
Large Deviations and Stochastic Homogenization (*). 
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Summary. - A general theorem is stated p~vviding large deviations estimates /or a ]amily o] 
measures on a topological vector space. Applications are given in the second part, where large 
deviations problems arising in stochastic homogenization are discussed. Another application 
is give~ in similar problems connected with Donsker's invariance principle. 

O. - I n t r o d u c t i o n .  

I n  recent  papers  dealing with  problems of s tochast ic  homogenisa t ion  (D~]~ 1VLAso- 

~ODICA [2], FACCm~ETTI-I~vsso [12]), the  au thors  p rove  t h a t  cer ta in  sequences 

{ttn}~ of p robab i l i t y  measures  on a space of functionals  5 do converge to the  Di rae  
mass  concen t ra ted  on a cer ta in  funct ional  x. 

The a im of this  p a p e r  is to give a large deviat ions es t imate  for this convergence,  
t h a t  is to  eva lua te  the  behav iour  as n--> oo of the  quan t i ty  lan(A), A being a 

subset  not  containing x. More precisely we shall  be able to give in mos t  cases the  
equivalent ,  as n - +  co, of log #~(A). 

I n  w 1 we shall  p rove  an  abs t r ac t  large deviat ion theorem t h a t  will be used in w 2 

to der ive such es t imates  for a p rob lem of s tochast ic  homogenisat ion.  I n  w 3 we deal 
wi th  a different  k ind  of applicat ions,  connected wi th  Donsker  invar iance  principle.  

1.  - A n  a b s t r a c t  l a r g e  d e v i a t i o n s  t h e o r e m .  

Le t  X be a topological  vec tor  space, X ~ its dual;  for a p robab i l i ty  measure  # 
on X let  us define, for a e X ' ,  i ts Laplace  t r ans fo rm 

=fexp x> (dx) 
X 

(fi(~) ---- + c~ possibly).  I f  H :  X ' - +  R is a convex funct ion,  its Legendre  t r ans fo rm 

is defined b y  

x s u p  x >  - 

(*) Entrata in R6dazione il 30 ottobre 1985. 
Indirizzo dell'A.: Dipartimento di Matematica, Universith di Pisa, Via Buonarroti 2, 

56100 Pisa, Italia. 
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I t  is a positive, convex and lower semicontinuous function, being the supremum 
of a family of continuous convex functions. Let now be {#h}h>0 a family of proba- 
bility laws on X. 

Assw~eTm~ (A). - {~u~}a is sM4 to satisfy to assumption (A) if there exists a 
ftmetion ~: R + - ~ R  + such that ,  if H a =  logfi~, 

(1.1) lira Z(h) = @ cr 
h--> ~:~ 

(1.2) lira 1-~-H~()~(h)~) ~+~ ~(h) = H(~)  

where H: X ' -+  RW {~- ~} is lower semieontinuous and finite in a neighborhood 
of the origin. By Z we shall denote the I~egendre transform of H. 

ASSV~iII'TION (C). - {/~}a fulfills Assumption (C) if Assumption (A) is verified 
and, moreover, for every /~ > 0 there exists a compact set Ker X such that  

1 KC (1.3) ,~+~iim ~-~log~( , ) < - R .  

As it will be made clear later (see proposition 1.5 and the remark following 
Lemma 1.6), if X is finite-dimensionM Assumption (A) implies that  ~ua-~ d~ in the 
weak convergence of measures, for some x E X. Assumption (C), which in the finite- 
dimensional case follows from Assumption (A), is needed to ensure tightness of the 
family {#~}~. 

l~ecall that  a convex function ~0 is said to be strictly convex at xo if there exists 
~ X '  such that  

~,(y) > ~(xo) + <~, y - zo> 

for every y =/= xo. 
For every A c X let us define 

A ( A )  = i n f  L(x)  . 
x~A 

In this section we shall prove the following 

T m ~ o ~  1.1. - Suppose that  Assumption (C) holds and that  for every k the 
closure of the set (x; Z(x)<k,  Z is strictly convex at x} contains {x; Z<k}.  Then 
for every Borel subset A of X 

1 1-~ ~(-~,~ log ~(A)  ~<-- A(A) (~.4) - -  A ( A )  < lim ~ log/~(X) < 
~ + ~  2,h) 
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Theorem 1.1 will follow from Corollaries 1.4 and 1.8 below. 

