Shape Sensitivity Analysis Via a Penalization Method (*).

M. C. DELFOUR - J.-P. ZoL¥sIO

Summary. — The object of this paper is the development of a penalization technique to compute
the shape derivative of cost functionals where the state is the solution of a non-linear equation
andfor a linear variational inegquality. This type of problem is frequently encountered in
Shape Sensitivity Analysis.

Résumé. — Cet article présente le caleul des dérivées de forme de fonctionnelles défimies sur un
domaine géométrique par une méthode de pénalisation. On suppose que Iétat est la solution
d’une équation non-linéaire ou d’une inéquation linéaire. Ce type de probléme est fréquemment
rencontré en analyse de sensilivité des formes.

1. — Introduction.

The object of this paper is the development of a penalization technigque to com-
pute the shape derivative of cost functionals where the state is the solution of a
non-linear equation andfor a linear variational inequality. This type of problem
ig frequently encountered in Shape Sensitivity Analysis.

For partial differential equations where the state is the minimizing element of a
quadratic energy functional over a linear subspace of a Hilbert space, the shape
derivative can be computed by differentiating a Min Max problem with respect to
an appropriate vector field (¢f. DELFoUR and ZoL¥sio [1, 2, 3]). This approach
readily lends itself to some class of non-differentiable cost functions, but difficulties
are encountered when the energy functional is non-linear or when the state is given
ag the minimizing element over a closed convex set which is not linear.

The reader should not be afraid by the list of some of the hypotheses. In fact,
most of them are minimal and are verified under mild continuity hypotheses. What
is important to notice is that we never ask any form of differentiability of the state
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variable. In addition this paper constructively introduces a natural adjoint function
and its corresponding variational inequality. All this is done in a non-standard
way without an a priori Lagrangian formulation.

For illustration, we apply the theory to a numerical problem which is studied
in DELFOUR-PAYRE and Zorgsro [1]. The solution of the state equation does not have
enough smootheness to justify the final expression by variational techniques. Other
techniques using implicit functions theorem fail because the underlying function
spaces are different. At best we could show by direct variational techniques that
the state y? = 9,07, is differentiable in H-weak.

This paper also attempts to provide justifications for results which are usually
obtained formally in the literature. One good example of such computations can
be found in J. CfA [1] who provides a quick and efficient tool to obtain the final
expressions. It is important to notice that such expressions are usually not available
for variational inequalities except in some special cases. The type of techniques
we have used are related to the ones found in M. ForriN and GLOWINSKI’s [1] book,
on augmented Lagrangian methods. Some of our results might also have some
potential in dynamical problems such as the ones studied by G. DA Pratvo [1].
Finally some of our results have been announced in DELFOUR and Zorgsro [11.

2. — Statement of the problem and orientation.

Let E: R x K -~ R be an energy functional defined over a closed convex subset K
of a Banach space B. Assume that for each ¢ in RY, the map

(1) @ — E(t, p)

is convex and continuous on K and that there exists a unique solution y = y(#) € K
to the minimization problem

(2) Bt,y) = Int H(t, @) £ (1)
14
In particular y is completely characterized by the variational inequality
(3) yekK, dE(ty;0,9—9)>0, Voek,
where for each v in B

(4) i, y; 0, p) = lim 20 Y T 89) = B 9)

A\ s

Associate with the above problem a cost function

(5) J(t) = F(t, y(t))
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for some functional
(6) F:R*xEK --R.
Assume that for all ¢ in a neighborhood of 0 the map

@ —F(t, @)

is convex and continuous on K for some topology G, weaker than the norm topology
of B.

Our objective is to investigate the existence the Gateaux semiderivative of J
at 0

(8) dJ(0) = im 28 —J(©
3\0 8

and to characterize it.

2.1. Construction of ¢ Min Sup problem: the Lagrangian approach.

In many cases the above problem can be reformulated with the help of a La-
grangian of the form

9 L{t, ;5 p) = F(t, ) + dE, ¢; 0, v) .
When K =B
(10) J(t) = Inf Sup L{t, ¢; v) .

@EB  yEB )

If in addition L is convex and lower semi continuous in ¢ and conecave and upper
semi continuous in v the Lagrangian has saddle points (¢;, y;) which are completely
characterized by the fcliowing system of equations (we assume F and E are suf-
ficiently differentiable in ¢)

(11) dF(l, 5 0, @) + A2E(E, 945 0, 9,5 0,90) = 0, Vpe B
(12) dE(t, ¢,;; 0,9) =0, VypeB.
For non-linear energy functionals E(f, ) the convexity of the Lagrangian with

respect to ¢ is usually lost as can be seen from the thermal radiator problem (cf.
DELFOUR, PAYRE and ZorEsio [1]) where

(13) ) =5 [ 199130 + [ (1ot~ 1.9) a0 — [ g 2
£2 P

i
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where ¢,> 0, ¢;, > 0, £2 18 a volume of revolution with boundary 2 = Z,U X, U X,
2, is the interface between the radiator and the heat source, 2; iy the radiating
surface and 2, is the lateral adiabatic surface

Ty 2z 3

2,

Figure 1. ~ Volume £ and its boundary X = X u Z,uU X;.

It is readily seen that the underlying space B is

(14) B = {p e H{(Q): ¢|y e L53(,)}
which is a reflexive Banach space. However

(15) aB(p; y) zthp'Vw an -+ [[lgPpy — q.p] do— [anp o
2 g Z

and when v is negative on a subset of non-zero measure of X5, dB(p; v) is no longer
convex with respect to ¢.

Another interesting and difficult case is the one where K is no longer a linear
subspace of B, but a closed convex set of B. There the Inf Sup formulation (10)
could be modified as follows

(16) J(t) = Int Sup Sup {F(t, ¢) —p dB(, ; 0,9 — @)} .

9K pz=0 yek

but in general, we again loose the convexity with respect to ¢. For the characteriza-
tion of optimal controls in this context the reader is referred to Smr SHUZHONG_ 11
It is also interesting to note that the right-hand-side of (16) can also be written
in the following form :

(16a) J(t) =TInf Sup {F(t,¢)— dE(, p; 0, y}

9cE peTr(p)

where T',(¢) is the closure of the cone R™(K — ¢) in B.
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Notice also that the following two variational inequalities are equivalent for a
closed conyex set K

dyeK, Vypek, dE(y;y—y)>0
and

dyeEK, Vypel,y), dE(y;y)>0.

