢) sup |u(®)].< E.

03

Then, T = + oo, sup |u(t)], << + oo and u is uniformly hélder continuous with val-
Tty + ool
ues in X, Vye[0,1[.

More precisely, |u(t)|.<C, depending on sup |u(f)]s, sup |u(t)]s, sup [u(@)|s
[tq, + ool [Egs+ ool [2g, -+ o0l

and |u(t) — u(s)|;<klt— s|® with & and 0 depending on y , sup [u(?)]s, sup |u(t)|s.
Ty, + ool T, + ool

ProoF. ~ From the proofs of theorems 16.1, 16.2 in [4] and from (B1)-[B4),
(F1)-(¥4), it follows that the integral equation
13
W) = Uulty )0+ [ Uty 9) (s, uls) ds

g

(Wibh U,(t, s) = the evolution operator generated by {A(t, u(t))}) has a unique
local solution # which is defined on an interval [¢,#' | h], with h depending only
on |uella and |u,]s. Moreover, on this interval « is hélder-continuous with values
in X,, with constants which are again depending only on [u]s and |u]s. From
this and from (b) and (¢) one has 7' = 4 oo and the global holder continuity of «
on [ty, + oo with values in X,. :

Now, observe that this implies that | U,(t, s)|| <M, |A(¢, u (@) U, 8)| < M(f— s)2

if t— s<h, with M independent from s, ¢ (this is a consequence of the theory de-
t+h

veloped in [4] part 2.3). So, from u(t + k) = U,(t + h, t)u(t) —{—f U.(¢, s) f(s, u(s)) ds,
one has b

. t+h
(e + B2 [ Tutt -+ By s+ || [ Tutty 9 1(s, ) ds,

| Uu(t 4 By D)ult) 1<
<[ AA®E - by w(t 4 b)) | A+ By ult - b)) U0 + b, 8) A(L, w(t))~|
| At w@)? A8 ] |u(t)|s, with 0<y<p.
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One has, from [4], estimate 14.11,
1At + Ty u(t 4 1)) Uu(t + h, §) A(t, u(?))~7|| < Chv-1.

From this and from (B2) it follows sup [ Ut + b, ) u(t) |, < -~ oo. Moreover, with
=1
the same method and ecalculations similar to those of proposition 1.4, one draws

t+h

sup ‘ U Uty s) (s, u(s)) ds
i

[¢'s+ ool

1

1< + oo,

from whieh one has sup |u(?)|, <+ oo.
Finally, if 7, ool

a<y<1, [ult)—u()],<

< const (o, 1)[u(t) — u(r) |/~ fu(t) — u(7) {0~ <

<eonst («,1)(2 sup [u(®)[s) == uft) — u(z)| -0,
[ty + oo

so that u is holder continuous with values in XV. .

PRrROPOSITION 2.2. — Let u, € By such that there exists u solution of (2.1) satisfying:

(a) sup Ju(t)]g< + oo, for some f € e, 1];
t=t

=

(b) [u(t) — uo| —==> 0.

Then,
1) wp€ Xy, A(oo, )ty = f( 00, U%y);

{
\
(2) [ult) — t|s = 0 -

Proor. - It follows easily from (a) and (b), by the usual interpolation inequality,
that |u(t) — u,| - 0. By theorem 2.1, u is globally hélder continuous with values
in X, and bounded with values in X,. This implies that the operators 4,(t) =
= A(t, u(t)) satisfy conditions like (A1)-(A4), with A,(oco0) = A(oo, u,). Moreover,
t — f(t, u(t)) is globally hélder continuous and ||f(2, u(t)) — f(oo, #,)| 55> 0.

It follows from [20] that u,e X,

d
w .,

A(co, ) Uy = J( o0, Ug) , rr

Then
ul(t) = A(t, u(ﬂ)‘l(f(t, u(t) — o (t))

and from this the result follows easily.



338 DaAvIDE GUIDETTI: Convergence to a stationary state, efe.

REMARK 2.3. — The hypothesis (@) and (b) in proposition 2.2 can be replaced with:

(@¢') w is globally holder continuous with values in X,;
() o) — %), == 0,

and the conclusions are the same,

THEOREM 2.4, ~ Assume the conditions (B1)-(B4), (F1)-(F4) are satisfied and
(@) f(o0,0) =0
(0) o(A(oo, 0) — fi(c0,0)) 2 {2 € C: Re A< 0}.

Then, Y € lo, 1] there ewist Ty>0, uy > 0, such that the mawimal solution of (2.1) is
globally defined for every ty> Ty, U X, with |%]s<po and moreover, ||u(t)|, —=> 0.

PROOF. — We pub o(f, u) = f(t, u) — fi(t, 0)u, B(t, u) = A(t, u) — f.(3, 0).
Then (2.1) is equivalent to

o Bl @) ul) = 16,0) + ot ut), ) =7

Define v(t) = A*u(t), V,(,s) the evolution operator generated by {B(t, A“"‘?J(t))}.
It follows

(2.2) o) = AV (1, 1)7 - f A=V (t, )15, 0) -+ o(s, A—=v(s))] ds .
29

Now fix 6§ < #— a. Define

S(te, ) = {v e C([ts, + oo[; X): o) — v(z)| < (t — 7)% Jo@)] <7, |o(t)] == 0} -
For #,>0, n > 0, 8(, n) is a closed subset of the Banach space of continuous and
bounded functions from [4,, + oo to X.

Define, for v € 8(t,, 1),

t
2.3) To(t) = A%V, (t, 1) + f A2V (4, D[1(s, 0) + o(s, A==0(s))] ds ,
. ty

with we X;, |@]a< R. _
Assume |exp (— t{A (o0, 0) — f, (oo, 0)) | <M, exp (— t), for some M,,d, posi-
tive. Then, for a fixed 6 << dy, I(6)>0, 5(d) > 0 such that

[Vt s)| <Cexp(—d(t—3s)), YoelS(,n),
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for some constant C positive. This follows from the fact that, for any v less than 6
and g, for any £> 0,

sup (45, A=0()) — A(z, A0(@)|)/[t — < e

t,722l

if t, is sufficiently large and # is sufficiently small and so proposition 1.2 is available.
Algo, one verifies that [B(¢, v(f) V.(, )| <Ot — s)texp[— 6(t— s)], from which
one draws

(2.4)

[ A2 V¢, 8)| < Ot — sy~ exp (— 6(t — s)) ,
|42V, (¢, s)u| <O exp (— 6(t — s)) @[5 .

