On Infinite-Horizon Lower Closure Results for Optimal Control ().

Erix J. BALDER

Summary. — Recently, Oarlson gave a mew infinite-horicon lower closure result [12, 14]. Here
an infinite-dimensional generalization of this result is derived by combining a new extension
of Chacon’s biting lemma with o known infinite-dimensional lower semicontinuity result for
problems with a finite time horizon.

0. — Introduction.

In this paper we present a new approach to lower closure problems for optimal
control problems with infinite time horizon. Thus far, the most general results ob-
tained for such problems were not nearly as strong as their counterparts for finite
time horizon problems. Here, however, we shall demonstrate that the approach to
lower closure problems suggested in [2, p. 588] can be brought to bear on infinite-
horizon lower closure problems as well. This gives results which are of exactly the
same degree of generality.

An important tool developed here is an infinite-dimensional extension of Chacon’s
biting lemma for a o-finite underlying measure space. This result is obtained in
section 1 of this paper (Lemma 1.7). In section 2 this result is then combined with
an infinite-dimensional lower semicontinuity result for a finite underlying measure
space (Theorem 2.2) so as to yield the desired infinite-dimensional lower closure
regult for a o-finite underlying measure space (Theorem 2.5).

Previous infinite-horizon lower closure results are due to Baum [9], BATES [8],
the present author[1], and CARLSON [12,14]. Of these, Carlson’s result [12,
Thm. 2.4.3], [14, Thm. 3.3] ([13, Thm. 2.3]) is the most general one. As explained
in gection 2, our Theorem 2.5 generalizes this result and also extends it to infinite
dimensions and an abstract underlying o-finite meagure space.

1. — An extension of Chacon’s biting lemma.
First, we shall introduce some notation. Let (£2, £, ») be a finite measure gpace
and # a separable Banach space. The set of all integrable functions from & into K

is denoted by £3(Q):= £LL(Q, #,7). (Note that by separability of B strong and

(*) Entrata in Redazione il 25 febbraio 1987.
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scalar measurability coincide [16]). Also, the set of all scalarly measurable essentially
bounded functions from £ into B’ (the continuous dual of E) is denoted by £3(£2).

DErINITION 1.1. - A sequence {f.},~, in £1(2) is said to w2-converge to f, in £1(Q)
if there exists a nonincreasing sequence {B,}° of sets in A with liﬂm v(B,) = 0,
such that for every pe N
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k
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Here {, > denotes the duality between F and E'.

DEFINITION 1.2. — A sequence {f,}>, in £1(£2) is said to w-converge to f, in LL(Q) if
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Evidently, w-convergence is the well-known convergence in the weak topology
o(£3(82), £5(2)); it is stronger than w*-convergence.

REMARK 1.3. — If {f,},2, w’-converges (or w-converges) to f, in £} the following
holds:

fo(t) € ﬁ cl co {fy(w): k>n} a.e.

Here cl co stands for closed convex hull.

This remark already indicates a certain connection between w?-convergenee on
the one hand and Tonelli’s notion of seminormality and Cesari’s notion of prop-
erty (@) on the other. For more information regarding this we refer to [5]. For a
another connection, with relaxation theory and its associated weak limit conecepts,
the reader should consult [2, 4, 6]. (Actually, the main result of this paper can also
be proven by using the main results of [4], without use of Chacon’s biting lemma.)

Lemma 1.4 (Chacon). — Suppose that § is a subset of £5(£2) such that

swfmw<+w.
fed it

Then F is relatively sequentially wi-compact, i.e. for every sequence {f;}7°, in &
there exists a subsequence (£} of {k} and a function f, € £5(2) such that

{fst wi-converges to f, in £L(2).

A relatively involved proof of this result has been given in [11]. A much simpler
proof, depending only on the Yosida-Hewitt decomposition theorem, Tychonov’s
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theorem and standard measure theory, was found by THOMSEN and PrLAcCHKY. It
can be found in [18, pp. 186-188] and [7, Appendix].

TeEROREM 1.5 (Dunford-Pettis theorem). — Suppose that the separable Banach

space B is reflexive. For every set F of functions in £3,(£2) the following are equivalent:
F is relatively sequentially w-compact in £ (),

(1f1: f € &} isrelatively sequentially w-compactin £14(R2) ,

This result follows immediately from [16, Thm. IV.2.1] and the Eberlein-Smulian
theorem. Observe (cf. [17, IV.2.3]) that the latter statement is also equivalent to

{Ilfl: fe F} is uniformly »-integrable .

