
Recovering a Centred Convex Body 
from the Areas of Its Shadows: a Stability Estimate (*). 

STEFA~O CAMPI 

Summary. - The main result o] this paper is an estimate o] the Hausdor]] distance between two 
centrally symmetric bodies T x and T~ o] R a by the L2-norm o] A ( T  V z ) -  A(T2; z). Here 
A(Ti; z), i = 1, 2, is the area of the orthogonal pro]ection o] T i in the direction z. 

1. - L e t  T be a convex body  in R 3 (i.e. a bounded  closed convex subset  of R 3 

wi th  n o n e m p t y  interior) and  assume t h a t  T has a cent re  of s y m m e t r y  a t  the  origin 
of R 8. We shall  say t h a t  T is a centred convex body.  

For  a n y  direct ion z ~  S ~, S 2 z  { z ~  R3: [z] ~ 1}, let  A ( T ;  z) denote  the  area  of 
the  or thogonal  project ion of T onto a p lane  perpendicular  to z. Clearly A ( T ;  z) 

is an  even funct ion on S ~, i.e. A ( T ;  z) : A ( T ;  - -  z), Vz e S 2. The p rob lem we deal  
wi th  in the  presen t  pape r  consists in recover ing a cent red  convex body  T b y  the  
knowledge of A ( T ;  z), for every  z e S 2. Not ice  t h a t  this p rob lem m a y  be  l inked to 

problems in geome t ry  (see [19]) and  in o ther  areas:  for ins tance,  inverse  diffraction 
problems (see [17], p. 223) or object  recognit ion f rom ex tended  gaussian images  
(see [13]). 

Uniqueness  for the  present  p rob lem can be p roved  b y  the  following a rguments .  
Deno te  b y  a~ the  surface junct ion of ~T, the  bounda ry  of T:  for a n y  subset  E of S ~, 
aT(E) is the  area  of such u p a r t  of 8 T whose spherical  image is E (see, for ins tance,  [15]). 

I t  is well known t h a t  aT is a measure ,  t h a t  is a comple te ly  addi t ive  funct ion on the  
Borel  subsets of S ~. Moreover,  since T is centred,  a~ is even, i.e. or(E) = aT(-- E). 

The  funct ion  A ( T ;  z) can be expressed in t e rms  of a~ as follows (see, for 
example ,  [19]) 

(1.1) A(T;  z) : �89 v>]d~(v) ,  
S, 

where < . , .>  s tands  for the  scalar product .  

(*) Entrat~ in Redazione il 14 luglio 1987. 
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I f  T is a regular convex body,  namely  a s t r ic t ly  convex body whose boundary  
~T is a surface of class 03 (see [5]; see also [9], [16]), t hen  we can rewri te  (1.1) as 

(1.2) A(T;  z) = ~fl<z, v>l [ r (v ) ] - ' d~ ,  
8 2 

where ?(v) is the Gauss curva ture  of ~T at  the  point  where v is the  exter ior  normal  
and da~ is the  area e lement  on S ~. 

Le t  /'1 and  T2 be two cent red  convex bodies such t h a t  A(T~; z) -= A(T~; z) for  
all z e S 2. Then  f rom (1.1) i t  follows t h a t  

(1.3) fl<z, v>ldT(v ) ---- 0 ,  Vz e S 2 , 
S ~ 

where ~ = a~.-- a~.. Since ~ is even, iden t i ty  (1.3) implies ~ --= 0 (see [19], p. 298). 
By  vir tue  of Alexandrov uniqueness theorem for the generalized Minkowski problem 
(see [ l I ,  II] ,  [5], [11], [15], [19]), i t  follows t h a t  T1----T2. Thus uniqueness is 
established. 

)Tow, the  main ~tuestion we are in teres ted  in is the following: i f - - in  some sense- -  
A(T1; z) is close to  A(T2; z), can we infer  t h a t  T 1 is close to T~? A qual i ta t ive  answer 
to this question can be lound in a recent  paper  of Goo])EY [12]. In  par t icular  he shows 
the following result :  if T~ (n-~ 1, 2, ...), T are cent red  convex bodies such t h a t  
A( T . ;  z)--~A(T; z) uni formly  on S 3, as ~ - ~ - 0 %  then  the  t Iausdorff  distance 
~(T~, T) be tween Y~ and T tends  to zero. He  shows also tha t ,  in genera]~ the  con- 
t inuous map ~: A(T; z)-~ T is not uniformly  continuous.  