Further, a standard consequence of (F3)-(F4) and (a) is that, for {, sufficiently large,
7 sufficiently small,

1(s, 0) + els, A=*0(s)) [ <e(l +n)  (Voe 8t 7))

for a fixed &> 0. Therefore,
i

| To(t)| <0 exp (— 8(t— o)) [T+ Cefexp (— 8t — 9) (¢ — 8)=ds(1 + ),

o
from which one has that, for #, large enougy, % sufficiently small, [To()]|<n
Yo e 8(ty, ).
Moreover, for {, <7<,

| To(t) — To(z)| < | A4V, ) — V7, 1)) 7] +

- Hf 457, 5)[f(s, 0) + ofs, A-*0(s)] ds|| +

[4517t, ) — Vot 901[1(5, 0) + ofs, A-=o(o))]as])

to

+]

One has, from poposition 1.3 and lemma 14.1 in [4]
14=(V.(t, o) — Vo(7, %)) @] < O — 7)° exp (— d(v — &) @4,

4 4
[[4= 7.0, 9)f(s, 0) + (s, A-“v(s))]dsH < e[ (t— s) exp (— 0t — 5)) ds-
v z (1 4 )< Ce(t — 7)1 + n)

Again from proposition 1.3, one has

| ALV.t, 8) = Vil 8)]| < O — 7)0(7 — s)~8 exp (— o(r —~ s)) ,
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from which
[1 .
1[4Vt 5) = Vte, 511016, 0) + els, A-=(s))]ds]| < et + m)(s— 2.

Finally, it is easily seen that Tw(f) -5 0.

All these egtimates imply that, for # sufficiently small, ¢, sufficiently large, if
|%]s is sufficiently little, Tve S(t, n).

Now, if v, w € S(ty, 1), like in [4], proof of theorems 16.1, 16.2, one gets:

4
Tw(t) — To(t) =fA“ Voult é){[B(s, A-2v(s)) — B(s, A—*w(s))] A~ To(s) -+
fo + o(s, A—*w(s)) — o(s, A—v(s))]} ds .
So,

[ Tw() — To)] <142 Volt, 9)I(I[Bls, 4~*0(s)) — B(s, A-w(s))] 4-1]
g [ A= To(s)] + le(s, 4~w(s))'— o(s, A-=v(s))]) ds .

One has
|42V ot 8)| <Ot — )~ exp (— 0(t— 3))
I[B(s, 4—0(s)) — Bls, 4-*w0(s))] 4] < CJo(s) — w(s)] ,

owing to the hypothesis (Bl)-(B4), (F1)-(F4).

. 11 .
| Ao To(t)| = HA Vb, t)u + A f Volt, $)[1(s, 0) + o(s, A~*(s))] dSH <
b <O—trrexp (— 3t — W) (|7l + A+ m)tet)

(by proposition 1.4, with y > 0). Finally, for # sufficiently small,
lo(s, A=*w(s)) — o(s, A=*0(s)) | <efw(s) — v(s)] .
From this,

[ Tw(t) — To(t)| <const (e, I|ﬁ]|5) sup |w(t) —ov(@)], with const(e,7) o553 0.
=1

=bo

So we have proved that there exist Ty,>0, po> 0, 1,> 0, such that V&,> Ty, Vu € X,,
with |%]s<,, one has that T' has a unique fixed point in 8%, n), for every n<n,:
From this, the theorem follows easily, also taking remark 2.3 into account.

REMARK 2.5. — For the following, we need some more accurate estimates of solu-
tions converging to 0.
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So, let # be a solution converging to 0 in X; (8> «), with the hypothesis of
theorem 2.4 satisfied. Fix 6 < §,, with [exp (— #(B( o, 0))) < My exp (— 8t). In
the proof of theorem 2.4, we have seen that, if ¢, is sufficiently large and 7 is suf-
ficiently small, for ve 8(t, n), [|[A* V., )| <M exp (— 8(t— s))(¢ — s)-=. For a suit-
able #,, t — A*u(t) € 8(t, n) and, defining v(t) = A*u(t), one has v(f) = Tv(f) (see
(2.3)) with @ = u(t,). It follows (for t>1))

@] = [Tv(t)| <M exp (— 6(t — 1)) |ulte) |5+ f M exp (— 8(t— s))(t— s)™
(I7(s, 0)] + lle(s, A=0(s)) |) ds < (for suitable values of 7)

4
<" exp (— 8(t— o) [utto o + 31 [exp (— ot — )¢ — s)-=]f(s, 0) ds +
t

t

+ Mefexp (— 31— ) (¢ — s)[o(s)] ds ,

so that, if we put
11
o) = exp [80]]o(t)| ,  B) = M’ exp (Ot [ult) o+ M [ exp (95)(t— 8)=|(5, 0) | ds
to

we have g(! )<Q5( —{—Msf (t—sy=*@p(s)ds, which implies (see[7], lemma 7.1.1)
p(t) < D(?) +6fE1 m(@t—s)@( )ds, with

0 = (Mel(1 —))V=) | Fi_,(z) = gznu—“)/l’(n(l —a)+1), B .= d%El_""
n=0 ‘s

and. so
t

lu()]a= o) | <exp (— 0t) D) + 0 exp (— 6t)J‘E{_“(0(t—— s)) D(s) ds,

to

for every t>t, sufficiently large.

REMARK 2.6. — If the conditions of theorem 2.4 are satisfied and, moreover,
f(¢, 0) = 0 V>0, an easy consequence of the theorem is a result of asymptotic stability
‘of the null solution, which is a sort of nonautonomous version of theorem 2 in [15].

Under less general conditions, we can give a better description of the asymptotie
behavior of solutions converging to 0.

