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Summary .  - Let H be a real Hilbert space, q~: H - +  [0, q-co] a proper l.s.e., convex /unction 
with L~: := (u  e H;  ]lull ~ -~ q~(~) ~= k} compact ]or every 1~ > O, let v > 0 be a given constant 
and C~e([--v, 0 ] ; H ) : = { v e C ( [ - - z ,  0] ;H);  v(t) eD(~o) a.e. /or t e (-- v, O)}. We prove 
an existence result /or strong solutions to a class o/ /unctional  di//erential equations o / t h e / o r m  

u'(t) + a~(n(t)) e ~(t, u(t), u~), o < t < z 

u ( s )  = v ( s )  , - T <_ s ~ o , 

where 2~: [0, T] • D(O~) • Coe([-- v, 0]; H)  ~ t t  satisfies a certain demiclosedness condition, 
0 

while v e Ca~([--z, 0]; H), v(0)e JO(~0) and ~H~q~O(v(s))Heds < -~ po. 

l .  - In troduct ion .  

Throughout  this paper  H is a real  t t i lbe r t  space wi th  inner  p roduc t  (., .) and 
norm I['11, ~0: H -+ [0, q- ~ ]  is ~ proper  1.s.c. convex funct ion and  ~ is the  sub- 
differential  of ~. 

I f  [a, b] is an  in te rva l  in R, t h en  Ce~([a, b]; H) denotes the  subset of all func- 
t ions v belonging to C([a, b] ; H )  and satisfying v(t) ~ D(~9~ ) a.e.  for t e (a, b). We  
emphasize t ha t  in all t h a t  follows Ce~([a, b]; H) is endowed with the  sup. norm 
topology of C([a, b]; H).  Le t  ~ ~ 0 and T ~ 0 be two given constants.  

We recall  t ha t  if u e  Ca~([-- ~, T];  H) and t e  [0, T] ,  t h en  u~: [-- T, 0] -->H 
is defined by  u,(s) : =  u( t  + s), for every  s e [ - -  ~, 0]. Obviously, whenever  
~ e  Car % T]; H) and t e  [0, T],  u~ belongs to C~([--  % 0]; H) .  

Le t  F :  [0, T] •215  % 0]; H) -->H be a given function,  and let  us 
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consider the  following funct ional  differential  equat ion 

{ u'(t)+3q~(u(t))~F(t,u(~),ut), O < t < T ,  
( 1 . 1 )  u ( s )  = v ( s )  , - -  ~ <- s <- 0 ,  

O 

where v s Ce~([-- % 0]; H),  v(0) e D(~) and fll r ~ ds < § ~ .  
- - 7  

The main  goal of this paper  is to prove an existence resul t  for strong solutions 
to (1.1). Basic sources of references for this k ind of problems are the  monograph 
of HALE [10] and the  survey paper  of WEBB [23]. 

Although funct ional  differential equations have been  intensively studied over the  
past  several  years  by  many  authors  (see for instance [7-14, 16-20, 23] and the  refer- 
ences therein)  as far  as we know, this is the  first a t t e m p t  to overcome the  difficul- 
t ies encountered  when F is defined mere ly  on [0, T]XD(3qJ)• % 0]; H) 
and --  F lacks monotonie i ty  with respect  to its second and th i rd  arguments .  The 
possibility of considering such functions F which, in general,  are discontinuous 
wi th  respect  to the  induced strong topology on bo th  domain and range,  allows us 
to obtain as par t icular  eases of our main existence theorem new results refering 
to strongly nonlinear par t ia l  differential  equations of funct ional  type.  

The interes t ing fea ture  of this class of equations consists in t h a t  the  s ta te  of the  
sys tem depends not  only on its h is tory  bu t  also on the  h is tory  of its (( diffusion ~. 
See the  examples in Section 6. 

We emphasize t ha t  our results  seem to be new even in the  semilinear case, i.e., 
when ~T is linear. 

The me thod  of proof which is par t iMly inspired f rom [15] is mMnly based on a 
fixed point  t heorem due to ARI~o, GAV~IE~ and  PE~O~ [1] and rests heavi ly  on 
a deep regular i ty  resul t  due to  BREzIS [3]. 