TI~F~OI~E~ 1.2. - Under the hypothesis of Theorem 1.1 if moreover there exists a 
Borel subset ~ c X such tha t  

i) #a(~-) ----- 1 for every h > 0; 

ii) ~ - D { L <  + c~}. 

Then for every A c 

A(A[~) < lira ~@h) log 
h--~ + eo  

/z~(A) < lira ~ log/z~(A) < - -  A(~a.  ) 
h ~ + r  ()  

2[$ and ~:F being respectively the interior and the closure of A in the topology 
induced on ~- by  X. 

PlCOOF. - Theorem 1.2 follows easily from Theorem 1.1. Indeed,  if A is closed 
i n  ~ ,  then  if iF is a closed subset of X such tha t  A ----- Y (~ ~ ,  then/~h(A) ~/2~(/~) 
and A(A) -~ A(I~). The same argument  works if A is open in :~. 

REI~AI~KS. - 1) Theorems 1.1 and 1.2 are we]lknown if X is finite dimensional 
(G;4]~EI~ [5], WE~TZELL-FI~EID~I~ [10], w 5.1). :For the infinite dimensional case, 
recall a result  by  DAWSOl~-GAI~En [11]; their  s ta tement  holds for a space X* which 
is the dual  of a Banach space X and is endowed with the weak*-topology and do 
not  require Assumption (C). Their idea is to extend the finite dimensional result  
by  projective limits,  whereas our proof actual ly shows tha t ,  under  Assumption (C), 
the finite dimensional proof still works in infinite dimensions. 

2) Strict  convexity of Z at  x e (L < + c~} follows from smoothness of H (see, 
I~OOK~FELLAn [7], chap. 2.6). 

3) Condition ii) of Theorem 1.2 is a consequence of i) if 5 v is a closed convex 
subset of X. 

4) Under  the hypothesis  of theorem L1 the set ( Z < y )  is compact for every 
y > 0 .  Indeed it  is closed, J5 being 1.s.c., and if Kr+ ~ is as in (1.3) w i th /~  replaced by  
7 + 1 ,  then  K~+~ is an open set and by  Theorem 1.1 A(K~+I)> 7 + 1 .  This implies 

PI~OPOSlTIO~ 1.3 (Assumption (C)). - I f  

then  for every open set U containing At,  there exists ~ > 0 such tha t  for h > he 

#~(UC)<exp [ -  ~(h)(y + 8)]. 
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P~oo~. - Le t  Kr+ ~ be a compact  set as in (1.3) with R = 7 ~ . 2 .  Then  

(1.5) Fh(UC) </~,( Ur N K~+2) + Fh(K~+2). 

Since L is 1.s.c, the  min imum of L on the  compact  UC(~ K,+e  is a attained~ 
so t ha t  Z ( x ) > y  ~- 2 7 for every  x e UCn Kv+2, for some 17 ~ 0. 

Thus,  for eve ry  x e U : n  K~+,~ there  exists a ~ ~ ( x ) e X '  such tha t  

(~, x~ - H(~)  > 7 § V �9 

I f  ~ : (y; (~(x), y) -- H(:c(x)) > y -{- 7}, there  exist  x, ,  ..., x~ such tha t  

so tha t ,  writ ing 8~ for 8~,, ~ for ~(x~)~ 

i ~ l  i = l  

~ e x l p  

By (1.2) (1/~(h))H~(~(h)=,)--H(~,)< 7/2 for h large and for eve ry  i, so t h a t  
for h large 

Since for large h #~(K~+~) < exp [-- 2~(h)( 7 -Jr 1)], ~rom (1.5) the s ta tement  is loroved 
with ~ = rain (~//~, 1). 