THEOREM 2.7. — Assume the conditions of theorem 2.4 are verified and A(l, w) =
= A(u); f(t, u) = f(u) (for t>0, ue BZ). If B=— A(0) - f(0), suppose that o(B) =
= {f} Uo,, with Ref >0, i}}f Rel> Repf, B-tis compact in X and f is a simple
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eigenvalue of B. Moreover, if o(u) = f(u)— f'(0)u, let |o(u)]| = O(|lu],*"), for some

v>0, as |[u]|a—0. Then, if u is a solution of

du

(2.5) 2 A) ult) = fu)

such that ||u(t)], — 0, for some o' > a,

u(t) = exp (— ft)p + r(t), with peKer(f— B), [r(t)],= oexp (— f1)
(for t = -+ o0), for any y < 1.

To prove this result, we need the following

LevmA 2.8. — Let B satisfy the conditions of theorem 2.7, g: [ty, -+ oo = X con-
tinuous, ¢(t) = O(exp (— f'1))(t = -+ oo), with f'>Refp.
If u is a solution of

[2.6) W Bu=g®), on e+ ool

u(t) = exp (— p)p - r(t), with p € ker (8~ B), |r(t)], = o(exp (— B¢))(t = 4 o), for
any y <1.

Proor. — We call P, and P, the projections onto ker (§— B) and E(f— B)
(vespectively), such that I = P,+ P,. We put ¥,=ker(f— B), Y,= R(f— B)
Y, and Y, are invariant with respect to B, Y,C D(B"), V¥neN.

We define B, = BIYJ' B, e £(X,), o(By) = {f}, o(By) = 03.

If w,(t) = P;u(t), one has

au,

— () + Byus(t) = Pig(t) .

As Byu = fu, Yue Y,

13
(1) = exp (— (¢ — 1) sa(te) + [exp (— (t— ) Prg(s) ds =
to

[
= exp (— p) exp (Bo)wate) + [exp (B) Prg(s) ds)
to

and, from this, u,(t) = exp (— ft)p + r(t), with

+ o0

P = exp (B) ui(ly) 'I“fQXP (Bs)Prg(s)ds  and [ry(t)].= O(GXP (— ﬁt))
to
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(remark that in ¥, the norms || | and | |, are equivalent). Moreover,
i
Un(t) = exp (— (1 — ) By) talty) +[exp (— (¢ — 5)Bs) Pog(s) ds -
o

So, as o(B;) = 0y,

fexp (— (f — to) Ba) ualto)[ < C xp (— '(t — o)) [[ualto) |1,  With §’> Reg,

”f exp (— (1 — ) By) Pogls) ds
o t

<

<O’f(t— s)7 exp (— B"(t— s)) exp (— B's)ds = o(exp (— Bt)) .

to

So, the lemma is proved.

PROOF OF THEOREM 2.7. — From (2.5) one has
au
v + Bu(t) = o(u(t)) + [A(0) — A(u(?))]u(?) .
From remark 2.5, one has

I, < M [ulto)] 5 exp (— 0 — %)) By (00— &) -

From a suitable choice of ¢ (and of §) and from the estimates of E,_, one can find
in [7], lemma 7.1.1, one draws [u(?)]a<M () exp (— 6f) VO < Re f. This implies
that [o(u(®)] <Cexp (— 8(1 +v)7). If § > Rep/(1 + v), one has §(1 + v) > Re f.

Now we need an estimate of ||u(t)||;. One has, with the notations of theorem 2.4,

du . 7
T -+ B(u(®)u(t) = o(u(®)) , with B(u) = A(u)—71,(0),
so that, if U(t, s) is the evolution operator generated by {B(u(t))},

u(t) = U, to)ulte) - f Ut 8) o(uls)) ds .
to

Now, U, t)ulty) 1< | AB(u ()] | B(u(t)) U, to)u(t)], which implies (see [4], esti-
mate (13.19))

1T, t) ulte) | = O(exp (— 6t)) , for some §>0.
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Furthermore,
H f U, s)o(uls)) ds 1<“}2U(t, s)o(u(s)(ds])o+ | f U, 5)oluls)) ds; .
t/2
lUUt s) ds 1<G)UB U(t s)g ds”<

<Gfexp( 6(t — s))(_t—~ sy texp (— 8(1 + v)s) ds<

bo t/2

<Gt_1feXP (— 0(t— 9)) exp (— 8(1 + v)s) ds = Ofexp (— §'#)),  for some '>0.
te
Finally,
Hf Ut 5) o(us)) ] s < O] Bu(0) f T, 5)o(uls)) ds| <
2

<(by proposition 1.4) Cexp (— (1 + v)#/4).

It follows |u(t)],= O(exp (— 6%)), for some 0 positive.
So

1(4(0) — A(u()) u(t)] < C[4(0) — A(u(®) [g(x,,x) €xP [— 6] <
< (owing to (B3)) C|u(f)]aexp(— 6)<CM(6)exp (— (8 + 6)1) ,
for any 6 < Ref.

So, we have proved that g satisfies the conditions of lemma 2.8 and the theorem
follows.

THEOREM 2.9. — Assume the conditions of theorem 2.4 are satisfied. Furthermore,
f(t, 0) = tef, -+ tef,(t), with o > 0, f,(t) 55> 0. Then, if u is a solution of

(2.7) %% -+ A, w(t) u(t) = f(t, u(t))
such that for some B> ofu(t)|; —==> 0
w(t) = 170U, + ry(f)

with € Xy, |r(®)]y= o(te), Yy [0, 1].
For the proof, we need the following lemma:

LEMMA 2.10. — Let A(t) satisfy the conditions (Al)-(Ad); if g:[ty, -+ oof > X



Davipe GUIDETTI: Convergence to a stationary state, ele. 345

is continuous, |g(t)— f,]| — 0 and
[
ul) = UG, tyults) +[ U, 9)g(s) s,
to
then |u(t) — A(eo) ' f]], === 0 ¥y € [0, 1[.

Proor. ~ First of all, |U(t, t,)u(t)], 5==> 0. Now,

¢ i t
Ar[ U, )gls) ds =47 T, 9)g(s) — fi1ds + A7 Ay [ 4O[T 5) —
to iy to

— exp (— (t— s)A(t))]fds -+ AVA(t)—l(l — exp (— (t— to)A(t))) fi > Av A o0)-1f,

(this can be proved using the estimates of lemma 13.1 in [4]).