The paper  is divided into six Sections, the  second one being mainly  devoted to 
some notations,  definitions and results widely used in all t h a t  follows. In  Section 3 
we s ta te  our main result,  while Section 4 is mere ly  concerned with its complete 
proof. Section 5 contains two results concerning the  cont inuat ion of the  solutions, 
while in the  last Section 6 we analyze some examples in order to emphasize the  
effectiveness of the  abs t rac t  results. 

Acknowledgements. The second au thor  express his warmes t  thanks  to C.N.I~. 
for support ing this work, as well as, to  the  D e p a r t m e n t  of Mathemat ica l  Sciences 
of the  Univers i ty  of Trieste  for ve ry  k ind hospi tal i ty  and cooperation.  

2 .  - P r e l i m i n a r i e s .  

Let  H be a real  Hi lber t  space wi th  inner  p roduc t  (-, .) and norm 11" I] and let  
~: H - >  [0, § c~] be a proper,  1.s.c., convex funct ion.  Set  

~(~) := {ue~; ~(u)< + ~}, 

~(u) : :  (vei l;  q~(w)-- q~(u) ~ (v, w-- u), we l l ) ,  
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and  

2 ) ( ~ )  : =  {u e ~ ;  ~ ( u )  ~ ~ } .  

We recall  t ha t  D(~) is called the  e]]ective domain of % 8~(u) the  subdi]]erential 
o] q~ calculated at u, and the  operator  ~ :  D (~o )c  H - +  2 r~ which assigns to each 
u e D(8~0) the  set ~ ( u ) - - t h e  subdi]]erential of q~. We have 

D ( ~ )  c D(~) and D(0~) = D ( ~ ) .  

I t  is well known [4] t ha t  i 9 is a maximal  monotone  operator .  
Le t  us consider the  following quasi-autonomous evolution equat ion 

(2.:1) 
u'(t) + ~ ( u ( t ) )  ~ ] ( t ) ,  

u(O) = Uo, 

O < t <  T ,  

where ~ is as above,  ]eZP([0 ,  T]; H) and uocD(q~). 
By a strong solution to  (2.1) we mean  a funct ion u e W1,2([0, T]; H) with 

u(O) = uo, u(t) ~ D(3~o) a.e. for t e (0, T) and satisfying 

~'(t) + (~v(u(t)) - ](t))o = o a.e. ~or t e (o, ~) , 

where,  if C is a nonempty ,  closed convex set in H,  C O denotes the  unique e lement  
of C having minimal  norm. 

We recall  for easy reference the  following result  due to Br6zis (see [3]). 

Tt~EORE~ 2.1. -- Zet q~: H -+ [0, q- oo] be a proper, 1.s.c., convex ]unction. Then, 
]or each Uo ~ D(q9) and ] eZ~( [0 ,  T];  H) there exists a unique strong solution to (2.1) 
such that t --> q~(u(t)) is absolutely continuous ]rom [0, T] into R + and which, in addi- 
tion satisfies 

llu'(t)[l ~ + ~ ( u ( t ) )  = if(t), u'(t)) a.e. :~or t e (o, T ) ,  (2.2) 

and 

(2.3) 

To To 

0 0 

DEFINITION 2.1. -- A proper ,  1.s.c., convex funct ion ~0: H--> [0, -}- oo] is called 
of compact type if for each /r ~ 0 the  set 

K~ : =  {u E H ;  Uu]t ~' q- ~0(u) ~ k} 

is compact  in H.  
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RE~A~K 2.1. -- Obviously, ~ is of compact type  if and only if for each k > 0 

the  set 

: =  {u e IX; [lull + < k} 

is compact  in H. 
We emphasize tha t  we prefer to use JS~ instead of M~ becaus% in applications, 

whenever ~0 is a part ial  differential operator~ i t  is much easier to check the com- 
pactness of Z~ than that of Mx. 

The next  result  is an  obvious instance of [21, Corollary 2.3.2]. 

PROPOSITION 2.1. -- Zet ~0: H--~ [0, -F co] be a proper, l.s.v., convex ]unction of 

compact type and let uo e D(9~) be fixed. 
Then the solution mapping ] --~ u--which assigns to each ] belonging to Z~([0, T]; H) 

the ~,nique strong solution to (2.1) corresponding to us and to ]--is sequentially contin- 
uous ]rom Z2([0, T]; H) endowed with its weak topology into C([0, T]; H) endowed 

with its strong topology. 

Finally,  we recall the following fixed point  theorem due to A~I~O, GAUTIER and 
PENOT [1]. 

