
On Infinite-Horizon Lower Closure Results for Optimal Control (*) 

ERIK J.  BALDEI% 

Summary.  - Recently, Carlson gave a new in]inite-horizon lower closure result [12, 14]. Here 
an in]inite-dimensional generalization of this result is derived by combining a new extension 
o/ Chacon's biting lemma with a ]~nown in]inite-dimensional lower semieontinuity result for 
problems with a ]inite time horizon. 

O. - Introduct ion .  

In  this paper  we present  a new approach to lower closure problems for opt imal  
control  problems with infinite t ime  horizon. Thus far, the  most  general  results ob- 
tMned for such  problems were not  near ly  as strong as thei r  counterpar ts  for finite 
t ime  horizon problems, t Iere,  however,  we shall demons t ra te  tha t  the  approach to 
lower closure problems suggested in [2, p. 588] can be brought  to bear  on infinite- 
horizon lower closure problems as well. This gives results which are of exact ly  the 
same degree of general i ty.  

An impor t an t  tool developed here  is an infinite-dimensionM extension of Chaeon's 
bi t ing lemma for a a-finite under lying measure space. This resul t  is obta ined in 
section 1 of this  paper  (Lemma 1.7). In  section 2 this result  is then  combined with 
an infinite-dimensionM lower semicont inui ty  resul t  for a finite under lying measure  
space (Theorem 2.2) so as to yield the  desired infinite-dimensionM lower closure 
resul t  for a a-finite under ly ing  measure  space (Theorem 2.5). 

Previous infinite-horizon lower closure results are due to BAu~ [9], BATES [8], 
the  present  au thor  [1], and CARLSO~ [12,14]. Of these,  Carlson's resul t  [12, 
Thin.  2.4.3], [14, Thm.  3.3] ([13, Thin. 2.3]) is the most  general  one. As explained 
in section 2, our T h e o r e m  2.5 generalizes this result  and also extends i t  to infinite 
dimensions and an abs t rac t  under ly ing  a-finite measure space. 

1. - A n  ex tens ion  o f  Chaeon's  b i t ing  l e m m a .  

First ,  we shall in t roduce some notat ion.  Le t  (f2, A, v) be a finite measure space 
and E a separable Banaeh  space. The set of all integrable functions from ~9 into J~ 
is denoted  by  ~(/2) : ~  ~(~2, A, v). (Note t h a t  b y  separabi l i ty  of E strong and 
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scalar measurabi l i ty  coincide [16]). Also, the  set  of all scalarly measurable essentially 
bounded funct ions  f r o m / 2  into E '  (the continuous dual of E) is denoted b y  g~,(D). 

j co I ) ~ m i ( r i o ~  1.1. - A sequence { k}k=~ in g~(/2) is said to w~-eonverge to ]o in ~(/2) 
. B oo ~ if there exists a noninereasing sequence { ~}~=~ of sets in A with lira r(B,) 0, 

such tha t  for every p e N 

lim f<f~, h)df =f<Jo, h)d~ for all h e  g~%(/2) . 
1r 

Xl\B~, I?\B2, 

Here  < , >  denotes the  dual i ty  be tween  E and E' .  

- -  co i D~,FINImm~n 1.2. A sequence {JT0}k=l n g~(/2) is said to w-converge to ]. in g~(/2) if 

limf(1 , h>d  =f<fo, all h e  g~,(/2). 
k 

Evidently,  w-convergence is the  well-known convergence in the  weak topology 
a(g~(/2), g~o,(/2)); it is stronger than w2-convcrgenee. 

REYIARK 1.3. -- If  {]k}7~=1 w~-converges (or w-converges) to Jo in ~ t h e  following 
holds: 

oo 

]0(t)e N clcoff ( ): 
~ t = l  

I tere  cl co stands for closed convex hull. 
This remark already indicates a certain connection be tween  w-~-convergence on 

the one hand and Tonelli's notion of seminormali ty  and Cesari's notion of prop- 
er ty  (Q) on the other. For more information regarding this we refer to [5]. For  a 
another  connection, with relaxation theory  and its associated weak limit eoncepts~ 
the reader should consult  [2~ 4, 6]. (Actually, the  main result  of this paper  can also 
be proven by  using the main results of [4], wi thout  use of Chacon's bi t ing lemma.) 