2.2. Construction of a non-Lagrangian formulation.
To get around the above difficulties we propose to replace the Lagrangian by
the following funefional

(17) G(ty @, p) = F(t, ) + plE(, ) — e(1)]
where € R* and

(18) o(t) = Inf H(t, ¢) = B(t,9,) .

el

It is readily seen that

(19) J(t) = Inf Sup G(t, ¢, u) .

QEK pz=0

When F(t, ) and H(t, @) are convex with respect to ¢, the functional ¢ is convex
in ¢ for all x>0 and linear (hence concave) in p for all g.
In this case, the Inf Sup problem (19) is equivalent to the Inf Sup problem (14)

Inf Sup {F(t,¢) —pdE({, ¢; 0,9 —g¢)}.

9eK pu=0,pek
Indeed if
H(P eK y E((p) = ¢

then ¢ is completely characterized by

iB(g,y —9)>0, VyekK < Sup — (g, p—g) = 0.
PE,

Conversely if
dpe K, Sup—dB(g;y—9¢) =0,
yeK
then

B(p) — Inf E(y) = Sup {H(¢) — E(w)K%g}g —dE(p; 9 —¢) =10

peK peK
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which implies

dpe K, Elpi<InfBy) = dpeK, Heg) =e¢.

yeK

The inequalities characterizing a saddle point (v,, u.) € K XR* (if it exists) of
(19) would be

(20) AF@t, 950,90 — @) + g, AE(E, @3 0,9 — ¢) >0, Vpek
(21) (p— w)B(E, @) — e(®)]<0, Vu>0.

The last inequality (21) is equivalent to

(22) { wE(t, @) —e()] = 0

we=>0,  [E(, @) —e(t)]1<0.

So if there exists a solution (g, u,) € K X R* solution of (20)-(22)
B, p)—e(t) = 0= ¢,=y, and u,>0 arbitrary

or

po= 0= B, ;) — e({) <0 = ¢, =y, .
If p,>0 is finite, equation (20) reduces to
dF(t,y,; 0,9 — y,)>0, Vpek
which is equivalent to say that

(23) F(t,y,) = Int F(t, ¢) .

@peK

This implies that the solution y, of (18) also minimizes F(t, ¢) over all ¢ in K. This
is a special case. In all other cases u,— - oo which makes it difficult to extract
any information from (20).

At this stage the existence of saddle points is questionable and we have seemingly
lost the adjoint state which quite naturally comes out of a Lagrangian formulation.
To get around this difficulty we study the following family of problems indexed
by e>0

peK
where

(25) Gilt, p) = & (t, 7,3) = Plg) + B ) — o).
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Under appropriate hypotheses the minimizing eclements ¢! would be characterized by
1
(16) At @25 0, ¢ — o) - - B 925 0,9 — @) >0, Vpe K.

So the steps are now clear. We must introduce appropriate hypotheses so that

lim J.(t) = J() .
S\0

In the process we shall construct the variable
pe= (¢i— gy)/e

which will converge in an appropriate sense to a natural adjoint state variable p
which is typical of a Lagrangian approach. Thus we shall recover everything without
the afore mentioned limitation of a Lagrangian method.

3. — The family of problems indexed by 1.

In this section a more precise problem formulation is given and specific hypotheses
are introduced in order to make sense of the constructions outlined in the previous
section.

3.1. Problem formulation and hypotheses.

Let B: Rt x K — R be an energy functional defined over a closed convex sub-
set K of a Banach space B. Assume that the following hypothesis is verified.

H1 For each ¢ in 0, T'] the map
(1) ’ ¢ — B(t, ¢)

is convex and continuous on K and there exists a unique solution y = y(t) € K
to the minimization problem

(2) B(t,y) = Int {E(t, p): pe K} ¥e@t). O

In particular y is completely characterized by the variational inequality
(3) yeK, dB(ty;0,p—y)>0, Vpek
where for each y in B

(4) : aB(t, y; 0, y) = lim (B(t, y + sy) — B, y))}s

8=
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Associate with the above problem a cost function:
(5) J () = F(t, y(1))
for some functional
(6) F:Rt*XK —+R.

For the moment, assume that the map ¢ > F(t, ) is convex and lower semi con-
tinuous on B.

Our main objective is to show that, under appropriate hypotheses, the cost funec-
tion J(¢) can be expressed in the form

) J(t) = J(0) + [1(s) ds
0

for some function f in L=(0, T) which will be characterized in terms of the state y(?)
and the solution p(¢) to an appropriate adjoint unilateral problem for each . Under
an additional hypothesis we shall also show that f belongs to C%0, T'), that is J
belongs to €10, T) and dJ(0) = f(0).

3.2. Penalized problems.

Instead of tackling the problem directly we introduce a family of penalized
problems indexed by &> 0:

(8) Ji() = Int {F(t, ?) + (B, 9) — e(t)]} .
pekK [

H2 (i) There exist T>0 and &> 0 such that for all ¢ in [0, T] and ¢ in [0, &]
there exists a unique minimizing element y’ in K of the functional

9) Gulty ) = Plty @) -+ [0, ) — o(0)]

over all ¢ in K.

(ii) For all ¢ in [0, T]
(10) y:—>y, nB. nm

Hypothesis H2 contains hypothesis H1 and y(f) = y;.

Txistence and uniqueness of solution ¥ in a neighborhood of (¢, &) = (0, 0) may
result from a positivity hypothesis on F(t,-) on K or from a growth property of
F(t, &) as || goes to infinity. In the sequel we shall denote by y the solution
y(0) = yg.
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To make sense of the adjoint state we need the following additional hypotheses
in a neighborhood N of y in B,

H3 The map ¢ — H(t, ) is twice Gateaux differentiable in N: that is for all ¢
in N and y and & in B the following limit exist

aE@, ¢; 0, ) = lig% LE(, ¢ + sp) — E(t, p)]/s

d*H(t, @; 0, 9; 0, &) = 11{1(1) [dB(t, ¢ + $&; 0, 9) — dE({, ; 0, 9)]/s. B

H4 There exists a Hilbert space V, B c V, with continuous embedding such that
the map

p = F(t, )
is convex and V-continuous. Moreover for all ¢ in ¥ N K the maps
v > dE(t, @5 0,9), (9, &) = dHE, ¢; 0,95 0,§)
extend continuously to ¥V and V XV, respectively and
Je>0 such that VyeV, d*E({0;0,v;0,9)>ajp|i.