An explicit  s tabil i ty es t imate  for regular bodies has been obta ined b y  A~IKo~ov 
and  S~EPA~ov in [2]. Such an  es t imate - - showing  a not  uni form ~5 tde r  t ype  sta- 
b i l i t y - i n v o l v e s  not  only the distance between A(T~; z) and A(T2; z) bu t  also the  
distance between thei r  derivatives of some order.  In  terms oi such a distance it  is 
possible to est imate,  by  equat ion (1.2), the  difference 1/7, -- 1/72, 71, 72 being the  
Gauss curvatures  of 3T1, ~T2 (see also [18]). Hence,  by  exploit ing a s tabi l i ty  result  
of [20] for ~ inkowski ' s  problem, an  es t imate  for the  original problem follows. But  
such an es t imate  holds under  s trong a-priori conditions on the bodies and on thei r  
pro jec t ion  areas. 

The purpose of the  present  paper  is to obta in  an a-priori es t imate  of the  t taus-  
dorff distance ~(T,, T2) be tween the  bodies /'1 and T2--not  necessarily r egu l a r - -  
in terms of an usual distance between A(T~; z) and A(T2; z) only , wi thout  any  as- 
sumption on derivatives or similar restrictions. In  o ther  te rms we will show th a t  
the  s tabi l i ty  is an intrinsic qual i ty  of the problem connected to the  convexi ty  of 
our  bodies. 

In  a previous paper  [7] the  author  ob ta ined  ah'eady a s tabi l i ty  es t imate  for the  
considered problem in the special case of bodies enclosed b y  surfaces of revolution.  
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Here  we are able to prove  a genera l  resul t :  

Tm~o~E~. - Let T~ and  T2 be centred convex bodies. 

Let 

M i :  m a x  A(Ti ;  z)~ 
zES  2 

(1.4) 
m~ = m i n A ( T i ;  z) , i = 1, 2 

and M = m a x  (M~, M~)~ m = min  (m~, m~). For any number p ~ (0, ~), there exists 

a constant C, which depends on m~ M and p only (and is a continuous ]unction o] these 

arguments) such that 

(1.5) 

:Recall that 

with  

(~(T~, T~) - -  inf  (t > 0: T I c  T2,~ and  T~c T~,t} 

T~,~ = {x e Ra: dis t  (x, T~) < t} , i = 1, 2 .  

The proof  of this Theorem will be  given in Sect. 4. 
We  will use some resul ts  of VOLKOV [20] and DISKA~m [8] (see Sect. 2) which allow 

us to e s t ima te  ~(T1, T~) in t e rms  of mixed  volumes  of T1 and  T~. Moreover  our proof  
is based  upon an  inequMi ty - - showed  in Sect. 3---involving u sort  of ~-derivative,  
1 < ~  < ~-, of the  suppor t  funct ion  of ~ regular  convex body  T and the  circum- 

radius  of T. 

2. - Le t  T be a cent red  convex body.  Le t  us denote  b y  R the  ci rcumradius  of 
T (the radius of the  smallest  sphere containing T) and  b y  r the  inradius (the largest  

radius of a sphere  con ta ined  in T). 
The numbers  R and  r can be e s t i m a t e d  b y  the  funct ion A(T;  z). More precisely:  

Lsz~I)k i (Volkov). - Let M = m a x A ( T ;  z), m = m i n A ( T ;  z). 
ZES 2 ZES l 

(2.1) K = V~ M, 
then 

Setting 

(2.2) R < ~ ~ , 

m 
(2.3) r >  - i~ " 
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A more general version of this result is in [20]. I t  is enough to adapt that  proof 
to our special situation with T centred (see also [15] p. 499). 

Another result we need is an estimate concerning mixed volumes of two convex 
bodies T~ and T~. For the reader's convenience let us recall how the mixed volumes 
can be introduced (see, for example, [4], [5]). The volume of any linear combi- 
nation 1T, ~c #T,  (1 and /t being positive numbers) is given by 

k~_3 o (3)A~-7~#~ Vk(T1, T~) V(;.T~ § ,aTe) = k 

where the quantities V~(T~, T2) are just the mixed volumes of 1�89 and T2. Clearly 

Vo(T,, T~) = V(T1), r,(T~, T~) = V(T~), 

V(T~) being the volume of T~, i 1, 2; moreover 

V~(T~, T~) = r~(r~, T~). 