Let u be a o-finite measure on (2, £). Let {£2};2, be a fixed nondecreasing se-

quence in 4 such that | Q;= 2 and p(Q,) < + oo for all jeN. By £3'°({£2})

j=1
we shall denote the set of all measurable funetions f from £ into Z such that

f1Q; belongs to £3(£2;) for all je V.

Here f|Q, denotes the restriction of f to the finite measure space (£2;, £ N 2;, u).

DEFINITION 1.6. — A sequence {f};>, in £3'°°({€2}) is said to w’-converge to f,
in £y ((0)) i

{f,:le},jll w?-converges to f|2, for every jeN.

It is easy to see that Remark 1.3 also applies to wi-convergence in £3'°°({2}).
Our next result extends Lemma 1.4 to infinite dimensions:

LemMA 1.7. — Suppose that the separable Banach space E is reflexive and that 5
is a subset of £;'°°({2;}) such that

sup f]}f]] du< -+ oo for every jeN.
fe&F o5

Then ¥ is relatively sequentially w®-compact in £3'°({Q;}).
PRrOOF. — Let {f,}72., be an arbitrary sequence in F. By Lemma 1.4 the following

is true a fortiori: for arbitrary je N there exists a nonincreasing sequence {B,}2°
in AN L, lim pu(B,;) = 0, such that for every pe N

(1@ \B,, I}z, is relatively sequentially w-compact in £3(2\B,,) .
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Hence, by Theorem 1.5 for every pe N
{Fol@\B,;} >, is relatively sequentially w-compact in £L(Q2\B,;) .

By a standard diagonal extraction argument this implies that there exist a sub-
sequence {£} of {k} and a sequence {fu,;}r2q, fu€ELE(2\B,,), such that for
every pe N

(1.1) {FA2\B,;} ¢ w-converges to f,; in LL(Q\B,,).
Note that, as a consequence, for every pe N

(1.2) sup [lfel dp<sup [ [fldp< + oo
£ 2:\Bpj feF o]

Since 2\ B,; is contained in 2\ B, ; for every p, it follows elementarily from (1.1)
that feps= fapre, i} @ \Bys p-a.e. on Q\B,; for every p. Thus, setting ff := fyps
on 2\ B,;, pe N, makes sense and defines an element of £3(£2,), since it follows
from applying the monotone convergence theorem to (1.2) that

(1) f 1751 dﬂ<§ggp9[ UE

Observe that (1.1) can now be reformulated as
{f¢|Q2;} w-converges to fF.

In all of this §j was an arbitrary element of N. Since £,., contains Q; for every
je N, it follows simply from the definition of w-convergence that ff=fF |0,
u-a.e. on Q; for all j. Hence, setting f,:= fi on £,, j € IV, unambiguously defines
an element f, of £;°°({Q}), in view of (1.3). =

A similar proof is well-known for w-convergence in £3°°({2}); see for instance
(1, Appendix A].

2. - Main result.

In this section we obtain a very general inite-dimensional infinite-horizon lower
closure result by combining Tiemma 1.7, the infinite-dimensional infinite-horizon
extension of Chacon’s biting lemma, with a well-known infinite-dimensional finite-
horizon lower semicontinuity result, which will now be stated. Let (£, #,») be a
finite measure space and X a metric space (metric d). The set of all Borel measurable
functions from £2 into X is denoted by £3(2). (We note already that this definition
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can also be given for a o-finite measure space, with no alterations needed in the
formulation.)

DEFINITION 2.1. — A sequence {®};>, in £%(Q) is said to converge in measure
to x, if

lim v({w € Q: d(z,(w), B(w)) > e}) =40 for every ¢>0.
k
THEOREM 2.2. — Liet X be a metric space, and V a separable reflexive Banach
space. Suppose that the sequences {w,};> o€ £%(2) and {v,}5>, c L3(2) are such that

{w,}7>., converges in measure to z, in £%(2),

{v,}2, wi-converges to v, in £3(92) .

Suppose also that the function I: 2XX XV — (— oo, + o0] is such that for »-a.e.
w in Q:

(2.1) Uw, -, -) 18 sequentially Ls.c. at every point of {#(w)} XV,

(2.2) Yw, my(w), *) is convex on V,

and is also such that for some uniformly »-integrable sequence {4} c £5(2):

