An Identification Problem
for a Semilinear Parabolic Equation (*).

A. LorENzI - B, PAPARONI (*¥)

Sunte. — 8¢ considera un problema sovradelerminato per Uoperatore parabolico semilineare
D(u) = D,u — Diu — a(u) contenente un termine tncognito a(u) e si prova Uesistenza di
almeno una soluzione (u, a). :

0. ~ Introduction.
We consider a semilinear parabolie equation of the form
(0.1) Do~ Du—afw)=1 inQr=(0,)x(0,T) (,T>0)

Subject to the following boundary and initial conditions

(0.2) D0, )= O<t<T
(0.3) D,u(l,t) = B, ot T
(0.4) ur, 0) = gy(w) O<w<l

p1 and f, being megative constants.

For a prescribed function a it is well known that problem (0.1), (0.2), (0.3), (0.4),
admits a unique solution « (e.g. from the anigotropic Holder space 02+%<2+D‘>/2(QT)),
provided that o and the data f and g, belong to suitable Holder spaces.

On the contrary, in our case the function & is assumed to be unknown. In order
to determine the pair (u, a) it is evident that we need further information in addi-
tion to (0.2), ..., (0.4).

(*) Entrata in Redazione il 7 marzo 1987.
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cazioni del C.N.R.
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The additional boundary conditions we are going to consider are the following

(0.5) w(0,7) = (1) 0<?

A

T
(0.6) u(l, 1) = gt) O0<i<T.

N

However such conditions prove to be not sufficient to determine a: in fact using (0.5)
and (0.6) we can determine @ only in the ranges of ¢; and g, but not (in general)
in the range of g,. ‘

Hence, in addition to (0.3), (0.6), we shall suppose that the funetion a (essentially
an unknown source term depending on the « temperature » ) is known over some
interval of temperatures coinciding with the range of g¢,.

Thus we get the further information

(0.7) a(t) = ao(r) for any 7 in the range of gs.
Our identification problem consists therefore in determining 4 outside the range of g;.

REMARK 0.1. — We observe that boundary conditions (0.2) and (0.3) are quite
particular. Their introduction is intended only to simplify our exposition. The
general case, where the constants §; and §, are replaced by a pair of non negative
funetions ¢, and g;, is treated in the internal report [8].

Finally we stress that a problem similar to ours involving nonlinear parabolic
equations in non-divergence form in the multidimensional case was first studied by
ISKENDEROV [4]. He obtained mainly uniqueness and stability results. As far as
existence is concerned, he outlined an iterative procedure strictly depending on the
knowledge of the temperature-flux on the lateral boundary of the cylinder under
consideration. ‘

Taking advantage substantially of the same procedure BEZNOSCENKO [1] proved
later on some existence theorems (in the large) for solutions to inverse problems
related to quasilinear parabolic equations.

Unfortunately such techniques seem not to apply when either the equation is in
divergence form or the unknown function ¢ does not appear in the boundary
conditions.

1. — Statement of the main result.

Before stating our resulf, we have to specify the Holder spaces which are, from
our point of view, the functional framework appropriate for investigating the inverse
problem (0.1), ..., (0.7). More exactly the unknown pair (u, @) is looked for respect-
ively in the space U x O**(R(u)), where R(u) denotes the range of u, € (0, ),
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y € (2, %) and
(1.1) W = {we C*F*CTI%Q): Dou, Dyuwe C2F2EFI2GL (1)

We observe that, in order not to overburden our notations, throughout the paper
we shall use the following notations

(1.2) I lsss,004 2= 18] o msmrraGny
(1.3) “(p“n+ﬁ = H‘P”cnw(a),
(1.4) lolo= l®lzow

where n =0,1,2,...,8€(0,1) and wc K denotes the domain of ¢.
In different situations we shall use explicit notations.
Our result requires that data satisfy the following basic bounds

(1.) D, f(z, ) <— m V(z, 1) €Qr
(1.6) D,g(t) =>m, Dglfl<—m Vie[0, T]
x.7) D,g;() <—m Vo e [0,1]

for some prescribed positive constant m such that

(1.8) m<min (8], [B]) -

REMARK 1.1. — According to bounds (1.6), (1.7) the chain of functions {gi, g5, g}
turns out to be monotonic non increasing on the parabolic boundary of Q.

As far ag the smoothness of data is concerned, we shall agsume that

(1.9) K e ()

(1.10) G, g€ ([0, T])  (0<a<y<}
(1.11) gs€ C*([0, 1))

(1.12) a € ' *([g:(0), 95(0)]) -

Moreover the data f, g, ., g5y @ have to satisfy suitable consistency conditions
at (0, 0) and (I, 0). For the sake of brevity we do not list them, but we limit ourselves
to asserting that they can be easily derived by equations (0.1),..., (0.7) using the

() For the precise definition of Holder spaces see [5, chpt. 1], where they are denoted
by H2ta+e(Q),),
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following formulas

(1.13) lim D Diu(w, 0) = lim D{DH0, 1)
a—0-- =0+

(1.14) mga D! Diu(z, 0) :tli{)ri DiDMu(l, 1) .
a—>l— >

We can now state our existence result that we shall prove in section 5.

THEOREM 1.1. — Suppose that the data f, g1, 95, g, &% enjoy properties (1.5), ..., (1.12)
for some € (0, 1) and y € (o, 1) and assume that they satisfy also the consistency con-
ditions implied by (0.1), ..., (0.7), (1.13), (1.14). Then there exists a positive con-
stant T for which the inverse problem (0.1), ..., (0.7) admits a solution (u,a)e W X
X Oty R(m)).

2. — Some basic estimates for the solution to problem (0.1), ..., (0.4).