T ~ O ~ E ~  2.2. - Zet C be a nonempty, convex and weakly compact subset in a 
separated locally convex vector space. I] P: C--> C is a /unction which is weakly 
weakly sequentially continuous, then P has at least one /ixed point. 

2.  - T h e  m a i n  r e s u l t .  

We begin by explaining what  we mean  by  a strong solution to (1.1). Namely,  
we introduce 

DEFI~ITI0~ 3.1. - A function u: [--T, T ] - +  H is called a strong solution to 
the problem (1.1) on [0, T] if 

($1) u(s) = v(s) for each s e [-- ~, 0].  

($2) u , e  Cs~([-- % 0]; H) for each t e  [0, Y] . 

(S,) The funct ion ]: [0, T] -~H,  defined by ](t):= ~(t ,  u(t), u~) a.e. for t e  (0, T), 
belongs to Z2([0, T]; H) . 

($4) ~ is a strong solution of (2.1) with ] as above and uo : v(0) in the sense 
indicated in Section 2 .  

Le t  v e Cs~([-- ~, 0]; H) be fixed and  let  u e C([0, To]; H) be a given function 
with qe(0) ~ v(0). In  all t ha t  follows we denote by 4 the  function ~: [-- ~, To] --~H 
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defined b y  

v(t) for t e [ - - ~ ,  0] ,  

(3.~) ~ ( t ) : =  u(*) for r e (0 ,  T0]. 

DEFINITION 3.2. -- A funct ion F :  [0, T] x D ( ~ )  • Ca~([-- r, 0]; H) is called ~ -  
0 

demiclosed if for each v e eel(I--  ~, 0]; H) with v(0) e D(~) and f II ~9~ 2 ds < + ~ ,  
- - 7  

and for each To e (0, T], the  following conditions are satisfied 

(i) For  each u e  C~([0, To]; H) m W*,2([0, To]; H) with u(0) = v(0) and for 
which there  exists g eJL~([O, To]; H) with g(t)e3q~(u(t)) a.e. for t e(O, To), the  
function t - ~ Y ( t ,  u(t), ut) is strongly measurable  from [0~ To] into H. 

(ii) If  (u~) is a sequence in Ca,([0 , :To]; H ) n  W*,~([0, To]; H) with u , , (0 )=  
= v(0) for each n e N and for which there  exists (g~) in ~L2([0, T]; H) with g~(t)e 
e 3q~(u,,(t)) for each n ~ N and a.e. for t ~ (0, To) and if, in addit ion lim u,  = u in 
o([o, ro]; ~) ,  ~ e o~([o, ro]; n),  

w-liT < = u' in Z'([0,  To]; H ) ,  

w-limg~ = g in J5~([0, To]; H ) ,  

w-limp,, =-/~ in .L=([O, To]; H ) ,  

wher% for each n e N ,  p . :  [0, To] ~ H  is defined by  

p~(t) : =  .F(t, u~(t), d,,) a.e. for t r  (0, To), 

then 

p(t) = F(t,  u(t), 4~) a.e. for t e  (0, To) �9 

DErlNITION 3.3. -- A funct ion /~: [0, 27] • 2 1 5  Car([-- % 0]; H) -+ H is called 
39-dominated if there  exists two non decreasing functions l(.), lo(') from R + into R +, 
c,, c~ ~ 23*([0, T]; R +) and a constant  k ~ (0, 1) such tha t  

0 

IIF( ~, % ~)tl-" _-< 75 II ~o( ~ )1,~ + l( iiu ,l + ~( < ] j II ~o(v(s)),~ ~s + lo(~(~))c~(~) + c#)]  
- - 7  

a.e. for t ~ (0, T), for each u ~ D(~q0) and v e C~([--  T, 0]; H) with v(0) ~ D(q~) and 
0 

f Ii~r ~ ~ < + oo. 
- - 7  

Now, we are able to proceed to the  s ta tement  of our main result. 
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TIrEOlCgg 3.1. - I~et qJ: H ~ [0, + co] be a proper, l.s.c., convex /unction o/ com- 
pact type and let F :  [0, T ] • 2 1 5  0 ] ; H ) - - > H  be a /unction which is 
both ~9-dominated and ~9-demielosed. Then, /or each v ~ Coy([-- ~, 0]; H) with v(O) e 

0 

e D(9) and fU89~ + ~ ,  there exists T o =  To(V)e(0, T) such that the 

problem (1.1) has at least one strong solution de/ined on [0, To]. 

