A Class of Strongly Nonlinear Functional
Differential Equations (%).

ENzo MITIDIERI - TOoAN 1. VRABIE (¥%)

Summary. — Let H be o real Hilbert space, p: H — [0, --o00] a proper Ls.c., convex function
with Ly, := {u e H; |u||> - @(u) <k} compact for every k> 0, let v> 0 be o given constant
and Oso((— 7, 0]; H) := {v € O([— 7, 01; H); v() € D(9¢) a.e. for t&(— 71, 0)}. We prove
an existence result for strong solutions to a class of functional differential equations of the form

w' () + Sp(u(®)) e F(t, u(t), w,), O0<t<T

us) =wv(s), —T=s=0,

where F: [0, T1X D(2p) X Cap([— 7, 01; H) — H satisfies a cerlain demiclosedness condition,

0
while v € Ca([— 7, 01; H), v(0) € D(p) and f]lawo(v(s))|]2ds < 4+ co.

1. - Introduction.

Throughout this paper H is a real Hilbert space with inner product (-, -) and
norm -, ¢: H — [0, 4- o] is a proper l.s.c. convex function and o¢ is the sub-
differential of ¢.

If [, b] is an interval in R, then C, ([a, b]; H) denotes the subset of all func-
tions v belonging to C([a, b]; H) and satisfying o(f) € D(dg) a.e. for te (a, b). We
emphasize that in all that follows Cp,([a, b]; H) is endowed with the sup. norm
topology of CO([a, b]; H). Let 7> 0 and 7 > 0 be two given constants.

We recall that if we 0y ([— 7, T1; H) and te[0, T], then u: [—7,0]>H
ig defined by u.(s):= u(t+ s), for every se[— 7,0]. Obviously, whenever
we Og([— 7, T1; H) and te [0, T1, u, belongs to O, ([— 7, 0]; H).

Let F: [0, T1XD(0¢) X Cs([— 7, 0]; H) — H be a given function, and let us

(*) Entrata in Redazione il 14 aprile 1987.

(**) Research done while the second author was a C.N.R. visiting professor at the Uni-
versity of Trieste, Italy.

Indirizzo degli AA.: E. Mitipieri: Dipartimento di Scienze Matematiche, Universitd
deghi Studi di Trieste, Piazzale Europa 1, 34100 Trieste (Italy); I.I. VRaABIE: Department
of Mathematics, Polytechnic, Institute of Iagi R. 6600 and P. O. Box 180, Ro, Is 1 6600,
Tagi 6600, R.S. Romania.



126 Exzo Mrtipieri - I0AN I. VeaBIE: A class of strongly, ele.

consider the following functional differential equation

{ w'(t) + 0p{u(t)) s F(t, u(t), u,), O<t<T,

(1.1 w(s) = o(s), —T=s=0,

where ve 0,,([— 7, 0]; H), v(0) e D(p) and fo” op°(v(s)) |2 ds < -+ oo.

The main goal of this paper is to prove an existence result for strong solutions
to (1.1). Basic sources of references for this kind of problems are the monograph
of HALE [10] and the survey paper of WEBB [23].

Although functional differential equations have been intensively studied over the
past several years by many authors (see for instance [7-14, 16-20, 23] and the refer-
ences therein) as far as we know, this is the first attempt to overcome the difficul-
ties encountered when F is defined merely on [0, T]xD(dg) X Caq,([— 7, 0]; H)
and — F lacks monotonicity with respeet to its second and third arguments. The
possibility of considering such functions ¥ which, in general, are discontinuous
with respect to the induced strong topology on both domain and range, allows us
to obtain as particular cases of our main existence theorem new results refering
to strongly nonlinear partial differential equations of funectional type.

The interesting feature of this class of equations consists in that the state of the
system depends not only on its history but also on the history of its « diffusion ».
See the examples in Seefion 6.

We emphasize that our results seem to be new even in the semilinear case, i.e.,
when O is linear. : '

The method of proof which is partially inspired from [15] is mainly based on a
fixed point theorem due to ARINO, GAUTIER and PENOT [1] and rests heavily on
a deep regularity result due to BrRrzIs [3].

The paper ig divided into six Sections, the second one being mainly devoted to
some notations, definitions and results widely used in all that follows. In Section 3
we state our main result, while Section 4 is merely concerned with its complete
proof. Section 5 contains two results concerning the continuation of the solutions,
while in the last Section 6 we analyze some examples in order to emphasize the
effectiveness of the abstract results.

Acknowledgements. The second author express his warmest thanks to C.N.R.
for supporting this work, as well as, to the Department of Mathematical Sciences
of the University of Trieste for very kind hospitality and cooperation.

2. - Preliminaries.

Let H be a real Hilbert space with inner product (-, -) and norm |- and let
@: H —[0, 4 oo] be a proper, ls.c., convex function. Set

Dig) := {ueH; pu) <+ oo},
op(u) = {ve H; plw)— ¢(u) = (v, w— ), we H} ,
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and

D(og) := {ue H; op(u) = D} .

