Recovering a Centred Convex Body
from the Areas of Its Shadows: a Stability Estimate (*).

STEFANO CAMPI

Summary. — The main result of this paper is an estimate of the Hausdorff distance between two
centrally symmetric bodies Ty and Ty of R3 by the L2-norm of A(Ty;2) — A(Tys;2). Here
A(T;52), i =1, 2, is the area of the orthogonal projection of T, in the direction z.

1. — Let T be a convex body in R3 (i.e. & bounded closed convex subset of R?
with nonempty interior) and assume that T has a centre of symmetry at the origin
of R3. We shall say that T is a centred convex body.

For any direction ze 82, 82= {ze R%: 2| =1}, let A(T;7) denote the area of
the orthogonal projection of T onto a plane perpendicular to z. Clearly A(T;2)
is an even function on 8% i.e. A(T;2) = A(T; — 2), Vze 82 The problem we deal
with in the present paper consists in recovering a centred convex body T by the
knowledge of A(T'; z), for every ze 82 Notice that this problem may be linked to
problems in geometry (see [19]) and in other areas: for instance, inverse diffraction
problems (see [17], p. 223) or object recognition from extended gaussian images
(see [13]).

Uniqueness for the present problem can be proved by the following arguments.
Denote by o, the surface function of 0T, the boundary of T: for any subset E of 82,
oz(B)is the area of such a part of 07 whose spherical image is B (see, for instance, [15]).
It is well known that oy is a measure, that is a completely additive function on the
Borel subsets of §2. Moreover, since 7' is centred, oy is even, i.e. op(H) = or(— H).

The function A(T;z) can be expressed in terms of ¢, as follows (see, for
example, [19])

(1) A(T; #) = [[Key 03] don(o)
82

where <-,+> stands for the scalar product.

(*) Entrata in Redazione il 14 luglio 1987.
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If T is a regular convex body, namely a strictly convex body whose boundary
oT is a surface of class C? (see [5]; see also [9], [16]), then we can rewrite (1.1) as

(1.2) A(T; 9 = 3 Ks, @) do,
S2

where p(v) is the Gauss curvature of ¢ at the point where v is the exterior normal
and do, is the area element on 82

Let T, and T, be two centred convex bodies such that A(T,; 2) = A(T,; 2) for
all ze 82 Then from (1.1) it follows that

(1.3) f Kz, v5|dr(v) = 0, Vee S,
SB

where v = o, — o7,. Since 7 is even, identity (1.3) implies v =0 (see [19], p. 298).
By virtue of Alexandrov uniqueness theorem for the generalized Minkowski problem
(see [11,II], [5], [11], [15], [19]), it follows that 7,= T,. Thus uniqueness is
established.

Now, the main gquestion we are interested in is the following: if—in some sense—
A(T;; 2) is close to A(T,; #), can we infer that T, is close to 7,7 A qualitative answer
to this quesfion can be found in a recent paper of Goopxy [12]. Inparticular he shows
the following result: if 7, (n =1,2,...), T are centred convex bodies such that
A(T,; 2) — A(T; 2) uniformly on 82, as # —> - oo, then the Hausdorff distance
0(T., T) between T, and T tends to zero. He shows also that, in general, the con-
tinuous map m: A(T;2) — T is not uniformly continuous.

An explicit stability estimate for regular bodies has been obtained by ANIKONOV
and STEPANOV in {2]. Suech an estimate—showing a not uniform Holder type sta-
bility—involves not only the distance between A(T;;z) and A(T,;2) but also the
distance between their derivatives of some order. In terms of such a distance it is
possible to estimate, by equation (1.2), the difference 1/y, — 1/ys, 71, y. being the
Gauss curvatures of 07, 0T, (see also [18]). Hence, by exploiting a stability result
of [20] for Minkowski’s problem, an estimate for the original problem follows. But
such an estimate holds under strong a-priori conditions on the bodies and on their
projection areas. .

The purpose of the present paper is to obtain an a-priori estimate of the Haus-
dorff distance &(T,, T.) between the bodies T, and T,—not necessarily regular—
in terms of an nsual distance between A(T; 2) and A(T,; 2) only, without any as-
sumption on derivatives or similar restrictions. In other terms we will show that
the stability is an intrinsic quality of the problem connected to the convexity of
our bodies.