L E ~  1.4 (Chacon). - Suppose tha t  ~- is a subset  of g~(/2) such tha t  

lild < + 

Then ~- is relatively sequentially w2-compact, i.e. for every sequence {]k}~~ in 5 
there exists a subsequenee (Z} of {k} and a function ]. e g~(/2) such tha t  

{fz} w2-c~ es to J. in s 

A relat ively involved proof of this result  has been given in [11]. A much simpler 
proof, depending only on the Yosida- t tewi t t  decomposit ion theorem, Tychonov's  
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theorem and s tandard  measure theory~ was found by T~O~SEN and P]~Ao~ixv. I t  
can be found in [18~ pp. 186-188] and [7, Appendix]. 

T~EO~n~ 1.5 (Dunford-Pettis theorem). - Suppose tha t  the separable Banach 
space E is reflexive. For  every set ~ of functions in g~(D) the following are equivalent:  

is relatively sequentially w-compact in s 

(l[fll : ] e 8 v} is relatively sequentially w-compact in s 

This result follows immedia te ly  from [16, Thm. IV.2.1] and the Eberlein-Smulian 
theorem. Observe (el. [17, IV.2.3]) t ha t  the la t ter  s t a tement  is also equivalent to 

{fill[: f ~ ~-} is uniformly v-integrable.  

Le t  /~ be a a-finite measure on (/2, A). Le t  {/2~}~ 1 be a fixed nondecreasing se- 

quence in A such tha t  U/2 j  = / 2  and  #(Dj) < @ for all j e N. By s ~ 
j= l  

we shall denote the  set of all measurable functions f from [2 into 2~ such tha t  

]l/2j belongs to s for all j e N .  

Here fl~2~ denotes the restriction of f to the finite measure space (/2j, A f~/2~,/z). 

DI~PII~ITIO~ 1.6. - A sequence {/k}~=l i n  ~l, loc({/2j}) is s a i d  tO w2-coztverge to fo 
in ~'~ 

{?klG}k=l w2"c~ es to ]0]/2J for every j e N .  

I t  is easy to see t h a t  Remark  1.3 also applies to w~-convergenee in s 
Our next  result  extends Lemma 1.4 to infinite dimensions: 

L E n A  1.7. - Suppose t ha t  the separable ]3anach space E is reflexive and tha t  5: 
is a subset of s such t h a t  

P 
J]l]]l d# < -}- c~ for every j e N .  s u p  

Then 5 is relatively sequentially we-cems in s 

f ~  PROOF. - Le t  { k}~=l be an arbi t rary  sequence in ~ .  By  Lemma 1.4 the following 
is true a ]ortiori: for arbi t rary  i e N there exists a noninereasing sequence {B~}~ 1 
in A n / 2 j ,  l im #(B~j )=  0, such tha t  for every p e N  

(ll.fdG\B,,jll}~'=~ is relatively sequentially w-compact in s 
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Hence,  by  Theorem 1.5 for every ~o e N 

{/~IP~\B~}~=~ is relat ively sequential ly w-compact  in s162 

By  a s tandard diagonal extract ion argument  this implies tha t  there  exist a sub- 
/ sequence {Z} of {k} and a sequence { ,vr f,v~eg~(f2r162 such tha t  for 

every p e N 

(1.1) {fzI~Pj\Bv~}% w-converges to /,v~ in s 

Note  that ,  as a consequenc% for eve ry /o  e N 

(1,2) sup ,fllf~li d~<sup f i1Ill d~ < + o o .  

Since ~9~.\B~j is contained in ~Pj\B,+~,r for every p, it follows elementar i ly  from (1.1) 
tha t  1.~----]**+l,~lzQj\B~j #-a.e. on f2~\B,~ for every /o. Thus, set t ing /* :----/**~. 
on ~9~.\B~, /~ ~ N, makes sense ~nd defines an element  of ~(~Pj), since it follows 
from applying the  monotone convergence theorem to (1.2) tha t  

Observe tha t  (1.1) can now be reformulated as 

{/~1~} w~-converges to f~. 