We observe that the unknown funection @ appearing in equation (0.1) may be
determined at most on the range R(u) of u. Therefore it is basie to find out R(w)
in terms of the functions gy, ¢., gs only. Consequently our firgt task in this section
consists in showing that, if (u,a)eWx O*¥(R(w)) is a solution to problem
(0.1), ..., (0.4), then % attains its minimum and maximum values on the parabolic
boundary of Q. Actually we are going to prove much more. Owing to the techniques
developed in the sequel we are forced to show that D,u is bounded away from
zero in Q.

To that purpose we need to introduce the Banach space O;17(R) consisting of
functions a ¢ O(R) such that

@1) ol =Spla(x)| + Sup |r—o+Dea(r) — Dra(o)| < + co.

7, GER;T# G
In the sequel we shall use also the following metric subspace of C;*"(R)
(2.2) 0.1 (R) ={a e O;7"(B): a(r) = ay(7), () <T<g:(0)} ,
Whére a, is the function in C*+*([g (), g5(0)]) appearing in (0.7).

THEOREM 2.1. ~ Suppose that the date f and g, satisfy bounds (1.5) and (1.7). Then,
if (u, @) e WX O;7(R) is any solution to problem (0.1), ..., (0.4), we have

(2.3) Dou(z, t)<— min (mM-1, m) Yz, t)eQy,

where M is a positive bound of |al1y.
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Proor. — Observe first that aceording to the results in [5, chapt. 5] the solution
u = U(a) to problem (0.1),..., (0.4) belongs to C*™*@*?2(( ) together with the
derivative D u.

Introduce now the function we O2+*@+*@.) so defined

(2.4) w=D,u—+v,
where
(2.5) y = min (mM~, m) .

It is easy to check that w is a solution to the following Cauchy-Dirichlet problem

(2.6) D,w— D*w— wD,a(u) = — vD,a(u) + D,f in Qp
2.7) w(0,1) = B+ v 0<t<T

2.8) w(@,0) = Dygs+v O<w<l

(2.9) w(ly 1) = Byt v 0<t<T.

From bounds (1.5), (1.7) it is immediate to realize that our choice (2.5) of » assures
the nonpositivity of the right members in equations (2.7),...,(2.9). The same is
true also for the right member in (2.6). In fact Y(z, 1) EQT, VYt e R(u) we have

(2.10) —vD_ a(v) + D, f(@, t) <y M — m<0 .
From the maximum principle we infer that w<0 in Q. ™

CoroLLARY 2.1. — Under hypotheses (1.5), (1.6), (1.7) the ramge of the solution u

to problem (0.1), ..., (0.6) ¢s the interval [g.(T), g.(T)]. Moreover u satisfies the following
bounds

(2.11) e)<ulz, )<qp(r) Vo, ed,, Yre(0,T].
PROOF OF COROLLARY 2.1. — From bound (2.3) we immediately infer that
(2.12) 9:(t) + v(l — @) <ulw, 1) <g:(t) — v& | V(1) €@y .
Using the strict monotonicity of g, and g, (%), from (2.12) we easily derive (2.11).

Since g, and g, are the boundary values of %, from (2.12) we conclude that the range
of u is just the interval [g.(T), ¢:(T)]. m

(3) See bounds (1.6).
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Now we study the dependence of the solution U(a) to problem (0.1), ..., (0.4)
upon @, a8 @ varies in the metric space C;:LV(R) defined by (2.2). More exactly we
are interested in deriving several estimates assuring the boundedness and the eon-
tinnity of the operator U. They will prove to be the basic tools to solve the trans-
formed inverse problem of section 3.

To this purpose we state the following theorems:

THEOREM 2.2. — Assume that a € C;7"(R) and that the data f, g,, ¢ay gs, @0 POssess
properties  (1.B), (1.7), (1.9), (1.11) and satisfy consistency conditions implied by
(0.1), ..., {0.7), (1.13), (1.14). Then problem (0.1), ..., (0.4) admits a unique solution
u = Ula) satisfying the following estimate:

(2'13) ” U(a’) ”2+a¢,(2+0¢)/2 + ”DU(“) ”2-}-06,(2+06)/2< O1(T)[”f”2-‘,—o¢,(2+o¢)/2 + ”g‘o‘ ”4-{—0& + 1] (3)
Vae CLH/(R).

The « constant » Co(T) depends obviously on T, but it is also an increasing funciion of
la|rvy and of the norms of data in the prescribed spaces. Moreover C(T) remains
bounded as T — 0+,

THEOREM 2.3. — Let hypotheses listed in theorem 2.2 be satisfied. Then the map
a — Ula) is continuous from CL77(R) into C***@+VXQ) and satisfies the estimate

(2.14) [U(ay) — U(a) g n,0ray2<CalT) @ — @],  Va,,a,€ O;TV(R) ’

where the « constant » Co(T) enjoys properties similar to the ones of C(T) in theorem 2.1.
Moreover the maps a — DU(a) and & — D, a(U(a)) are bounded and continuous
from CLF(R) (0 <a<y<<}) respectively to C***C+?2Q) and 0%**(@Qy).

We observe that estimate (2.13) is of the Schauder type, and can be inferred as
in [5]. Therefore we omit the proof of theorem 2.2 and refer the reader interested
in a detailed proof to the internal report [8]. ‘

On the contrary we shall give a proof of the less usual theorem 2.3. However,
owing to its length, we postpone it to section 5.

3. — The inverse problem trasformed.

This section is devoted to transforming our inverse problem (0.1), ..., (0.7) into
a new one, characterized by the appearence of the unknown function & in the boundary

(®3) Dv = (D,v, D,v) denotes the gradient of v.
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conditions. The new problem involves ¢ and the function v so defined
(3.1) v = L(U(a), DYD,U(a) ,

where U(a) is the solution to problem (0.1), ..., (0.4) and

(3.2) - L{u, D)= D,uD,~ DuD, .