H5 Given convergent sequences ¢, — 4§ in B, y,— y in ¥ (strong) and &,— & in
V (weak), there exists a subsequence {g,,} such that

@ E(, Pn,; 0y Y3 0, 65) — @B, ys5 0,9; 0,8). W
As mentionned in section 2 we shall introduce the approximate adjoint state
pe= (Y.— Y)le€ B

and study its behaviour as ¢ goes to zero. This will require the following additional
hypotheses.

H6 Given any two sequences {g,}in N N K and {y,} in V such that ¢, —y; in B
and y,— p weakly in V for some ¢ in V, there exist subsequences (still de-
noted {@,, y,}) such that

lim inf 42 (3, Pn; Oy Pus 0y 'Fn)?dzE(ty ?/(t); 0,9;0,9). .

f—> o0

3.3. A priori estimates for the penalized problems.

LEMMA 1. — Assume that hypotheses H2 to H4 are verified. There exist a constant
¢(t}) > 0 such that

(11) |E(t, f’/:) — H(t, ?/(t))l < eo(t)||yi— f’/é”v
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(12) lyi— yil,<eo(t)a
(13) Ipely<o(@)fo -

PRrOOF. — By definition of the minimizing element y! we have
) .
(14) By ye) -+ S [B(t, 42) — Bl )] <F (L, 95) -

By V-continuity and convexity of ¢ > F(%, @), there exists a support functional to
F(t, @) at ¢ = y¢, that is

eV, VpeV, Ft,@)>Fty) -+ <@ o— 9 -
Hence
(15) B, 9)>F (1, y) — oo — 93l  VpeV,
with ¢(t) = |#¥],.. From (14) we have
[E(, y5) — B, yo)|<elF(, y,) — P, y5)] -
But from (15)
0<F(t, yg) — F(t, y) <o®)lyo— vl -

and hence (11). By hypothesis H3, there exists 6 € 10, 1] such that (use the varia-
tional inequality (3))

E(t,yl) — Bty y5) > A B(t, yo -+ 0(yi— 4); 0,y — 9t5 0, y'— yt)
and by hypothesis H4
B, yl) — B yh) > alyi— yils.

Combining the last inequality with (11) we obtain (12) and (13). u

LeMMA 2. - Under hypothesis H2 to H4, for all # in [0, T
(16) Jo(t) — Jo(t) as e >0
and for each ¢> 0 there exists 0 €10, 1[ such that

1
(17 0< ZdB(, y5; 0,22) + & Bt yo+ 05— 10)5 0, 245 0, p) <— dF (2, 133 0, pl) .
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But

(18) — dF{t, y3; 0, pl)<e(t)*/e
and

1
(19) 0< ;dE(t, ¥%; 0, p) <e(t)?fa
(20)  O<limsup - dB(t, 44; 0, 50 <
<—liminf {dF(t, yb; 0, p) + d*E(t, y, -+ 8(yi—yh); 0, pi; 0, pL)} .

Proor. — By definition J.() <J,{t) from (14). But

E(t, yo) > B, y5) = F(, 9,)<J (1)
and necessarily

F(t, yi) <Jo(t) < Jy(t) = F(t, i) .

By hypothesis H4 and estimate (12) in Lemma 1, we obtain (16). We know by
hypothesis H2 to H4 that

B, yi)— E(t,y)) >dE({, yi; 0, y'— yi)>0.

Combining this with (11) and (12) we obtain (19). Now by hypothesis H3, there
exists 6 €]0,1[ such that

(21) H(¢,yl)— B, y,) = 4B, yy; 0, y,— yﬁ) + dzE(t, Yo+ 0y~ 93); 0, y.— ?/f)) .

But y! verifies the variational inequality

1
(22) dF(t;?/zi 0,4,79—{#2)—{—;(11’7(5,12;07(17——{'/920, V‘pEK
and
(23) ar(t, yl; 0,9 — yi) + 4P, @; 0, yi~ ¢)<0.

By setting ¢ = g} in the above inequalities we obtain (17) and (20). ®

REMARK 1. — For 0<¢ <68,

By )<By.,)<Bly,), Fly,)<Fly.)<Fy,

JO:F(%)>J51>J82, 0>J€1;J°> Jaz:_Jo
1 Cg
0> F(’!/e,) ’_-F(yo) > F(yq) —_— F(?/O) '
&1 &
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But
1
0 <dB(Yo; Pe) < - [E(ye) — B(Yo)] <F(Yo) — F(ye) <— &F (Yo; Ye— o)
and
lim dE(Yo; pe) = 0, lim sup dF(y,; pe)<0.
&0 eN\O
Hence
e} — — Fly,)—F
0>dF, —= HmF(y ) — (%) S Ply,,) — F(y,) S "(Ye,) (%)
£\0 € &1 €y
0507, = 1im e =0 - Ta=do_ =7

e\0 € &1 &g

and
lim = [B(ye) — B(y)] = dJo— aFy>0.
e\0 &
Also
0>dFy>1m sup dF(yy; ps)
£N\0
) 1
0>ddJd, >lim sup dF (yo; pe) + lim sup — dE(y,; pe)

. N0 &0 £

and

1
0 <lim sup z dB(yy; pe)<dd, —dF,. =&
N0

3.4. Limiting behaviour of pt as € goes to zero.

In lemma 1 we have seen that the elements p! are bounded in V. So by construe-
tion they have weak limit points in the tangent convex cone

(24) T (yi) = V-closure {A(p — yt): p € K, 1>0}.

LeMMA 3. — Assume that hypotheses H1 to H4 and H6 are verified and that p
in V is a weak limit point of {p!: ¢ > 0}. Then

(25)  dE(,yi;0,p) =0, peT.y)

(26)  O<lim inflng(t, vt 0, pl)
: . 1
@) O<limsup= am, y;; 0, pl) <— [AF(, i3 0, p) -+ d2B(t, y; 0, 23 0, )]

Proor. — Identity (25) is a direct consequence of inequalities (19). As for (26)
it follows from (3) by setting ¢ = y! and dividing by e> 0. Finally (27) follows
from (20) and is a consequence of the weak lower semicontinuity of y > dF(t, Y3 0, )
and hypothesis H6, m
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So the weak limit points of {p}; ¢ > 0} belong to the closed convex cone

(28) 8(t) = Tylye) O VE(, yo)*
where
(29) VE(, yi)* = V-closure {y e B: dE(t, yi; 0, ) = 0} .