We recall that D(p) is called the effective domain of ¢, op(u) the subdifferential
of ¢ caleulated at u, and the operator op: D(dp)c H — 2 which assigns to each
u € D(0p) the set dp(u)—the subdifferential of . We have

D(@p)cDig) and  D(ag) = Dig) -

It is well known [4] that O¢ is a maximal monotone operator.
Let us consider the following quasi-autonomous evolution equation
w(t) + op(u(t) 2f(t),  0<t<T,
(2.1)
u(0) = uy ,

where ¢ is as above, fe L*([0, T1; H) and %, € D(p).
By a strong solution to (2.1) we mean a function ue Wb2([0, T1; H) with
u(0) = wuy, u(t) € D(0¢p) a.e. for t e (0, T’} and satisfying

w'(t) -} (atp(u(t)) — f(t))° =0 a.e. for te(0,T),

where, if C is a nonempty, closed convex set in H, 0° denotes the unique element
of C having minimal norm.
We recall for easy reference the following result due to Brézis (see [3]).

THEOREM 2.1. — Let ¢: H — [0, + co] be a proper, l.s.c., convex function. Then,
for each u, € D(p) and fe L([0, T1; H) there exisls o umique strong solution to (2.1)
such that ¢t - @(u(t)) is absolutely continuous from [0, T] into R and which, in addi-
tion satisfies

(2.2) ﬂu’(t) [12+ 6%(;7(%@)) = (f(t), u’(t)) a.e. for t e (0, T) ,
and
s 3 o 3 o
(2.3) ([ 1) =( [ 1) + Ve
0 4]

DEFINITION 2.1. — A proper, Ls.c., convex function ¢: H — [0, 4 oo] is called
of compact type if for each k> 0 the set

Ky = {ue H; [u]*+ p(u) < &}

iy compact in H.
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REMARK 2.1. — Obviously, ¢ is of compact type if and only if for each k> 0
the set

M= {ue H; [u] + g(u) < 4}

is compact in H.

We emphasize that we prefer to use L, instead of M, because, in applications,
whenever d¢ is a partial differential operator, it is much easier to check the com-
pactness of L, than that of My.

The next result is an obvious instance of [21, Corollary 2.3.2].

PRrOPOSITION 2.1. — Let ¢: H — [0, + oo] be a proper, l.s.c., convex function of
compact type and let u,€ D(p) be fived.

Then the solution mapping f — u—which assigns to each f belonging to L*([0, T1; H)
the unique strong solution to (2.1) corresponding to u, and to f—is sequentially contin-
uous from IL2([0, T1; H) endowed with its weak topology into C([0, T1; H) endowed
with its strong topology.

Finally, we recall the following fixed point theorem due to ARINO, GAUTIER and
PexoT [1].

THEOREM 2.2. — Let C be a nonemply, convex and weakly compact subset in o
separated locally convexr vector space. If P: C — C is a function which is weakly
weakly sequentially continuous, then P has al least one fiwed point.

2. — The main result.

We begin by explaining what we mean by a strong solution to (1.1). Namely,
we introduce

DEFINITION 3.1. — A function %: [— 7, T] — H is ecalled a strong solution to
the problem (1.1) on [0, 77 if
(S,) u(s) = v(s) for each se[— 7, 0].
(8.) u, € Op,([— 7, 0]; H) for each te[0, T].

(Ss) The function f: [0, T] — H, defined by f(t) := F(t, u(t), u;) a.e. for te (0, T),
belongs to L([0, T'1; H) .

(3,) u is a strong solution of (2.1) with f as above and %, = »(0) in the sense
indicated in Section 2.

Let ve Oy,([— 7, 0]; H) be fixed and let ue C([0, T,]; H) be a given function
with #(0) = v(0). In all that follows we denote by # the function 4: [— 7, T,] - H
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defined by

) for te[—m, 0
3.1) W)::{v() or te[—, 0],

u(ty for te(0, T,].
DEFINITION 3.2. — A function F: [0, T]1xD(0¢)x Oy,([— 7, 0]; H) is called og-
0
demiclosed if for each ve O, ([— 7, 0]; H) with »(0) e D(g) and f” 0@°(v(s)) |2 ds < -+ oo,
and for each T,e (0, T], the following conditions are satisfied

(i) For each wue 0, ([0, Tol; H) N W12([0, To]; H) with u(0) = v(0) and for
which there exists ge L*([0, T,]; H) with g(f) € op(u()) a.e. for te (0, Ty), the
function ¢ — F(t, u(t), w,) is strongly measurable from [0, T,] into H.

(ii) If (u,) is a sequence in C, ([0, T,]; H) N W*([0, T,]; H) with u,(0) =
= »(0) for each ne N and for which there exists (g,) in L([0, T]; H) with g,(f) €
€ 0p(u,(t)) for each n €N and a.e. for ¢ (0, T,) and if, in addition lim w, = « in
C([()’ T,]; H)a LAS Gé‘q}([O? VISH H)’

wlimu, =« in L[0, T,]; H) ,
w-limg, =g  in LX[0, T,]; H),
wlimp,=p  in L¥[0, T,]; H)
where, for each neN, p,: [0, T,] — H is defined by
Palt) i= F(t, u,(t), 4,) a.e. for te(0, Ty),
then

pt) = F(t, w(t), 4;) a.e. for te (0, T,).