C o ~ o 5 5 ~ u  1.4 (Assumption (C)). - For  every  Borel  subset A of X 

i 1 l im ~ - ~  og #~(A) < - -  A(~_). 
h--~" ~x~ 

P~oo~. - I t  suffices to r emark  t h a t  if A(~_)> 7, then A ~ is a neighborhood oi 
{Z<7}  a~a4 then apply  proposi t ion 1.3. 

P ~ o ~ o s ~ o ~  1.5. - I f  X = R '~ then  Assumption (A) iml01ies AssumI~tion (C). 

P~oo~.  - Le t  (e~, ..., e~) be a basis of X' ,  chosen so t h a t  H(e~) < -f- c~ for every  
i = 1 ~  ..., m. 
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For  fixed R > 0 if 

G =  {~; I<~, ~>l<r ,  i = 1, ..., m} 

we shall prove tha t  

(1.6) 

for y large enough. 

1 
lira ~7~ log #~(K~) < - -  R 

h ~  + oo z 4 f t )  

One has 

K c o 

i = l  

But  remembering tha t  exp//a(~) = f e x p  (~, x>#h(dx) 

~({~; <~, ~> > r}) = 

<exp [ - ~ ( , ~ ) ( r -  ~-~h).~(~(h)~)) ] <exp [-- ~(~)(, - - . ( ~ )  -- 1)] 

where the last  inequal i ty  follows from (1.2) for large h. Thus if 7>~2tt + H(~) @ 1 

and 

~({~; <~,, ~> > ~})<exp { -  ~(h)2R} 

/ta(K~)<2m exp [-- 22(h)R]<~exp [-- 2(h)R] 

for h large. 

LEM:~• 1.6. - Suppose t ha t  {tth}~ satisfies Assumption (C). Le t  be a e X such 
tha t  H(~) < + c~ and denote by #h,~ the probabil i ty law on X defined by 

~.~(~)  = exp [~(h) <~, ~> - ~(~(h)~)]  ~m(z) �9 

Then {tth,~}a also satisfies Assumption (C). 

PRooP. - Le t  vh, ~ be the probabil i ty  law on R which is the image of/~h,~ through 
the application y ~ <~, y>. I t s  Laplace t ransform is given by 

1 
~,~(0) = A(0~ + k(h)~.)#~(k(h)~) 

so t ha t  

1 A h lira ; - ~ l o g  vh,~(),()0) = H((O @ 1)~) --  H(~) .  
h---~ + co 
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Thus (Vh,~}h SatiSfieS to Assumption (A) and, by Proposition 1.5, to Assump- 
tion (C). Thus, for every R > 0 there exists 7 > 0 such that  

1 
lim - -  log vl,,~([-- y, y]c) .<_  R 

~_.+oo X(h) 

or equivalently if C~,r= {x; I(~, x)I<7} 

: - : - -  1 c (1.7) hm ~-w:~,log #h/,(C~,,r) 
~- .+oo 14a) 

< - - R .  

For 9>0 let K be a compact set such that  

: - : - - -  1 c hm ~-~log #1~(KQ) < - -  9 �9 
h--->+c~ ~ ] 

Then 

O.s) c c 

Since on C~,~/*h,~ has a density with respect to /,~ which is bounded by  
exp [~ (h )~ -  ~(~(h)~) ] ,  if 

9 - - - - R + y - - H ( ~ ) + 2 ,  for large h 

(1.9) #h,~(K~(~ C~,,)<exp [ ~ ( h ) y -  H~(~(h)o~)]#~(K~)< 

This combined with (1.7) and (1.8) gives 

lim 37~1og/,a ~(K~) < - -  R .  
h.-> + ~ J 4 / ~ )  ' . 

I~,I~AI~I~. - Under Assumption (C) if there exists x o e X  such that  L(x0)----0 
whereas L(x) > 0 for all x =/= Xo, then /,~-> ~~ Indeed Proposition 1.3 implies that  
tth(U ~) -+ 0 for every neighborhood U of Xo. 

l~oPosi~IO~ 1.7 (Assumption (C)). - Suppose that  L is strictly convex at x e X. 
Then for every neighborhood U of x and ~ > 0 

#~(U)>exp [-- ~(h)(L(x) + 0)] 

for large h. 