In fact they belong to a smaller set for which the condition
. 1
0<lim Sup;dE(ty Yo3 0, pi) <e(t)?fw,
holds, but that set is hard to characterize.

3.5. Variational inequality for the limit points.

We now construct a cone A(f) and a variational inequality for the limit points
of {p'} = {p!: e>0}. Let

pe: e >0}c K, y:= (g:— y¢)/e such that

130) A = lypev pe—>1p in V (weak) as e>0->0 and
= 1
lgxol::dE(t, Ye; 0, we) = 0.

TLeMma 4. — (i) The set A(¢) is a cone with vertex at 0 in V. Moreover

(31) RY (K — yf,) N VH(, yf))J'C A{t)c TK(yf)) N VE(t, yf))‘L .
(ii) Tf
(32) lim L am, yt; 0,08 =0,
e\() &

then all weak points of {p} are in &0 A(?).

ProoF. — (i) To show that 0 e A(f), choose ¢.= y§, Ve > 0. Given 2> 0 and
y € A(t)
Hpdc K, we= (pe—yi)fe >y in V (weak) as ¢ - 0.
and

1
tim = dB(t, &5 0, pe) = 0 .
o €

Then choose

Pe=@er, Pe= (Pe— Yo)fe
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and notice that

ot
P = ;‘_tps_ze_fyg: Mper—> Ay in V(weak) ag £ — 0.

Moreover

1 _ 1
~dB(t, y5; §o) = A= dB(, b3 0, yer) > 20 =0,

So we have shown that A(¢) is a cone with vertex at 0.
The next step is to show that any element

y € RY(K — yg) N VE(, y)*

belongs to A(t). This is equivalent to show that YA>0 and ¢ € K such that
dB(ty ¥5;.0, ¢ — 9g) = 0.
Then
v = Ap—y;) e A1)

To see that choose for ¢ a A such that ed<1

@e=(1— ed)yi+ elpe K.
Then

1
Ye = ((pa———yto)/s = Ag —199, EdE(t’ Y3 0, we) = 0

and p € A(t). This proves the first part of (31). For the second one, it is clear that
pee R(K— yl) = peTyl).

Moreover there exists g, > 0 such that for any e<e,
0<dBE(t, 953 0, pe)<e.
But & goes to zero and necessarily
0<dB(t, yi; 0, p)<0.

(ii) By the weak closure of ¢o A(). &
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BEMARK 2. — If

(33) dE(ty yé; 01 ‘P) =0 ’ V¢EB
then
(34) A(t) = Tyy}) = 0 A(2)

and all limit points of {p‘} belong to A(z). &

REMARK 3. — If (32) is true and g} minimizes F({, ¢) over K, then pi— 0 in
V (strong). To see this use (20) and hypothesis H6. m

THEOREM 1. — (i) Under hypothesis H1 to H6 any limit point p of {p!} in V (weak)
belongs to

(35) 8(8) = Trlyy) N VE(, yo)*
and verifies the variational inequality
(36) dF(t, 955 0, p) + &*B(t, 455 0, y; 0, p)>0,  Vype A()

and the inequality

(37) dB(, yg5 0, ) + d*E(t, 4,5 0, p; 0, p) <O .
(i) If

H7 0 A(t) = S(t)

and the map

(38) p > dF(t, y5 0, y)

is linear, then p{—>p in V (weak), where p is the unique solution in S(¢) of the
variational inequality

S, Yypes
(36) {pE() pe S

dF(t, 403 0, 9 —p) + A B(f, 955 0, —p; 0,9)>0. M
REMARK 4. — Hypothesis H7 seems to be weaker than the classical hypothesis
(40) V-closure {R™(K — yi) N VE(, y))*} = S(?)

(ef. F. MigNor [1], J. SOKOLOWSKI [1]). H
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PROOF OoF THEOREM 1. — Since the parameter { is fixed, we shall drop it every-
where in the proof. (i) We already know that the weak limit points of {Pi} belongs
to 8(¢) and that (37) is verified. To established (36) we fix a weak limit point p of
{pc} and the associated sequence {e;> 0}, &, — 0 such that

Pe=Pe,—~>p in V (weak).
Consider an arbitrary element y in A(#) and its associated {@.: ¢ > 0} c K such that

p=weak limy., w:= (pe—¢,)fe and limldE(yo; Pe) = 0.
£\0 o €

The above properties remain true with ¢, in place of &.
We now turn to the variational equation for y,= y.,

1
(41) AF (3 ¢ —9s) + —dB(ys ¢ —92) >0, Vpe K.
k
Let ¢ = ¢, = ¢, in (41). By hypothesis H4, there exists 6,€ 10, 1[ such that

AB(y; @r— Yi) = AE(Yo; Or— Y) +'d2E(?/o—|" 0 (Ur— Yo)5 @r— Y5 Yu— ?/0) .

So (41) yields

(12) 0<dF(yk;‘p’“:y°)

k

1 — —
+= dE(yn; u) + dzE(yo + Ou(ye— yo); 222 5 pk)—
T Ep &y

1
— dF (Yo; P2) — = AE(Yo; 1) — A2 E(Yo + 0u(ys— Yo); Pi3 D)
&

where we have used the fact that

AF(Yo; Yu— Yo) -+ AF (Y25 Yo— ¥2) <O .

Multiply (42) by A% and sum over k from » to N,:

1
43)  0<—3 lﬁe—kdE(yo; D) — > BLAF (Yo; D2) + @B (Yo + 04— o) D5 D) ]
1 -
+ Z M::S—k dE (Y vi) + Z A AF (Y5 i) + E A% dzE(?/o 4 0u(¥e— %)} ¥r3 pk) H

where

(44) z =1 ’ >0 ’ Yy = ((Pk“‘ f’/o)/ek .
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The first term on the first line of (43) is negative. Take the lim sup of the
remaining terms on the Right-Hand-Side of (43) and use the following result: given a
sequence {f,} of real numbers such that f,—f in R, then

Ny N,
(45) fo= X 2f,—~f, > k=1, 1r>0.
k=n k=n
By lemma 3
(46) lim\ionf LAF (Y05 pe) -+ A2E(Yo + Oc(ye— 12); Pe; pe)] = a<0

exists and is negative (cf. (20) in lemma 2).
So using (45) and (46), the second term in the first line of (43) is less than — a
as k goes to co. By definition of y we know that