In a previous paper [7] the author obtained already a stability estimate for the
congidered problem in the special case of bodies enclosed by surfaces of revolution.
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Here we are able to prove a general result:

THEOREM. — Let T, and T, be centred convex bodies.
Let

M,= max A{T;; 2),

1 A.) ze8? .

(1.4 m; = min A(Z;52), +=1,2
2€8?

7

and M = max (M,, M,), m = min (m,, m,). For any number p € (0,3), there exists
a constant C, which depends on m, M and p only (and is ¢ continuous function of these
arguments) such that

(1.5) 0Ty, T,) < | A(T; 2) — A(Ty; 2)||Txsn -
Recall that

Ty, Ty) = inf {t > 0: Tyc Ty, and T,c Ty}
with

Tio= {weRe: dist (, T,) <}, i=1,2.

The proof of this Theorem will be given in Sect. 4.

We will use some results of VoLkov [20] and DISKANT [8] (see Sect. 2) which allow
us to estimate 8(T,, T,) in terms of mixed volumes of T, and T,. Moreover our proof
is based upon an inequality—showed in Sect. 3—involving a sort of a-derivative,
l<a< %, of the support function of a regular convex body T and the circum-
radius of 7.

2. — Let T be a centred convex body. Let us denote by R the circumradius of
T (the radius of the smallest sphere containing 7') and by r the inradius (the largest
radius of a sphere contained in T).

The numbers B and r can be estimated by the function A(7'; 2). More precisely:

LemMMA 1 (Volkov)., — Let M = max A(T'; z), m = min A(T'; z). Setting

ze8*? 2€82
== 4

(2.1) R= I/% M,

then

(2.2) R<iR,

(2.3) rs

[N
=]
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A more general version of this resuit is in [20]. It is enough to adapt that proof
to our special situation with T centred (see also [15] p. 499).

Another result we need is an estimate concerning mixed volumes of two convex
bodies T, and T,. For the reader’s convenience let us recall how the mixed volumes
can be introduced (see, for example, [4], [5]). The volume of any linear combi-
nation AT, - uT, (A and p being positive numbers) is given by

3
VOT,+ uTy) = 3 (z) BTV (Ty, T,

=0
where the quantities V,(T, T,) are just the mized volumes of T, and T,. Clearly
Vo(Ty, To) = V(Th), VT, T,) = V(T),
V(L) being the volume of T, 4 == 1, 2; moreover
Vi(Ty, Tp) = Vo(Ts, Ty) .

LeMMA 2. — Let T, and T, be centred conver bodies. Let M,= max AT 2),
My == Igé%p AT 2), i =1,2, and M = max (M,, M,), m = min (m,, m,). Then there
exists a constant K, which depends on M|m only (and is & continuous function of this
argument) such that

(2.4) Ty, To) < K(|V(Ty) — Vo(Ty, T3+ | V(L) — VT, To)|¥5) .

Proor. — The proof is based upon the results contained in the paper of
DIsgANT [8].
Precisely, let us introduce the deficiency coefficients

].1=Sup {Z.: },Tzc Tl} ] 2,2=S11p {A: }.T]_C Tg}
and let

Z = 1min ().,1, )»2),

_ VT — VT, o) + [VIA(Ty, To) — V(Ty) V()]
. V(T,) ’

Ms = a8 above by interchanging 7, and 7, .

From Lemma 4 and Theorem 1 of {8] it follows that

1

(2.5) s, )< 5 R(1+3) (bl + 1)

where B denotes the radius of the smallest sphere containing both T, and T%.
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Denote by # the radius of the largest sphere contained in both 7; and 7,. By
using Minkowski’s inequality for the mixed volumes (see [20] p. 38) and their mono-
toneity property (see [0]), one can verify that

\3/5 Vl/s R\
(2.6) 'W<7m?PMWMW—VmWH{ﬂ mwwm—wﬂW+

where V, and V, are the volumes of the spheres of radius R and » respectively.
Obviously u, satisfies an inequality quite analogous to (2.6).
Moreover, by virtue of Theorem 1 of [8] again, one has

(2.7) 1> (/R .
Now, by (2.2) and (2.3) of Lemma 1,
(2.8) v Rir<n(M|m)? .

Therefore, by using inequalities (2.6) (and the corresponding for u,), (2.7), (2.8),
from (2.5) we deduce (2.4).
Notice that one can choose

16 \-ue
K:Gw)(y+wm@+mmm,

with D =7 (M|m).