Wy, v) >4 for all keN.
Then

liminffl(-,wk, vk)dv>fl(-, o, Do) v,
k
] 0

where f indicates outer integration (cf.[2,3]).
0

The above result is of a well-known type (at least if w2-convergence is replaced
by w-convergence); see for instance [15] for a large number of references. The
infinite-dimensional vergion given here (again with w- instead of w?-convergence)
can be found in [10] for 2 locally compact with ordinary integration, and in [4,
Thm. 3.1] and [, Cor. 4.11] for general abstract £ and outer integration (the latter
results go further than Theorem 2.2). Moreover, it is evident from the definition of
wi-convergence that Theorem 2.2 continues to hold for that type of convergence.
Actually, & completely similar reasoning lies behind the proofs of lower closure re-
sults in [5] (see also the remark madein [2, p. 588]). There it is already made evident
that, from a technical point of view, the only difference between lower closure and
lower semicontinuity results lies in the occurrence of relative w?-compactness, in
addition to w-convergence.
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It is possible to rephrase Theorem 2.2 in terms of orientor fields: Let @: QXX V
be a multifunction (the «orientor field »).

DerFInITION 2.3. — The orientor field € is said to have property (K) in the vari-
able # at the point (w, 2°) e @ x X if :

Hw, 2°) = () seq-clU {Q(w, x): d(z, 2°) < 8} .
48>0

Here seq-cl stands for the weak sequential closure in V.

In contrast to what is usually done in the literature we take the domain of @ to
be all of 2xX. In[2] it was shown that by allowing @ to take empty values on
0 x X this simplification ean be made without any loss of generality.

CoROLLARY 2.4. — Suppose that the sequences {z,};2,C £%(2) and {v}52,c LH(Q)
are such that

{w}r2, converges in measure to ,,

{v,}7>, wi-converges to v, in £1(Q).
Suppose also that @: 2x X ~ V is such that for y-a.e. w e Q

@ has property (K) in the variable # at every point (w, z(w)),
Q(w, m(w)) is a convex get,
vp(w) € Q(w, #x(w)) for all ke N.

Then vy(w) € Q(w, zo(w)) for v-a.e. we Q.

PrROOF. - Define the function I,: QXX XV — {0, oo} by I, (w,®,v):=0 if
v € Q(w, @), l,(w,x, v) =: -}- co otherwise. It is well-known that the conditions of
Theorem 2.2 are precisely met for I, by those of the present corollary; e.g., see [2].
The result then follows immediately from applying Theorem 2.2. m

We are now ready to state and prove the main result of this note. As in sec-
tion 1, let u be a ¢-finite measure on (Q, £), and let {2,};°, be a fixed nondecreasing

sequence in 4 such that |J £,= @ and u(L2,) < + oo for all je V.

i=1
THEOREM 2.5. — Liet X be a metric space and V and W separable reflexive Banach
spaces. Suppose that the sequences {w};>,C L%(Q), {v,}:2,C £ °({2}) and {w,} c
c £5'°°({2;}) are such that for every je N
{#, |2}, converges in measure to x,|2; in £%(2)),

(2.3) {v,|2;}7>., w-converges to vy|8;,

(2.4) sup [fons]dp < + 0.
¥og
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Then there exist a subsequence {£} of {k} and a function w, e £3,'°°({;}) such that
for every funection l: QXX XVXW —(— oo, + oo the following inequality holds
for every jeN:

1im£nf f Wy wg, ve, wg) d,u>f 1(vy @0, Vo, wy)du
Q4 Q;

provided that [ éatisﬁes {2.1)-(2.2) and is also such that for every je N
l('7$k7vlc’wk)>lkj on Q,‘ for all ke N.

for some uniformly u-integrable sequence {A,}:>,c £5,(2;).

Proor. — From (2.4) it follows by Lemma 2.4, the extension of Chacon’s biting
lemma, that there exist a subsequence {#} of {k} and a function w, in £3'°({Q})
such that

{wg wi-converges to w, in L£°°({Q}) .
By (2.3) it follows elementarily that
(04 wg)} wP-converges to (v, ) in LHI%S({2]),

so the proof is finished by invoking Theorem 2.2 for each j separately. m

With Corollary 2.4 in mind it is now easy to see that Theorem 2.5 generalizes
the lower closure result of {12, Thm. 2.4.3], [14, Thm. 3.3] in a number of ways:
There £ is the positive real axis, equipped with the Liebesgue measure, X is a com-
plete separable metrie space, V is finite-dimensional, and W is 1-dimensional. Also,
only one funetion I, viz. lw,x, v, w) = w, is considered. The method of proof
in {12, 14] rests on the approach presented in [1], and uses in addition Helly’s selec-
tion theorem, so that any extensions of the kind reached here lie definitely outside
the scope of [12, 14].

Note added in proof: Professor Michel Valadier hag kindly pointed out to the author that
the proof of Chacon’s biting lemma as given by Thomsen and Plachky [11] is incomplete.
It is still an open problem how their proof should be reconstructed.
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