Assuming for the moment that v € C***® "2} we ean show that (v, a) is a solu-
tion to the following inverse problem

3.3)  Dyw— Div— 2[D;U(a)/D,U(a)]D,v — Dra(U(a))v =
= @(U(a)) + D}{D,U(a) — D,D,fD,Ula) in Qr
= §u(t) 0<t<T
(3.5) D,v(0, 1) = Dygy(t) Di[a(g:())] — a(9:()) Digalt) + Galt)  O<t<T
(3.6) o, 0) = gi) O<w<l
3.7 ot =) 0<i<T
(3.8) Dyv(l, 1) = Dyga(t) D[a(g:())] — alga(t)) DF@) + Golt)  O<i<T

(3.9) a(7) = a(7) 9:(1) <7<g5(0) .
The functions Q(U(a)) and §; (j =1, ..., 5) are defined by the following equations

(3.10)  Q(U(a)) = {DU(a)— 2[D2U(a)]*/D. Ula)} D, Ula) + {— 3D, D, Ula) +

+ 2D2U(a) D, U(a)/D, U(a)} DD, U(a) -+ 202 U(a)[DsD; U(a)1*/D, U(a)
(3.11)  §u(t) = B Digu(t) O<i<T
(312)  §u(t) = D.gu(t) D, (0, 1) — £(0, t) D} g.(t) 0<i<T

(313) (o) = D.gu(w) (Digs@) + D(ao(gs@)) + D2f(z, 0) — Dray(gsla))- |
-[D§g3(m) + “o(ga(m)) + f(, 0)] + D, f(#, 0 } [Dwga -+ “o(gs(x)) + f(=, 0)]

{D2gs(@) + Du(an(ga(@))) + Doflw, 0)} O<w<I
(3.14)  gult) = B Diga(t) 0<t<T

(3.18)  §s(t) = D.ga(t) D: f(1, t) — f(I, 1) Diga(t) 0<i<T.

In order to derive equations (3.3), ..., (3.9) it suffices to use estimate (2.3), the fol-
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lowing identities and to perform standard computations

(3.16) D,V(a)— L(Ula), D) D U(s) = 0
(3.17) D,V(a)— D, U(a)D, D% U(a) =
= D2U(a) D} U(a) — D, Ula) DD, U(a) — [D, D, U)}*
(318) D:V(a)— L(U(a), D) D2D,Ula) =
= Q(U(@)) + 2[D? U(a)/D, U(a)]D, L(U(a), D) D, U(a) ,

where @(Uf(a)) is defined by (3.10).

REMARK 3.1. ~ According to theorems 2.1 and 2.2, from definitions (3.10), ..., (3.15)
we infer the following relations

) by(e) = D3U(@)[D, Ula); bi(a), D.bi(a), D;by(a) € C**(Qy)
) by(a) = Dza(U(a)) € C***(Qr)
(3.21) Q(U(@) € O**(Qy)
) g1, §u€ C77([0, T7)
) Jar Gs € C(Ha)/z([()’ 7))
(3.24) g € 02+“([0, 0.
We notice now that in our original case the function v belongs to 0**%(@Qy,), but it
does not (in general) to C2F¥*@*+*)/%(@ ) However we can prove, using an approxi-

mating and regularizing procedure concerning the function ¢ and involving the clas-
siecal problem (3.3), ..., (3.9), that (v, @) solves equation

(3.25) fqu( (@ )dwdt— v{— D, — Dip + Dy(gbi(a)) — by(a) g} dw i -+

Qr
T

1 |
—f 03,0 + 3 (19 [plil, V(Do Dialgas)) — a(g1s) Diguss+
0

T
1

o oo @, Vrsabt— 3 1Y [Gn, Duglit, . Yy

0

and satisfies conditions (3.4), (3.6), (3.7), (3.9).
The functional space @, consisting of test functions ¢, is so defined:

(3.26) b = {pe O*TRTINGY: p@, T) = 0, 0<a <]} .
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We observe that equation (3.25) can be formally deduced from (3.3), ..., (3.9) by
multiplying both members of equation (3.3) by a test funection ¢ € @ and integrating
by parts. Moreover every solution (v,a)e C***@+(Q)x C}**(R) to problem
(3.25), (2.4), (3.6), (3.7), (3.9) is necessarily a solution to problem (3.3),..., (3.9).

For a rigorous proof of equation (3.25) the reader may refer to the appendix in [8].

We want now to transform the classical problem (3.3), ..., (3.9) into a more
suitable one by eliminating the unknown funection @. This will be performed in
two steps.

SteEP 1. — We proceed to determining & in terms of D,v(0, ), D,o(, -) and a,
by using boundary conditions (3.10), ..., (3.13).

To this purpose we recall that g, and g, are strictly monotonic according to con-
ditions (1.6). Then, using equations (3.5) and (3.8) and the following consistency
conditions (implied by equations (0.1), ..., (0.7), (1.9), (1.10))

(3.27) D,g1(0) — D2gy(0) — f(0, 0) = a(g:(0)) = a(g,(0))

(3.28) D, gx(0) — Digs(l) — f(1, 0) = a(gs(D)) = a(gs(D)) ,

we can express ¢ in the closed interval [gy(T), ¢.(T)] in terms of D,»(0, -), D,o(l, *)
and a,.

To this purpose we have to integrate equations (3.5), (3.8) which ean be viewed
as two first-order differential equations and to perform the changes of variables

defined respectively by ¢ = g;'(v) and = g;'(7)(*). We obtain the following
formulas:

(329)  ale) = Duga(gr*(0) {au(0s) D01 +
gz (r)

+ [IDgu(e) 11D, ) — Gu(e)] A} gull) <T<4u(0)
]

(3.30)  a(7) = a(7) 9:(1) < T<g5(0)

(3.31)  a(z) = Dtgl(grl(r)){ao(ga(f»)[Dtgl(on—l+
o7 (n)

+ [0 1D (0, ) — (o ds}  (0) <T<gu(T) -
0

Using consistency conditions involving the data f,g; (j = 1,2, 3) (for the details
see [8] formulas (2.43), ..., (2.46)) we can prove that the function a defined by for-

(*) gt denotes the function inverse to g¢.
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mulas (3.29), ..., (3.31) actually belongs to O} ([4,(T), g,(T)]). Moreover it is not
difficult to realize that a verifies the following estimate

(332)  lal oo .oan < C{D:000, ), + D00 ), + 1} ye(nd).