DEFINITION 3.3. ~ A function F: [0, T1x D(0¢) X Cy,([— 7, 0]; H) — H is called
op-dominated if there exists two non decreasing functions I(+), ,(+) from R* into R*,
¢, ¢ € LY([0, T]; R™) and a constant ke (0, 1) such that

186, w, o) < E] oy 4 1] + 9(w) [f Jego(ois))»ds + blpla) et + el

a.e. for te (0, T), for each ue D(dp) and v e Cy([— 7, 0]; H) with v(0) € D(p) and
Hafp $)) |2 ds <+ oo.

Now, we are able to proceed to the statement of our main result.
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THEOREM 3.1. — Let p: H — [0, + oo] be a proper, 1.s.c., convex function of com-
pact type and let F: [0, T1X D(2¢) X C5,([— 7, 0]; H) — H be a function which is
both Op-dominated and Op-demiclosed. Then, for each v e O’aq,([— 7, 0]; H) with v(0) €

0
€ D(p) and f]]qu"(v(s)) |2 ds < -+ oo, there exists To= To(v) € (0, T) such that the
_problem (1.1) has at least one strong solution defined on [0, To].

Concerning the semilinear case, i.e., when 0p is linear, we have

COROLLARY 3.1. — Let A: D(A)c H — H be a densely defined linear, self-adjoint,
m-aceretive operator and let ¢: H — Rt be defined by

~{ L]Aku)2, if weD(AY),

lu + oo otherwise .

Let F: [0, T1x D(2g) X Cop([— 7, 0]; H) — H be a function which is both Co-demi-
closed and 8¢-dommated If (I 4+ A)* is compact, then for each ve Cy([— 7, 0]; H)

i
with v(0) € D(A?) and f [Aw(s)]® ds < + oo, there emwists Ty = To(v) € (0, T'] such that
the problem

W' (t) - Au(t) = F(t, ut), w) , 0<i<T,

u(s) = v(s), —7=s8=50,

has ot least one strong solution defined on [0, T].

4. — The proof of the main result.

We shall use a fixed point argument as follows. Let r> 0 and Toe (0, T] be
fixed and let us denote by K, the closed ball with centre 0 and radius r in
I2([0, T,]; H), namely '

T,
K, 1= {heLZ([o, T,}; H); fuh(s)n2 ds< 72} .

Let fv be an arbitrary, but fixed, element in C,,([— 7, 0]; H) satisfying 2(0) € D(p)
and f|[<p Ni2ds < + oo, and let us consider the problem

(4.1) { ul(t) = dp(un(®)) 3h(t), 0<t< Ty,

(0) = v(0) ,
where he K7, .

In view of Theorem 2.1, for each h e K7, the problem (4.1) has a unique strong
solution w, defined on [0, T,].
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Now, let us define the operator P: D(P)c K} — I*([0, T,]; H) by
4.2) (Ph)(t):= F(t, walt), @) ae. for te (0, To],
and for each

he D(P) = {he Ky ; t = F(t, wy(t), %) belongs to L([0, T,]; H)} .

We emphasize that in the definition of P, u, is the unique strong solution to
(4.1) corresponding to 9(0)—which is fixed—and to ke D(P), while 4, is given
by (3.1).

At this point it is quite transparent that (1.1) has at least one strong solution
defined on [0, T,] if and only if P has at least one fixed point. Indeed, % is a fixed
point of P if and only if w, is & strong solution of (1.1) defined on [0, 7).

In order to show that P has at least one fixed point we resort to Theorem 2.2,
To this aim, we need the following two lemmas.

0
Lemma 4.1. - For each ve Cy([— 7, 01; H) with v(0) e D(p) and f” op(v(s)) |2 ds <

<+ oo there ewists v > 0 and T, € (0, T] such that the operator P given by (4.2) 18
defined on all K}, and maps the latier into itself, i.e., D(P) = K7, and P(K7 )c K.

Proor. — First, let us choose r >0, such that
(4.3) 72> 2(1 4 3%) (1 — k)~2g(v(0))
where ke (0, 1) is the constant in Definition 3.3.
Fix T,€ (0, min {7, v} ]—which will be defined more precisely latter—and let

us observe that, for » and T, as above, in view of Theorem 2.1, we have

€ O, ([0, To]; H) N W32([0, To]; H)  for each heKj .

Therefore, by (i) in Definition 3.1, we easily conclude that the function
t = F(t, ua(t), %) is strongly measurable from [0, Ty] into H, for each heXKy,.
Consequently, since ¥ is op-dominated, we have

(4.4) fn (t, un (8 uh)”mz<kfuo¢ Ut )[|2dt—|—

+fz lua)] + (it ))fnaqo( (t+9)|*ds dt +

+ﬁnm O] + g(l®)) b (1a(8) st & -+ [l + @(0a00))
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for each he Ky . At this stage we do not know whether or not the right hand side
of (4.4) is finite. Thus, our aim now is to show that for T, € (0, min {7, v}]—suffi-
ciently small—this is indeed the case. To this end, for each k€K7 , let us define
gn: [0, To] —~H by

(4.3) gu(t) 1= — wuy(f) - h(t)  a.e. for te (0, T,)
and let us observe that from (2.2) we easily obtain

—§<p(uh(s)) + lga(s)|2 = (g4(s), B(s))  a.e. for se(0, T,).

