
On Measures of Weak Noncompactness (*) 

J6zEF BA~A~ - JESUS I~IVE~0 

Summary. - I u  this paper au axiomatic approach to the notion o] a measure of weak non- 
compactness is presented. Several properties o] the de]ined measures are given. Moreover, 
we provide a Jew concrete realizations o] the accepeted axio~natie system in some Banach spaces. 

1 .  - I n t r o d u c t i o n .  

The not ion of a measure  of weak  noncompac tness  was defined b y  DE ]3LASI 
in 1977 [6] (see also below). I n  con t ras t  to the  not ion of a measure  of noncompae tness  

in s t rong sense (cf. [1, 4, 9, 10, 1r i t  wus r a the r  seldom appl ied (see [3, 8, 12, 13]). 
This s i tuat ion is caused b y  the  fac t  t h a t  convenien t  cr i ter ia  of weak  compactness  
are  r a t he r  unknown except  for some few eases (compare  [7, 11]). Therefore  i t  is ve ry  
difficult to cons t ruc t  some formulas  allowing us to express De Blasi  measure  in a 
conven ien t  fo rm for applicat ions.  

I n  this pape r  we propose  an  ax iomat ic  approach  to the  not ion of measures  of 
weak  noncompae tness  which seems to solve the  above  men t ioned  p rob lem in a 
pos i t ive  sense. Roughly  speaking,  a measure  of weak noncompac tness  (in our sense) 
is some funct ion  defined on the  fami ly  of all  n o n e m p t y  and  bounded  subsets  of a 
B a n a c h  space which vanishes on a f ami ly  of some re la t ive ly  weakly  compac t  sets 
(not necessari ly  on all). This pe rmi t s  us to cons t ruc t  measures  of weak  non- 
compactness  in several  Banach  spaces. Moreover,  some nontr iv iM real izat ions 
of our  axiomat ics  in reflexive spaces m a y  be also given,  while the  classical measure  
due to De Blasi vanishes  ident ical ly  in this  case. Actual ly,  our definition will be  

i l lus t ra ted  b y  some examples .  
Final ly ,  let  us m en t i on  t h a t  our approach  to the  not ion of measures  of weak  

noncompac tness  is ve ry  similar  to an approach  associated wi th  the  not ion of measures  
of noncompae tness  in s t rong sense (cf. [1, 14]). This caused t h a t  m a n y  proper t ies  
of these  measures  are similar.  But ,  on the  o ther  hand,  the  theory  of measures  of 
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noncompactness  seem to be much more difficult and at  the same t ime,  much more 
interes t ing than  t ha t  concerning measures of strong noneompactness.  

2. - Notat ion  and pre l iminar ies .  

Let  (E, H']I) be a given Banach  space with the  zero e lement  0. Throughout  this 
paper  we will use the  s tandard  no ta t ion  close to t h a t  f rom [1, 8]. l%r example,  the  
open (closed) ball centered  a t  x with radius r will be denoted  b y  K(x, r) (K(x, r)). 
The  symbol B will s tand for the  ball  K(O, 1). For  a set X c E we denote  b y  ~7, diam X,  
cony X, ~ X the  closure, the  diameter ,  the  convex hull  and  the  closed convex 
hull  of X, respectively.  The norm of a bounded  n o n e m p t y  subset X of /il is the  
number  I ]XH--sup  [ l lx I l :xeX] .  The symbol X ~ stands for the  weak closure of 
a set X. For  an a rb i t r a ry  set X we denote  by  K(X,  r) the  ball  centered  at  X and  
of radius r 

K ( X ,  r) = U K(x ,  r) . 
~ 6 X  

In  what  follows denote  by  ~ .  (shortly Jib) the  family  of all bounded  subsets of/i7. 
For  X,  17 e ~LE pu t  

d(X, Y) = inf  [r: X c K(:Y, r ) ] ,  

z ) (x ,  ]~) = max  [d(X, ]~), d (~ ,  X ) ] .  

The number  D(X, Y) is called Hausdorff  distance be tween X and Y. 
Analogously, denote  by  J r .  the  fami ly  of all nonempty  and re la t ively  compact  

subsets of E and by  %0E the  fami ly  of all nonempty  and relat ively weakly compact  
subsets of E (shortly:  J~, %0). Obviously J~ c %0 c ~(~ and %0 ---- ~L if and only if E 
is a reflexive space. 