In  all of this j was an arbi t rary  element  of N. Since /2r contains 9~ for every 
j e N ,  i t  follows simply from the definition of w~-convergenee tha t  1 " = / * + l [ ~ j  
#-a.e. on Qj for all ]. Hence,  set t ing 1 , : =  1" on ~ j ,  ] e N, unambiguously  defines 
an e lement  f .  of s162 in view of (1.3). [] E ~( D]~ 

A simiiar proof is well-known for w-convergence in s ; see for instance 
[1~ Appendix A]. 

2.  - M a i n  r e s u l t .  

In  this section we obtain a very  general inite-dimensional infinite-horizon lower 
closure result  by  combining L e m m a  1.7, the  infinite-dimensional infinite-horizon 
extension of Chaeon's bi t ing lemma, with a well-known infinite-dimensional finite- 
horizon lower semicontinui ty result, which will now be stated.  Le t  (zP, A, v) be a 
finite measure space and X a metric space (metric d). The set of all :Borel measurable 
functions from f2 into X is denoted by  s (We note  already tha t  this definition 
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can also be given for a a-finite measure space, with no alterations needed in the 
formulation.) 

DEFi~i:rIorr 2.1. - A sequence {Xk}k~ 1 in g~ is said to converge in measure 
to xo if 

limv(~oJ ~ .(2: d(x~:(oJ), Xo(~O)) > e~ = 0  for every e > 0 .  
k 

\ L  

TgEOI~E~ 2.2. -- Le t  X be a metr ic  space, and V a separable reflexive Banach 
space. Suppose t ha t  the sequences {xk}~ o e ~~ and  {Vk}k~ 0 C s are such tha t  

{xk}l:~ 1 converges in measure to x o in s176 

{Vk}k% 1 w~-converges to v o in ~(~9).  

Suppose also tha t  the funct ion l: Y2 • X • V -+ (-- 0% -4- co] is such tha t  for v-a.e. 
in /2: 

(2.1) 

(2.2) 

1(r -, .) is sequentially 1.s.c. a t  every point  of {Xo@)} • V ,  

l(w, Xo(W), ") is convex on V,  

and is also such that for some uniformly v-integrable sequence {~k} c s 

Then 

l(',Xk, V~)>~Xk for all k e N .  

l im i n f ' ( . ,  xk, v~)dv>~fl(., xo, Vo)dV, 
0 0 

where ~ indicates outer integrat ion (el. [2, 3]). 
0 

The above result  is of a well-known type  (at least if w2-convergence is replaced 
by w-convergence); see for instance [15] for a large number  of references. The 
infinite-dimensionM version given here (again with w- instead of w~-convcrgence) 
can be found in [10] for /2 locally compact  with ordinary integration, and  in [4, 
Thin. 3.1] and  [5, Cor. 4.11] for general abstract  z9 and outer integration (the lat ter  
results go fur ther  than  Theorem 2.2). ~oreover ,  i t  is evident from the definition of 
w~-eonvergence tha t  Theorem 2.2 continues to hold for tha t  type  of convergence. 
Actually, a completely similar reasoning lies behind the proofs of lower closure re- 
sults in [5] (see also the remark made in [2, p. 588]). There i t  is already made evident  
tha t ,  from a technical point of view, the only difference between lower closure and 
lower semicontinui ty results lies in the occurrence of relative w~-compactness, in 
addit ion to w-convergence. 
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I t  is possible to rephrase  Theorem 2.2 in te rms of orientor  fields: Le t  Q: z9 • X ~ V 
be a mul t i funet ion (the (~ orientor  field )~). 

DEFINITION 2 . 3 .  - -  The or ientor  field Q is said to have property (K) in the  vari- 
able x a t  the  poin t  (r x ~ ~ ~2 • X if 

Q@, x~ =- N seq-el w {Q@, x): d(x, x ~ < ~} . 
~ > 0  

Here  seq-cl s tands for the  weak sequential  closure in V. 
In  contras t  to what  is usually done in the  l i te ra ture  we take  the  domain of Q to 

be all of z9 •  In  [2] i t  was shown th a t  by  allowing Q to take  e m p t y  values on 
Y2 • X this simplification can be made  wi thout  any  loss of generali ty.  