Concerning the semilinear case, i . e ,  when 8~ is linear, we have 

C01~OLLAI~u 3.1. -- Let A:  D(A) c H ~ H be a densely de/ined linear, sel/-adjoint, 

m-accretive operator and let 9: H - +  R + be de/ined by 

{~ll A~ull~ i l  u E b ( A ~ ) ,  
~(u) : ~  + c~ otherwise. 

Zet F :  [0, T ] •2 1 5  0 ] ; H ) - - > H  be a /unction which is both ~-demi-  
closed and ~9-dominated. I] (1 + A) -1 is compact, then /or each v e Co~([-- v, 0]; H) 
�9 ~;, o 

with v(O)e D(A~) and f ]lAv(s)l[ ~ ds < + c% there exists To = To(v)~ (0, Z] such that 

the problem -~ 

u'(t) + _,tu(t) = r( t ,  u(t), u , ) ,  o < t < ~ ,  

u(s) = v ( s ) ,  - ~ <_ s <_ 0 ,  

has at least one strong solution de/ined on [0, To]. 

4. - The proof o f  the main result. 

We shall use a fixed point  a rgument  as follows. Le t  r > 0 and To e (0, T] be  
fixed and let  us denote by  K~o the  closed ball with centre  0 and radius r in 
-5~([0, To]; H), namely  

T o  

T o  , - -  ~ _  �9 

0 

Let  v be an arbi trary,  bu t  fixed, e lement  in Ca~([-- ~, 0]; H) satisfying v(0) e D(T) 
0 

and f l[~(v(s))][~ ds < + ~ ,  and let  us consider the  problem 
- - T  

u;(t) = ~f(u~(t)) ~ h(t) ,  o < t <  I 'o,  
(4.1/ u~(o) = v(O), 

where h e K~~ 
In  view of Theorem 2.1, for each h e K~., the  problem (4.1) has a unique strong 

solution u~, defined on [0, To]. 
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Now, let us define the operator P: D(P ic  K~,o-->/3~([0, To]; H) by 

(4.2) (Ph)(t) : =  F(t, uh(t), ~h,) a.e. for t e  (0, To], 

and for each 

hoD(P)  = {heK~o; t -->F(t, u~(t), ~h,) belongs to L2([0, To]; H)} .  

We emphasize that  in the definition of P, u~ is the unique strong solution to 
(4.1) corresponding to v(0)--whieh is fixed--and to hoD(P) ,  while d~ is given 
by (3.1). 

At this point it is quite transparent that  (1.1) has at least one strong solution 
defined on [0, To] if and only if P has at least one fixed point. Indeed, h is a fixed 
point of P if and only if u~ is a strong solution of (1.1) defined on [0, To]. 

In order to show that  P has at least one fixed point we resort to Theorem 2.2. 
To this aim, we need the following two lemmas. 

0 

l ~ r u A  8 .1 .  - ~'or each v e ~ ( [ -  3, 0]; ~)  with v(0) e D(~) ana f II ~(v(s))II ~ a, < 
- - T  

< + co there exists r > 0 and To e (0, T] such that the operator P given by (4.2) is 
deJined on all K'ro and maps the latter into itselJ, i .e ,  D(P)-= K'To and P(K~o)c K~,o. 

PI~OOF. - First, let us choose r > 0, such that  

(8.3) r2> 2(1 + 3It)(1-  k)-~(v(O)) 

where k e (0, 1) is the constant in Definition 3.3. 
l~ix Toe (0, rain {Y, z}J--which will be defined more precisely la t ter--and let 

us observe that,  for r and To as above, in view of Theorem 2.1, we have 

u~e C~,([0, To]; H) n W1,2([0, To]; H) for each heK~0. 