Integrating this equality both sides over [0, ¢]c [0, T,] and using Cauchy’s ine-
quality, after some obvious rearrangements, we get

?(ux(0) ﬂ% )| ds < (o M (5)]2ds,

for each he K} and ?€[0, To]. This inequelity implies both

(4.6) 9(un(1)) < (o0 fnhs)nzds<<p( (0) + 3
and
(*.7) ﬁm )2 ds < 2p(n -#M (5)]* ds = 29(0(0)) + 7,

for each heKy,.
From (4.7) it readily follows that

Ty
(1 — 29[ Ign(o)]* s = 29(0(0)) + 7°

for each heKy and s€[0,1]. Taking ¢ = (1 — k)[2(1 + 3%k)]-*—which is possible
because k€ (0, 1) implies (1 — k)[2(1 + 3k)]* € (0, )—after some standard calcula-

tions involving (4.3) we obtain
T,

(L8) i [l as=

145,
2

0
for each heK,.
Now, let us observe that, in view of (4.6), and since K, is bounded in
L2([0, T,]; H), there exists m > 0—which does not depend on 7T, e (0, min {7, v} ]—
such that

(4.9) lw@)] <m  and p(u()) =m

for each he Ky and te [0, T,].
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Using (4.4), (4.8), (4.9), the fact that [2¢°(u.(1))] < |gx(¥)] for each ke K}, and
a.e. for ¢ € (0, To)—see (4.5) and Theorem 2.1—and recalling that I(-) and I(-) are
nondecreasing, we conclude that

Ty 0
fnm wtt, )1 = L v v | fuaw(ﬁn<t+s)>|msdt+
0 —v T, T,
-+ I(2m) lo(m)fol(t) dt - Z(Qm)fcz(t) di
0 0

for each heKy,.
Next, let us denote by

2= {(t,5) [0, Tyl X[— 7, 0]; ¢ + s< 0}
and by
= {¢ 8)e[0, To]X[— 7,015t 4 s> 0} .

Recalling the definition of #,—see (3.1)—the last inequality can be equivalently
rewritten as

+

f][Ft Un(t), s, |2 A < —— 72 - 1(2m) ffﬂa(p (v(t 4 s)) |2 ds dt +

Ty
+ U(2m ffnac.v (ualt + 8)) 2 ds dt + U2m) To(m )fcl(t>dt+
0

Zm)fc2 dt, for each heKjg,.

Using once again the fact that [0¢°(ua(t))| < [ga(f)| a.e. for te (0, T,) and for each
he Ky, we obtain
Ty —t
1 + k

fﬂFt un(t)y s )||? At < —— 2>+ 1(2m) f fﬂagu"(v(t—!—s))st at -+

To 0 T,

Zm)f f lgn(® + s)|2ds dt - 1(2m)1, (m)f (8 dE -1 2m)f0=,

0 0

for each heKy,.
After the change of variable § =t +- s, we conclude that

To O
ful’t ) )| glg’%wmm)f [1ew o= s ar +
Ty 0 t—< i To

+ U(2m) f f 194(0) 12 30 @z + 1(2m)-Lo(m) f 64{t) @t - U(2m) f &) dt,

0 0 0
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for each heKy . Since i€ [0, Ty]c [0, 7], the last inequality in conjunction with
(4.7) yields

T, 0

[176 ), )= EE v aem f l2g*(o(®)) [ d6 +
0 -7 Ty Ty
+ 12m) L[ 2¢(v(0)) + r2] + U(2m) lo(m)fcl(t) dt + Z(Zm)fcz(t) dt
(1} 0

for each heXKy,.
Recalling that

W0)eDlp), [log@)rds<+ oo, ke(©,1), a,qeli([0, T;R,),

and taking into account that m > 0 does not depend on T,, we conclude that for T,
small enough

1]
tzm) 2y [ 12g0(0(6) 12 + U2m) T[29 00) + 7] +

T, T,

b f aft) di e f @@=t

0 0

for each he Ky,
From the last two inequalities we easily deduce that, for » > 0 defined by (4.3)

and T, as above,
T

. VB (t ), ) [* < 92
0

for each he K . Since this inequality shows that the operator P given by (4.2) is
defined on all K7 and maps the latter into itself, the proof of Lemma 4.1 is com-
plete.

LeMMA 4.2. ~ Let ve Oy,([— 7, 01; H) be arbitrary with
. ,
v(0)eD(g) and f [3%(v(s)) |2 ds < + oo,

and let ¥ > 0 and Ty e (0, T'] be such that the operator P given by (4.2) is defined on all
of Ky, and maps the latter into itself.
Then P is weakly-weakly sequentially continwous from K, into tself.

Proor. - First of all, let us remark that K7, is nonempty and weakly compact
in L#([0, T,]; H). Therefore, to complete the proof, it suffices to show that the
graph of P iy weakly sequentially closed in K}, xXKJ, .
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To this aim, let (h., p.)) be an arbitrary sequence in the graph of P such that

w-limhk, =h in L2([0; Tol; H)
and

w-limp,=p in L*[0, T,]; H) .

To simplify the notations, let us denote by (u,) the sequence (u, ) of strong solu-
tions to (4.1) corresponding to (h,), and by (¢.) the sequence (g, ) as defined by (4.5),
respectively. From Proposition 2.1 combined with (2.3) in Theorem 2.1 it follows
that we may assume with no loss of generality—by extracting a subsequence if
necessary—rthat

limw, =wu in C([0, Ty); H), ue C,,(0, I,); H) ,

(4.10) _ .
wlimu: =w in L*([0, T,]; H)
and
(4.11) wlimg,=g¢ in L%[0, T,]; H)

where % is the unique strong solution to (4.1) corresponding to h.