I f  3 is a n o n e m p t y  subfamily of ~(~ then  by  3 ~, 3 ~ we will denote  its subfamilies 
consisting of all closed and weakly closed subsets of 3, respectively.  

Le t  us ment ion  t ha t  Jt(~ ~ forms a complete  metr ic  space with respect  to the  
t Iausdorff  dis tance D, while J ~ ,  %0"~ are closed subspaces of J~L ~ wi th  respect  to  the 
topology genera ted  by  the  Hausdorff  distance.  

Final ly,  for 3 c ,.~ le t  us denote  

D ( x ,  3) = inf [ D ( x ,  y ) .  y e 3 ] .  

In  the  sequel we accept the  following definition 

DE]~I~I~IO~ 1. - A ]unction ~: ../~---> <0, + oo) is said to be a measure o] weak 
noneompaetnes8 i] it is subject to the ]ollowing conditions: 

1) The ]amiIy k e r ~  ----- [ X e ~ :  y(X) ~ 0] is nonempty and k e r ~ c  %0, 
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2) X c  y ~ y(x)<r(I0, 

3) y ( c ~ V X )  = y(X), 

4) r ( k x +  ( 1 -  k):Y)<kr(x) + (1 -  k)~,(:v), ]or ke  <o, i>, 

5) i] X , , e  u~ '~, X,,+~c X,,  ]or n - ~  1, 2, ... and i] l i ln  y (X , , ) -~  O, then Xo~---- 
c o  

= N Z . ~ r  

The fami ly  ker  y described in 1) will be called the kernel  of the  measure  y. 
Notice t h a t  the  measure y has the  following p roper ty  

6) 7(xD = r(x). 

indeed ,  the  re la t ion 

X c X ~ c cony X 

and  2), 3) imply  6). 
l~[oreover, let  us note  tha t  the  kernel  ker y forms a subfamily of ~ being closed 

wi th  respect  to taking closure and weak closure of sets. Fur ther ,  the axiom 4) im- 
plies t ha t  this family  is convex. Summing up, i t  m ay  be shown th a t  (ker y )~  forms 
a closed subspaee of AL ~ wi th  respect  to the  t tausdorff  distance.  

Le t  us ment ion  ye t  t ha t  the  set X~ described in 5) mus t  belong to ker y what  can 
be e~sily infer  f rom the  re la t ion X~ c X~ for n ~ 1, 2, .... 

Now we indicate some impor t an t  propert ies  of a measure of weak non- 
compactness .  

TItEOlCE~ 1. -- .Each measure o] noneompactness is locally Zipschi tz ian (hence con- 
tinuous) with respect to the Hausdorf f  distance. 

?t 

Tm~Ol~E~ 2. - _Let tl, t2, . . . ,  tn be nonnegative reals such that ~ t~ < 1 and let {xo} e 
ker  y. Then i=1 

~b 9b 

~'(~o + X t,x,) < X t, r(Xo + x,) .  
i = l  i = l  

The proofs of these theorems are exac t ly  the  same as the proofs of analogous 
propert ies  for a measure of strong noncompactness  and  is therefore  omi t ted  (cf. [1, 2]). 

Also the  proof of the  below given theorem m ay  be pa t t e rned  on the proof of 
sui table theorem from [2]. 

Tm~0~E~ 3. - I ]  ][XI] <1 ,  then 

~,(x + ~ ) < ~ , ( ~ )  § rlxl l~(K(~,  1 ) ) .  
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I n  what  follows we define a class of measures of weak noncompactness  having 

additional,  good properties.  
A measure ? will be referred to as a measure with the max imum proper ty  provided 

7) ~ ( x  • 3~) = m a x  [y(X) ,  r(~z)]. 

The measure y such t h a t  for any  X e ~ and  A e /~  

8) r ( l X ) =  li l t(X) 

is said to be homogeneous,  and if it satisfies 

9) ?(X -}- Y)<~y(X) -}- ?(Y)  

it is called subadditive. I t  is called sublinear if 8) and 9) hold. 

DEFINITI0~ 2. -- The measure ? will be called regular iJ it is sublinear, has maximum 

property and ker ~ = %0. 

Now let us note tha t  the measure of weak noncompactness  defined by  DE BLASI [6] 

in the following way:  

co(X) ----- inf [t > 0 : there  exists C e %0 such that  X c C @ tB],  

is an example of regular measure. 
Actually,  this measure m ay  be expressed in the following concise form 

(2.1) ~ ( x )  = D(X, %0). 