The positive constant ¢ depends on m, f;, f. and on snitable norms of data relevant
to this context.

Step 2. —~ Using step 1 we can represent a in the interval [g.(1), g.(7)] in terms
of v as follows

(3.33) ' a = A(D,v),

where A: C*%(Qg) — O 7([go(T), gu(T)]) is the linear affine operator defined by
formulas (3.29), ..., (3.31).

Now we would eliminate a from problem (3.3), ..., (3.9). But, under our present
hypotheses a, as a member of C}"7(R), is defined on the whole of R. Such a difficulty
can be overcome in the following way: aceording to bounds (2.11) in corollary 2.1
the domain of ¢ in our inverse problem (0.1), ..., (0.7) turns out to coineide with the
interval [go(T), ¢:(T)]. This allows us to restrict the class C,'7(R) to any class 4
more suitable for our problem without any danger of arbitrariness. In particular
we can choose as our class A& the image of O;TV(R) under a (fixed) linear extension
operator & acting from O'*?([gy(T), g(T)]) to C,*"(R) (*) such that

(3.34) 18a] gy < Call @] otay(my, 00mm) Va € O([9:(T), 9:(T)))

(3.35) [De8a] gymy < Cal Dt ooy oy V0 € O3 ([9:(T), 92(T)]) -

The positive constants ¢; and O, depends only on g,(T) and g,(T).

In order not to overburden our notations from now on we shall denote &a sim-
ply by a.

For our admissible functions a € 4 from (3.32), (3.34), (3.35) we easily derive
the following estimate

(3.36) laf g7y < O(1Dav(0, )|, + | Dav(, *)],+1)  Vae .

The positive constant ¢ depends on m, 8, f. and suitable norms of data relevant
to this context.

(%) For the definition of CI*"(R) see formula (2.1).
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We can now eliminate & from problem (3.3), ..., (3.9): we get the following semi-
linear Cauchy-Dirichlet problem

(3.37) veE OFHHEIIYG )

(3.38) D,ve 0*7(Qy)

(3.39) D — D20 = By(D,) Dyv + By(D,v)v + By(D,v)  in Qo
(3.40) 0(0,1) = G(t) O<i<T

(3.41) o(@, 0) = folw) O<w<l

(3.42) o(l, 1) =G O<i<T.

The nonlinear operators B; (j = 1, 2, 3) are defined by the equations

(3.43) B,(¢) = 2D U(A(2))/D, U(A(2))
(3.44) By(e) = D: A(U(A(2)))
(3.45) By(2) = Q(U(A(2))) + DD, U(A(2) — D.D,fD,U(A()) .

Problem (3.37), ..., (3.42) will be solved in the next section, while the remaining part
of the present section is devoted to the study of some basic properties of oper-
ators B; (j =1, 2, 3).

From theorems 2.1, 2.2, 2.3, definitions (3.10), (3.43), (3.44), (3.45) and estimate
(3.32) we eagily infer the following

LemmA 3.1. — The mappings B, (j = 1,2, 3) are bounded and continuous from
O¥:7(@Qy) into O Q) (0 <a<y<1). Moreover they satisfy the estimates

(3.46) 1Bi() | guongn < C(T, M)  Vee K(M), j=1,2,3,

where C is a positive function bounded as T — 0+ for any (fiwed) positive Mand K (M)
8 so defined

(3.47) E(M) = {z€ C*"(@n): 2] grrngn< M} -

Finally according to definitions (3.43), (3.44), (3.45), (3.29) it is not difficult to prove
the following

LeMMA 3.2. — Let v be a solution to problem (3.37), ..., (3.42). Then the values at
(0, 0) and (I, 0) of By(D,v) (j = 1, 2, 3), depend only upon the values at special points
of data a, f, g; (j = 1, 2, 3) and of their derivatives. Such points and derivatives are



274 A. LoreNZI - H. PAPARONI: An identification problem, ete.

listed in the following table

{unction number points corresponding fo
of derivatives 0, 0) @, 0)
) 1 95(0) 95(0)
f 4 wr. to », 2 wr tot (0, 0) 1, 0)
a0 2 0 0
A 2 0 0
gs 4 0 l

4. — An existence theorem for a semilinear parabolic problem.

In thig section we solve problem (3.37), ..., (3.42), that we rewrite in a compact
form as follows:

(4.1) ve CEHETIQL L ae(0,1/2)
(4.2) D,— Div= B(v,Dyv) in Qp
(4.3) 0(0,1) = G@(t) 0<i<T
(4.4) (@, 0) = fulw)  O<a<l
(4.5) o, t) =dt) O<t<T.

The (nonlinear) operator B maps €% ?(Qy) x C*"(@Qy) (0 < a <y < }) into C**%(Qy)
and satisfies the following equations

(4.6) B(v, D,v)(0, 0) = D,§(0) — D2§;(0)

(4.7) B(v, D,v)(1, 0) = D,§,(0) — D;gu(l) .

Such properties are easy consequences of lemmags 3.1 and 3.2.