In order to use the dp-demiclosedness condition on F to conclude that p = Ph
we have merely to show that w = o/, and g(f) = — «'(f) 4 k() a.e. for {e (0, Ty).
See (ii) in Definition 3.2. For this purpose, let us define the operator

A: D(A)c L¥([0, T,]; H) —2¥ (0050
by

Af := {fe L¥([0, T,]; H); f(t) € 0p(f(#)) a.e. for 1€ (0, Ty)}
for each fe D(4), where

D(4) = {fELZ([O, Tol; H); f(t) e D(dp) a.e. for te (0, Ty)
and there exists fe L¥([0, T,]; H), ()€ cp(f(t)) a.e. for te (0, Ty)} .

Clearly A4 is maximal monotone in L2([0, T,]; H) and, in addition g,€ 4w, for
each neN. Since I*([0, T,]; H) is obviously uniformly convex, the graph of A4
is strongly weakly sequentially closed in IL*([0, T,]; H) X L*([0, T,]; H). See [2,
Proposition 3.5, p. 75]. Thus, inasmuch as ([0, 7,]; H) is continuously imbedded
in L*([0, T,]; H), the last remark in conjunction with (4.10) and (4.11) shows that
g€ Au, or equivalently that g(t) € dp(u(t)) a.e. for te (0, T,).
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Next, since the operator B: Wt2([0, T\1; H) — L*([0, T,]; H) defined by
Bf:=f'

for each fe Wr2([0, T,]; H) is linear continuous, it readily follows that it is also
weakly-weakly continuous. Hence

w-limu, =  in L*([0, To); H) ,

and g(t) =— w'(¢) + k() a.e. for te (0, T},).
Finally, an appeal to (ii) in Definition 3.2 shows that

p{f) = (Ph)(#) a.e. for te(0, Ty).

Consequently the graph of P is weakly-weakly closed in K}, XK7, and this com-
plete the proof of Lemma 4.2.

Proor or THEOREM 3.1. — From Lemma 4.1 it follows that for each ve 0,
0
([~ 7, 0]; H) with v(0) € D(p) and f][aqo"(v(s)) [2ds < + oo there exist »> 0 and

To€ (0, T] such that the operator P given by (4.2) is defined on all of K7, and
maps the latter into itself. From Lemma 4.2 we conclude that, for r >0 and
Ty € (0, T] as above, the operator P is weakly-weakly sequentially continuous from
K, into itself. Since Ki, is nonempty, convex and weakly compact in L*([0, T,]; H),
by Theorem 2.2, P has at least one fixed point ke K, .

Thus u, is a strong solution to the problem (1.1) and this completes the proof
of Theorem 2.1,

ReEmMARK 4.1. — A glance at the proof of Theorem 3.1 shows that a similar result
holds true if 7 = — oo, i.e. for the case of an infinite delay. We note that in this
case we have to consider instead of C,,([— 7, 0]; H) the space Of((— oo, 0); H)
of all uniformly continuous and bounded functions v from (— oo, 0] into H with
v(s) € D(dg) a.e. for s (— oo, 0), endowed with the usual sup-norm.

REMARK 4.2. — It is also evident—see (4.8)—that in Theorem 3.1 we may assume
that F is merely defined, either on [0, 7] X D(cp) X66¢([— 7, 0]; H), or on [0, T X
X D(0g) xc”*gg((— oo, 0]; H) where

0&((— 7, 01; H) := {v e 0, ([— 7, 0]; H) ; 9¢°(v) € L}([— T, 0]; H)
and

532((— o0, 0]; H) := {v € Oj((— oo, 0]; H); 89°(v) € L2((— oo, 0]; H) .
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5. — Continuation of the solutions.

The proof of the next result follows, except some minor modifications, the same
lines as those in the proof of [21, Theorem 3.2.2] and therefore we do not give
details

THEOREM 5.1. ~ Let @: H — [0, + oo] be a proper, ls.c., convem function of
compact type and let

F: [0, T1X D(Cg) x Cy,([— 7, 0]; H) - H

be o function which is both cg-demiclosed and Op-dominated. Assume olso that for
each bounded subset B, in D(0p) and each subset B, in C,([— 7, 0]; H) with
{t = 2¢°(v(t)); v € By} bounded fn L*([— 7, 0; H), there exists fp , 5 € L¥([0, T]; R)
such that

[E)E, uy 0) | =< fleBz(t)

a.e. for te (0, T') and for each (u,v)€ B, XB,. 0

Let ve Cy([— 7, 0]; H) with v(0)€ D(p) and jl[@(p"(w(s)) [2ds < 4 co and let u
be a moncontinuable strong solution to (1.1). -

Then, either w is defined on [0, T, or u is defined on [0, T,) with 0< T, < T
and in this case we have

lim Ju(t)] = -+ oo.
t+Tm
Concerning the existence of global strong solutions to (1.1) we prove

THEOREM 5.2. — Let ¢: H — [0, -~ oo] be a proper, l.s.c., convex function of com-
pact type and let