L E n A  2. - Zet TI and T2 be centred convex bodies. Zet M~= max A(T~; z), 
zES  2 

m~-~ minA(T~; z), i ~ 1 , 2 ,  and M - ~  max (M~, Ms), m - ~  min(m~,m2). Then there 
z ~ S  

exists a constant K, which depends on M/m only (and is a continuous ]unction o/ this  
argument) such that 

(2.4) (5(T~, T2)<K([V(T~) -  V2(T~, T2)[~/3-[ - IV(T2) -  VI(T~, T~)[*/" ) . 

P~ooF. - The proof is based upon the results contained in the paper of 
DISKANT [8]. 

Precisely, let us introduce the deficiency coefficients 

and let 

& = sup {Z: ZT~c T~}, Z~= sup {Z: ZT~c T~} 

= rain ().i, t~), 

V1/~(T~)- V~/~(T1, T,) § [F~"/~(T1, T ~ ) -  Y(T1)V~'(T~)] ~/~ 

/t2 ~ as above by interchanging T1 and T2. 

From Lemma 4 and Theorem 1 of [8] it follows that  

(2.5) ~(T1, T~) 

where /~ denotes the radius of the smallest sphere containing both T1 and T2. 
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Denote by r the radius of the largest sphere contained in both  Tx and T~. By 
using ~inkowski ' s  inequal i ty for the mixed Volumes (see [20] p. 38) and  their  mono- 
tonei ty  proper ty  (see [5]), one can verify tha t  

(2.6) 

where V R and V~ are the volumes of the spheres of rad ius /~  and r respectively. 
Obviously #3 satisfies an inequal i ty quite analogous to (2.6). 
~oreover ,  by  vir tue of Theorem 1 of [8] again, one has 

(2.7) ~>  ~ (rl~)~ . 

Now, by (2.2) and  (2.3) of Lemlna 1, 

(2.s) R/r<~(M/~p. 

Therefore, by  using inequalities (2.6) (and the corresponding for /'2), (2.7), (2.8), 
f rom (2.5) we deduce (2.4). 
Notice t ha t  one can choose 

K =  (1 + 3.D1~)(2 + .D2/9).Da , 

with D ---- ~/-~ (M/m ). 

3 .  - This section is devoted to an inequal i ty concerning the support /unction of 
a regular convex body T (not necessarily centred). 

Recall t ha t  the support funct ion h of a convex body T is defined by  

(3.1) h(z) : max <z, v ) ,  z ~ S 2 . 
v ~ S  2 

If  T contains in its interior the origin of the coordinate system, then  h(z) is positive. 
I f  T is centred then  h(z) = h(-- z), for every z in S ~. 

Le t  us introduce on S 2 the usual system of geographical coordinates 0, 9 
(0 = eolati tude,  9 ---- longitude). 

For  simplicity we continue to denote by h(O, 9) the function h(sin0 cos% 
sin 0 sin 9, cos 0). 

Le t  us expand h(O, 9) into a series of spherical harmonics: 

c~ 
(3.2) h(O, ~) = ~ ~ h7 ~7(0, ~), 

~=0 n=--~ 
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where 

i2l-Jr- 1~1;~' r ( / -  n) !]:';~' 
]~(0, ~) = \ - - ~ - 1  L ~ J  P~(cos 0) e ~ ,  

P~ being the associated Legendre funct ion of the  first kind of degree l and order n. 
Let  T be regular. I t  is well known (see [3]) tha t  

A,h(O, ~) = -- ~(l + ~) ~ h; ]~(0, ~)r 
/ = 1  n = - - l  

where /i, denotes the  Beltrami-Laplaee operator:  

8h) 1 ~2h 1 a sin0~-~ -}- (3.3) A~h(Or of) ~ sin 0 ~0 sin ~ 0 ~q~ 

~or  any  real number  ~, we shall define (see, for instance, [14]) 

(3x) ( -  A,Fh(0r ~) = [l(~ § ~)]~ ~ h? ~? (0r ~)r 
/ = 1  ~,=--I  

provided the r ight-hand side of (3.4) converges. 
Parseval~s iden t i ty  implies 

l 

(3.5) l l ( -  ~ ~)  hl t , (~ )=  ~ [z(l + 1)] ~ ~ IhTI ~ . 
l = l  n = - - ~  

We want  to prove the following 

L E ~ A  3. - Let  T be a regular convex body o] R 3 and h(O, q~) be its support  ]unction. 