REMARK 4.1. — From the definition of O*"*@**%(@,) it is immediate (see e.g.
[6, chapt. 1, p. 7]) to deduce that such a space is continuously embedded into
0**(Qr) Vy € (0, 3]

We observe now that problem (4.1), ..., (4.5) is equivalent to the following integro-
differential problem: to look for & function v € O**¥(Qr) with D,v € C*"7(Qy) such that

(4.8) v(w, 1) sz(m7 b ¥,y 8)B(v, Do)y, s)dy ds + F(x, 1) V(x, t) EQ—T ’
Qr
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where the functions H and F are so defined

(4.9) H(m,t,a,s):%[6(03?3/’t;s)_o(w—i—y’t;s)]

14 t
n 2 x t—s8\ .
(410)  Flz,1) = f H(w, 1, 9, 0)faly) 4y — 3 f D6 (Z—, 7‘) Jils)ds +
0 0 .
[
2 x—1 t—s8\ .
+2 f D.9 (T l—) Guls) ds
0
in terms of the function 6 defined by the equations
+ oo
(4.11) 0@, t) = > E@ -+ 2n,1)
= —c0
where
(4.12) E(x, 1) = (4mt)~V2 exp (— z2°1~1) .

We recall that E is the well-known fundamental solution for the heat operator,
while 0 is the Green function (over the rectangle) for such a operator when Cauchy-
Dirichlet conditions are prescribed. Finally ¥ is the solution to problem (4.2), ..., {4.5)
with B = 0. We observe that F does not belong to (2**E+9/2(Q ) since data §,, §a, §s
do not verify (in general) condition (4.6), (4.7) with B = 0. However, using prop-
erties (3.22), (3.24) and consistency conditions

(4.13) 7:(0) = §5(0);  Ga(0) = G(D) ,

it is not difficult to derive that F e 0*1(Q,) and D, F, D2F e L*(Qr).

This implies that Fe 0*7(@;) (0 < a <y < 1). Moreover by a straightforward
inspection we get that also D, F e C*"7(Qy).

Taking advantage now of the representation formula for the golution to a Cauchy-
Dirichlet problem related to the heat equation (%), it is an easy task to check that
every solution ve (2**@+9/%(Q.) to problem (4.2),..., (4.5) is a solution to the
integro-differential equation (4.8).

Conversely every solution ve 0%%(Q,) (with D,ve C*7(Q,)) to the integro-
differential equation (4.8) is easily seen (by differentiation) to be a solution to pro-
blem (4.2), ..., (4.5). Sinece B(v, D,v) € C***Q,) and satisfies (4.6), (4.7), we infer
that v really belongs to 2T+ )

() See e.g. [2, theorem 19.3.4].
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Then we observe that (v, D,v) is a solution in C*%(Q;) x C**¥(Q,) to the fol-
lowing system of Volterra integral equations

(4.14)  o(z, 1) sz(w7 b, ¥, 8) B(v, w)(y, s) dy ds - F(x, 1) Y(z, ) QT
Qr

(4.15)  w(w, 1) Zf-DwH(wy t Y, s)B(v, w)(y, s)dy ds -+ D, F(z,t) V(w,t)e QT ’
Qr

when » is a solution to the integro-differential equation (4.8).

Conversely, if (v, w) € 0%7(Qr) X C**¥(Q,) is a solution to system (4.14), (4.15),
it is immediate to derive that w = D,v.

Now we can state the following

THEOREM 4.1. —~ Problem (4.14), (4.15) admits (at least) a solution (v, w)e
€ O (Qr) X 0% (Qr) (O < a<y<}) for T small enough.

By virtue of theorem 4.1 we infer

COROLLARY 4.1. ~ Problem (4.1), ..., (4.5) admits ot least a solution v e C*+* @+ )
for some small T.

PRrROOF OF THEOREM 4.1 (Sketeh). — We are going to solve the Volterra integral
system (4.14), (4.15) by using Shauder’s fixed-point theorem.

To this purpose we introduce the nonlinear operator $ = (By, $B;) where the
component operators 3, and B, are defined respectively by the right-hand sides in
equations (4.14), (4.15).

We observe that $ maps 027(@r) X 0*"(Qy) (0 < a<y<}) into C%**@y) X
x 0%**@,). Consequently we shall look for the fixed point of H in the closed ball
(M) so defined.

(4.16) K(M,) = {(v,w) € Gzy’y(Q_T) X Gzy’y(ér): [9gy, <My, ”wuzy,v<M1} ’

M, being a (large enough) positive constant.

To apply Schauder’s theorem we have to show that $ maps J(M,) inte itself
and is compact. The first property is implied by lemma 3.1 choosing T small enough,
while the latter is a consequence of the following

LevmmA 4.1. - If Be(5,1], C*F*(Q,) is compacily embedded into C°*%(Qy).

And of the following estimates

(4.17) |D;Hx, 1, y, )| < O(L)(t — 8)~*+% exp [— o(t — 5)~"(@ — 9)?]
<<, 0<y<,0<s<t<T,j=0,1.
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where ¢ is a constant in (0, 1) and C(T) is a positive constant which remaing bounded
as T — 0+,

In fact we can show that B maps J(M,) into J(My) N Ks(M,;), where FKp(M,)
is a bounded set in C%#(Qy) for any fe(y,4).

5. — Proofs of Theorems 1.1 and 2.3.

Proor or THEOREM 1.1. — According to corollary 4.1 the transformed inverse
problem (3.3), ..., (3.9) admits a solution (3,a&)e C2+*T?%@,) X £ (°) for some T
small enough.

In order to show that our inverse problem (0.1),...,(0.7) is, in turn, solvable,
we shall show that the pair (@, @), where

(5.1) %= U@,

is actually a solution.
To this purpose we begin by recalling that U(@) is a solution to the Cauchy-
Neumann problem (0.1),..., (0.4) (with a = @) and that @ satisfies equation (0.7).
Hence the pair (#,a) will turn to be a solution to our inverse problem if, and .
only if, we show that U(a@) verifies also equations (0.5) and (0.6). This, in turn, is
equivalent to proving that the functions g, and g, s¢ defined

(5.2) 7.(0) = U@)(0,8) o<i<T

(5.3) 7.(t) = U@,t) 0<i<T

coincide respectively with g, and g,.

We observe also that g, and g, belong to C4**/2([0, T7), since U(a@) belongs to
C*H @920 ) together with its gradient DU(@).