PROOF OF THEOREM 2.9. - By theorem 2.2, [u(t)],—>0, Yye[0,1]. Define
v(t) = teu(t). Then, '

fl_f + (A, u(t) — faft, 0) — ot=2)o(t) = f -+ fol®) + 2o(t, u(t)) -

To apply lemma 210, with A(t) = A(¢, u(t)) — f.(¢, 0) — ot~ and so prove the
theorem, we have to show that [tep(?, u(t))| -=> 0. By remark 2.5,

Jlt) < exp (— 80 B() + 0 exp (— 80 B;_ (0 — 5)) P(s) ds ,
ko

with
B(t) = M exp (8to) |ulte) s+ U f exp (35)(t — s)-=[f(s, 0)] d .
One has
(1)< I exp (3t u(t) o + € exp (09)t— o)-5-ed5 ,
i
80 that

¢
oxp (— 0t) D(t) < M’ exp (— (¢t — 1)) |ulto)] , + O’fexp (— 8@t — s))(t— s)*seds,
t to t—1&y
fexp (— 8@t — 8)((t— s)*seds = t“QfeX'p (— 0s)s~*(1 — sft)eds.

o 0

One has
t—1to t/2

fexp (— 0s)s~*(1L — sft)e ;ds<fexp (— d0s)s~*(1 — sftyeds +

[} ¢ + oo
—l—fexp (— Os)s—#(1 — sft)y—e ds<29fexp (— ds)s—*ds 4 2%tetexp (— §i/2) 1=,
/2 0

So, exp (— 8t) B(t) = O(t-¢).
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Moreover, B;_,(0(t— ) <O(0(t — s))=*exp (0(t— s)) (see[7] th. 7.1.1), so that

t 4
exp (— 67”)]1?;_,,,(6(15 — 8)) D(s)ds< Of(t — sy ®exp ((0 — 8)(t — s)) s~eds .
to ty

As 0 can be arbitrarily small, one can prove as before that

t
exp [— 0] f B, (6t — ) D(s) ds = O(t-2)(t — + o) .
to

Therefore, |u(f)]e= O{t2)(t — + oo).

From (F1)-(F4), one has [o(f, w)| <v(|u]s)|u]a, With y(z) —=5>0. It follows

70

[teo(t, u(t)) | <tew([lu]a) |u(t)]|s< Op(|u(t)]s) 0. So, lemma 2.10 can be applied..

3. — Some examples and applications.

In this section we want to apply the results of the previous one to the study of
the asymptotic behavior of the solutions of the problem

ou 0%

57_1‘,5;1 ay(t, @, %, Du) 500w, f(&, @y u, Du), t>t, zef
(3.1) w(t,2) =0, forixt,, xeol2

wlty, ) = uglx), for zef
Here

on ou
Dulz) = (3?1 ) 5

(m)), o€ W2 (Q) N Wpr(2), with 1< p< + oo.
We agsume that £ is a bounded, regular domain in E* with smooth boundary 0£0.
Moreover, for 1 <i, j<n, we have the mappings a,: [0, - oo] X 2@ X Iz x I — R,
with R'€ 10, -+ oo, I, = ]— R/, R'[, I. = {ze R* |¢| < R'}.
The following conditions are requested to be satisfied:

(C1) sup |“z'a‘(ta @y 4, Y| < 4 oo

£,2,%,D 7
(02) Jv> 0 such that > a;(t, », u, p)&:&;>v]E?, VEe Rr;
di=1 »
(63) ’“ii(t7 Py Uy p) - d“(S, Y, 0, Q)|<A1([t_ SIM’{_ Im_ yl” ']_ |u_ ”] -+ Ip - Ql),
with 4,> 0, pe]0,1]; '

(C4)  |ault, 2, u, p) — @(c0, 2, u, p)| T==> 0, uniformly in ®,u,p; fis defined on
[0, - ool X @, x I% with values in R and:
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(Gl) (w,p) — f(t, », u, p) € C'(L, X I}) V(¢ @) € [0, -} oc] X £2;
(G2) | Dy p [ty @, u, p)| <Ay, With 4,>0, Ve [0, + o], v € 2;

(G3) I'D(uv t @, 7p)_D(v‘q):f(s) Y, vy Q)i<*A_3(lt'— SIM'I— lﬂ}'-— yl”+ I’L(/— @I +
=+ lp——QI) for s,t€[0, 4 oof,m,y€ 2, u,ve L, p,qely;

(G4) /@, =, Z@P)_ (s ¥, u,p)]<A4([t— sle -k o — y{“) for s,te [0, + oof,
z,yc&, wy,vely, p,gell;

(G3)  |f(t, m, w, p) — f(o0, @, u, P)| - I‘D(u,p)ﬂt? @y Uy P) — D(u,p)f( 00, Iy Uy P)
uniformly with respect to x, u,p .

0,

I t—>oco

We pose X = L7(), D(4) = W2%(Q) H:W};”(Q), Au = — Au. If ¥ and Z are
a couple of compatible Banach spaces, we write (¥, Z),, (0 <0< 1, ge[1, + o))
to indicate the real interpolation space with indexes 0, ¢ (see, for example, [2]).
One has, for

0<s/<a<s<1, (X, D(4) Sz (X, D(A)) Sz D(4*) (X, D(A)) Sz (X, D(4)),,,
(see also [15], pages 318-319). Assume 1/2p < 8 < o< 8y, With s, s,54 5.

In this case, (X, D(A)),, , = {ue W*2(Q): u|;o= 0} (see[5], th. 7.5, [6], 1.10).
If p=2, a>1, 4 is self adjoint and DA“ {ue H*(Q): ulog = 0} (see[9],
vol. 1, ch. 1, th. 10.1). Further, if o> 1 and p+£2 or «>} and p = 2, D(4%) =
= W* ”(Q)

If p>mn, o> %+ n/2p, D(A%) = C+7(Q) for some ye 10, 1] and the imbedding
is compact.

