On Measures of Weak Noncompactness (¥).

JOZEFR BANAS - JESUS RIVERO

Summary. — In this paper an axiomatic approach to the motion of a measure of weak non-
compaciness is presented. Several properties of the defined measures are given. Moreover,
we provide o few concrete realizations of the accepeted awiomatic system in some Banach spaces.

1. ~ Introduction.

The notion of a measure of weak noncompactness was defined by DE BLASI
in 1977 [6] (see also below). In contrast to the notion of a measure of noncompactness
in strong sense (cf.[1, 4, 9, 10, 14]) it was rather seldom applied (see [3, 8, 12, 13]).
This situation is caused by the fact that convenient criteria of weak compactness
are rather unknown except for some few cases (compare [7, 11]). Therefore it is very
difficult to construct some formulas allowing us to express De Blasi measure in a
convenient form for applications.

In this paper we propose an axiomatic approach to the notion of measures of
weak noncompactness which seems to solve the above mentioned problem in a
positive sense. Roughly speaking, a measure of weak noncompactness (in our sense)
is some function defined on the family of all nonempty and bounded subsets of a
Banach space which vanishes on a family of some relatively weakly compact sets
(not necessarily on all). This permits us to construct measures of weak non-
compactness in several Banach spaces. Moreover, some nontrivial realizations
of our axiomatics in reflexive spaces may be also given, while the classical measure
due to De Blasi vanishes identically in this case. Actually, our definition will be
illustrated by some examples.

Finally, let us mention that our approach to the notion of measures of weak
noneompactness is very similar to an approach associated with the notion of measures
of noncompactness in strong sense (cf.[1,14]). This caused that many properties
of these meagures are similar. But, on the other hand, the theory of measures of
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noncompactness seem to be much more difficult and at the same time, much more
interesting than that concerning measures of strong noncompactness.

2. — Notation and preliminaries.

Let (B, |- ]) be a given Banach space with the zero element 6. Throughout this
paper we will use the standard notation close to that from [1, 8]. For example, the
open (closed) ball centered at z with radius » will be denoted by K(z,r) (K (w, r)).
The symbol B will stand for the ball K(0, 1). For a set X c E we denote by X, diam X,
conv X, conv X the closure, the diameter, the convex hull and the closed convex
hull of X, respectively. The norm of a bounded nonempty subset X of ¥ is the
number |X| = sup [||#]: € X]. The symbol X* stands for the weak closure of
a set X. For an arbitrary set X we denote by K(X, r) the ball centered at X and
of radius r

K(X,r)=U K(z,1) .

zeX

In what follows denote by Gy (shortly AG) the family of all bounded subsets of E.
For X, Y € M put

dX,Y) =inf[r: X c K(Y,r)],
DX, Y)=max[dX, Y),d(¥Y, X)].

The number D(X, Y) is called Hausdorff distance between X and Y.

Analogously, denote by N’z the family of all nonempty and relatively compact
subsets of I and by W, the family of all nonempty and relatively weakly compact
subsets of E (shortly: N°, W). Obviously N c Wc A and W = A if and only if B
is a reflexive space.

If 3 is a nonempty subfamily of A then by 3¢, 3v¢ we will denote its subfamilies
consisting of all closed and weakly closed subsets of 3, respectively.

Let us mention that AG¢ forms a complete metric space with respect to the
Hausdorff distance D, while N¢, Wv* are closed subspaces of A with respect to the
topology generated by the Hausdorff distance.

Finally, for 3c JG let us denote

D(X, 3) = inf[D(X, ¥): Ye 3].

In the sequel we accept the following definition

DEFINITION 1. — A funciion y: M — {0, | oo) is said to be a measure of weak
noncompactness if it is subject to the following conditions:

1) The family ker y = [X € M: p(X) = 0] is nonemply and ker y c W,
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2) XY = p(X)<p(Y),
3) y(conv X) = V(X),
1) p(AX + (1= D) <Ip(X) + (L= (), for Ae<0, 1),
B) if X,e M, X, pyC X, for n=1,2,... and if 7}1)11& (X, =0, then X _=
= ﬁlxﬂégﬁ.

The family ker y described in 1) will be called the kernel of the measure .
Notice that the measure y has the following property

6) y(X*) = p(X).
Indeed, the relation
XcXvceonvX

and 2), 3) imply 6).

Moreover, let us note that the kernel ker y forms a subfamily of A being closed
with respect to taking closure and weak closure of sets. Further, the axiom 4) im-
plies that this family is convex. Summing up, it may be shown that (ker y)¥ forms
a closed subspace of M with regpeet to the Hausdorff distance.

Let us mention yet that the set X described in 5) must belong to ker y what can
be easily infer from the relation X_c X, for n =1, 2, ....