In order to prove the equations §,= g¢; (j = 1, 2) we need to introduce the fune-
tion V(@) e 0***(Qy) so defined

(5.4) V(@) = L(U(@), D) D, U@) .

Taking advantage of the same argument used in section 3, we can prove that (V (@), @)

is a solution to the problem obtained from (3.25), (3.4), (3.6), (3.7), (3.9) by sub-

stituting the pair (g, 7,) for (¢, ¢») in the definitions of the functions §; (j = 1, 2, 4, 5).
It is then an easy task to check that the function

(5.5) v =3— V(@)

(") The space & is defined in step 2 in section 3.
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solves the problem
T

1
5.5 [el=Digp—Dip + Difoh(@) — phu@}avas = — 3 17 ot 5)
Qr . 0
{13 48) ~ assls) — @), $)hagls }ds+z 1 | hars(5)Dyplil, 5)ds Vg e @

0

(3.7) v(0,1) = h(t) O<i<T
(5.8) o(@, 0) = 0 O<o<l
(5.9) o, ) = hy(t) O<t<T.

We observe that the function space @ is defined by (3.26), while the functions
by(@), by(@)y hyy hay By By, dyy dy are defined respectively by formulas (3.19), (3.20)
and the following ones

(8.10) Iy s(t) = Digusi(t) — Diuss(t) 0<i<T, j=0,1

(BI1)  hars(t) = — {51, 8) + B(Furs())} [DEGuss(t) — Digurs(t)] -
+ {Df(il, t) + DGt i) ]} [Digrs 5(0) — D;Gss(t)] +
+ Diguri(O[3(gees(t)) — 8(Furs())]  O<i<T, j=0,1

(612)  dits(t) = Dygurs () DJA(ger () — 8(Frs4()]  O<i<T, j=0,1.
Our aim consists in showing that the function
(5.13) £(@t) = [Dega(t) — Dugo(®)| - [Degu(t) — Dugu(t)]  O<i<T

satisfies the following integral inequality
(5.14) g(z)<0f(z—— H-vrt@)dt 0<v<T,
0

where the positive constant ¢ depends upon admissible norms of data (see assump-
tions (1.9), ..., (1.12)).
From (5.14) and lemma 1.1 in [7] we infer that
(5.15) Hr)y=0, O0<z<T.
From (5.13) and (5.15) we immediately deduce that

(5.16) D,g:(t) = D,g:(t);  D.g.(f) = D.Ga(t) Vie[0, T].
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Our assertion g;= g, and ¢,=§, is immediately implied by the equations
(3.17) 9.(0) — §.(0) = 4:(0) — 72(0) = 0 .

We postpone for the moment the proof of (5.14). We show instead that equations
(5.17) hold true. This depends on the fact that (U(a), a) and (U(@), @) are solutions
respectively to problems (0.1), ..., (0.7) and (0.1), ..., (0.4), (5.2), (.3), (0.7). Hence g,
and g, satisfy the same compatibility conditions as ¢; and g,. This implies that

(5.18) §1(0) — §1(0) = g(0) — 72(0) = D, 4:(0) — D,7,(0) = D,g:(0) — D,Fo(0) = 0.

We proceed now to proving estimate (5.14) by taking advantage of a representation
formula for the function » solution to equation (5.6).

To this purpose we introduce the pair of linear differential operators .L and L*
so defined in C2T*CZ+92((Q.).

(5.19) L = D,— Di— b(@)D,— by(@)

(5.20) L* = ~ Dy~ D; - D,[b,(@) 1 b:(@) .
Consider then the solution ¢ to the foliowing Cauchy problem, where ye 07 (Q,):

L =1y in Qr

ez, Ty =0 O<o<]
(5.21)
D,p(0,t) =0 O<i<T

D, 1) =0  O<i<T.

As is well-known, ¢ belongs to C***@+92(Q,) (see e.g. [5, chapt. 4]) and ean be so
represented

1 T
(5.22) 9, 5) = [ao[@*(y, 5, 0, ) pla, 0@ V(y,5)eQr,
0 s

where G* is the Green function related to problem (5.21). It can be shown that G*
satisfies the following estimates

(8:23)  |DiG*(y, 5, @, V)| + [DLG¥(y, 5, 2, t)| < Ot — 5)” " " exp (— ot — 8)"(w — )?)
(5.24)  [(D+ D) G*y, s, @, )| <Ot~ 8)7 "2 exp (— ot — 5)" Yz — ¢)?)
h=0,1, 0<e<i.
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Substituting function ¢ defined by (5.22) in (5.6) gives the identity

(5.25) f 0w, 1) p(w, 1) do dt =

Qr

J

T

1

— 3 (1) [lduafs) - Taa(5) = @)1, (51
0

|4 T
'fdwa*(fl: s, @, )y, t)dt - Yy e 05(Qy) .
0 s

From (5.22) we infer the following representation for », which turns out to be the
same as in the regular case:

(5.26) o(z, 1) =
¢

(— 1)"J‘G*(ﬂ, 8y @y ) d145(8) + has(8) — ba(@)(G,y 8) hags(s)]ds V(2,8) €Qp .