3. — This section is devoted to an inequality concerning the support function of
a regular convex body T (not necessarily centred).
Recall that the support function h of a convex body T is defined by

(3.1) hz) = max {z,v>, #ef?.

ves?

If T contains in its interior the origin of the coordinate system, then h(2) is positive.
If T is centred then h(z) = h(— 2), for every 2z in S2.

Let us introduce on 82 the usual system of geographical coordinates 0, ¢
(6 = colatitude, ¢ = longitude).

For simplicity we continue to denote by h(f, ¢) the function h(sin 0 cos ¢,
sin 6 sin g, cos B).

Let us expand h(0, ¢) into a series of spherical harmonies:

(3.2) Mo, p) =

lllM“

ZWW@@7

IMs

o
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where

l v [(] —
Y7(6,¢)=(2 +1) [“ n)!

1/2 .
in i ):I P?(cos 0) %,

P? being the associated Legendre function of the first kind of degree ! and order #.
Let T be regular. It is well known (see [3]) that

4,10, ) = — z {t+1) z B YNG, @),

= n=-—1
where 4, denotes the Beltrami-Laplace operator:

1 9 o 1 8%
(3.3) A,h(6, @) = sn@@B(SI ea)+s“”‘in2067,;2'

For any real number «, we shall define (see, for instance, [14])

14
(3.4) (— 4.6, 9) = 3 LC+1)F X B Y706,9),

=1 n=-—1

provided the right-hand side of (3.4) converges.
Pargeval’s identity implies

o 11
(3.5) (= AR5y = 12:1 e+ 1)1 =Z—z B .

We want to prove the following

LEMMA 3. — Let T be a regular convex body of R® and h(0, @) be its support function.
Let R denote the radius of the smallest centred sphere coniaining T. Then, for any
e€ [0, 1), there exists a constant C(e), depending only on &, such that

(3.6) H(— A0 2R ey < Cle) B

Proor. — If ¢ = 0 the estimate has been already proved in [7]. A good evalua-
tion of the constant C(0) is (8m)V.

Let 0 <e< L. Let us first take the origin of the coordinate system to be an
interior point of 7. The proof is splitted into several steps.

i) Let us denote by G(z), # € R?, the rotation of angle |s| about z, G(0) being
the identity. Let 2’ = @(x)# be the image of the point 2z under the transformation G(z).

Set

(3.7) hY— h(z) = H(z,2), =2e8, wxecR:.
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Moreover let us denote by V, the surface gradient on §2. Recall that

1 2

2___ 32
(38) lvsh| — e + §inz 6 k(p .

From a geometrical point of view, |V,h| has a precise meaning. Let us con-
sider the supporting plane (that is, by our regularity condition, the tangent plane)
of T whose exterior normal is 2z == (sin 0 cos ¢, sin 0 sin ¢, cos ) and the contact
point P of such a plane with 7. If d denotes the distance between P and the origin,
then (see, for instance, [4])

d2= Ivsh(ei (P)|2+ R0, o).

Thus |V,k| is the distance between P and the foot of the perpendicular from the
origin to the supporting plane. Therefore

(3.9) IV.h<R.

We claim that

(3.10) [(— 4,)%F 2 Gy < Ky (o) f o] =352 oy f IV, Hz, x)[ do, »
R? s?

where V, acts on H with respect to 2. As far as the constant K,(¢) is concerned one
may take

_ 3(2e +1)2¢
Hue) = 167 cos (me) |[['(— 2¢)]|’

where I' is the Buler function.

Inequality (3.10) can be proved—owing to (3.8)—by the same procedure used
in [6] (Lemma p. 249).

ii) Let us rewrite (3.10) as

+ oo
(3.11) I(— A)+ 2|2 0 < K, () j -2 1R() dt
0
where
(3.12) F) = f do, f V, H(z, tw)|* do, .
g2 82

Notice that, by (3.7), F(0) = 0.
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One can show (see [6]) that if ' and F' are bounded functions and F(0) = 0
then

+ o0
(313) Rt dOL R ABI L=t
0
where
(28)—1—28
(g) =
Hale) 1—2¢°

iii) Let us estimate |F|;«.
Setting
R(G(tw)z) = h(z, t, w) ,

by (3.7) one has
(3.14) V H(z, tw) = V,h(z, t, w) — V,h(z) .