Furthermore, it can be shown that 1 (generally: r ) ) =  r) in the 
case when E is nonrefiexive [6] and o ) ( B ) =  0 (even co(X)----0 for every X e AL) 
in the case when E is reflexive. This last assertion follows from (2.1), for instance. 

Now let us note  t h a t  each regular measure of weak noncompactness  is com- 

parable with De Blasi measure  o~. Namely,  we have 

THEO~E~ 4. - I] ~ is a regular measure, then 

r (X)  <<. y(B)a)(X) . 

P~ooF. - The case of reflexive space is obvious so let us assume tha t  1~ is 

nonreflexive. 

Denote  r = o~(X). I~et us take an a rb i t ra ry  e > 0. Then, in view of (2.1) there 

exists a set Y e %0 such tha t  X c K(Y,  r @ e). Hence and in vi r tue  of the obvious 

relat ion 

K(Id, r @ e ) =  Y @  ( r @ e ) B ,  
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we obtain 

y(X)  -~ y ( Y  + (r @ e ) B ) < ( r  @ e)y (B) .  

The arbi trar iness of e completes the  proof. 
The following simple theorem will be useful in the  sequel. 

THEO~E~ 5. -- Let #: ~(~ --> <0, @ c~) be a ]unction satis]ying the axioms 1), 2), 7) 
and such that #({x}) = 0 ]or any x e E. Then # satis]ies the property 5): 

P~OOF. - Le t  (X).e~ be a sequence of sets f rom ~ such t h a t  _ ~  = X . ,  X ,  ~ X.+~, 
n = l ,  2 , . . . ,  and l i > m  # ( X ~ ) = 0 .  

Further~ take  an a rb i t r a ry  sequence of points (x . ) .~  such t h a t  x~ e X .  for 
n = l ,  2 , . . . .  Then we have 

~ ( ( ~ ,  x.~, x ,  ...}) = z ( ( x l ,  x~, .. . ,  x~-d u {x . ,  x~+1, ...}) = 

= ma~ [~({xl ,  x~, ..., ~ _ j ) ,  ~((x~,  ~ . , i ,  . . .})] = ~ ( {x . ,  x . , ,  . . . } ) < ~ ( x . ) ,  

what  in view of made  assumptions implies t h a t  

~((~1,  ~ ,  ...}) = 0 .  

Hence,  by  v i r tue  of 1) the  set {xl, x2~ ...) is re la t ively weakly compact  so t h a t  i t  
has a t  least one weak cluster point  x. Because {x~, x~+l, ...} c X~ and XT:--= X~, 

c~ 

thus x e X~ for any  n = 1, 2, ... : I tenee  x e X~ = [-/ X .  and the  proof is complete.  
n = l  

3. - Measures  o f  w e a k  n o n c o m p a c t n e s s  in  Z 1 space.  

Consider the  space E l =  Ll(a, b) consisting of all funct ions x: (a, b ) -> /~  which 
are measurable  and Lebesgue integrable  on the  in te rva l  (a, b). The space J51 will be 
equipped wi th  the  usual  norm 

b 

]Ixll - - f  Ix(t) l dt .  
a 

I t  is well known tha t  L 1 is nonreflexive [7]. But  on the  o ther  hand  in this space the 
following convenient  cri ter ion of weak compactness  is known [7]: 

Tm~onE~i 6. - A set X e ~(~L1 is relatively weakly compact i] and only i] 

uni]ormly with respect to x e X .  

l im fx ( t )  dt 
~n(E)~O 
~c(a,b) 

----0 
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Actually the symbol m(E) stands for the Lebesgue measure of E in ~ .  
Le t  us notice t h a t  the  above theorem may  be rewri t ten in the following equi- 

valent  form: 

THEO~E~ 7. - A set X ~ ~{~L~ is relatively weakly compact i]t 

d 

C 

= 0  

un#ormly with respect to x e X.  
Now, for an arbi t rary  X e ~z~ let  us define 

(3.1) 
d 

y(X) = lira ~ {sup {sup [ f[x(t)[:a<e < d < b , d - - c  <el}}.  
C 

Note tha t ,  according to Theorem 7 we have 

y(X) = 0 r 2~ ~ is weakly compact  in Z 1 . 

m n c e  r ( { x } )  = 0 for a n y  z l .  
Next,  let  us notice t ha t  ~ satisfies the  properties 2), 4), 7), 8), 9) listed in the 

previous section. Thus, keeping in mind Theorem 5 we infer tha t  ~ satisfies also the  
axiom 5). 