Now we indicate some important properties of a measure of weak non-
compactness.

THEOREM 1. — Each measure of noncompaciness is locally Lipschitzian (hence con-
tinuous) with respect to the Hausdorff distance.

n
THEOREM 2. — Let 4,1, ..., t, be nonnegative reals such that 3 t,<1 and let {x,} €
e kery. Then =t

V(mo -+ _zlthz) <'§1tz’ 7’(330 + X)),

The proofs of these theorems are exactly the same as the proofs of analogous
properties for a measure of strong noncompactness and is therefore omitted (cf. [1, 2]).

Also the proof of the below given theorem may be patterned on the proof of
suitable theorem from [2].

THEOREM 3. — If |X| <1, then

Y X + Y)<p(X) + | X|y(K(Y, 1)) .
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In what follows we define a class of measures of weak noncompactness having
additional, good properties.
A measure y will be referred to as a measure with the maximum property provided

7) y(X U Y) = max [y(X), p(Y)].
The measure y such that for any Xe b and Ae B
8) y(AX) = [Aly(X)
is said to be homogeneous, and if it satisfies
9) X + Y)<y(X) + p(¥)
it is called subadditive. It is called sublinear if 8) and 9) hold.

DEFINITION 2. — The measure y will be called regular if it is sublinear, has maximum
property and kery = W.

Now let us note that the measure of weak noncompactness defined by DE BLASI [6]
in the following way:

(X) == inf [t > 0: there exists C e W such that X c ¢ - B},

is an example of regular measure.
Actually, this measure may be expressed in the following concise form

(2.1) . o(X) = DX, W).

Furthermore, it can be shown that w(B) =1 (generally: (K (5o, 7)) = ) in the
case when F is nonreflexive [6] and w(B)= 0 (even «o(X)= 0 for every X €M)
in the case when ¥ is reflexive. This last assertion follows from (2.1), for instance.

Now let us note that each regular measure of weak noncompactness is com-
parable with De Blasi measure w. Namely, we have

THEOREM 4. — If y is a regular measure, then
7(X)<y(B)o(X).
Proor. — The case of reflexive space is obvious so let us assume that ¥ is

nonreflexive.

Denote r = w(X). Let us take an arbitrary ¢ > 0. Then, in view of (2.1) there
exists a set ¥ € W such that X c K(¥,r + ¢). Hence and in virtue of the obvious
relation

EY,r+e)=Y+ (r+¢)B,
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we obtain
y@) = p(Y + (r + &) B)<(r + &)y(B) .
The arbitrariness of ¢ completes the proof.
The following simple theorem will be useful in the sequel.

THEOREM 5. ~ Let u: M — {0, 4 <o) be a function satisfying the axioms 1), 2), 7)
and such that u({x}) = 0 for any x € B. Then pu satisfies the property 5).

ProoF. - Let (X)), ., be a sequence of sets from J such that Xjf = X,, X, 0 X1,
n=1,2,.., and nl_igawu(Xn) == 0,

Further, take an arbitrary sequence of points (z,)
n=1,2,... Then we have

Ly Such that z,e X, for
({1, @ay w35 o }) == p({&1, oy eovy Bus} I {@ny Bpia, o)) =

= max [p({®, Tay ey By} )y (&0, Butay o 3)] = p{{@n, But, . }) <p(Xs)

what in view of made assumptions implies that

w({wy 25y ...}) = 0.
Hence, by virtue of 1) the set {#,, &, ...} is relatively weakly compact so that it
has at least one weak cluster point . Because {&,,#y.q,...} ¢ X, and X" = X,
thus x € X, for any » = 1,2, ...: Hence x€ X_= ] X, and the proof is complete.

n=1

3. — Measures of weak noncompactness in L' space.

Congider the space L= L%a, b) consisting of all functions «: (@, b) - R which
are measurable and Lebesgue integrable on the interval (a, b). The space L* will be
equipped with the usual norm

o] = [la(t)l s .

It is well known that L! is nonreflexive [7]. But on the other hand in this space the
following convenient criterion of weak compactness is known [7]:

THEOREM 6. — 4 set X € My, is relatively weakly compact if and only if

lim z()dt =0
m(E)—0
Hc(a,b) B

uniformly with respect to x e X.
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Actually the symbol m(F) stands for the Lebesgue measure of F in R.
Let us notice that the above theorem may be rewritten in the following equi-
valent form:

THEOREM 7. — A set X € My, is relatively weakly compact iff

a
lim {sup [ f|ao(t)]dt: a<e<d<b, d—c<s]} =0
c

&0

uniformly with respect to x e X.
Now, for an arbitrary X € A, let us define

(3.1) y(X) =lim{sup{sup[ ﬁw(t)[: a<e<d<h, d—cgs]}}.

e—0 geX b

Note that, according to Theorem 7 we have
X)) =0 < Xv» s weakly compact in L.