It is easy to check that

2
0

o
op

2 1

8.15) Vbt <V (55 + i

)

where 2 = (sin § cos g, sin 0 sin @, cos §) and 2’ = G(tw)2; hence, since G is a rotation,
it follows that

(3.16) V. Az, t, w)[2<2|V,hz")]2 .
Therefore, from (3.12), (3.14), (3.16) and (3.9) it follows that
(3.17) F(t)y<6(4nR)? .

iv) To compute F(t), let us notice that by Gauss-Green theorem (see [3])
one has

(3.18) f IV, Hz, x)|*do, = — f Hiz, 0) A5 H(z, o) do, ,
g2 52

where Aj too acts on H with respect to z. Writing down the explicit form for H,
as in (3.7), it follows that

619)  [IN.HG, o) do, = — 2[h(e) 45h(e) do,+ [ Ash@E) + Bl do,
82 82 8%
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where > = G(x)z and &' = [G(x)]"* 2. Thus, by (3.12) and (3.19),

0 & -
(3.20) F'(z) _—:f do, | Ash(z) T Az, t, w) -+ h(z,t, — w)]do, .
g2 g

From (3.9) it follows that

(3.21) %ﬁ(z, t, w)l <R.
In fact

\%ﬁ(z, ) < Vb)),
since

%—Zt—, =1 (see[6]).

Analogously
(3.22) g-tﬁ(z, t,—w)| <R.
Therefore (3.20), (3.21), (3.22) imply
(3.23) | (8)| <8R f |4h(z)| do, .

S2

In order to estimate the integral in the right-hand side of (3.23), let us recall that
(see, for example, [4] p. 66)

(3.24) 2h(z) + Ash(z) = Ryi+ Rs,
where R, and R, are the principal radii of curvature of 97 at the point where the

exterior normal is z.
Therefore

(3.25) 2h(z) 4+ A h(z) > 0

for every =.
As h(z) is positive, (3.25) implies

(3.26) |4,h(2)| < A,h(z) + 4h(z) -
Coupling then (3.23) and (3.26) yields

(3.27) |7 ()] < 2(8nR)*,
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since h(z)<E and

| [4.1)30.= 0.
Sﬂ

Assembling now (3.11), (3.13), (3.17) and (3.27) proves Lemma 3 in the case T has
the origin as an interior point. Notice that in such a case the constant C(e) in (3.6)
can be chosen as follows:

Cle) = 4n(5)°[6K, () Ka(e)1V2 .

If T does not contain the origin in ifs interior, let us consider the parallel transla-
tion of T by a vector u such that 7'= T 4 u has the origin as an interior point.
Clearly |u| < R and T' is contained in the centred sphere of radius E— |u|. If A,
denotes the support function of 7", then

(3.28) hu(2) = h(z) + U(#),

where U(z) = (u, 2).
Notice that
U =10, for every Z%él,
1 4r
S (o=,
1

n=-—

(3.29)

U} being the coefficients in the expansion of U into spherical harmonics. Therefore,
by using (3.6) for A, and taking into account (3.29), from (3.28) it is easy to deduce
that L.emma 3 holds also in the case T does not eontain the origin.

4. — PROOF OF THE THEOREM. — Firstly we prove the Theorem assuming T, and T,
are regular bodies. Let A, and k, be the corresponding support functions. Let us
start from inequality (2.4) of Lemma 2 and estimate |V(T,) — Vy(Ty, T5)|. To this
end recall that (see, for instance, [5])

(4.1) V(Th) — VoI, T) = %fhl(z)[el(z)— 2:(#)1do.

Fotd

where g,(z) = [y:(2)]™* (¢ =1,2), and y,(2) is the Gauss curvature of 27, at the
point P with the exterior normal z. Now remember that g,(2) is related to A(T; 2)
by equation (1.2).

Setting then A(T;; 2).= A.(z) let us expand A, and g, into spherical harmoniecs
Y} and let 47, and g7, denote relevant coefficients. Since A4, and p,; are even fune-
tions A7;= g7;= 0, when 7 is an odd number.
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On the other hand from (1.2) one can deduce (see [2],[18], [10]) that

(4.2) A7 = bop,
with

_A/m(=1)rr (] —1 . )
(4.3) b, = 502 1)1 r 5 ) I being an even number .