So, there exists R>0, such that [u]s<E implies [u]eug<R'. Define
B; = {ue D(A%): |u], < R}. For uec Bj, let

D(A(, u)) = D(A) = W»*(Q) N Wb*(Q)

(3.2) A, i @ity @, w, D) ———

We have

LEMMA 3.1, — Let a5, b,, 0 € 0°¥(2) (1<i<n, 1<j<n) and assume c(x)>0, Yo € 2,
a;(w)E,E,>0]E, for some v >0, VE€ R For 1< p <<+ oo, define

-..Mg

<,
.

! i 2,0 L, o 3 8%
Did,) = W@ N We(Q),  Adyu=— Y ay(@) a et 3 bifa) s+ clau.

i,5=1

Then, in L?(Q) o(4,)2 {ze C: Rez<0}.
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PROOF. ~ If y'>y, define in (™(Q) the operator B,:

.~ n o2 n
D(By) = {ue O (Dfupo= 0}, Byt =— 3 a,(0) ot 3 by(2) 2%+ e(a)u.
ii=1 0z 0; <4 0;

By virtue of the maximum principle, Krein-Rutman theory of positive operators
and Schauder estimates (see for a brief survey [17], in particular pages 21-22),
o(B,)2 {ze C: Rez<0}.

By [1], o(4,)#6 and (4,— p)~* is compaet in in(Q) Yueo(d,). Assume
Re 1<0, Au— A,u=0. Then, if ue o(4,), Reu<0, pw— A,u= (u— Au. If
2p > n, u is holder continuous, for some 9’ <yp. Then there exists a unique » € D(B,),
such that gv — B, v = (u— A)u. On the other hand,  is the unique solution of
uoy— Ao, = (p— A)u. So, v =u and n“ e C*"(Q). It follows Au— B,u = 0, that
is, v =0. If 2p<n, but 3p>n, there exists ¢ such that 2¢ >n and ue L(Q).
Take u € p(4,) N o(4,) with Re u<0. One can verify as before that « is the unique
solution of uv — A,v = (u— A)u. Iterating this proceeding one has the result.

LEMMA 3.2. — The operators A(t, u) defined in (3.2) satisfy the conditions (B1)-(B4)
for any X = L*(Q) and for any o such that p > n, o> % -+ n/2p.

PrOOF. ~ From [1] (in particular th. 2.1) one has that 1C,> 0, 6, < 10, #/2[, such
that |A|> C, [Argi|> 6, imply A€ o(A(t, u)),

(3.3) 1{A4(t, w) — 2)= < const ([ufs)(1 + |2)~*.

By lemma 3.1, o(A(t, #)) 2 {1 C: Re A<0}. We want to prove that (3.3) is true
for every A, with Re A>0. In fact, if it were not so, there would exist o € 10, B[,
Yvoe N t,€[0, + oo], u,€ X, with |u,]|,<e, 4,€C with Re ,<0, v,€ D(4), such
that |v,| = 1 and

(3.4) Ay w)v,— A0, < (1 A+ [4,]) v

The sequence (4,) is clearly bounded. So one can assume A,— 4,eC, {,~>1f¢
€ [0, - ool, u,— u, in €' (Q), for some p'€10,1[. If we define
n 0%y

D(B) = D(d), Bo=— 3 aults; & o), Do) 5w

we have that ¢(B)2 {Aie C: Re A<0}. From|A(t,, u,)v,— 4,2,] 5o 0, it follows
A€ 0(B,) and this is a contradiction.
The remaining part of the theorem has a trivial proof.
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Now, define:
f: [0, + o] xBi - X

(3.5)
1ty w)(@) = f(t, @, u(@), Du()) .

The proof of the following lemma is easy:

LEMMA 3.3. — Assume p > n, a > § -+ n/2p and the conditions (G1)-(G5) satisfied.
If f is defined as in (3.5), it satisfies the conditions (F1)-(F4).

Now we apply the abstract results of section 2, always assuming p > #,
o>} -+ nf2p.

THEOREM 3.4. — Let u be the mazimal solution of (3.1) (which implies that
t —ult, *) e C([y, TT; W22(Q)) N CY[te, T[; L?(L2)), for some T > to) and assume the

conditions (C1)-(C4), (F1)-(F5) are:sat@'sfied, sup (%) ) lemioy < - oo for some s >2a

and there exists wyc L2(L2) such that |u(t, ) — 4|10y — 0.
Then

02
; @35 00, @y Uy(@)y Dto()) o, 0%, =

= f(oo, @, 4o, Do)  and. |u(t, *) — o] wr.e(0) —5=> 0 -

o€ WH2(Q) N We?(2),  |uola< B,

M=

i

Moreover, t — u(t, -) is globally holder continuous with values in Ws#(£2), Vs << 2.
ProoF. — It follows from propositions 2.1 and 2.2

THEOREM 3.5. — Assume the conditions (C1)-(C4), (G1)-(GD) are satisfied. Further,
(@) floo, 2,0,0) =0 VYrel;
() %(m,m,o,0)>0' VoeQ.

Then, Vs > 2a, there exists Ty>0, o> 0, such that the mawimal solution u of (3.1)
ts globally defined and |u(t, -)|paoy—> 0 5 |4yl pemay<tys to=>T,.

Proor. ~ It follows from lemma 3.1 and theorem 2.4,

THEOREM 3.6. ~ Assume a,(t, 2, u, p) = a,(x, », p), 1, u, p) = f(z, 4, p), and
the conditions (C1)-(C4), (G1)-(Gb) are satisfied. Let:

(a) (0, 0) = 0

of ~
(b) a—u(m, 0,000 Vaeel.
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% 024 L 0 0
D(B) = D(4), ~ 3 a0zt 3 o 0,0,0 5+ o

(2, 0, 0)u

Call p=inf{Rei: AeC, Aeo(B)}. Then:
1) pisa positive eigenvalue;
(2) B is a simple eigenvalue;

(3) If u is a solution of (3.1) converging to 0 in W=2(Q), for some s > 2,
u(t, ) = exp (— ft)p(x) + r{t, @),

with p e D(B), (8— B)p = 0, exp () |r(t ‘)”Wmm) == 0, Vo< 2.