0

i

-

Arguing as in theorem 3.17 in [3] it is not difficult to prove the identity
(6.27) Gy, s, 2, t) = Gz, t,y,8) x,ye(0,1], O0<s<igT,

G being the Green function related to the problem

Lo=F in Qr

o{w, 0) =0 O<o<l

(5.28)
D,0(0, 1) — by(@)(0, 1) 0(0,8) =0 0<i<T

Daoll, ) — bi@ (el H) =0 0<t<T
Compute now the traces of v along the segments # = 0 and »# = . From (5.7}, (5.9),
(6.26), and (5.27) we derive the following equations

t

. 1
{6.28) Z f (0,1, jl, 8){d115(8) + hars(s) —b,(@ )(ﬂ 8)hiy,(s)} ds
0
0<t<T

(3.29)  hy(t) = —2 E (—“1)‘[ (1, 8, 1, $){tis(s) ~F Pots(s) — bu(@)(jl, $)hays(s)} ds

0<t<T.
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Taking advantage of formulas (5.10),..., (5.13) and integrating both members of
equations (5.28) and (5.29) over [0, 7] (‘EE(O, T]), we obtain the following
equations:

580 D0~ D)) = —2 3 (- 1+zfdtf (i, 4, it 8
{hs-\—z ($)D:g1+:(8) — -Dtgl—l-i(‘g)]"}—hlo-i—i(s)[a(gl-l-j( ) —a(gui(8)) 1} ds +

-2 (= l-Hfdtf (31, 5 i1, 8) hoyi(8) [D3g144(8) — Diurals)] +

=0

1
+33 1+,fdt L, 1, l, )0, (@) T, 0)(Dogc )

'Dm[d(gl—l-i(s ) _a(gl-l—z )] ds j=0,1.

where
(3.31) ot (8) = Fily 8) + Bur ba@(fly 8) + TFur o)) G = 0,1
(5.32) heri(8) = D, f(ily 8) + D[a@(Fu+(5))] j=10,1.

In order to show that the function { satisfies the integral inequality (5.14) we need
to estimate the right-hand side in (5.30). To this purpese we use the following lem-
ma 5.1 (8) and equations (5.17): ‘

LEMMA 5.1. — Let g, r € CY([0, T')) and let r(0) = 0. Then the following bounds hold

[ o t
(5.33) 1 fda G, o, il s)q(s)Dgr(s)ds[<of t— )" Hr(s)|ds 4,4,k =0,1,

0

C being a positive constant depending upon |q]1.

Thus we get the integral inequality

6.34) @< 0fz—n2[l0)] + [a(e ) — aFes0)] & Vre (o, 11,

(®) For a proof see e.g. [8].
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Usiﬁg the representation formulas
(5.35) 9.0 = §:®) =[[Dugs(s) = Do) ds
0

from (5.34) we immediately derive (5.14).
This concludes the proof of theorem 1.1. m

- PrOOF OF THEOREM 2.3. — We proceed first to proving estimate (2.14). To this
purpose, we recall that the solution # = U(a) to problem (0.1), ..., (0.4) is also a
solution to the following nonlinear Volterra integral equation

(5.36)  ulw ) =[G, by, aluly, 9) dyds + Fl@, ) Vi, 1) Qr.

Here G denotes the Green funetion related to the heat operator D, — D2 and homo-
geneous Cauchy-Neumann conditions. It can be so represented (see e.g. [2, theo-
rem 19.3.5])

(5.37) G(m,t,y,s):%[e(wl—?/ t— )—I—O(W-er tl2 )}’

- where the functions 6 and E are defined respectively by formulas (4.14) and (4.15).
From the quoted theorem 19.3.5 in [2] we infer also that F can be represented
as follows

. !
(5.38) F(wz, 1) :fa(my Y, )y, 8)dy ds —[~fG(307 t, 9, 0)g:(y) dy +
Qz i}

——ﬁ1 6(1 lz)d 42 ﬂzft( lls)db Yz, 1) e Oy .

Observe now that I is a solution to problem (0.1),..., (0.4) with a = 0.

Since our data belong to the suitable Hélder spaces and satisfy the consistency
conditions f; = D,g,(0) and f,= D,g,(), we easily infer that Fe C2+*E+%@,)
and the following estimate holds true

(5.39) 12054220 am2 < OO {102 + 195)240+ 1

where owing to theorem 19.3.5 in [2] the positive constant C(7) remains bounded
as I — 0+ (9).

(*) We agree that throughout this proof O(T) will denote a positive function which
remains bounded as 7 — 0 +.
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Suppose now that a; (j = 1, 2) are two functions in O}J”(R) and let U(a;) be the
corresponding solutions to problem (0.1), ..., (0.4 with & = a;.
Then U(ay) — U(a,) satisfies the estimate

(5.40) 1 U(as) — Ulag)|1,0< (D) ||w2f oo Vay, a6 CJTY(R),

C(T) being also an increasing function in |a,|l; and |a,];.
To prove (5.40) we consider the identity

(5.41)  [U(as) — U(an)l(w, 1) =fG(90; ty 9y 8)[6( U(a2)(y, 5)) — ax(Ulan)(y, 8))] dy ds +
Qr

+ [60, 1,3, ) — a)(U@)w, ) dyds V@, 0ea.
Qr

From definitions (5.37), (4.14) and (4.15) we infer that G e C*(£2;), where

(5.42) Q= {(z,t,y,8) € R: 2,y € (0,1), 0 <s<t< T}

and satisfies the bound

(5.43) | D2 DiG(w, t, Y, 8)| < C(T)(t — §)~ A2 exp (— et — s) " (@ — y)?)
Yx,t,9,8)€Qr, 0<e<i, O0<h-+ 2j<3.

Taking the CLY%(@Q;)-norms of both members in (5.41) and applying lemma 5.2

reported below, we obtain the integral inequality

BAY) [T — U)oy < OO s s (2= 5742 T(a) — T(@,) lyoqagds +

T

- O 0 — o< O Jau]sf (2 — 22| Ula) — Ula)qanayds + O(T)as— anlo
’ VYa,, a,€ C.7"(R).

From lemma 1.1 in [7] we finally infer estimate (5.40).
LEvma 5.2, — Let I € C(2z) be a function satisfying the following estimate

(8.45)  |DADII(, 1,9, )| < C(T)(E — 8)"F 2 exp [— oft — )~ (@ — )]

Y, t,9,8) €2, 0<e<i, O<h<l, 0<j<l,

where the positive constant C(T) remains bounded as T — 0 4 .
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Then the linear operator 3 so defined

(5.46) o, ) =[ L@, tyy, 9)fly, ) dyds V(1) € Qo
Qe

maps L2(Qp) into C1V%(Qg). Moreover the following estimate holds

T

(5.47) 3| pangy< O(T)J(T — 8)7 V2 flpo@yds  VTe (0, T1, YfeL® (@),

0

where the positive constant C(T) remains bounded as T — 0 -,

To derive an analogous estimate for U(a,) — U(a,) in 2T *E+*2(( ) we observe that
v = U{a,) — Ul(a,) is a solution to the problem

Dy~ Djv = az( U(%)) - a’l( U(“l)) in Qr

Dv(0,8) =0 o<t
(5.48)

v(2, 0) =0 O<exl

Do, t) =0 O<t<T.