.1
lim — dB(ys; yz) = 0

f—>co O

and by using (45), the first term in the second line of (43) goes to 0 as k goes.to oo.
By hypothesis H5 there exists a subsequence of {,}, still denoted {¢;} such that

@By + 04— o); i5 Px) = A E(yo; v; p)

and by using (45) again the term in the last line of (43) goes to d2E(y,; v; p). The
only term left is

. N,
(47) go= 2 AAF(Ys; vs) .

k=mn

Recall that for a convex continuous function F, the map
p > dF(p; p): V (strong) — R
is convex and locally Lipschitz continuous and that
(@, v) > dF(p; p): V (strong) XV (strong) - R
is upper semicontinuous. As a result

(48)  gu— AF(yo; ) = D MdF(yy; i) — dF(yo; p)] =
= > BAF (Y5 wi) — dF(ye; ©)]1 + 3 A[dF (g5 ) — dF (53 v)] -

By local Lipschitz continuity, there exists a neighborhood N of y, and a constant
¢ > 0 such that

(49) VyeN, Vy,weV, |dF(y;y.)— dF(y; p)l<o|y.— yilv -
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As a result the first term on the Right-Hand-Side of (48) is bounded by
(80) 2 ely— vyl =l 3 Xpi— 9, —>0.

As for the second term denote by

(51) = lim sup dF (y,; p) <dF(yo; ) -

ko0

Then always by (45)

(52) lim sup 3 A% dF (y:; 9) = 1i§cn sup dF (y:; )

>0

and the second term is negative.
In conclusion we have shown the following inequality for all y in A(?)

0<— a+ dF(ys; v) + BB (yo; v; p) -
But in view of lemma 3, we know that
6 = dF(yo§p) + @*E(yo; ;) <0 .
Recall that the set A(¢) in a cone; So for any ¢ in A(f) and 1> 0

AF (yo; Ap) -+ d*E(y,; Ay; p)>a
and

dF(yo; v) + @2 B(yo; y; p)>Inf {a/2: A>p} = 0.

(ii) When (38) is linear, inequality (36) holds for all y in co A(¢) and by
combining it with (37)

(53) { peS(), Vyeto A)

AF(ye; v —p) 4+ @ E(yo; v —p; p)>0.

So when hypothesis H7 is true, (39) has a unique solution which necessarily coincides
with all weak limit points of {p.}.

Thig yields the uniqueness of the weak limit point and its complete charac-
terization. ®

REMARK 4. — Another interesting cone with vertex at 0 for which inequality
(36) holds is

32> 0}, .} c K, v.= Alp,—ys)le

such that — in V{(strong) as ¢— 0 and
(54)  B() =|peVEE gl very n Vistrong)

1
lim sup = dB(t, y5; 0, ve) <0 .

&e—0 &
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By definition, it is easy to check that

€0 A(t) — p c @0 B(t)
for all limit points p of {p2} in V (weak). It is easy to show that
(55) R*(K — y3) N VE(, y5)*c B(i) c T(yg) O VE(, y5)* .
So condition H7 could be further weakened fo
H7 eo {C(t), B(t)} = 8(t). =

REMARK 5. — If inequality (36) is to be verified only on R™(K — 4!) N VE(, yi)*,
then hypothesis H5 can be weakened to '

Hb' There exists a dense subspace D of V such that

V(pENﬂK, V"/’E-Dy ((}D,E)I—)dzE(t,(p;O,f;O,’lp)

is continuous from B XV (weak) into R.

4. — Limiting behaviour of J.(t) as a function of ¢ and derivative of J(1).

The object of this section is to determine conditions under which J,& Wt1(0, T)
and study the limit of dJy(?) as ¢ goes to zero.

4.1. Differentiability of J.(t) with respect to .
We first compute the derivative of J.(¢), ¢ € [0, T] from the right

1) dd o(t) = li\m [Je(t + 8) — Je(B)]]s
AW

where J; is defined by (8) as

(2) Js(t) = Min {G:(t, ¢): g € K}
with
3) Gulty @) = F(t, ) + = [Blt, ¢) — e(t)].

Introduce the sets

(4) AD) = {pe K: 6(t, p) = Jut)} -
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We first need an intermediate result from J. P. Zor#sio [3] which will be applied
to e(t) and J(f).

THEOREM 1. — Let G: RXB — R be a functional defined on a reflexive Banach
space B and be A a subset of B. Let

(3)

J(@t) = Inf {G(t, @): g€ A}, - A(t) = {pe A: J(t) = G(t, p)}

with the following hypothesis: there exists 7 > 0 such that:

HH1

HH2

HH3
HH4

A@)== 0, 0<t< T

Vy*e A(0), Yy*c A(1), the functions s - G(s, 9°) and s — G(s, ) are differen-
tiable in a neighborhood of zero;

Vyoe A(0), s~ 0,6(s,y°) is upper semi-continuous;
3 a topology B on B such that;

(i) V{t.}, 0<t,<T, such that t, — 0, Jy* € A(0), 3 a subsequence {tn,} of {t.}
such that for all k, Jy, € A(t,) and y, —3° in the G topology.

(ii) The map (s, @) > 9,G(s, ¢) is lower semi-continuous on {0} X A(0) for
the topology G.

Then the Right-Hand-Side derivative of J is given by

(6)

dJ(t) = Inf {0,G(0,¢): pc 4(0)}. ®

We now proceed in two steps. First we use Theorem 1 to show that under
appropriate hypotheses, e(f) is continuously differentiable on [0, T[. Then using
that result and Theorem 1 once more, we obtain the differentiability of J, in [0, T7].

LEMMA 1. — Assume that hypothesis H1 is verified and that

HS

VpeN, t>Eie:[0,T]—-R
is of class C! and the map
Lo B(t, @) and (4, 9) - dE{ e;1,0)

are weakly lower semi-continuous on [0, T]xB.

Then the function e(?) iz of class O on [0, T] and

(M)

¢'(t) = de(t; 1) = dE(t,y%;1,0), O<i<T.
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Proor. — By direct application of Theorem 1, we obtain the R.H.S. derivative
de(?; 1) given by (7). But since the set A(0) is reduced to the single element yt,
then

de(t; 1) = — de(t; — 1) = €'(¢)

is the usual derivative at ¢. m
LeMMA 2. — Assume that hypothesis H1, H2 and HS8 are verified and that

H9 for each £>0, the function ¢+ yi: [0, T] — B is continuous;
H10 Vpe N the functions ¢ F(, ¢): [0, T]— R is of class C* and the maps
(¢ @) = F(, 9), (¢ @) > dE(t, @; 1, 0)

are weakly lower semi-continuous on [0, T} x B.
Then for each ¢ >0 and 0<i< T,

1
(8) dJe(t) = dF(ty ?/25 17 O) + 'é' [dE(ty yi; 17 O) - dE(ty yé; 17 0)] .