F: [0, T1X D(3¢) X 05 ([— 7, 01; H) - H

be a op-demiclosed function for which there ewists ke (0,1), k> 0, and ¢ LY([0, T'1; RY)
such that
0
2, u, )2 < Blop() |+ & |2g*(0(s) |2 ds + o(t)

-7

a.e. for te (0, T), for each ue D(d¢p) and ve Og([— 7, 0]; H). Let ve Cy([— 7, 0]; H)

0
with v(0) € D(p) and f [6¢°(v(s))[® ds < + oo, and let u be a noncontinuable strong
solution to (1.1). —T
Then w is defined on [0, T1.
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Proor. - Clearly F is a dgp-dominated and thus Theorem 3.1 applies. Let
0
ve Ogf[— 7, 0]; H) with (0) € D(p) and [[0g*(v(s)) |2 ds < + oo, and let w be a

noncontinuable strong solution to (1.1) whose existence is ensured by Theorem 3.1
and Zorn’s lemma.,

Let us assume by contradiction that # is defined on [0, T,) with 0 < T, < T
To complete the proof it suffices to show that the limit

(5.1) w(TLy— 0) :=lim u(f)
T,
exists
(5.2) u(Ty,—0)e D(gp),
and
0
(5.3) [ 1w+ 5))|2ds < + oo

Indeed, once (5.1), (b.2) and (5.3) are proved, by a simple translation argument

‘combined with Theorem 3.1, we conclude that, either # can be continued to the

right of T, as a strong solution of (1.1) if T, < T, or u can be extended to [0, 7]

it T, = T, thereby contradicting the initial supposition that « is noncontinuable.
In order to prove (5.1), (5.2) and (5.3), let us rewrite the equation in (1.1) as

w'(s) + h(s) = F(s, u(s), u;) a.e. for de (0, T,),

where h: [0, To] — H satisfies h(s) € 0p(u(s)) a.e. for se (0, T,). From the above
equation we obviously have

[/ (8) 2 - 2(w/(s), B(s)) + [(s) ]2 = | F(s, uls), w,) |

a.e. for s (0, T,). Since h(s) € op(u(s)) a.e. for se (0, T,), we then conclude that
)]+ 2 S pluts) 4 Ths) 2 = [, (o), w,) |

a.e. for se (0, Ty). Integrating this equality both sides over [0, ¢]c [0, T,), neg-
lecting the first integral on the left hand side and taking into account that

[2g*(u() ]| < |M(s)] a.e. for se(0, Ty),

we get

20(u(t) + [ 1299 (u(s)) | ds = 20(0(0)) + [ |7 (s, u(s), w.) | ds
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for each te[0, T,). Now, using the growth condition that F satisfies, after some
obvious rearrangement, we obtain

t

20(u(t) + (1 — 1) [3g*(u(s)) *ds =< 2p(0(0) +-Ta f f [ (uts -+ 0))|* 0 ds + f

0 0 ~7

for each te [0, T,).
After the change of variable s - 6 = &, we arrive at

2(u(t) + (1— & fuaqa(u (5)) 12 ds = 29(0(0)) +K1f fuaqa(u )uwsdsTf ols) ds

0 8~7

and hence
t

2p(ult)) -+ (1— 1) [[2g°(u(s)) |2 ds = 20(0(0)) + K, f f [ogh(u(€) 1{2d5ds+fc(s

0- 0 —z

for each ¢ € [0, T,).
From this inequality, we easily obtain

t t s
2p(u(0) + (L~ 1) 13p(u) 1< m -+ B [ o9 (u(@) )2 a2 ds
] 00
for each 70, T,), where
= 2p(0(0) + % T [2g°(0(6)) |2 -

Inasmuch as ¢ is nonnegative and ke (0, 1), from Gronwall’s inequality we con-
clude both

5.4 [1o (w1 ds < + oo
and ’
(5.5) Sup p(u(t) < + oo
Therefore
fnaqo u(s) uzds<fua<p us) ﬁzds—fﬂafp n2ds+fna¢ )2 ds <+ oo,

To—

and thus (5.3) holds.
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Next, recalling the growth condition that F satisfies and (5.4), we deduce that
¢t — F(t, u(t), w)) belongs to L*([0, T\]; H). As a consequence, the problem

w'(t) + op(w(t)) 2 F(t, u(t), u) , o<t< Ty,
w(0) = v(0) ,

has a unique strong solution w defined on [0, 7] which obviously must coinecide
with « on [0, T;). Since w is continuous on [0, 7] this implies (5.1). Finally, from
(5.1), (6.5) and the fact that ¢ is Ls.c.; we obtain (5.2), thereby completing the
proof.

REMARK 5.1. — The reader may easily verify that both Theorems 5.1 and 5.2
can be suitably restated to handle as well as the case when the delay is infinite. Of -
course, as pointed out in Remark 4.1, in order to do that one has to replace
O5([— 7, 0]; H) by Ci((— oo, 0]; H)—the latter being endowed with its usual
sup-norm.

6. — Examples.

As a first example we consider the nonlinear diffusion equation with infinite
delay

3

aa—@;—Aoc(u)=fk(t—s) AB(uyds, a.e. for (4, 2)e(0, T)x 2,

— oo

a(u(t,z)) =0, a.e. for (t,2)e(0, T)xoQ,

u(s, ) = v(s,x), for each s&(— oo, 0] and a.e. for 2 Q2.