Proor. — (1), (2) are consequences of [8], th. 6.3, easily extendible (using for
example the method of lemma 3.1) to the operator defined in a Sobolev space.
Using (G3), one can verify that theorem 2.7 is applicable and so the result follows.

THEOREM 3.7. — Consider the problem (3.1) and assume f(t, z, 0, 0) = t-¢f,(x) 4
+ e fulty @) with 0> 0, fre L*(Q), [zt *)|zo0) === 0.
If p>m, s>1 4 nfp and [u@, )||psg) “5=> 0, then

u(t, ®) = t-eu, (@) 4- t-ery(t, x)

with wy, 7,(4 *) € W(Q) N W(Q), |7,y ) oy — 0, Yo < 2.

Proor. — It follows from theorem 2.9.

4. — Saddle points.

In all the previous cases, the operator A(oo,0) - f;(oo, 0) had a spectrum con-
tained in theright halfplane of C, so that the semigroup generated by it had an
exponential decay. Now, we consider the case when this is no more necessarily true.
To this aim, we adopt a different functional approach.

We recall some definitions one can find in [3].

Let 6e10,1[; assume — A is the infinitesimal generator of an analytic semi-
group in X. We define:

Dy(A) = {we X: im0 A(A + 1)=10 = 0} .

t—> 00
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If 2 € Dy(4), we pose

lelo= lal + sup i A(A 4-8)=a] ,

if ¢ is such that [t + oo C o(— A). Dye(4) will be {we D(A): Awe Do(4)} and

l@lio= 2] 4 |Ax]o.
The following result is a simple elaboration of theorem 3.1 in [3]:

PROPOSITION 4.1. — Let — A the infinitesimal generator of an analytic semigroup
and assume o(A)2 {#z€ C: Rez<0}.
Let f: [ty, + oo — De(A) continuously (f,>>0). We pose

[3

u(?) =fexp (— (t— 8)A) f(s)ds .

Then:

(1) if f is bounded, w is continuous and bounded with values in D, o(4);

2) if “ ”0 e 0, ” ”1+0—m 0.

Proor. — From; [3], th. 3.1, we know that « is continuous with values in D, , ,(4).
One has

lu@)]| = erXp (t— 9)4) 1(5)ds|| < [ 3 exp (— 8t — ) |(s)] ds = ()

(for some M, d > 0). It is easily seen that I is bounded if f is bounded and con-
verges to 0 if f converges to 0.

If I' is the clockwise oriented boundary of {ze C: |Argz|<0,} (for a suitable
006]0, 7/2[), one has

3

(274) 1] ( f exp (— Mt — s)(d— z)—lou) f(s) ds —
— (2m)1 ft exp — O(t — s)( f exp (— (A— 8)(t— 8))(A— z)—ldz) f(s)ds .
r

to

If 6 is chosen sufficiently small,

fexp (— (A=)t — s))(A— A)~tdl :fexp (— At — ))(A— A — 0y 2dA =
e r—s
= (by Cauchy’s theorem) fexp (— Mt—8))(A— 2 — )y 1dA.

r
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So, u(t) = (2m’)‘1tfexp (— 8t — 8))([exp (— Mt — 8))(A— A— 8)~2aA) f(s) ds .
to I
14

Au(t) = dult) + (A— O)ult) = dult) + (2mi)~ f exp (— d(t— s))-

to
( f exp (— At— 8))(4 — S)(A— A— 8) dl) f(s)ds .

r

Therefore, we have the following estimate:
[Au(t)] <dlul®)] +

+ ofexp (— 8(t— s))(fexp (— (t— s) Re )| (4 — 8)(A— A — 8)(s)] |om|)ds .
to r

By virtue of [3], lemma 3.2, |(4d— d)(4d— 4— 8)f(s)| <C|A[?|f(s)]e, so that

1
[4u()] <0]u)] + Ofexp (— ot~ 5)([exp (— (t— 5) Be HA12[f(5) lar]) ) ds .
iy Ir
One has fexp (— (@t — s) Re A)|A|?|dA|< C(t — s)°-2, so that
I
4
| 4ut) | <dlu®)] + Ofexp (— 84— )t — 92 f(s)|ods ,
to .

which is uniformly bounded in ¢ if f is bounded and tends to 0 if |f(s)[, 55> 0.

Finally, for £>1,
i

[4(4 + &y du()] = [@niy2[ ([ exp (= At—8) M2+ £ A4 — ) f(s)ds) dA] <
Foo t I iy
< Of ( f exp (— 7 eos (o)t — s)) rlr exp (16o) + &[] ]‘(s)“ods) dr .
0

If

13
sup [/(s)o< -+ oo, [exp (—1 cos (Bu)(t — ) [f(s) |ods < O

=
s>t & Foo

IA(A 1+ &1 Au()] <C f r-olr exp (i0,) + & dr < CE
[}

and so (1) is proved, also taking into account the fact that De(4) is 2 closed sub-
space of {ue X: sup [£0A(A 4 &) tu| < + oof.
=1
I |f(®)lg 5==> 0, we remark that

{-> oo

1]
exp (— 7 cos (00)(¢ — 5)) |f(5) o ds <
iy 7(e)
<fexp (— 7 cos (B,)(t — 3)) | f(s)[ods + &(r cos (B))~* (if [f(s)]e<e for s> T(e)) .

to
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This gives
+ oo T(e)

[A(A -+ &)t Ault) Of (f exp (— 7 cos (00)(t — 8)) r=0|r exp (ifl,) + &[~*|f(s ”"ds) ar +

- co

+ Cero f Ir exp (i0o) + &-tdr .
0

The second term can be majorized by C ¢ £-9, the first by

0fr‘0[¢ exp (i) + &~ exp (— 7 cos (0p))(t — T(e)) dr =

+ oo

= Of- fr—ﬂh' exp (i0,) + 1|-*exp (—— 7€ cos (0,)(t — T(s))) dr.

0

It is easily seen that the integral tends to 0 as ¢ — oo, uniformly with respect to £>1.
So, the proposition is proved.

Now let — B be the infinifesimal generator of an analytic semigroup in X, such that

H) o{B)N {zeC: Rez = 0} = 0.
Define
o=0B)N {zeC: Rea <0}, oy=0(B)N {zcC: Rez>0;.