Proor. — Direct application of Theorem 1. @&

4.2. Absolute continuity of J,.

We first construct the pointwise limit f(¢) of dJ.(f) as ¢ goes to zero. Then we
use a boundedness hypothesis to get the absolute continuity of the limit funetion
Jo(t) on [0, T].

H11  The map
g dP(t,e;1,0): VR
is continuous in W,
H12  For all y in B and ¢ in [0, T], the limit
a* B(l, ;3 1,0; 0, p) = 181\1‘1(} [AB( + 5,951,050, p) —dE(, 951, 05 0, p)]/s
exists for all ¢ in N,
H13 For all ¢ in [0, T, the map
¢ p = d2E(t, 951,05 0, y)

is continuous on N XV (weak).
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LEMMA 3. — Assume that hypotheses H1 to H13 are verified and that the map
(3.38) is linear, then

Yiel0,T], dJ:(t)—>f(t) as &0
where
(9) f(t) = dF(t, y55 1, 0) -+ d*B(t, 53 1, 05 0, pg)
Proor. — From H12, there exists 0, 0 < 6 < 1, such that
[AB(t, yi; 1, 0) — AB(t, 45 1, 0)]fe = d*B(t, y,+ 0(yi— yg); 1, 05 0, p7) .
By H13, the R.H.8. of the above expression goes to
a*E(t, yg; 1, 05 0, py) -

Similarily by H11
dF(t,yi 1, 0) — aF(t, yfﬁ 1,0).

Then (9) is obtained by going to the limit in {8) as ¢ goes to zero. W

We now introduce the boundedness hypothesis to apply Lebesgue Dominated
Convergence Theorem and

i [
Jo(t) = Lim Jo(t) = J,(0) + Lim |dds(s) ds = J4(0) + f f(s) ds .
N0 N0 b g

Recall from Remark 3.1 that
Js(t) ATty as e—>0.
The boundedness hypothesis is

Hi4 3IM > 0 such that Ve [0, 7], YpeN,VpeV
|d2E(t, @3 1, 05 0, p)| < M|y,
and the map
t, o> dF(t, ¢;1,0)
is bounded in 0, T} XN.

THEOREM 2. — Under hypotheses H1 to H14, the linearity of the map (3.28) and
the density hypothesis H7 for all ¢ in [0, T, the function J, is absolutely continuous.
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Its derivative coincides almost everywhere with the function f in (0, 7') and hence
Jo belong to W20, T):

(10) dJo(1) = dF(t, y55 1, 0) + d*B(f 9551, 05 0, 7)) a.s. in [0, 1],
where p! is the unique solution in §, of the variational inequality: for all g in S,
(11) dF(t, yp; 0, 9 — pg) + @Bl y5; 0, 9 — pi; 0,0)>0. &

REMARK 1. —- Hypothesis H9 requires the continuity of the function ¢+ ¥, £>0,
in the B-norm. It is clear that the technique of lemma 3.1 would only give the
continuity in V. Thus a stronger result is required which can be obtained in each
case depending on the structure of ¥ and F. &

4.3. Differentiability of J,(t) at t = 0.

As this juncture Theorem 2 seems to be the most reagsonable result when K is
not a subspace of V. The delicate point is the continuity of p! as a function of ¢ at 0
in V (weak). It is crucially related to the limiting behaviour of the sets

(12) 8= To(y5) N VE(t, y;)* .

This point is readily explained in the following one-dimensional example.

ExAmpLE. - K = {p e R: >0}
(13) Blu, @) = o+ up, Flu,0) =§(@—1).

It is easy to verify that

0, if u>0
—u%, otherwise

and that

J . %, %>0
—_ L —_ 2 —

() = 2(H.—1) (w 4+ 1)23/2, otherwise .

For ¢t = 0 as a function of # the function J(u) is represented in Figure 2.
The directional derivative at « in the direction » is

0, %>=0

(14) dJ(u; v) :{ (w+1)v, foru<o.
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| vw
1 L J
i
0
.
—1 0 w
Figure 2.

So J is differentiable everywhere except at w = 0
dJ(0; v) = min {0, v} .

Now fix u,» and >0

E’(t’ @) = B(u + v, ¢), F(t7¢)=F(“+t”7‘P)
Ye= Yuttos j(t) = J(“ + t’l)) .
Choose % = 0. Then for >0

0, if 9> 0
V=1 —w, itv<o

for v =1 and >0

, (e—Dfet+1), 0<ie
Ya= , e< i Y

pé={

P=-s/le+1), yi=0, pi=1/(e+1), p=1.

0
(e—t)fe(e +1), 0<Li<e .
0, e<i

But for t =0

As a result
lim pi=0%£1=p].
NGO

For v =—1 and t>0

; &€+1 -

_— - " 1 —¢ o _—1.
Ye 8_I_17 Ds S—I—l’ Do — Do
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Finally
(15) A o(t) = p:
and in each case we recover the results at the begining. M

ProPOSITION 1. — (i) Assume that hypotheses H1 to Hi4 (H7 for all ¢ in [0, 1)
hold, that the map (3.38) is linear and that

H1i5 ¢, p—d*E(,yi;1,0;0,y): 0, T]XV (weak) is continuous.
H16 t—dF(t,y.;1,0) is continuous at ¢ = 0.
H17 p!—>p (unique) in V (weak).

Then
(16) dJ (0) = dF(0,y5; 1, 0) 4 d*E(0, y3; 1, 0; 0, p) .

(ii) If, in addition, p = pJ, then p is completely characterized by (11) with
t=0. |

When the cones §(¢) have an appropriate behaviour as ¢ goes to 0, it is possible
to obtain a variational equation for the limit point p of p! as ¢ goes to zero.

PROPOSITION 2. — Assume that the hypotheses of Proposition 1 (i) hold and that

Hi18 %ilﬁl AP, yg; 0, v) = dF(0,93; 0, %), VYyeV,
1:%2 Inf 4F (2, Y63 0, p0)=>dF (0, y5; 0, p) .