Fur ther ,  let  us ment ion the following simple relation 

(3.2) ~(conv X) = r (X) ,  

for each Xe3(~L,; Moreover, the  axiom 2) follows 

(3.3) ~(X)<~(X) 

for any  X ~ JLzl. In  order to prove the reverse inequal i ty let us take x s X.  Then 
there exists a sequence (x~),,~ c X such tha t  limx~-----x. Fixing an arbi t rary  

~ > 0  and c, de (a ,b )  such tha t  e<d and d - - c < e ,  we have 

d d d 

ftx(t)t at<ftx(t)-x (t)t at +flx (t)lat< 
b g d 

a G c 
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and consequent ly  

d 

c 
d 

c 

Thus, tak ing  into account  t h a t  the  number  [[x~- x]l is a rb i t rar i ly  small, we obta in  

(3.4) r ( X ) < r ( x ) .  

Now, combining (3.2), (3.3) and (3.4) we infer  t h a t  the  funct ion y possesses also the 
p roper ty  3). 

F inal ly  we can formula te  the  following theorem 

T~_EORE~ 8. - The ]unction ~(X), defined by the ]ormula (3.1) is a regular meas- 
ure o] noncompactness in the space L~(a, b) such that ~(X)<~o~(X) ]or any X .  

The last  assertion from the  above theorem follows easily form Theorem 4 and 
f rom the  relat ion 

~(B) = 1 ,  

which can be easily verified. 
I t  will be in teres t ing to seek if the converse inequal i ty ,  i.e. the  inequal i ty  o)(X) ~< 

~<~(X) is t rue.  Unfor tuna te ly  we are not  able to recognize its val idi ty.  
Now, we are going to provide another  example of a measure  of weak non- 

compactness  in the  space L ~. At  the beginning let  us assume tha t  the  funct ion 

fl: < 0 , +  c~) -+<O,~-  ~ )  is such t h a t  f l ( O ) = ! i m  o f i ( e ) = O ,  is given. 
~'or a rb i t r a ry  x ~ L ~ le t  us define 

d 

~(x, #,  ~) = snp [ f lx(t)Idt- fl(d-- c): a < c < d < b ~ < ,  d--c~<e]. 
c 

I f  X e ~L1, t hen  we define 

(3.5) ~(X, #, e) = sup [~(x, #, e): x ~ X ] .  

The funct ion ~(x, fl, e) will be called the  integral  modulus of cont inu i ty  of the  func- 
t ion x wi th  respect  to ft. 

I t  is easy to check t ha t  the  funct ion ~(X, fi, e): ~ -+ <0, + ~ )  is a measure of 
weak noncompactness  in the  space Z 1, which has the  max imum prope r ty  and  is 
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nonsublinear.  ~oreover ,  we have the  following equal i ty  

(3.6) lira 6(X, fi, e) = y ( X ) ,  
~--~0 

where y is defined by  the  formula (3.1). In  order  to prove i t  le t  us notice tha t  the  
inequal i ty  

(3.7) lira (~(X, fl, s) < y(X)  
e-->0 

is t r ivial  and follows inmedia te ly  f rom (3.1) and (3.5). In  order  to prove the  reverse 
inequal i ty  let  us denote  a = lira ~(X, fl, s). Then,  for an a rb i t ra ry  ~ > 0 there  exists 

e--> 0 

So > 0 such tha t  

~(x,  fl, s )< ~ + 
for any  s <  So. Hence  

~(x, #, s )<  a + 

for any  x e X  and s<eo,  and consequent ly  

d 

f Ix(t) t at < 

for x e X ,  s<so and for any  c, d e ( a , b )  such tha t  c<d  and d - - c < e .  
inequal i ty  and (3.7) gives the  desired equal i ty  (3.6). 

Recapi tula t ing the  above assertions we have the  following 

The last  

TKEO~E~ 9. -- The /unction 8(X, fl, s): r --> <0, -}- c~) is a measure o/ weak 
noncompactness in the space E1 having the maximum property and being nonsublinear. 
The kernel ker  8(X, fl, e) o/ this measure consists o/ all X ~ J~L~ such that 

d 

f Ix(t) I at < 
c 

/or any x e X and/or all c, d e (a, b), c <~ d and such that d -  e<~ e. Moreover, this meas- 
ure satisfies the relation (3.6). 

4. - Other examples .  