Therefore, by (i) in Definition 3.1, we easily conclude that  the function 
t - > ~ ( t ,  u~(t), ~h,) is strongly measurable from [0, To] into H, for each h ~ K ~ To" 

Consequently, since F is ~0-dolninated, we have 

(a.4) 
To To 

f Ilk(t, %(t), ~1 ll~ et < kf [I ~r et + 
0 To 0 0 

+ + s))II  dt + 

To To 

+fl(H  (t)ll + +fl(> Ct)tl + et, 
0 0 
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for each h E K~.  At this stage we do not  know whether  or not  the r ight  hand side 
of (4.4) is finite. Thus, our aim now is to show tha t  for To e (0, rain {T, ~}]--suffi- 
ciently smal l - - this  is indeed the case. To this end, for each h e K~~ let us define 
g~: [0, To] - ~ H  by 

(~.5) g~(t) :=  -- u'~(t) + h(t) a.e. for t e (0, To) 

and let  us observe t ha t  from (2.2) we easily obtain 

a 
~s ~(u~(8)) + llg~(s)ll ~ = (g,~(s), h(s)) a.e. for s e (0, ~o). 

Integrat ing this equali ty both  sides over [0, t] r [0, To] and using Cauchy's ine- 
quality,  af ter  some obvious rearrangements ,  we get 

To To 

~(~(t)) + �89 IIg~(s)ll ~ as_< ~(~(o)) + �89 lih(s)H ~ as ,  
0 0 

for each h e N~~ and t e [0, To]. This inequal i ty implies both  
T .  

(4.6) ~(~(t))  < ~(~(o)) + �89 ll ~ as < ~(~(o)) + �89 r~ 
0 

and 

(~.7) 
To To 

f IIg~(s)I1 ~ ds < 2q~(~(o)) + f  lib(s)11 = ds_< 2v(v(O)) + r~ 
0 0 

for each h e K  ~ 
T o �9 

:From (1.7) i t  readily follows tha t  

To 

( 1 -  2s)flIg~(8)ll ~ ~s < 2~(v(o)) + r~ 
0 

for each h e El. ~ and  s e [0, �89 Taking s = ( 1 -  k)[2(1 + 3k)]-l--which is possible 
because k e (0, 1) implies (1 -- k)[2(1 -[- 3k)]-1 e (0, �89 some s tandard calcula- 
tions involving (4.3) we obtain 

To 

(4.s) k f  Iig~(s) II ~ ds _< ! -4-2 z~r~ 
0 

for each h e K~.  
Now, let us observe tha t ,  in view of (4.6), and since K~, is bounded in 

Z~([0, To]; H),  there exists m > 0 which does not depend on Toe (0, rain {T, ~}J-- 
such t h a t  

(4.9) Iiu~(t)tl s m and ~(u~(t)) g m 

for each h e K~. and t e [0, To]. 
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Using (4.4), (4.8), (~.9), the fact  t ha t  ][~r ~ ][ga(t)]] for each h e K ~ ~  and 
a.e. for t ff (0~ To)--see (4.5) and Theorem 2.1--and recalling that l(.) and lo(-) are 

nondecreasing, we conclude tha t  

To 

f ll2(t, ~(t), ~h~)115 ~-t =< 
0 

To 0 

.9 r~§ ~(2m) I]~c/(r247 
0 -- v To To 

§ l('2m)lo(m) f cl(t)dt + l(2m) f c2(t) 
0 0 

for each h e K~o. 
Next,  let us denote by 

dt 

and by  

z -  : =  {(t, s) e [o, ~o] • [ -  ~, o]; t + 8 < o} 

Z + : =  {(t, 8) e [o, I'o] x [ -  ~, o]; t + s > o } .  

Recalling the definition of da--see (3.1)--the last inequali ty can be equivalently 
rewri t ten as 

To 

0 Z -  

]l ~o( v( t + 8))115 d8 at + 
To 

2:+ To 0 

§ for each heK~~ 
0 

Using once again the fact  t ha t  lI89~ G [[g~(t)]I a.c. for t e (0, To) and for each 
h e K~o , we obtain 

To To --t 

- -  2 r~+l(2m) l[O~~ 
0 To 0 0 --v To To 

0 - - t  0 0 

for each h e K~o. 
After  the  change of variable 0 = t + s, we conclude tha t  

To To 0 

f IlF(t, uh(t), r +2 kr2+/(2m) f f ll~cf~ 
0 To ~ 0 t--v T o To 

0 0 0 0 
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for each h ~ K~o. 
(4.7) yields 

To 0 

f IlF(t, dt =< +2 l(2m)To f II d0 + 
0 - - v  To 

Since t ~ [0, To] c [0, ~], the last inequality in conjunction with 

+ t(2.~) yo[2~(v(o)) + r~] + t(2~,~)1.(m) fc~(t) 
0 

, k e (0, 1)  , 

ior each h c K" To ~ 

l~ecalling that  
0 

v(0)eD(~), fll~r + 
- -T  

To 

at § l(2m) f c~(t) at 
0 

and taking into account that  m > 0 does not depend on To, we conclude that for To 
small enough 