Notice that b, behaves asymptotically as I-5/2. For simplicity let us set g,(2) — g.(2) =
= 0(?), Ai(e) — 4.(2) = A(2), M(2) = h(z) and denote by g}, A7, b} the relevant
coefficients of the expansions into spherical harmonics. 4

Thus we can rewrite (4.1) as

1
(4.4) V() — VT, T) =} (B + 3 3 1a) .

>0 n=—1

From (4.2), (4.3) it follows that
' 2
(4.5) [hogal < \—/—y;lelAgl )

where R; is the circumradius of 7.
Let us estimate now the other term in the right-hand side of (4.4).
For fixed pe (0, %), set ¢ = (1 — p)/p and choose e€ (0,3}), n & (0, ¢) such that

Cauchy-Schwarz inequality implies that

11
(4.6) > 3 g

‘I>0 n=—1

<H= AT b gaen | (— A7 0] paisey

(see definition (3.4) and identity (3.5)), where the first term on the right-hand side
can be estimated by (3.6). Let us estimate the other.

I
Let @=[I(14+1)17""° 3 |oF>. Jensen’s inequality implies that
n=—1

2%\ Ze+nrre
ST+ 019, < 2T

>0

1 »
wn ST s l9?|2<(l20 (1t 4 1)1 fl!m"lz) x

>0 n=-1 n=—

1 1—-p
><(2[l<1+1)1‘1'€+" > 19712) .
>0 14

0=
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By (4.2), (4.3) one obtains
1 1 1
(4.8) SOEHHI Y o< o 2 il
>0 n=—1 TT1>0 n=—1
gince

1
[+ 1)< b

for every even positive {.
On the other hand, since

o =[o@) V(e do,
SE
from the addition formula for spherical harmonics we deduce that

(4.9) i lo?? = (21 + 1)fdazfg(z)g(z’)l’,(cos 7' )do, ,
n=-—1
82 8%

P, being the Legendre polynomial of degree 7 and 22’ the angle between the vectors
and 2’
Since

|P.,(#)j<1, for every #e[—1,1],

from (4.9) it follows that
1

(4.10) 3 lep=ei+n( [lewian)

== —
82

Notice that

(11) [le@ld0.< [lo:e) + eu@)1do. = S+ 8,
82 82

8; being the area of ¢T';, i =1, 2.
Therefore (4.10) and (4.11) yield

[
(4.12) >+t 3 l lef1* < 8e,,(8: + 8s)
>0 n=r—

where

B 21 -1
Sen =, Zu 0T+ 1o
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By using (4.7), (4.8), (4.12) and the inequality §,<4nR? (B,= circumradius of 7,
t =1,2), we obtain

(4.13) 1= 47 g e < O [ A sy

where 4(z) = A(z) — A%/(2V/7) and

0, — 327 8oy (B - RyIO7
V3x

Finally, assembling (4.4), (4.5), (3.6) and (4.13) produces

R, {2 0 =i
(4.14) [V(Tl) —_ Vz(Tl, TZ)I < ?(\77; IAOI -}~ 016(8) “A“Lz(,gz)) .

Quite analogously we can obtain that

?\/ﬂ

Now, to get the estimate (1.5), it suffices to ingert (4.14) and (4.15) in (2.4) and to
use the inequality (2.2) of Lemma 1. Notice that

(4.15) [V(Ty) — Vi(Th, To)|< it (—2: |43 + O, C(e) | 4 ”1’?(5*)) .

1451 + 1412y <2'2[L + (4VE M) 7] A2

The Theorem is so proven in the case of regular bodies. We want to emphasize that
from the above proof it would be possible to deduce an explicit (though rather com-
plicate) expression for the constant O, appearing in (1.5), in terms of M, !m and p.
Here we omit it for simplicity. In the general case (1) and T, not necessarily regular
bodies), we can find two sequences {T',}, {T,,} of regular bodies such that

T, T) >0, asn-—>-+ oo, 1=1,2
(see [4], p. 36).
We can apply the Theorem to T, and T,, and write down (1.5) for them. By
letting n — 4 oo and using the fact that

AT 52 = AT 2), i=1,2,

uniformly with respect to z (see [12], Theorem 1), one concludes that the Theorem
is valid in the general case too.
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