H19 1&151 a*B(t, ye; 0, v; 0, p5) = &*E(0, yg; 0, 9; 0, ),
lirsli(i)nf d*B(t, y3; 0, pi; 0, pb) =>d*E(0, yg5; 0, p; 0, p) .

H20 d7 >0 such that

17) VO <ty<tax<T, S{t)c8().

Then p is the unique solution in the closed convex cone

(18) S= [ 8@

o<ig<r

of the variational inequality

19) {peS, Yyel
A (0, 403 0y p —p) + @2 E(0, %5 0, p —p; 0,9)>0. W
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5. — Shape derivative for the radiator problem.
Let V = V(t, s, #,2) be a velocity field, Ve ([0, T], C*(R®; R®)) such that
(1) V{t, @, 4,0)=0.

since 2 is invariant in the deformation of the domain. If the field V is written as
V=(V,,V,,V.), then the condition

(2) V.t @y @y, L) =0

implies that X; remains linear in the deformation.
Denote by T,= T,V), the transformation associated to V

f‘%(V)X =V T(V)X), T(V)X=X, 1i>0.
Consider the matrix
A(t) = JWDT )1 DT ,)

where DT, iy the Jacobian matrix of 7, and J(I) = det (DT,). On X; J(f) is to
be understood as det (D7) where 7', is a mapping from R? in R2, namely

T (@1, 05) = Tolwy, 02, L)

and DT, is the 2 x2 matrix. In fact 7', is the transformation associated with the
velocity field

v, By %) = (Valt, 1y #ay L), Vo (8, @1y @, L).
For ¢ [0, T] and any matrix norm we have

3) { 1A @)] <Ol Tdwow@, VYoel

[ (t)(@)| <O Tdwo@, Voel.
Now the norm || T];1,0q) is continuous in ¢ and a fortiori bounded in 0, T]. We

also recall (from J.P. Zorsisto [1]) that the following continuity properties

(4) { [A{t) — A(8)|zoy—0  when s —1

(@) — J(8)|[gony— 0 when s i,

Denote by {2, the perturbed domain

Q,=T(V)(Q)
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with its boundory in three pieces:

D=T(V)Z), 1<i<3.

But from (1) Xi= 2.
For each ¢ in [0, T] we consider the Banach space

B,= B(Q,) = {pc H\(Q,): <p[2§e L5239}
and the energy functional defined on this space:

Big) =[ 4 Vol do + [ GlpP—ga.) 42 —[ . a2
2 x! Zy

E, is convex, lower semi-continuous on B, and there exists a unique elerment y,€ B,
which minimizes B, on B, (see M. C. DELFOUR, G. PAYRE, J. P. ZorEsIo [1, 2]).
The cost function associated to the radiator problem is F,: B,— R* defined by

Fifg) = [lp— o)) dar.
Q¢

Then a unique element y, ,€ B, minimizes on B, the penalized energy:

(5) e>0, Et(ya,t) + 8F¢(?/e,t)<Et(‘p) + eFy(¢) , V<P € B,.

Consider the function § = max (y, qf) and assume that

(6) T,>¢
then

F— Tt = (y— T

and F,(§) = Fyy,,); from M. C. DELFOUR, G. PAYRE, J. P. ZoLksto [1, 2] we then
know that

B(9) + eF (9 <B(y.) + eFi(y.,) -
By uniqueness of the minimum in (5) we get § = g, , that is:
(7) Vo> on Q.
It is immediate that

(8) AYoy= ely.,— Tt in Q.
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Then, 4y, being in LQ,), (8/0n)y,, is defined on H*(9Q,) and

0
(9) ~-Yer=0 on X}
0 0 = on 2
(10) %ya,t =4q; 1.

And the radiating (non linear) condition

0
(11) %?/s,rl‘ (ys,t)4 = qg on 2; .

We suppose now that y, |X% has an upper bound (which is compatible with the
fact that, from (11) and (7) (9/0n)y, <0 on X¥).

It can be easily verified that y, ,is continuous outside of f; in £,: for example
by introducing, for any o« > 0, the function

9,(@yy By, 2) = Yo @y, @5 2)0,(%)

where 0<g,<1 is a € function on [0, L] such that o(2) =1 for0<es< L — 22, and
0(¢) = 0 for L — w<z<L. In particular g,=y,, in a neighbourhood of Z,; we
have

g,=0 on fg=L—a}n 2,

0
5 0o = 0 on Zin{e<L—o}

0
%ga=qz' on X,

and.

p ;0
Ag(x = @a,c(z)ye,t'i‘ 2Qm'ézye,t

belongs to L*Q,).

The g, is the solution of a linear well posed boundary problem on 2,N {z<< L— o}
and we know that g.e C°(Q,); then by the Magimum Principle (see PROTTER and
WEINBERGER [1]) we know that the maximum for g, on £, is achieved at a boundary
point M at which (0/on)g(M) > 0. -

This point M can only be located on X,: Then for each o> 0, Y., 82,0 {z <
< L — 20} reaches its maximum on X;. But since ¥, , is upper bounded on X! we
also have y, ;reaching its maximum on X;. Now it would be possible to obtain the
- continuity with respect to (2, &) of max {y, (#): € 2,} = max {g,: # € 2,}. Thus this
maximum is bounded for (¢, &) €0, T]x[0, &]:

- { iM, Veel0,8], Viel0,T], Vze,
(12) G <Yeulw) < M .
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Consider now

(13) Yi="9.0T;.
It is the unique element of B({) = B, which minimizes on B, the functional

Bz, ‘7’) + SF(t’ (P)

where

(14) Et, ¢) = Ey@oT7") =
= %f<A(t)-V<P, Vo) dz +f Glol—a.9) () dE—fw ax
Q 2, z,

and.

(15) i, p) = Fu{poT=) =[l(p — TP (1) da.
2

Obviously from (45) and (50), we have
(16) w,= gi<yi@e)<M, Voef, Vic[0,T), YVeec[0,&].
To obtain the coercivity of the second derivative
¢ > A2 B( Y55 0, 95 0, 9)
we need now to introduce the closed convex subset of B(Q):

(17) K:{q)EB(Q):%f <p<M a.e. on Qt}.

From (16) we get y'e K for any & and ¢.

We now turn to the verification of hypothesis H8, the continuity of ¢4 in
B(2); e> 0.