Hence y({#}) = 0 for any ze L.

Next, let us notice that y satisfies the properties 2), 4), 7), 8), 9) listed in the
previous section. Thus, keeping in mind Theorem 5 we infer that y satisfies also the
axiom 5).

Further, let us mention the following simple relation

(3.2) y(cony X) = y(X) ,
for each X € A;: Moreover, the axiom 2) follows
(3.3) P(X)<y(X)

for any X € M. In order to prove the reverse inequality let us take # e X. Then
there exists a sequence (x,),.y C X such that %_1;{)10 %,= . Fixing an arbitrary

e>0 and ¢,de (a,b) such that e<d and d— c¢<e, we have

d

a d
[l at< [lot) — auv)] @t +[lm)] at<

¢

b 3 d d
<[lontt) — at) @ + [lo,t) dt< w0 — o] + [l dt,
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and consequently

d .
sup[ flm(t)]dt: a<e<d<<h, d— o<e]< le— @] 4

[
d

-+ sup [ f[wn(t)[dt: a<<e<d<h, d— c<s] .

c

Thus, taking into account that the number |z, — x| is arbitrarily small, we obtain
(3.4) &) <yX).

Now, combining (3.2), (3.3) and (3.4) we infer that the function y possesses also the
property 3).
Finally we can formulate the following theorem

THEOREM 8. — The function y(X), defined by the formula (3.1) is a regular meas-
ure of noncompactness in the space L' a, b) such that y(X)<w(X) for any X.

The last assertion from the above theorem follows easily form Theorem 4 and
from the relation

which can be easily verified.

It will be interesting to seek if the converse inequality, i.e. the inequality w(X)<
<y{(X) is true. Unfortunately we are not able to recognize its validity.

Now, we are going to provide another example of a measure of weak non-
compaetness in the space L. At the beginning let us assume that the function
f: <0, -+ o0) -0, 4 o) is such that B(0) = %1»1%1 f(e) = 0, is given.

For arbitrary x e L' let us define

d -
(X, B, &) = sup [ f{x(t)[dt— fld—c): a<e<d<bs, d— c<aJ .

[

If X e, then we define

(3.5) (X, B, &) = sup [d(», §, ¢): we X].

The funetion d(z, §, £) will be called the integral modulus of continuity of the funec-
tion 2 with respect to g.

It is easy to check that the funetion §(X, B, &): M — <0, + oo) is a measure of
weak noncompactness in the space L!, which has the maximum property and is
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nonsublinéar. Moreover, we have the following equality

(3.6) lim 8(X, §, &) = y(X) ,

&0

where y is defined by the formula (3.1). In order to prove it let us notice that the
inequality

(3.7) lim 8(X, §, &) <y(X)

is trivial and follows inmediately from (3.1) and (3.5). In order o prove the reverse
inequality let us denote o = %1_{% 0(X, B, &). Then, for an arbitrary 5 > 0 there exists
g > 0 such that

0(X, B, e)<o + 9
for any e<eg,. Hence

8(z, By e)<o + 19

for any e X and e<e, and consequently
d
[t @t<o + 7 + o)

for e X, e<e, and for any ¢, de (@, b) such that ¢<d and d— e<s. The last
inequality and (3.7) gives the desired equality (3.6).
Recapitulating the above assertions we have the following

TuEOREM 9. — The function 6(X, f, &)t M~ <0, -+ o) is a measure of weak
noncompaciness in the space L', having the maximum property and being nonsublinear.
The Lernel ker 6(X, 8, ¢) of this measure consists of all X € Moy, such that

da
[l at<pee)

for any x € X and for oll ¢, d € (a, b), c<d and such that d — e<s. Moreover, this meas-
ure satisfies the relation (3.6).

4. — Other examples.

In this section we give some scheme allowing to construct nontrivial measures of
weak noncompactness in the case of a reflexive Banach space. Actually those meas-
ures have to be irregular because all regular measures in reflexive spaces vanish
identically.
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Then, let us assume that ¥ is a given reflexive Banach space and let F' be another
Banach space. Further we agsume that u is a measure of noncompactness (in strong
sense; cf. [1]) defined in the space .

Finally assume that T: B/ — I is a linear continuous operator. Thus, of course,
T: N,—~N,.

In order to construet some nontrivial examples we will additionally assume that
there exist at least one set A4 e A, such that T(A)¢ ker g and at least one set
B e Myz— Nz such that T(B) e ker u.

Then we have the following

THEOREM 10. — The function y: Mg — {0, + o0), defined by the formula
y(X) = p(T(X))

is @ measure of weak noncompactness in the space I such that kery = Mop= Ws
and kery = Ng.