Zet  1~ denote the radius  o/ the smallest centred sphere containing T.  Thenr ]or any  

s e [0 r �89 there exists a constant C(s)r depending only on e, such that 

(3.6) II(- A ~(1+~)/2~ <C(s)/~ s.' "~' IJL~(S 2) " 

P~ooP. - I f  e = 0 the  es t imate  has been already proved in [7]. A good evalua- 
t ion of the  constant  C(0) is (8~) 1/2. 

Le t  0 < 8 < �89 Let  us first take  the origin of the coordinate sys tem to be an 
interior point  of T. The proof is spli t ted into several steps. 

i) Let  us denote  by  G(x), x e R ~, the  rotat ion of angle Ix[ abou t  x, G(0) being 
the identi ty.  Let  z' = G(x) z be the image of the point  z under  the  t ransformation G(x). 

Set 

(3.7) h(z') - -  h(z) H(z ,  x ) ,  z ~ S ~ x ~ R 3 , ~ 
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Moreover let  us denote  by  V~ the  surface gradient  on S 2. Recall  t ha t  

(3.s) 1 2 
Iv, al ~ = t4 + ~ t~.  

From a geometr ical  point  of view, [V~h[ h~s a precise meaning.  Le t  us con- 
sider the support ing plane ( that  is, by  our regular i ty  condition, the  t angen t  plane) 
of T whose exter ior  normal  is z = (sin 0 cos 9, sin 0 sin % cos 0) ~nd the  contac t  
point  P of such a plane with T. I f  d denotes the  distance between P and the  origin, 
t hen  (see, for instance,  [4]) 

d ~= IV~h(O, ~)j~+ h~(O, ~). 

Thus IV,h] is the distance be tween P and  the  foot  of the  perpendicular  f rom the  
origin to the  support ing plane. Therefore  

(3.9) IV~h[<~. 

We claim tha t  

(3.1o) H ( -  As)(~+~)/%I]~(z~)<KI(~)f Ixl-(2~§ N ~ ( z ,  x)l 2 d~,  
Ra S 2 

where V~ acts on H with respect  to z. As f~r as the  cons tan t  KI(~) is concerned one 
may  take  

Kl(e) = 3(2e § 1)2~ 
:16~ cos (re)IF(--2e)l '  

where F is the  Euler  funct ion.  
Inequa l i ty  (3.10) can be p roved- -owing  to (3 .8)--by the same procedure  used 

in [6] (Lemma p. 249). 

ii) Le t  us rewri te  (3.10) as 
+ o o  

(3.11) [1(-- (l+~)/u u t -2~- lE( t )  dt , ~8) <]~'(S~)<KI(~) f 
0 

where 

(3.12) = f f lV.H tw) . 
S ~ S ~ 

Notice tha t ,  by  (3.7), F(0) = 0. 
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(3.13) 

where 

One can show (see [6]) tha t  if F and  F '  are bounded functions a, nd ~v(O) = O 
then  

-l-co 

f t-(2~+ 1)F(t) dt < K~ (e)]] F [] ~;2~ Ii F '  ] l~ ,  
0 

Ks(e) = (2e)-~-~ 
1 - -2e  

iii) Le t  us es t imate  Ii~VllL~. 

Set t ing 

h(G(tw)z) -= ]i(z, t, w) , 

by (3.7) one has 

(3.14) 

I t  is easy to check tha t  

V~H(z, tw) = V,~(z, t, w) - V,h(z) .  

(3.15) jv~(~, t, ~)t~< iv~(~,),~ ([~, 2 1 ~ , ~  

where z = (sin 0 cos ~o, sin 0 sin q~, cos 0) and z' = G(tw) z; hence, since G is a rotat ion,  
i t  follows tha t  

(3.16) [V~(z, t, w ) l ~ <  2 1 v ~ ( z ' ) l  ~ . 

Therefore, from (3.12), (3.14), (3.16) and (3.9) i t  follows tha t  

(3.17) ~(t) < 6 (~R)~ .  

iv) To compute F( t ) ,  let  us notice t ha t  by  Gauss-Green theorem (see [3]) 
one has 

(3.18) f lV~H(~, x)l~a~o = --f H(~, x) ~ ( ~ ,  x)a~o, 
S~ S 2 

where zJ~ too acts on H with respect to z. Writ ing down the explicit form for H, 
as in (3.7), i t  follows tha t  

S 2  S 2 S~ 
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where ~ '=  G(x) z a.nd z"---- [G(x)] -1 z. Thus, by  (3.12) and (3.19), 

f f  (3.20) iv'(t) = c~,~,~ AJ~(z)~ [~(z, t, w) + ~(z, t, - ~)]d,J~. 