Let I' be a counterclockwise oriented closed path, contained in o(B) N {z € C.
Re 2 < 0}, which turns around o,. Define

P, = (2) f (¢— Blde, P,—1—P,
r
P, and P, are projections. If X,= P;(X), X, is invariant with respect to B,
X, c( D(B*). We call B; the part of B in X,. One has B,ef{(X,), o(B,) = oy,
k=1

6(B;) = 65. — B, is the infinitesimal generator of an analytic semigroup {exp (— ¢By):
{>0} in X,, such that |exp (— ¢tB;)| <M exp (— 6f), with M and § positive. More-
over, exp (— tB,;)x = exp (— tB)z, if xe X,;: Finally,

P;exp (— tB) = exp (— tB)P;= exp (— tB,) P, .
One has: '

LEMMA 4.2. — Let 2€ X. Then exp(—tB)x—5=>0 if and only if ze X,.
Moreover, if xe X, N Dy o(B), |exp(— tB)2),, o5 0.

ProOF. - If we X, 2 = Pz + P,z and

exp (— tB)w = exp (— tB;) P& + exp (— iB,) P .
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One has exp (— tB,) Pox —5=> 0. As o(B,) = 0y, |exp (tB,)]| < M exp (— &f), for 60,
M=0. '
Soexp (— tB)x — 0 iff exp(— tB,)Pyo — 0. This implies that

exp (tBy)(exp (— tB,) Pyz) -0,

that is, P,» = 0.
Finally, if

e X, N Dy y(B), |[Bexp(—iB)w| = |exp (— 1By)By| < Mexp (— 6)[ By 5= 0.

If & is sufficiently large,

|62B(B + &) B exp (— tB)a| = |£B,y(B, + &)1 B, exp (— iBy)w| =
= [exp (— B,)(§2Ba(B, -+ £)7* Byw) [ < M exp (— 81)|&°B(B + &) B <

<M exp (— dt)[5] 10 == 0 -

The main result of this section is the following

THEOREM 4.3. ~ Let B satisfy (F), f: [0, + co[ X Dyo(B) — Do(B) such that

(@) f@t, 0) =0 Yi>0, x — f(t, x) is differentiable Yi>0, (t,x) —>f;(t, x) 18 con-
tinuous with values in L(D, ,4(B), Do(B)) and bounded on bounded subsets of D, , ,(B)
uniformly with respect to t.

(» []f;(t, m)}]cwm(m’ EEDIETr=) 0, uniformly with respect to 1.

(6) — B - f,(t, @) is the restriction to D, ,(B) of the infinitesimal generator of
analytic semigroup in X with domain D(B) and D, o(B— f.(¢, u)) = Dy, 4(B) (ident-
ifying an operator with its vestriction). For x € D, o(B), we call 2(¢, ty, ) the maximal
solution of

%fﬁ Ba(t) = f(t,2(1) , 2(ty) =

(for its ewistence and unicity see [3], th. 4.1).
Let > 0. We pose, for £,>0,

Bo0= {# € D1+o(B): [2(t, to, )] 140<0}  Vix1o,

[Px| <o, 1g>m 2@ty to, #)|146=0, Bo= {weDiye(B) N X5: |2]1+0<0} .

Then, there exist o, 0> 0 such that P, (resiricted to 8,,) is a homeomorphism be-
tween 8, , and B, (with the topology induced by D, o(B)).
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ProoF. ~ Let € 8, ,, for g, 0> 0. We put 2(t) = 2(t, t, ). One has

‘
2(t) = exp (— (t— t))B)a —]—fexp (— (t— s)B) f(s, 2(s)) ds .
[
It

11
alt) = Pialt),  2,(t) = exp (— (t— 1) B) P, + [exp (— (t— ) B) Py (s, #(s) ds -
to

For j =1, applying exp (({ — %) B,), one has
t
Py = exp ((t— t) By) (%) —feXP ((s — %) By) P4 #(s, 2(s)) sds ,

to

and from this,
+ oo

Py = —fexp ((s — o) By) Py f(s, 2(s)) ds .
to

It follows
2(t) = exp (— (i — to) By) Pow + f exp (— (t— 5) Ba) P,1(s, 2(s)) ds +

) ——T;xp ((s — £)By) Py f(s, 2(s)) ds .
For o> 0, define t

Y, = {uwe O([ty, + oof; Dy, o(B)): [u@®)l1re<oy [u®)]140 5> 0}

i
T2(t) = exp (— (¢ — 1)) Bs) & ~[—fexp (— (¢ — 8)By) Py f(s, 2(s)) ds —
ta

+ oo

— [exp (5= ) B) Prf(s, #ls)) ds
with a€ B, (o> 0), t
Y = {ue O([ty, + oo[; Dy14(B)): [ult)]11+0 — O} -

By virtue of proposition 4.1, T(Yf) C Y. It is not difficult to verify, applying again
prop. 4.1 and (b), that

[ T2(8)];46< M exp (— 6(t— t,)) -+ const (o)g,
with counst (¢) 72, 0. Furthermore, if 2,v€ ¥,

[T2(t) — To)|100<C sup [[fi(s, W) (008, Do) |2(8) — 0(8) [ 16 -

s3>t
flelliso>e
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Using again (b), one concludes that, if Q<g0 (oo sufficiently small), |Tz— To|,<
<% ll#— v],; the whole discussion implies that, if o<, o<o(o), VaeBa T has
a unique fixed point ¢, in Y. Consider now P,: 8, — B, . P, is continuous.
It is also a bijection. In fact, let ¢ B,. Then xe 8, , is such that P,x = q iff
Te(t, ty, ©) = 2(t, &, ). But there exists a unique ﬁxed point of T and this implies

that P, is a bijection. Also, one has P, 'a = a—fexp 8 — t)B;) P,1(s, g, (8)) ds
It is easily proved that, if

a,beB,, |g,(t)— @(t)]1+e< M exp (" Ot —t)) e —bliro+ ¥ loa— @l

and from this the continuity of ¢ — ¢, and of P, * follows easily. Therefore, the result
is completely proved.

REMARK 4.4. - 8, ; and B, are tangent in 0 in the following sense: if € §, ,

[|wﬂ[ +6~>0 ”'P b= w”1+6/“w”1+o: 0.