Proor. — We provide only a sketch of the proof.

Firgt notice that the axioms 1), 2), 4) from Definition 1 are obvious. In order to
prove the axiom 3) let us observe that in view of the linearity of 7' and the prop-
erties of u we get

(4.1) y(eonv X) = p(X) .

Moreover, we obtain

so that by 2) we have
(4.2) »(X) = y(X) .

Combining (4.1) and (4.2) we see that the axiom 3) is satisfied.

Finally observe that the property 5) is a simple consequence of the reflexivity
of the space H.

Thus, the proof is complete.

Now we give two examples of measures of weak noncompactness realized ac-
cording to Theorem 10.

Exampri 1. — Let us take the Hilbert space 12 with a simple measure of strong
noncompactness, diam X. Let: {2—[? denote the projection operator i.e.

T(@) = T(wy, @y .0) = (@1, gy ooy Ty 0,0,..),

where n is fixed.
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For X c 2 let us define
p(X) = diam (T(X)) .

It is easy to check that all conditions associated with Theorem 10 are satisfied.
Then y is a measure of weak noncompactness in the space 12 Its kernel consists
of all sets ¥ + X € M. sueh that the first » components of every x € X are equal to
zero and y € [? is arbitrarily taken.

ExampPLE 2. — Now, let [2 be the same space as previously. Moreover, consider
the space I” of all bounded sequences, furnished with the norm

]| = | (@, @5y .)| = sup [jw.]: . =1,2,..].
Assume that a measure of strdng noncompactness is given in I”

X)) =limsupysup |z.l: k>n
wa0) =l foup fsup e
(ef. [1]). Finally, let us consider the operator 7':1®—1” defined in the follow-
ing way

Te = T(@1, B2y ...) = Y1y Y2y ---)

where ;= #;, ¥a= %/\V2 + w/v/2, and generally,

n—1 —
Yn= 0n[V 2"+ Z wn+k/V2ka
k=1

for n = 2,3, ... _
Obviounsly our operator maps 12 into I° and is linear. Moreover, itis easy to check
that T is bounded and

[T <v2/(vE—1).

Thus T maps each relatively compact set in {2 into a relatively compaet set inI®.
Moreover, it is easy to verify that T'(X) eker u for any X € N;.

On the other hand, kery 2 N:. Indeed, let us take the set X containing all
vectors of orthonormal bases in 13, i.e. X = {¢, 6, ...}, where ¢, = (0,0, ....,0,1, 0, ...).
Then T(X) = {T(e,), T(6s), ...}, where T(e,) = (0, 0,...,1/4/2%¥7,0,...). Thus T(X)e
e ker 4 what means that p{X) = 0. But we have X ¢ N..

Moreover, we show that ker y C N°;. what means that y is a nontrivial measure
in the space I2. In fact, let us take the set X = {#,, #,, ...}, where

7 =1(1,0,0,..)
Ly = (0, 1,11/2,0,0,..)
@, = (0,0,1,1/v/2,1/1/22,0, )

..............................
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and so on. It is easy o check that the greatest component of T'(x,), placed on the
n-th coordinate, is equal to 1/4/2»1-+1/2 1+ 1/4 4 ...+ 1/2=L Thus y(X) =
= u(TX)>1.

This shows that our last elaim is valid.

Finally let us mention that in this case it is rather difficult to give a full description
of the kernel ker y because T is defined via a complicated formula.

5. — Theorem of Darbo type.

This last section is devoted to indicate some very useful theorem, proved first
by DARBo [5] in the case of the so-called Kuratowski measure of noncompactness
(in strong sense). In the case of an arbitrary measure of noncompactness (strong)
this theorem was proved in [1] (cf. also [14]). Moreover, an analog of this theorem
with the use of De Blasi measure has been proved by DE BraAsi [6] in the case of
separable spaces and by EMMANUELE [3] in the case of an arbitrary Banach space.

Below we provide the version of this theorem associated with anarbitrary measure
of weak noncompactness.

Let us assume that y is a measure of weak noncompactness defined in the space E.
Further, let ¢ be a nonempty, convezx, closed and bounded subset of E. Moreover,
let T': ¢ — C be a weakly continuous operator such that there exists ke <0, 1) with
the property

for any X c €. Then we have

THEOREM 11. — Under the above assumptions, the operator T has at least one fired
point in the set C. Moreover, the set of all fized points of T, Fix I' = [x € C: T = x]
belongs to ker y.

We omit the simple proof of this theorem which can be carried over analogously
as in [8].

Let us only mention that the information that Fix T c ker y is very important
because it allows us to characterize the solutiong of some equations where existence
is proved with the help of Theorem 11. Some applications of Theorem 11, based

on this idea, will appear elsewhere.
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