Here 2 is a bounded domain in R¥, N = 1, with smooth boundary 82, «, §: R —~R
are continuous and nondecreasing with «(0) = (0) = 0, and ke L([0, + o<); R).

For the specific choice afr) = f{r) = r[rj=* for each re R, where m >0 is a
given constant, this equation describes the gas flow through a porous medium in
which the conecentration speed depends not only on the ingtantaneous diffusion, but
also on the cummulative history of the diffusion.

Before proceeding to the exact statement of the existence result concerning (6.1)
we introduce some notations.

First, let us define J: R - R by

J@) = f 2(8)d9 for each reR,

0
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and let us recall that O"((— oo, 0]; H) is the space of all uniformly continuous
and bounded funetions from (— oo, 0] into H. In all that follows, we denote by
I+ lo: the norm of H(&) defined by

low]o:= (f |V | dx)1 for each weHy(2),
02

where |-| stands for the euclidean norm of R¥, and by |-|_; the norm of H-}(£)
—the dual of H(£2).
We have

[Aw|_y = [w]o. for each we H(2),

where — A: H)Q) - H,'(2) is the natural isomorphism between H}() and
H(Q), ie.,

(— dw)(v) ::wa-Vvdx for each v, we H3(L2).
Q

Now, we are preparated to formulate the main existence result referring to (6.1).

THEOREM 6.1. — Let Q be o bounded domain in R¥, N = 1, whose boundary 00
is an (N — 1)-dimensional manifold of class €2, let a, e O(R; R) N C{R; R— {0})
be two given funciions satisfying:

(Hy) There exist ¢>0 ond p>(N—2)/N if N>2, p>0 if 1< N=2, such
that

(6.2) a(ry=elr|™*  for each reR— {0} ;
(Hy) There exists ¢, >0 such that
(6.3) 0< B(r)< ea/(r)  for each reR— {0}

and let ke L°([0, 4 oo); R). Then, for each ve (**((— oo, 01; H-X(Q)) with v(s) €

€ I{Q) N H-1(Q), a(v(s)) € HX(RQ) a.e. for s (— oo, 0). v(0) € L), J(v(0)) € L*(£),
0

and f [Ade(v(s)) |2, ds << + oo, there exists at least one global solution u to (6.1) in the

following sense:

we ([0, T1; HYQ)), us)=uv(s) for {ach se&(— oo, 0],

), Blu) € (10, T); TYD)) , o € T(10, T1; (),
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and w satisfies (6.1) in the sense of distributions (— A is understood as the natural
isomorphism between HLQ) and H-Y(Q)).

Proor. — In order to appear to Theorems 3.1 and 5.2f—see also Remarks 4.1
and 5.1—set H — H-Y£2) and let us define ¢: H-Y(2) —-R* by

f J(u(@)) de it we LHQ) and J(u) e IHQ),
2

plu) =
-+ oo - otherwise .

Tt is well known that ¢ is proper, Ls.c. and convex and its subdifferential is given by

Op(u) = — Aa(u)

for each u e D(dp), where D(0p) = {u € H-Y(Q) N LYQ); o(u) € Hy(2)}. See for in-
stance [, or 2, Proposition 2.10, p. 67].
Since o satisfies (6.2), by Sobolev’s embedding theorem combined withSchauder’s
theorem [6, Théoréme VI.4, p. 90], we easily conelude that ¢ is of compact type.
Next, let us define—see Remark 4.2—

F: [0, T]1X D(3g) X O2((— oo, 01; H-Q)) - H-1(Q)
by

F(t, u, 0) 1= f k(— 6) AB(v(0)) d6

for each (t, u, v) € [0, T1X D(0p) X O ((— oo, 0]; HHL)).
Clearly, ¥ does not depend on (¢, u) € [0, T]x D(d¢), and in addition, by (6.3),
we have

Ht%ih~nf oy aof|
| f weogoya] | [ i-oneora] -

< f f Ik(— 0)26'(0)2 [Vo(6) ]2 d6 do < o, f f {(— )2 e’ (6)2 |Vo6) 2 d6 ds .
L—co N—o0

-1

Since ke L*([0, + oo); R), this inequality shows that

\P(t, u, o) ﬂ_Kan nzw~waﬂw N
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for each (t, u, v) € [0, T1 X D(0p) ><O~g;;((— oo, 0]; H-*(L)), where K >0 is a given
constant. Thus, I is dp-dominated, and more than this, it satisfies the growth con-
dition in Theorem 5.2. Next, we prove that F is dp-demiclosed. To this aim let us
define B: D(B)c H-Y(Q) — H Q) by

Bu:= — Af(u)

for each e D(B), where D(B) is defined in a similar way as D(3¢p). Furthermore
let us define