0 

l(2m) To f 
- -T  

ll a~o(v(O))II ~ dO + l(2m) To[2~(v(0))+ r~] + 
To To 

+ l(2m)lo(m) ~ c,(t) dt + l(2m) ~ c~(t) dt < 1 --  k r2 
J J -~- 2 
0 0 

for each h e K~. 
From the last two inequalities we easily deduce that,  for r > 0 defined by (4.3) 

and To as above, 
To 

file(t, ~(t), a~)I1 o at< r~ 
0 

for each h e K~,. Since this inequality shows that the operator P given by (4.2) is 
defined on all K~. and maps the latter into itself, the proof of Lemma 4.1 is com- 
plete. 

L E n A  4.2. - .Let v e Cs~([--v, 0]; H) be arbitrary with 

0 

v(o) e9(~) and fll~r ~ds < + 
- -T  

and let r > 0 and To e (0, T] be such that the operator P given by (4.2) is defined on all 
o/K~o and maps the latter into itsel]. 

Then P is weakly-weakly sequentially continuous ]rom K ~ into itself. To 

P~ooF. - First of all, let us remark that  K ~ is nonempty and weakly compact To 

in .b~([0, To]; H). Therefore, to complete the proof, it suffices to show that  the 
graph of P is weakly sequentially closed in K~o • N)o. 
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To this aim, let ((h~, p.)) be an arbitrary sequence in the graph of P such that 

and 

w-lira h. = h 

w-limp, = p 

in Z~([0; To]; H) 

in Z2([O, :To]; H) . 

To simplify the notations, let us denote by (r the sequence (ua.) of strong solu- 
tions to (4.1) corresponding to (h.), and by (g.) the sequence (gh.) as defined by (4.5), 
respectively. From Proposition 2.1 combined with (2.3) in Theorem 2.1 it follows 
that  we may assume with no loss of general i ty--by extracting a subsequence if 
necessary~tha t  

(~,10) 

and 

l i r a  u~  = u 

w-lira ~,: = w 

in c([o, To]; H),  ue To]; H),  

(4al) w-lim g. --  g in ~ ( [0 ,  To]; H) 

where u is the unique strong solution to (4.1) corresponding to h. 
Ill order to use the ~-demiclosedness condition on _~ to conclude that p = s 

we have merely to show that  w = u', and g(t) = -- u'(t) -~ h(t) a.e. for t e (0, /'0). 
See (it) in Definition 3.2. l~or this purpose, let us define the operator 

by  

A: D(A)c To]; 

A]:----- {JeZ2([0, To]; H);  ](t)e3?(](t)) a.e. for te(O, To)} 

for each l e D ( A ) ,  where 

D(A) = {] e J5~([0, To]; H) ; ](t) e D(~q~) a.e. for t e (0, To) 

and there exists feZ~([0, To]; H), ?t)e~q~(J(t)) a.e. for te (0 ,  To)}. 

Clearly A is maximal monotone in Z~([0, To]; H) and, in addition g ~ e A u ,  for 
each n e N. Since Z2([0, To]; H) is obviously uniformly convex, the graph of A 
is strongly weakly sequentially closed in Z~([0, To]; H) • To]; H). See [2, 
Proposition 3.5, p. 75]. Thus, inasmuch as C([0, To]; H) is continuously imbedded 
in Z2([0, To]; H), the last remark in conjunction with (4.10) and (4.11) shows that 
g~ Au,  or equivalently that  g(t)e ~q)(u(t)) a.e. for t e (0, To). 
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Next, since the operator B: W~,~([0, To]; H) ~L~([O,/'o]; H) defined by 

s/:= ]' 

for each / e  W~.2([0, To]; H) is l inear continuous,  it  readi ly follows t h a t  i t  is also 

weakly-weakly continuous. Hence  

~-li~W. = . '  i~ z~([o, ro]; H),  

and  g(t) = -- u'(t) + h(t) a.e. for t e  (0, To). 
Finally,  an appeal  to (ii) in Definit ion 3.2 shows t h a t  

p(t)---- (Ph)(t) a.e. for to(0, To). 