From (3.9) it follows tha t  

(3.21) 

In fact  

since 

Analogously 

~ ~(z, t, w) <R . 

]~]i(z,t,w) < ,V~h(z')] , 

~t ----- 1 (see [6]) . 

(3.22) ~ ( z ,  t, --  w) < R .  

Therefore (3.20), (3.21), (3.22) imply 

(3.23) IF'(t)l< 8~RflA~h(zl[ d~,. 
88 

In  order to es t imate  the integral in the r ight-hand side of (3.23), let  us recall tha t  
(see, for example,  [4] p. 66) 

(3.24) 2h(z) + Ash(z)  = ~ 1 +  :K2 , 

where :El and :~  are the principal radii of curvature  of ~T at  the  point  where the  
exterior normal  is z. 

Therefore 

(3.25) 2h(z) -[- A~h(z) > 0 

for every z. 
As h(z) is positive,  (3.25) implies 

(3.26) IA~ h(z)] < A z h(z) ~- 4h(z). 

Coupling then (3.23) and  (3.26) yields 

(3.27) IF'(t)l < 2 ( 8 ~ ) ~ ,  
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since h(z)</~ and 

f A~h(z) da~ = o . 
S ~ 

Assembling now (3.11), (3.13), (3.17) and (3.27) proves L e m m a  3 in the  case T has 
the  origin as an inter ior  point.  Notice t h a t  in such a case the  constant  C(e) in (3.6) 
can be chosen as follows: 

C(~) =- 4z(~)~[6K~(e)K2(e)] ~/~ . 

I f  T does not  contain the  origin in its interior,  let  us consider the  parallel transla- 
t ion  of T by  a vec tor  u such t h a t  T'----- T ~ ~ has the  origin as an  inter ior  point .  
Clearly [u[ < R and T'  is conta ined in the cent red  sphere of radius / ~ -  [u[. I f  h~ 
denotes the  support  funct ion  of T' ,  then  

(3.28) h.(z) = h(z) -4- ~ ( z ) ,  

where U(z) = <u, z>. 

Notice t ha t  

(3.29) 

U ~ 0 for every  l v e l ,  
1 

Iu~l = - g - t ~ l  ~ , 
~ =  - - 1  

U~ being the coefficients in the  expansion of U into spherical harmonics.  Therefore,  
by  using (3.6) for h, and taking into account  (3.29), f rom (3.28) i t  is easy to deduce 
tha t  Lemma  3 holds also in the  case T does not  contain the  origin. 

4. - PROOF OF T/-IE TKEOI~E~. -- F i rs t ly  we prove the  Theorem assuming T~ and T2 
are regular bodies. Le t  h~ and h~ be the  corresponding support  functions.  Le t  us 
s ta r t  f rom inequal i ty  (2.4) of L e m m a  2 and es t imate  I V ( T O - -  V~(T~, T~)[. To this 
end recall t ha t  (see, for instance,  [5]) 

(4.1) v ( r l ) -  v0(21, = e2(z)] a o, 
S* 

where @~(z)= [~]i(z)] -1 ( / :  1, 2), a n d  ~i(z) is the  Gauss curva ture  of 8T~ a t  the 
point  P with the  exter ior  normal  z. Now remember  tha t  @~(z) is re la ted to A(T~;  z) 
by  equat ion (1.2). 

Set t ing then  A(T~;  z ) =  A~(z) let  us expand A~ and @~ into spherical harmonics 
:Y~ and let  A N~,~ and @i,~ denote  re levant  coefficients. Since  A~ and @~ are even func- 
t ions A N --  ~ 0 ~.~-- @~,~= , when t is an odd number .  
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On the other  hand from (1.2) one can deduce (see [2], [18], [10]) tha t  

(~.2) 

with 

(~.3) 

A ~  ~.~ bz ~o~,~ 

b ~ =  ~ - ~ i  [ ~ - - .  ] '  l being an even number.  

Notice tha t  b~ behaves asymptot ical ly  as 1-5/~. For simplicity let  us set  ~(z) -- Q2(z) 
= e(z), A l ( z ) - -  A2(z) = A(z) ,  h~(z) = h(z) and denote b y  ~ ,  A~, h~ the re levant  
coefficients of the  expansions into spherical harmonics. 