PlzooF. - Let  ~ e X ~ be such that  

L(y) > L(x) + <~, y -  x) 
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for every y ~ x. Thus 

(1.~o) H(:r = sup [<~, y> - -  L(y)] = <~, x> - -  L(x) 
y 

(since H is itself convex and 1.s.c., i t  coincides with the Legendre t ransform of Z) 
so tha t  for large h H~(~(h)o:) is finite, l~or such h's let /z~.~ be defined by 

so t ha t  

(~.11) 

v ~>#h,~(U).min exp [--~(h)<~, y} § H~(,~(h)~)]. 
yeU 

Possibly shrinking U, if y ~ U, <~, y> ~< (~, x) § (~/2 and for large h, y ~ U 

Thus f rom (1.10) 

z , , (v )>s , , , ~ (~ )  exp [ -  ~(h)(L(x) + ~)] 

and it  is now sufficient to prove tha t  /zh.~--> 0~. 
I f  J~;(fl) = log~h,~@, H~(fl) = ~,,(fl + 2 ( h ) ~ ) -  H,,(2(h)~) so tha t  

1 
l im .----H~(,~(h)fi) ~- H(~ + fl) - -  H(a) T M  H~(fl) 

h-~ + ~ ~t(h) 

and the  Legen4re t ransform Z ~ of H ~ is given by 

L:(y) = L(y) § <~, y> - g ( ~ ) .  

Thus, recalling (1.10), Lc'(x) ---- 0 whereas Z~(y) > 0, for y ~ x, since JS, and then  
Z% are s t r ic t ly  convex at  x. We m a y  then  apply ~emma 1.6 and the remark preced- 
ing this proposition. 

COROLLAaY 1.8. -- Under the Assumptions of Theorem 1.1 for every ]3orel sub- 
set A of X 

1 --A(A)< lin~ ) - ~ l o g # h ( A ) .  
h--> + oo 
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PROOF. - We m a y  suppose t h a t  A is open. I f  A(A) ~ + co the re  is nothing 
to prove.  I f  not  let  x ~ A be such t h a t  L is s t r ic t ly  convex at  x and 

(1.12) L(x) <A(A)  -~ ~ .  

Since A is a neighborhood of x, by  Proposi t ion 1.7 

~ ( A ) > e x p  [ -  ~(h)(L(x)- ~)] 

which combined with (1.12), ~ being arb i t rary ,  concludes the proof. 

2. - Application: a problem in stochastic homogenization.  

DEI~I!~ITIOI~ 2.1. - :Let X be a topological space, {]~}~ a sequence of real  ex tended 
funct ions;  we shall say t ha t  {]~}~ F(X-)-converges  to ] if for every  x e X 

sup l im inf /~  = sup lira inf ] .  = [(x) 

~, denot ing the  class of all neighborhoods of x. 
The not ion of F(X-)-convergence  (F-convergence f rom now on) is na tura l  in the 

s tudy  of var ia t ional  problems as Theorem 2.2 will make  clear, l~or more details s 
see DE GIORGI-I~A~zo~I [3] or w 1 of DAL ~IASO-IVIoDIc~_ [2]. 

A fami ly  of real  ex tended  functions on X is said to be equicoereive if for every  
t ~ R  there  exists a compac t set K ~ c X  such tha t  {f, Kt} c K~ for every  n. 

TEE0~E~ 2.2. - Le t  {]n}. be a sequence of real  ex tended  functions on the topo- 
logical space X. Suppose t ha t  

i) ]~, F-converges to ]; 

ii) the  sequence {/.}. is equieoercive. 

Suppose tha t  for every  ~ ].  a t ta ins  its min imum at  x . e X  and set m . =  ].(x.). 
Then ] a t ta ins  i ts min imum in X and 

rain ](x) = l im m . .  

Z1oreover any  converging subsequence of {x.}. does converge to a point  of 
min imum for ]. 

We shall consider the  following case: 

x = {u e wl,~( 0 ,1] ) ,  u(o) = 0, u(1) = 1} and for 0 < c < C 
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let  Z be the set of all functionals on X of the form 

(~.1) 
1 

~(u) = F~(u) = �89 fa(t)u'(t)~ dt 
0 

where a is measurable  and e<a(t)<C for every  t ~ [0, 1]. On X we consider the L ~ 

topology. 