LEMMA 1. - 30> 0, s.t. Yie [0, T], Ye € [0, &],
(18) ”ytHB(!2)< C.

Proor. — We have

19 5 <19.,l5,] Tollwrogay «

But,

Et(?/e,t)<Et(O) =0 ’
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that is

J 3 iv?/e,tlz do 4 %f !ys,tts dx< f{lys,tIQi + e[(Ys:— Tl)ﬂz} ax.
2; Zy

2

By (16) we get
<[C+ &C—1T,)°’] measure (X)) =a.
Then it is immediate that: [yf|,<va 4 at. m

LeMMA 2. ~ Ve 0, [yi— 4l 50— 0 as s 1.

PROOF. ~ y; and ! are the two elements of B characterized by the variational
equations:

V(iDEB’ dE(S,yz;07¢)+£dF(sayz;07 ‘P):O
dB(t, yl; 0, @) -+ e dF(4, y'; 0, ¢) = 0.

By substracting these equations, taking z = yi— y: and ¢ = 2 we get:

(19)  [<A) Ve, V2> do + [ 0N~ )41z a2 +
Q Zy
+ ef L= M= (g MPVT) do = — [<(40) — A())- Vs, Vo) do—
02 Q

— f (J(@) — JT(8))0') e 45 — e f (J() — J(s))(y’— My*e da .
P2

Q

From (18) and (3), (4) it can easily be verified that the Right-Hand-Side of (19) goes
to zero as s goes to £ - ;

On the other side we have the monotony inequalities
(@ =) a—b)>%la—b and [(a— T)"— (b— T)*l@— b)>0,

combining these two inequalities with the fact that J(¢)>0 on £ (for J(t) -1 in

C°(Q) when ¢ —0) we get in (19):
f<A(t)-Vz, Vebdw >0, §-»t
0

and

fJ(t)]z]*” »->05 st
Ty
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Now going back to the moving domain Q, we get |20, "z, 0 but

l2o T Y g0y | Till riveiey 2] 5oy -

Then we geb [2|py—>0 as s —T7. m

5.1. Derivatives of E and F.

We recall (from J. P. Zorgsio [1], [2]) that ¢+ A(¢) and ¢ > J(t) are differen-
tiable from [0, 7] in L*(£2) and that the derivatives are given by

A'(t) = div V($)I,— (DV () +*DV ()

J'(t) = div V(z) .
Then for all ¢ in B we get the existence of

aB(t, g3 1,0) =[$CA"0) Vg, V> da -+ [ (gl — 0.9) T'(1) 42
2 g

also we have, for ¢, y € B(£2):

a(t, g; 0, y) = [<A() Vg, Vy> da + [ (Igl*p— ¢.)pI (1) dZ
Q P

and for pe K, &, peb
BE(t 3 0, 3 0, 8) = [<AW)-VE Vo) do + 4] |pP 9 (1) 42 .
n Xy
Moreover:

3
a:E(t, p; 0, p; 0, 9) >f [V(poI7H)|* do + %f (o7 dZ>
0 ) >t
3

u’e —11 . ui -1 z
lpoTi*|men>Min|1, 55 1T lwioco 9 lme -

>Min(1,§—

5.2. COharacterization of the convexr set S,.

The gradient of H(f,~) at ¥ is zero for y, minimizes E(f,0) on all the Banach
space B, that is dE(t,y!; 0,¢) =0, Vpe B. Then:

{peV st. dBE(t,yi; 0, @) = 0} = HYQ).
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Then to characterize 8, we just have to consider the tangent cone: for this we have
the ‘

LEMMA 3.

PROOF. — We first obtain
{AMp— yl) s.t. >0, pe K} = L*(2) N H{Q)

for K c L°(RQ) and y; an interior point (in L=(£2) topology to K). Then we conclude
by density of L*(Q)n HY{Q) in HY{O2). m

We turn now to the verification of hypotheses Hb, H6 and H20.

Let p,= pi» converge weakly in H(Q) to ¢ (since p} is bounded in H*(£), from
Lemma 1, independently on >0 and t).

Then this convergence is true in H3({2), strongly for any s <1 and the traces
on X, converge in H*#(X;) then in L*(X;) for any o < 4. In particular (p,)* converges
to ¢ strongly in L¥(X,). To verify H5, H6 and H20 it is now a direct application
of the following.

LeMMA 4, - Ye>0, for any sequence ?,-> s there exists a subsequence ¢, such
that '

?/tsmlzs’_> yi-|2,, in Lp(23)’ m —»oco,
for any p, 1<p < oo.
(This subsequence converges in all the L?(Xy)'s).
ProoF. — We have established that y’» converges to y° in B(£2); then the traces

on 2, converge in I5(X;). So there exists a subsequence which converges almost
every where on 2;. But

lel<M - on Z;
so this subsequence, written y= for simplicity, verifies

lg™® — |yi? a.e. on 2,

ly™ P < M? a.e. on .
By the Lebesgue convergence theorem we get the convergence of |y™® to |y!|” in
I(X,) that is that y™ converges to y! in I?(2,). m

Now Proposition 7 (in DELFOUR-PAYRE-ZOLESIO 1]) can be directly applied to
the radiator problem and we get the



M. C. DELFOUR - J.-P. ZorLEsSI0: Shape sensitivity analysis, ‘etc. 211

TurorEM 4. — The domain 2 being described in the first section, let y(£2) € B(L2)
be the solution of

9EB(R2) Py

Min J%lvqpmx +f (|9l — @) dZ—fw ax.
Zy X3

For any admissible velocity field V (such that (39), (40)) let y(£2,) be the associated
solution on £, and

7@ = [[(y(@) — 1) X
2
with 7,> ¢t '

Then the Eulerian derivative of J at £ in the direction V & C°([0, T], C*(R?; R?))
exists and is given by

dJ(Q; V) & lim (J(Q,) — J(Q) t =

=

Q o 5
3Oy — T2 o
Q

where y = y(2) and p = p(R2) are respectively the element of B(£2) and HYLQ)
characterized by the problems

f<Vy, Vo) do +f(!y|3y— ¢;)p do = fw do, VpeB
o 2, . P

[p, Vo> do + 4 [yrpy a2 = [ — Ty*paz, VpeH Q)
kel ' P 2

and
A'(0) = div V(0)I,— (DV(0) -+ DV (0))
J'(0) = amlvxl(oy @y, By L) + 312Vm2(07 @y, @y L) on 2y,
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