CO~OLLAI~Y 2.4. - Suppose t h a t  the  sequences {Xk}k% o C g~ and {vk}~oC E~(Q) 
are such t ha t  

{x~}~  converges in measure  to Xo, 

{v~}~  w2-converges to v o in s . 

Suppose also t ha t  Q: ~ • X _~ V is such t h a t  for v-a.e, o) e Y2 

Q has p rope r ty  (K) in the  var iable  x a t  every  poin t  (r x0(co)) , 

Q(co, Xo@)) is a convex s e t ,  

vl:(oJ) ~ Q(r x~@)) for all k ~ N .  

Then vo(~) E O(~, Xo@)) for ~-a.e. ~ ~ 9 .  

P~ooF. - Define the  funct ion 1Q: Y 2 • 2 1 5  -+{0, ~ - ~ }  by  l ~ @ , x , v ) : :  0 if 
v eQ@,  x), l~(co, x, v ) : :  ~- co otherwise. I t  is well-known tha t  the conditions of 
Theo rem 2.2 are precisely me t  for l~ by  those of the  present  corollary;  e.g., see [2]. 
The resul t  t hen  follows immedia te ly  from applying Theorem 2.2. [] 

We are now ready  to s ta te  and prove the  main  resul t  of this note.  As in sec- 
t ion 1, let  # be a a-finite measure on (~9, A), and le t  {~Pj}~ 1 be a fixed nondeereasing 

sequence in A such t h a t  U ~Pj = ~9 and  /t(~Pj)< d- ~ for M1 j r N. 

T r m o g ~  2.5. - Le t  X be a metr ic  space and V and W separable reflexive Banach  
co V r spaces. Suppose that the sequences {x1~)~=or ~o(~), { ~}~=or ~P~~176 and {w~) 

~'~176 ) are sneh that for every j~  N 

{~1~},%1 converges in measure to xol~ in ~ ~  

(2.3) {vkl~j}~= 1 w-converges to  Vo[~j, 

sup ~ [llw~ll @ < + ~ .  (2.4) 
~ j  
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Then there  exist  a subsequence {~} of {k} and a funct ion w,  ~ ~1~176 such tha t  
for every  funct ion  5:f2 •  • V • W -> (-- c% + oo] the  following inequal i ty  holds 
for every  j ~ N:  

l im inf f l ( . , xs  vz, w ~ ) d # > ; l ( . , x o ,  co, w , )d t t  , s 
~9j ~ j  

provided t ha t  l satisfies (2.1)-(2.2) and  is also such t h a t  for every  j e N 

5(', x~, v~, w~:) > ~7," on ~9~ for u]l k e N .  

for some uni formly  /~-integrable sequence {Xkj}k%~ c s 

P~ooF. - F r o m  (2.4) i~ follows by  L e m m a  2.4, the  extension of Chacon's bi t ing 
lemma,  t ha t  there  exist  a subsequence {Z} of {k} ~nd a funct ion w.  in s176 
such t ha t  

(w%} wP-converges to w .  in ~'~176 . 

B y  (2.3) i t  follows e lementar i ly  t h a t  

{(vz, wz)} wP-converges to (vo w.)  in 1.1oo , 

SO the  proof is finished by  invoking Theorem 2.2 for each j separately.  [] 

Wi th  Corollary 2.4 in mind  i t  is now easy to  see t h a t  Theorem 2.5 generalizes 
the  lower closure resul t  of [12, Thin. 2.4.3], [14, Thin. 3.3] in a number  of ways:  
There  Y2 is the  posit ive real axis, equipped with the  Lebesgue measure,  X is a com- 
plete separable metr ic  space, V is finite-dimensional, and W is 1-dimensionaL Also, 
only one funct ion l, viz. 5(0~, x, v, w ) ~ - w ,  is considered. The me thod  of proof 
in [12, 14] rests on the  approach presen ted  in [1], and uses in addi t ion t te l ly 's  selec- 
t ion theorem,  so t ha t  any  extensions of the  k ind reached here  lie definitely outside 
the  scope of [12, 14]. 

Note added in proo]: Professor Michel Valadier has kindly pohated out to the author that 
the proof of Chaeon's biting lemma as given by Thomsen and Plachky [11] is incomplete. 
It  is still an open problem how their proof should be reconstructed. 
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