Tm~OBE~ 2.3 (SI'AG~OLO [9]). - Le t  ~ C L ' ( [ 0 ,  1]) be the subset of all functions x 
such t h a t  1/C<x(t)<~l/v for every  t e [0, 1] and let  d be a distance on JC inducing 
the  a(L~176 ~ )  topology. Then  the distance ~ on 5 defincd by  c~(E~, .~) ~ d(1/a, l/b) 
is such t ha t  Z%_~r F~ if and only if d( /~%,/~)  ~ 0. 

Thus the  set of all functionMs of the form (2.1) endowed with the topology 
induced by  /"-convergence is compact  and metrizable.  

Le t  now be (X~). a sequence of i.i.d, r andom variables on ~ probabi l i ty  space 
(/2, A~ P)  tak ing  values in [c~ C] and define 

i - - 1  i 
a.(t) -~ X~ if - -  ~ t  < - 

~b n 

so t ha t  (by theorem 2.3) ~o-+ ~a.(~) defines a r.v. taking values in 5 .  I t  can be 
shown tha t  F ~ - ~ / ~ %  a.s. where 

1 
(2.2) a,~, ~ .E[1/X~] 

(see DAL MASO-MODICA [2] for details,  however  we shall not  make  use of this fact  
which will even follow from the  results of this section) so tha t  i f /~.  denotes the law 

~tn ---> ~ �9 

In  the  following y~ will denote  the law on JLr176 1]) which is the image of /~  
th rough  the applicat ion P~--> 1/a. Of course the suppor t  of 7~ is contained in 
for every  n. The results of section 1 will now be used to prove a large deviations 
resul t  for the  sequence (/~n).. Le t  us denote  by  v the law of 1/X1, r its Laplace 
t rans form and 

(2.3) 2(x) -~ sup [Ox -- log 9(0)] 
0 

so t ha t  2 is the Cramer t ransform of ~; 2 is s t r ic t ly  convex, since log r is differentiab]e 
end 2(x) = + ~ if x ~ [1/C, 1/o] (see ROCXAFELLAn [7], chap. 2.6). Define 

1 

J(]) -=f z(](s) ) ds . 
0 
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Obviously, from the properties of ~, J is strictly convex and {J < + co} c Je. 
F0r A : Z~([0, 1]) we define 

I(A) = inf J(]) 

and also 

for every ~ G  2" and B c 2". 

, i(B) = inf ] (F . )  
/~aeB 

TEE0~E~ 2.4. -- ~or every Betel  subset A c Z~([0, 1]) 

- -  I(X) % lim 1 log y~(X) < lim _1 log yn(A) < - -  I (~ )  
n..+oo ~ n--,, oo ~ 

and for every Borel subset B : 2.. 

--  i(/~) < lira 1 log #n(B) < ~ I log/~(B)  < - -  i ( /~) .  

The theorem will follow from theorems :1.1, 1.2, 2.3 and the lemmas below. 
First  remark that,  since 2. and ;~ are compact spaces (1.3) is automatically 

satisfied so that  only Assumption (A) is to be proved. Since JL:([0, 1]) is obviously 
the topological dual of the space ~5r176 1]) endowed with the a(L ~, ~:) topology 
we have first to compute 

lim ! log :~(ng) 

for g G s 0, 1]) where 

(here ( } denotes the duality between Z 1 and Z~). An explicit computation gives 
easily, the r.v. being independent, 

(2.4) 

iln i/n 

( ~ -  : ) / n  ( i -  D i n  

i/n 

A _~ ~ n g ( s )  ds log y~(ng) ~ ~= log 

( ~ -  n -  

(remember that  v is the law of l/X:). In the following we shall write ~ = log ~; ~b 
is convex and continuous. 
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L E ~  2.5. - For  every g eLl(J0 ,  1]) define 

Then g~ --~ g. 