In  this section we give some scheme allowing to construct  nontr ivial  measures of 
weak noncoml0actness in the  case of a reflexive Banach space. Actual ly  those meas- 
ures have  to he irregular because all regular  measures in reflexive spaces vanish 
identically.  
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Then,  let  us assume that E is a g iven  reflexive Banach  space and  l e t / ~  be ano ther  
Ba nach  space. F u r t h e r  we assume t h a t  # is a measure  of noncompae tness  (in s t rong 
sense;  cf. [1]) defined in the  space F.  

F ina l ly  assume t h a t  T :  E - + F  is a l inear  cont inuous operator .  Thus,  of course, 

I n  order to cons t ruc t  some nont r iv ia l  examples  we will addi t ional ly  assume t h a t  

there  exist  a t  least  one set  A e ~ E  such t h a t  T(A)~ ker/~ and  a t  least  one set  
B e ~LE-- ZVE such t h a t  T(B) e ker  #. 

Then  we have  the  following 

TEEORE~I 10. -- The]unction ?:  ~(~E--> <0, + ~) ,  de];ned by the ]ormula 

r ( x )  = g T ( x ) )  

is a measure o] weak noneompactness in the space E such that ker  r : / :~LE= ql)E 

and ker  ? # 3~'E. 

P~ooF. - We provide  only a sketch  of the  proof. 

F i r s t  notice t h a t  the  axioms 1), 2), 4) f rom Definit ion 1 are obvious. I n  order to 

prove  the  ax iom 3) le t  us observe t h a t  in view of the  l inear i ty  of T and  the  prop-  
er t ies  of /, we get  

(4.1) ? (cony X) = ? ( X ) .  

Moreover,  we ob ta in  

7(X) = ~ (T(X) (<#(T(X) )  = ~ ( r ( x ) )  = r ( x )  

so t h a t  b y  2) we have  

(4.2) ~(X)  = y ( x ) .  

Combining (4.1) and  (4.2) we see t h a t  the  ax iom 3) is satisfied. 

F ina l ly  observe  t h a t  the  p r o p e r t y  5) is a s imple consequence of the  ref lexivi ty  
of the  space E .  

Thus,  the  proof  is complete .  

Now we give two examples  of measures  of weak noneompactness  realized ac- 
cording to Theo rem  :10. 

EX• 1. - -  Le t  us t ake  the  t t i l be r t  space 12 wi th  a s imple measure  of s t rong 
noncompaetness ,  d i a m X .  Le t :  12-->t ~ denote  the  project ion opera tor  i.e. 

T(x) = T(x~, x~, ...) = (x~, x~, . . . ,  x~, o, o, . . . ) ,  

where n is fixed. 
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F o r  X c 1 ~ l e t  us  def ine 

~(X) : d i a m  ( T ( X ) ) .  

I t  is easy  to  check  t h a t  all  cond i t ions  a s soc ia t ed  w i t h  T h e o r e m  10 are  satisfied. 

T h e n  y is a meas t t r e  of  w e a k  n o n e o m p a c t n e s s  in t h e  space  12. I t s  ke rne l  consis ts  
of all  se ts  y + X e ~(~ such  t h a t  t h e  f i rs t  n c o m p o n e n t s  of e v e r y  x e X a re  equa l  to  

zero a n d  y e 12 is a r b i t r a r i l y  t a k e n .  
EXAiVIPLE 2. -- :bTOW, le t  t 2 be  t h e  s a m e  space  as  p rev ious ly ,  l~oreover ,  cons ider  

t h e  space  l ~ of all  b o u n d e d  sequences ,  f u r n i s h e d  w i t h  t h e  n o r m  

ltxlI = fl(x~, x: ,  ..-)1I = sup [tx~l:  ~ = :% 2, . . . ] .  

A s s u m e  t h a t  a m e a s u r e  of s t r ong  n o n c o m p a c t n e s s  is g iven  in  1 ~ 

/~(X) = ~ im {SUxP {sup [Ix~l: k > ~]}} 

(cf. Ill). 
ing  w a y  

F ina l ly ,  l e t  us  cons ider  t h e  o p e r a t o r  T :  12--->l ~176 def ined  in t h e  follow- 

Tx  = T(x~, x~, ...) = (yl, y~, . . . ) ,  

w h e r e  Yl---- x l ,  y~-~ x2/V2 ~ xalvf2, a n d  generMly ,  

n - - I  

k = l  

for  q~ - -  2, 3, . . . . .  
O b v i o u s l y  our  o p e r a t o r  m a p s  1 ~ i n to  1 ~ a n d  is l inear .  ~ o r e o v e r ,  i t  is easy  to  check  

t h a t  T is b o u n d e d  a n d  

II TII < V - ~ / ( V ~ -  ~ ) .  