6: D(O)c L¥([0, T]; H™Y(Q)) — 2%([0. T E(@)
by
Of := {fe L*([0, T1; H-YQ)); f(t) € Bf(2) a.e. for te (0, T)}

for each fe D(®), where

D(O) = {fe 1*([0, T]; H(R)), {(t)e D(B) a.e. for te (0, T)
and there exists fe L*([0, T]; H-X(2)), f(t)eBf() a.e. for te (0, T)} .
Since O is m-accretive in L([0, T]; H-1(Q)), a simple argument involving [2, Pro-
position 3.5, p. 75] shows that F is d¢p-demiclosed.
Finally, let us observe that (6.1) may be rewritten as
u'(t) + a(p(u(t)) = F(t’ u(t), ut) y  0<i<T,
u(s) = v(s) , —ocol8=0,
where ¢ and F satisfy all the hypotheses of Theorems 3.1 and 5.2—see also
Eemarks 4.1 and 5.1—and this completes the proof.
The second example we analyze refers to the Navier-Stokes equations with

delay on the viscosity. Namely, let us consider the problem (6.4) below, where
is a bounded domain in R®

t
A 3
2~4u+ > uia_u: f— Vo + | kit —s) Auds
ot sy oy
_ —eo a.e. for (¢, 2)e(,0, T)x Q,
(6.4) diva =0 a.e. for (t,x)e(0, T)xQ,

u=20 a.e. for (¢, ) e (0, T)x 282,

u(s, z) =wv(s,a) for each se(— oo, 0] and a.e. for 2z 2.
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In order to rewrite this problem in the form (1.1) let us introduce the funection
spaces

02(Q) = {u = (us, Uz, U5); s € 05 (2), div = 0} ;
H(Q) :=[L*Q)F;
H (Q) := the completion of €7 (£2) in the H({2) norm.

Let us denote by P,: H(f2) - Hs({2) the orthogonal projection from H(f) onto
Hy(£2), and let us define also

Hi(Q) = [H(Q)F N H,(2) .

Now, let us consider the function ¢: H,(£2) —R", given by

3 |2
%JZ Z’; dv  if weHYQ),
gp(u) - 3 09 i
€ oo otherwise .

It is known that ¢ is proper, l.s.c. convex and of compact type, and also that
cp(u) =— P, Au
for each
ue D(0g) = [HYQ)F N [H(F N H(Q).
Thus, (6.4) may be rewritten as an equation in Hs({2) of the form

{ w' (1) + op(u(t)) = F(t, u(t),u,), 0<i<T,

(6.5) u(s) = v(s), —ooi< 8<0,

where @ is as above while
F: [0, T1 X D(0¢) X C((— oo, 0]; H(2)) — H ()
is defined by

0
F(t, u, v):= —-Pg(gl u, g—g—) + Pof(?) —{—fk(— 6) op(v) df

for each (f, u, v)€[0, T1X D(3g) X Gio((— oo, 0]; H,(Q)). See Remark 4.2.
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In all that follows we denote by |-] the usual norm of H(£).
The main exigstence result concerning (6.4), or (6.5) is the following.

THEOREM 6.2. — Let Q be a bounded domain in R® whose boundary 08 is
a 2-dimensional manifold of class C* and let ke L*([0, + oo); R). Then, for
each fe L0, T1; H(2)) and each ve 02((— oo, 01; H(RQ)) with v(0)e HL(Q) and
[}

f||PQAv(s)szs< + oo there exists T,e (0, T] such that the problem (6.5) has at

least one strong solution defined on [0, T,].

Proor. — Since, as we already pointed out ¢ is proper, ls.c., convex and of
compact type, in order to apply Theorem 3.1, we have merely to check that F is
op-demiclosed and Jdg-dominated. The proof of the fact that ¥ is Cep-demiclosed
follows exactly the same lines in the proof of [21, Lemma 4.10.5] and therefore we
omit it.

To show that F is dp-dominated we resort to the following lemma whose proof
may be found in [22, p. 119].

LEMMA 6.1, — There exists o constant C > 0 depending only on £2 such that

PQ(E U, —-)
for each u e D(0p).
From Lemma 6.1 we easily deduce, via Cauchy’s inequality that

L ou

for each ue D(dp), and therefore, after some standard calculations, we conclude
that F i3 op-dominated.

Thus the conelusion is a direct consequence of Theorem 3.1, and this complete
the proof.

< C(p(w)H|Po Ault

IIPMUH +5; (99 ))E

REMARK 6.1. — Using similar arguments we can also prove a local existence
result for the following system of Lotka-Volterra type

%f—zluauﬂl {(u, v) —}—fkl t—s) div (g(Vu)) ds  a.e. for (¢, 2)e(0, T)x 2,
P :

av

?—Av—vM wy ) + | Tyt —9) dlv(gZVv)ds,
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——¢epi(u) a.e. for (4, 2)e(0,T)x0R,

ov

—%Eﬂz(’v) a.e. for (¢, ) (0, T)x 00,

u(s, ©) = w,(s, #) for each s€(— oo, 0] and a.e. for xe 2,

v(s, ®) = v,(s, ®) for each s&(— oo, 0] and a.e. for ze 2.

Here Q is a bounded domain in R¥, N =1, whose boundary ¢ is an (N —1)-
dimensional mannifold of class €%, My(-, *), My(-, ) are continuous functions from
RXR into R, %, k€ L=([0, ++ oo); R), g:(*), ga(*) are C* and globally Lipschitz
from R into R, f,, 8 are maximal monotone graphs in R xR with 0 € $,(0), ¢ =1, 2,
while u,, v, € C*((— oo, 01; L(Q)) satisfy u;(0), v,(0) e L™(Q). '
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