,i/n 

g~(t) = n g(s) ds if <~ t < 
(~-~)/~ 

P~ooF. - I f  g is continuous the s ta tement  follows from a uniform cont inui ty  
argument.  I f  g e Z~([0, 1]), then  for every s > 0 there exist g~, g~, with g~ continuous 
and llg2lI~<s. Horeover,  since [Ig.ll~<l[g[ll for every n, 

lira Jig.-- g]I1 < l i m  (l]g 1 -  g~l]~ ~- Jig ~ -  g~l]) < l im  (]]g2]]~ _~ Ilg~lI~) <2~ 

which~ e being arbi t rary,  completes the proof. 

L E ~  2.6. - For  every g E J51([0, 1]) 
1 

~lim ~!l~ r = f ~(g(~)) 
0 

ds. 

PgooF. - Star t ing from (2.4) and with the notations of IJemma 2.4 

i / n  1 

)f  (2.5/ - r n g ( s )  d s  = r d8 
n i = l  

( i -  1)In o 

and by Jensen inequal i ty  

i l n  1 

(i- 1)In o 

~oreover ,  by  Lcmma 2.4, every subsequence of (g~). has a subsequence (g~)~ 
converging to g a.e. Thus ~(g~) ~ ~5(g) a.e. Since ~ is bounded from below by  
an affine function and g,~ -+ g in Z 1, by  a var iant  of :Fatou's lemma 

1 1 

lira f q)(g.~(s)) ds>~ f ~(g(s)) d8 
Ir ~- oo 

0 0 

so tha t ,  the subsequence being arbi trary,  

1 1 

l im f q~(g,~(s)) ds>~ f ~(g(s)) 
~,-->..~r t. 

0 0 

ds 

tha t ,  combined with (2.6) and (2.5), completes the proof. 
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I n  order  to achieve the  proof  of Theorem 2.3 we only need to p rove  t h a t  J is 
1 

the  Legendre  t r a n s f o r m  of g -~fr as. 
0 

L E ~  2.7. 
1 1 

= = sup 
J a~L~([o , l ] )  
o o 

t)~ooF. - I~emember ing  (2.3) one has  imme4 ia t e ly  
1 1 

0 0 

ds. 

~ o r e o v e r  the  funct ion 0 -> O x -  ~(0) is concave and  vanishes a t  0 ~ 0, so t h a t  
i t  is non negat ive  on an  in t e rva l  I~ (finite, infinite or reduced to {0}) hav ing  0 as 
an  endpoint .  Fo r  every  n, le t  O~(x)~ I~ be a po in t  such t h a t  

1 O.(x)x - ~(O~(x) ) > ~(x) 

O~(x)x - ~(O~(x)) > n  

if  2(x) < + oo, 

if Jl(x) ~ + oo. 

This cue be  done in such a w a y  t h a t  x -+ O~(x) is a measurab le  funct ion (use a sec- 
t ion theorem e.g.). I f  now O~,~(x) -~ 0~($)AmV-- m, O,,~(x) is still in 1~, so t h a t  

(2.7) o ~ ( x ) x  - ~(o, ,~(x))  > o .  

I f  we set  g~,,,(s)-~ O~,~(](s)), gn,~ is bounded,  and  thus  in L1; moreove r  

1 

J(l) > fl:](s)g.,~.(~) - r a s .  
0 

Since the  in tegrand  is non negat ive  b y  (2.7), le t t ing qn-+ + c~, b y  F a t o u ' s  

l emm~ 
1 

(2.8) f [ l ( s ) 0 z ( s ) ) -  ds.  
0 

Now let  A ~ =  {s; 2(](s)) --~ + c~}. I f  mis (A• : 0 t hen  (2.8) gives 

1 

g ( / ) >  f ~(](s)) ds - -  nl_ 
0 

otherwise 

J(t) > n mis (A,). 
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In  e i ther  case, n being arb i t ra ry ,  the  s t a t emen t  is proved.  

l~E~x~]~. - Since J is s t r ic t ly  convex on (x; J(x) < -~ ~ )  and J(x) ~ 0 if and 
only if x ~ 1/(E[1/X~]), Theorem 2.4 implies that/V~ - + / ~  in dis tr ibut ion,  a~ being 
defined by  (2.2) (see the  r e m a r k  preceding Proposi t ion :1.7). 