This can be verified, remarking that, if [a], ,<0’, |b];z0<0’y With ¢'<p,
|92 — @l y <const (') |@ — b[,,, and const (¢) g5~ 0.

5. — An example.

Consider the problem (With I=710,1])

2 du) 9%
a—@;——a(u,aZ)awzzg(u), wel, 1>0.

(5.1) ult, 0) = u(t, 1) = 0
w(0, 2) = uy(@) € H¥(I) N Hy(I)

with the following eonditions:

(@) a € C*(R?), ge CY(R);

(b) 9(0) = 0;

(o) a(u,p)>0 V(u,p) e R2
We pose D(B) = H*(I) N H;(I), By = — a(0, 0)v" + ¢'(0)v.

We shall use the following facts:

LeMMA 5.1 (see [3], proposition 6.2 and 6.3). — If 0 <4,

D(B) = w(I) = {we LAI): t >°|ult + ) — wlpgag-1)55 0 -
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Lemua 5.2. — Let 0 <0<, ue Do(B), ve H(I). Then uve Do(I) and |uv]o<
< Ollu]guplvlle with C independent from w and v.

Proor. — It is an easy consequence of Lemma 5.1.

The proof of the following lemma is trivial:

Lemuma 5.3. ~ Assume 6 < }. Then Dy, oB) = {ue HXI) N HYI): v’ e h2°(I)}.
Now define

f: Dy, o(B) > D,(B), f(u)(w)= [a(u(®), w'(z)) — (0, 0)]u" + g(u(x)) — ¢'(0)u(z) .
We have:

LeMma 5.4 — f satisfies the conditions (a), (b), (¢) of theorem 4.3.

Proor. — It is a standard computation, using lemmata 5.2 and 5.3.
So we have:

THEOREM 5.5. — Let ¢'(0) 4+ a(0,0)k272~0 Yke N. Then theorem 4.4 is appli-
1
cable if 0 <0 <%. In this case X,= {ue L¥I): fu(t) sin (rnt) df = 0 Vr<j}, with j
)
such that ¢'(0) 4+ a(0, 0)j2m2 << 0 < g'(0) + a(0, 0)}(j + 1)%x==.

ProOF. — One has o(B) = {g'(0) - &(0, 0)k*x%: k € Z}, with corresponding eigen-
vectors {sin (knt): k€ Z}. As B is self-adjoint, P, (see its definition in section 4)
is an orthogonal projection and, as the eigenvalues of B are simple, it is easily seen
that X, is the vector space generated by {sin (rmt):»=1,...,J}. From this the
result follows.

REFERENCES

[11 S. AgMoN, On the eigenfunciions and on the eigenvalues of general elliptic boundary value
problems, Comm. Pure Appl. Math., 15 (1962), pp. 119-147.

[2] P. BurzEr - Y. BEHRENS, Semi-groups of operators and approximation, Springer-Verlag
(1967).

[3] G. Da Pratro - P. GRISVARD, Fquations d’évolution abstraites non linéaires de type para-
bolique, Ann. Mat. Pura Appl., IV Ser., 122 (1979), pp. 329-396. k

[4] A. FriepMAN, Partial differential equations, Holt, Rinehart and Winston Inec. (1969).

[6] P. GrisvarD, Equations differentielles abstraites, Ann. Sc. Ec. Norm. Sup., IV Ser., 2
(1969), pp. 311-395.

[6] P. GRISVARD, Spazi di tracce e applicazioni, Rend. Mat., VI Ser., 5 (1972), pp. 657-729.

[77 D. HENRY, Geomelric theory of semilinear parabolic equations, Lecture Notes in Math.,
Springer-Verlag (1981).



358

Davine GUIDETTI: Convergence to a stationary state, ete.

(8]

[9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]

M. G. KrEiN - M. A. Rutman, Linear operators leaving invariani a cone in a Banach
space, Uspehi Mat. Nauk, 3, 1(23) (1948), pp. 3-95 (in English in Trans. A.M.S., vol. 10,
pp. 199-325).

J. L. Lions - E. MaGENES, Problémes aux limiles non homogénes et applications, vol. 1,
Dunod (1968).

A. LuNARDI, Abstract quasilinear parabolic equations, Math. Ann., 267 (1984), pp. 395-415.
A. Luxarpi, Global solutions of abstract quasilinear parabolic equations, Journ. Diff. Eq.,
58 (1985), pp. 228-242.

R. H. MARTIN jr., Asymptotic behavior of semilinear differential equations in Banach
Spaces, SIAM Journ. Math. Anal., vol. 9, no. 6 (1978), pp. 1105-1119.

A. Pazy, Asymptotic behavior of the solutions of an abstract evolution equation and some
applications, Journ. Diff. Eq., 4 (1968), pp. 493-509.

A. Pazy, A class of semilinear parabolic equations, Israel Journ. Math., 20, no. 1 (1975),
pp. 23-36.

M. Porier-FERRY, The linearization principle for the stability of solutioms of quasilinear
parabolic equations, I, Arch. Rat. Mech. Anal., 77 (1981), pp. 301-320.

R. REDLINGER, Compactness results for time-dependent parabolic systems, Journ. Diff.
Eq., 64 (1986), pp. 133-153.

D. SATTINGER, Topics in stability and bifurcation theory, Lecture Notes in Math., Sprin-
ger-Verlag (1973).

P. E. SoBOLEVSKIL, Hquations of parabolic type in a Banach space, Trudy Moscov Mat.,
10 (1961), pp. 297-350 (in English in Trans. A.M.S., (2) 49 (1966), pp. 1-62(.

H. Tanape, Equations of evolution, Pitman, 1979.

H. TANABE, Convergence to a stationary state of the solutions of some kind of differential
equations in o Banach space, Proc. Japan Acad. (1961), pp. 127-130.

Note. — After sending the paper, the author became aware of the preprint: G. DA PRATO -
A. LUNARDI, Stability, instability and central manifold theorem for fully nonlinear autonomous
parabolic equations in Banach space (Scuola Normale Superiore Pisa, June 1985), which also
contains the results of section 4.