Thus  T m a p s  each  r e l a t i v e l y  c o m p a c t  se t  in  12 in to  a r e l a t i v e l y  c o m p a c t  se t  in 1 ~. 

l~oreover ,  i t  is e a s y  to  v e r i f y  t h a t  T ( X )  E k e r  # for  a n y  X e Wz,. 
On t h e  o t h e r  h a n d ,  ke r  y ~ 2~'~. I n d e e d ,  le t  us t a k e  t h e  se t  X c o n t a i n i n g  all 

vec to r s  of o r t h o n o r m a l  bases  in 1 ~, i.e. X ---- {el, e,, ...}, w h e r e  e~ = (0, 07 .... ,0,1, 0, ...). 
T h e n  T ( X )  = {T(el), T(e~), ...}, w h e r e  T(e~)= (0, 0, .. . ,  1/~/2 ~-~, 0, ...). T h u s  T ( X ) e  

k e r / z  w h a t  m e a n s  t h a t  y (X)  = 0. B u t  we  h a v e  X ~ 3 ~ .  
~ o r e o v e r ,  we  show t h a t  k e r  ~, c Ao~, w h a t  m e a n s  t h a t  ~, is a n o n t r i v i M  m e a s u r e  

in t h e  space  12. I n  fac t ,  l e t  us t a k e  t h e  se t  X : {x~, x~, ...}, whe re  

x~----- (1, O, O, ...) 

x~ = (o, 1, 1/V~, o, o, ...) 

x~ = (o, o, 1, llV-~, llV-~ ~, o, ...) 



JdzEF BANA~ - JESUS I~IVERO: On measures o[ weak noneompaetness 223 

and  so on. I t  is easy  to check t h a t  the  g rea tes t  componen t  of T(x,)~ placed on the  
n- th  coordinat% is equal  to 1/%/2~--~-~ 1/2 ~ 1/4 -~ ... ~ 1/2 ~-~. Thus  ~(X) = 

This shows t h a t  our las t  c la im is val id.  
F ina l ly  let  us men t ion  t h a t  in this ease i t  is r a the r  difficult to give a full descript ion 

of the  kernel  ker  y because T is defined via  a compl ica ted  formula .  

5. - T h e o r e m  o f  Darbo  type.  

This last  section is devo ted  to indica te  some ve ry  useful  theorem,  p roved  first 

b y  DAI~BO [5] in the  case os the  so-called Kura towsk i  measure  of noncompac tness  
(in s t rong sense). I n  the  case of an a r b i t r a r y  measure  of noncompaetness  (strong) 
this t heo rem  was p roved  in [1] (cf. also [14]). Moreover,  an  analog of this t heo rem 
wi th  the  use of De Blasi measure  has  been  p roved  b y  DE BLASI [6] in the  case of 
separable  spaces and  b y  E ~ N U E L E  [8] in the  case of an  a r b i t r a r y  Banach  space. 

Below we provide  the  vers ion of this t heo rem ~ssociated wi th  an a r b i t r a r y  measure  
of weak  noncompaetness .  

Le t  us assume t h a t  ~, is a measure  of weak  noncompuctness  defined in the  space E.  

Further~ le t  C be a n o n e m p t y  I convex,  closed ~nd bounded  subset  of E.  Moreover,  
le t  T :  C -+ G be  a weakly  cont inuous opera tor  such t h a t  there  exists k e (01 1) wi th  
the  p r o p e r t y  

~(T(X)) < < k r ( X  ) 

for a n y  X c C. Then  we have  

TmE0~E~ 11. - Under the above assumpt ions  I the operator T has at least one li~ed 
po in t  in  the set C. Moreover I the set o] all ]ixed points  o] T I Fix  T = [x ~ C: T x  = x] 

belongs to ker  ~. 

We omi t  the  s imple proof  of this theorem which can be carr ied over  analogously  
as in [8]. 

L e t  us only  m en t i on  t h a t  the  in format ion  t h a t  F ix  T c ker  ~ is ve ry  i m p o r t a n t  
because  i t  allows us to charac ter ize  the  solutions of some equat ions where  existence 

is p roved  wi th  the  help of Theorem 11. Some applicat ions of Theorem 111 based 
on this  idea I will appea r  elsewhere. 
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