Le t  now be m: ~ - >  R the  appl icat ion associating to every  functionM ~ its 
m in imum 

1 

(2.9) m ( ~ )  : rain la(s)u~(s) 2 ds .  
u e X  J 

0 

B y  Theorem 2.2 m is continuous on :T. Set t ing  M~((o) ~- m(~a,(~)) , ~/~ is a r.v. 
a n d M , - ~ m ( / ~ a ~  ) a.s. (and t hen  in distr ibution) where a~ is given by  (2.2). We 
shall now derive f rom Theorem 2A a large deviat ion est imate  for this convergence. 
Indeed  if we d e f n e  

(2no) 
l(x) = inf 3(/F),  x e R 

m ( / 0  = z 

Z(A) = inf l (x) ,  A c R .  
xffA 

I t  is then  easy to  See tha t ,  m being continuous,  for every  Bore]  subset A of R 

(2.11) - -  Z(A) < lira 1 log P{M. ~ A} < lira 1_ log _P{M~ E A} < - -  L(.4).  
n--*--~ n n ~  co 

Moreover the  funct ion 1 m a y  be explici t ly calculated 

LEM~YfA 2.8. 

1 

P ~ 0 O F . -  The min imum in (2 .9)equa ls  (!(1/a(s))ds) -1 by  e lementa ry  Calculus 

of Variat ions so t ha t  f rom (2.10) in order  to compute  l(x) one has to  es t imate  the  
1 1 

inf imum of a ~f2(1/a(s))  ds on the  set of all a such t h a t  f ( 1 / a ( s ) ) a s  = 1Ix. Choosing 
0 0 

a ~ x gives l (x) )~(1/x) ,  while l(x)•2(1/x) follows by  Jonson inequal i ty .  

l~v,~_A~x. - A direct  computa t ion  shows t h a t  the sequence {M~}~ is a snbaddit ive 
process (see It:I~G~A~ [8] for  a precise definition). 

(2.11) and lemma 2.8 are  then  an example of large deviations est imate for the 
ergodie subaddi t ive convergence theorem. 
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3. - Application: large deviations connected with Donsker invariance principle. 

Le t  (X~)~ be a sequence of i.i.d, r andom vectors  tak ing  values in R ~, of law/~. 
Le t  us set So ~ O, S .  = X~-k ... -b X~ and,  for  eve ry  t e [0, 1] 

v ~ ( t )  = 

S~ if t - ~ -  
~b 

in terpola ted  l inear ly  if k k + 1 
n n 

~. then defines a r.v. taking values in C = C([O, 1], R~), the  set of all continuous 
paths  f rom [0, 1] to R a, endowed wi th  the  topology of uni form convergence;  Co will 
denote  the set of all pa ths  u e C such tha t  u(O) = O. Co is a closed convex set of C 
and ~ . e  Co a.s. for  eve ry  n. 

IJet fi be  the  Zal~lace t rans form of/~ and ~ the  corresponding Cramer transiorv% 
n a m e l y  

(3.1) ~(x) = sup [(0, x) - -  log fi(O)]. 
0 

by  
Le t  P be the covariance ma t r i x  of # and Q* its conjugate quadrat ic  form, defined 

�89 = sup ((0, x ) - } ( F O ,  0)) 
0 

(if P is inver t ible  then  Q*(x) = (P-ix ,  x)) and define for u e C 

(3.2) Z(u) = 

1 

�89 as 
0 

if u is absolutely continuous and u(0) ~- 0 

~- ~ otherwise 

and for eve ry  subset A c C 

L(A)  ----- inf l(u) . 
ueA 

The main  theorem of this section is the following 

Tm~ORE~ 3.1. - I f  fi is finite in a neighborhood of 0 and  (b.)~ is a sequence such 
t h a t  

l im b?_ ~ _~ c~, l im --:b" 0 
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then  for every A c Co 

n--> co ~-~-> oo 

the operations of closure and of interior being considered in the topology of Co. 