Thus we can rewrite  (4.1) as 

I f k 

\ 
/ > 0  n = - - l  

] 

From (4:.2), (4.3) it follows that 

(~.5) o o Iho~o]< R d i ~ [  , 

where R~ is the  cireumradius of /"1. 
Let  us es t imate  now the other t e rm in the r ight-hand side of (4.4). 
For  f i x e d p e ( 0 , ~ ) , l  set  q = ( 1 - - p ) / p  and choose ee (0 , �89  Ve(0 ,  s) such tha t  

3 
q 2 8 

Cauchy-Sehwarz inequal i ty  implies tha t  

(see definition (3.4) and ident i ty  (3.5)), where the  first t e rm on the right-hand side 
can be es t imated  b y  (3.6). Le t  us es t imate  the  other. 

1 

Let  Qz = [l(1 ~-1)]  -1-~ ~ [~12. Jensen 's  inequal i ty  implies tha t  

that is 

(4.7) 

ZQ~ V +~ 1>0 | 
[l(l + 1)]-'7~Q~ 

/ > 0  

/ > 0  

) 
I > 0  n = - - /  / n = - - /  

• [~(z + 1/] -1-~§ Io712 . 
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By (4.2), (4.3) one obtains 

(4.s) 
, :[ 

l > O  n = - - ~  

since 

1 
[l(1 -[- 1)] -5]* < ~ b~, 

for every even positive 1. 
On the other hand,  since 

S 2 

from the addit ion formula for spherical harmonics we deduce tha t  

f f  zz)d o,, (4.9) ~ IQ?[ ~ = (2/-~ 1) da~ ~(z)~(z ' )P,(cos A ,  

S* S ~ 

P~ being the Legendre polynomial of degree l and ~ '  the angle between the vectors z 
and  Z t. 

Since 

IP,(x)l<l, for every me [ -  1, 1] ,  

from (4.9) i t  follows tha t  

(4.1o) 

Notice tha t  

n 2 ~  Q, . ~ ( 2 z + 1 )  I~(z)ld~o . 
S* 

(4.11) f l e ( z ) l  d~:<f[el(z) + e2(z)]d~o = $1+  ~,  
$2 S 2 

S~ being the  area of ~T~, i ---- 1, 2. 
Therefore (1.10) and (t.!1) yield 

l 

I > 0  n = - - l  

where 

2/-I- 1 
S~,~ ~ [l(l -k i ) ]  ~+~-' 

J 
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By using (4.7), (4.8), (4.12) and the inequal i ty  S~<47~_~ (R, ~ cireumradius of T~, 
i ~ 1, 2), we obtain 

--(l+e)12 (4.13) ll(- As) qlt~(~)< ~11;-~H~(s0), 

where ~(z) = A ( z ) -  A~/(2%/~) and 

V ~  

Finally,  assembling (4.4), (4.5), (3.6) ~nd (4.13) produces 

(4.]4) I~(T~) V~(~, r~) I < n,[__2 ) 

Quite ~nalogously we can obtain t ha t  

(4.x5) Iv(T, ) -  V,(T,, T,)I< y ( ~ - ~  IAol + V,C(~)tI~II~,(~,) �9 

~ow, to get  the est imate (1.5), i t  suffices to insert  (4.14) and (4.15) in (2.4) and to 
use the inequal i ty  (2.2) of Zemma 1. Notice t ha t  

IA~ + IIAII~(~)I<2 [1 + (dV~M)I-~]IIAII~(~ ~ 

The Theorem is so proven in the ease of regular bodies. We want  to emphasize t ha t  
from the above proof i t  would be possible to deduce an explicit (though rather  com- 
plicate) expression for the constant  C, appearing in (1.5), in terms of M, [m and p. 
Here we omit  i t  for simplicity. In  the general ease (T~ and T~ not  necessarily regular 
bodies), we can find two sequences {T~,,}~ {T2,~} of regular bodies such t h a t  

(~(Ti, Ti,n)-->O~ aS n - - > ~  c ~  i : 1 ~ 2  

(see [4], p. 36). 
We can apply the Theorem to T~.~ and T~,. and write down (1.5) for them.  By 

le t t ing n -* ~- co and using the fact  tha t  

A(T~,~; z) --+ A(T,;  z), i = 1, 2 ,  

uniformly with respect to z (see [12], Theorem 1)~ one concludes tha t  the Theorem 
is valid in the general case too. 
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