Since a4, = a,= @, in [gs(1), 9:(0)] (*) and U(a,) and U(a,) agree at (0, 0) and (I, 0),
the function a,(U(a,)) — a(U(e,)) vanishes at (0,0) and (I, 0). From classical re-
sults we infer the estimate

(5.49) [ U(ay) — U@ 240 21ay2<
< O(T){”a‘l( U(a'z)) - “1(U(“1)) “zx,a/z + [(@y— “1)(U(“2)) ”a,a/z} .
In order to estimate the first norm in the right-hand side of (5.49), we take now

advantage of lemma 4.2 (with y =1 and & = «) in [6], which we report here as
lemma 5.3 for the convenience of the reader:

LEMMA 5.3. — Let uy, 4, € C%Y2 and let a € O3 *(R). Then the function a(u,) — a(uy)
belongs to C***Qy) and satisfies the estimate

2
(5.50)  [a(uy) — “(u1)”a,o¢/2<O{HDT“HOI%— Uy lw,wjo + (D, al,|w, — wu, “o.z; I“jl?,l/z} (**)
i=
where C is a positive constant depending only on o.
(19) See definition (2.2).

() |uly,000 = Sup {(|o0p — )2 + [t — 8,])7V2 July, ) — wlmy, B)|: (21, 8), (05, 6) € Q>
(mls tl) % (.’1/'2, tz)}-



A. LorENzI - E. PAPARONI: An identification problem, elc. 285

From (5.49), (5.50), (5.40) we easily derive the estimate

2
(8.51) | U(ae) — U(@)|gsa,@rap<OD[1 4 [a]1,] [1 "]‘_g I U(“j)”il/z] X
x [ U(ay) — U(“1)”o¢,o¢/2+ leg—ail.] Ve, axe 05,,”(13) .

From (5.61), (2.13) and the first inequality in (5.44) we immediately infer esti-
mate (2.14). '

Then we observe that the boundedness of the maps a —>D(U(a)) and a —
—D, a(U(a)) from OL7(R) respectively to C***@+*(@,) and 0%**(@,) can be infer-
red by a classical regularizing procedure (*2) taking into account the fact that our
data f, g1, 0=, 9; and a, satisfy the appropriate consistency conditions. In order to
prove the continuity of such mappings we consider the following estimate, which
can be shown by applying the quoted technique to problem (5.48):

(5.52) [DU(ay) — DU(ay) 244, +ay2< O(T) | Day(U(a,)) — 0"1( U("q))] I x,02
Va,, aye O;""(R) .

Consequently it suffices to prove that the mapping & — D[a(U(a))] is uniformly
continuous from C.'”(R), endowed with the metric of C}*7"(R), to C***(@Q,). To
this purpose assume that a,,a,€ G;:rV(R) and take advantage of estimates (2.14),
(6.50), (6.52). After boring computations we deduce the inequality

(5.53) | D[ey(Ulay)] — D[“1(U(“1))] “a,a/2<

<O’(T){||a,2— ay ot !Dral(U(“z)) - 'Dza'l(U(a’l)) Ioc,ax/z} Ya,,a,€ G;:LV(R) .
We notice that the positive constant C(T') depends also on |a,|;,, and |a,],,,
(as an increasing function) and on admissible norms of data (see assumptions
(1.10), ..., (1.13)).

In order to estimate the seminorm appearing in the last hand-side of (5.53), we
introduce the function 4: R*— R so defined

Pl 1_“1)11 2 — Do (, 1 .
(5.54) A(ul,uz):{lu [~ Doty (u,) a(u)] U

0 Uy = Us .
Since D,a,€ O)(R) (a <y <3%), Ae C(R?) and satisfies the bound

(6.55)  |A(uy, w)|<IDyayloyimltts— s 7 < g [y gy lp— 7% Vo, upe B

(12) For the details see e.g. [8, theorem 1.2].
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Setting then u;= Ula;) (j = 1, 2) and performing long and tedious computations
we obtain the following inequality, where Sup denotes the Supremum as (v, %),
(225 ;) TUD OVer Qr, (1, 4) 7 (s ),

(556) !D'ta’l( U(“z)) - Dra’l(U(al)) |0¢,o¢/2<
<{luzl;‘,1/2 Sup IA(uz(mz, Ta)y Us(@y, t1)) - A("h(“’zy by)y Uy (@4 by )f -+

+ |y — “111 12l ”1+yl“1{x ajal B+ )~ 6)12}

From theorem 2.2 we infer that #, and u, satisfy the estimates
(5.57) %< My §=1,2

for some positive constant M, depending only on T,1, |f|, 42, [9s]2+. and M, the
latter being a positive bound for |a,[;,, and [ay],.,-

Taking advantage of the uniform continuity of the function 4 over [— M,, M,] X
X[— My, M,] and using estimate (5.44), from (5.53) we easily derive that with
each & > 0 we can associate a § > 0 depending on ¢, M, 7, ! and the admissible norms
of data such that

(588)  [6y— tlyo, <6 and [a],,, <M (G =1,2)=

= | D, al(U( )) D “1(U(“_1)) lo,02<8 .

From (5.50), (5.53) and (5.58) we easily infer the continuity of the mappings
o — DU(a) and a - D,a(U(a)) from O)'7(R) respectively to (***E**%@,) and
Oa,al2(QT). [
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