This theorem was first proved by  A. A. FIOGV~'SXII [6] (see also Bonovxov  [1]). 
I t  is however interest ing to see how Theorem 3.1 m a y  be derived by Theorems 1.1 
and 1.2. I n  the rest  of this section we will sketch this program. 

By  l~iesz theorem the topological dual of C is given by the set of all u = (r~, ..., ~a), 
each uj being a signed measure on ([0, 1], :g (0 ,1] ) )  of bounded variation. Le t  be 

1 

where  <u, v> =fu(s)v(as), then  easily, if r = logfi  
0 

i/n 

n [b~ ~ q5 s -  dr(s) + (3.3) = 

(i- :)In 

1 

fin 

Let  , s  denote  1]),  . . . ,  1])).  

LE~gA 3.2. - Under the hypothesis of Theorem 3.1 
1 

0 

b) l(u) = sup ((u,  ~) - H(~)) 

l being defined in (3.2). 
Lemma 3.2 a) follows direct ly by (3.3), using the fact tha t  at  the origin 

~(x )  = l ( r x ,  x ) +  o([xl 2) 

whereas lemma 3.2 b) is proved by arguments similar to those of lernma 2.7. 
Since 1 is cer tainly str ict ly convex at  every u E Co such tha t  l ( u ) <  + c~, in 

order to achieve the proof of Theorem 3.1, we only need to prove (1.3). 
Let  3 = (3k)~: be a sequence of positive real numbers decreasing to 0 and define 

A~ : 5 A~,k 
k = l  
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w~ being the modulus of continuity of x defined by 

w~(~)= sup [x(t~)--x(MI. 
O~tx~t~<~ l 

t ~ . - - t ~  

Then by Aseoli-Arzela's theorem A~ is a compact subset of C. We prove now 
tha t  for every R > 0 there exist ~ = (8~)~ such tha t  

- -  n prl 
lira 7~ log . R < -  

] tvn 

We shull suppose from now on tha t  d = 1. The computations for the case d > 1 
will be only more cumbersome. From now on aS> 0 will denote the variance of 
X1, so tha t  P - ~  a s and Q*(x) -~ (1/~2)x 2. 

c o  

Since A ~ c ~  A~:~, it will be sufficient to prove that~ for a suitable sequence 8, 

for every n, where {s~}~ is positive and sommable. 
I f  

B~={x;t<~<t+~sup ,x(s) --  x(t)] > ~-~} 

then by the triangle inequality 

(3.5) A~.~c U Bk 

and ([t] denoting the integral par t  of t from now on) 

~ = p f l  ~ B~ 1__ 
.m 

{1 
-~ cP [d~n] -~ 1 lSte~n~+ll > 3k[•kh ] -~ 1 ~ 

<r { e x p ( - - ( [ ~ n ]  4 - 1 ) ~ ( 3 k ( [ ~ ] ) +  1 ) ) +  exp(- - ( [~kn]-~  1) ~(--3k([~k~] -~ 1,))]  

where we used a classical maximal lemma (see FELLE~ [4], Zemma 2, p. 192) and 
Cramers's results on large deviations for the sums of i . i .d.r.v. Since A(x) ~ (1/2a2)x s 
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at the  origin and b~/n ~ O, for n large (depending on k) 

~ ( _  b~ 
e x p { - - ( [ 6 k n ] - ~ 1 )  \3]~([6kn] + ~ ) ) } <  

exp{ b,~ n 54a~k-O~} 

t reat ing similarly the other  te rm in the last  member  of (3.6), from (3.5), (3.6) one gets 

c 2c 1 

for every  n > n ( k ) .  Choosing 8k=  1/k 3 

(3.7) P{~--~u,~A~,~} ~ 2 c k  ~exp [ b, ~ ] 1 [ b~ k ] 
n 5~-a ~ 4 ~ e x p  n 108a~ 

for every  n>~n'(k). Now just  remark  tha t  the quan t i ty  2{(1/b~)v~e A~,~} is decreas- 
ing in ~ and tends to 0 ~s 6~-~ 0 for every fixed n. Thus (3.7) is t rue for every n, 
if we take  6~r small enough. This proves (3.5) and concludes the proof of theorem 3.1. 
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