Consequently the  graph of P is weakly-weakly closed in K~. • , and this com- 
ple te  the  proof of L e m m a  ~.2. 

PROOF OF THEOI~E~ 3.1. -- F ro m  Lem m a  4.1 i t  follows t h a t  for each v e Gay. 
0 

�9 ([-- ~, 0]; H) wi th  v(0) e D(~) and fn~9~ 3 ds < + oo there  exist  r > 0 and  
- - T  

To e (0, T] such t ha t  the  operator  P given b y  (4.2) is defined on all of K ~ and 
To 

maps the  la t te r  into itself. F ro m  Lem m a  4.2 we conclude that~ for r > 0 and  
To e (0, T] as above, the  operator  I ) is weakly-weakly sequential ly continuous f rom 
K ~ into itself. Since K ~ is nonempty ,  convex and weakly compact  in L~([0, To]; H) ,  To To 

by  Theorem 2.2, P has a t  least  one fixed point  h e KT0. 
Thus u~ is a strong solution to the  problem (1.1) and this completes the  proof 

of Theorem 2.1. 

RE~AI~I~ 4.1. -- A glance a t  the  proof of Theorem 3.1 shows t h a t  a similar resul t  
holds t rue  if ~ ~ -  0% i.e. for the  case of un infinite delay. We note  t h a t  in this 

r ~ ,  case we have to consider ins tead of C~( [ - -T ,  0]; H) the  space ~b 0); H) 
of all nni formly  continuous and bounded functions v f rom (-- 0% 0] into H with 
v(s) ~ D(~c?) ~.e. for s ~ (--  c~, 0), endowed with the  ~lsual sup-norm. 

I~ElViARK 4.2. -- I t  is also ev iden t - - see  (4 .8) - - tha t  in Theorem 3.1 we may  assume 
tha t  i~ is mere ly  defined, e i ther  on [0, T] X D ( ~ )  xCe~([-- z, 0]; H),  or on [0, T] x 
x D ( ~ )  ~ub 0]; H) where xC0J ( -  ~r 

~ ( ( -  ~, 

and  

~b._0~,, ~,  o];~)  :=  {re c~.((-ub ~,  0]; H); ~vo(v) e r~((- ~ ,  0] ;u)  
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5. - Cont inuat ion  o f  the  so lut ions .  

The proof of the  next  result  follows, except  some minor modifications, the same 
lines as those in the  proof of [21, Theorem 3.2.2] and therefore we do not give 
details 

THEOI~E)'r 5.1. -- Zet q~: H -+ [0, -~ c~] be a proper, l.s.c., convex ]unction o] 

compact type and let 

~:  [o, T] xD(~V) x Ca~([-- T, o]; ~)  -+H 

be a /unction which is both 8q~-demiclosed and 8~-dominated. Assume also that /or 
each bounded subset Bz in  D(8~) and each subset B~ in C~v([--% 0]; H) with 
{t ~ ~vo(v(t)); v e B,} bounded ]n ~ ( E -  ~, 0]; B) ,  there exists ].~• e Z~([0, r ] ;  R) 
such that 

a.e. ]or t ~ (0, T) and ]or each (u, v) E BI • B2. o 

Zet v e Gee(]--~, 0 ] ;H)  with v(O) eD(q~) and f]Is~~ + ~ and let u 
be a noncontinuable strong solution to (1.1). -~ 

Then, either u is de]ined on [0, T], or u is de]ined on [0, T.~) with 0 < T~ <~ T 

and in this case we have 

lira il~(t)lI = + ~ .  

Concerning the existence of global strong solutions to (1.1) we prove 

Tn-EOICE~ 5.2. -- Zet q~: H -+ [0, -]- c~] be a proper, t.s.c., convex ]unction o] com- 
pact type and let 

~:  [o, T / •  • r T, o]; ~)  ~ H  

be a 8~o-demiclosed ]unction ]or which there exists k ~ (0, 1), kl ~ O, and c ~ J51([0, T]; R +) 
such that 

0 

Ill(t, u, v)[I 3 =< kHan(u)il ~ + klf II~f~ 3 as + c(t) 
- - - g  

a.e. /or t e  (0, T), for each u e  D(Sq~) and v e  C~v([-- T, o]; H). .Let v~  Ce~([-- v, 0]; H) 
0 

with v(O)eD(~o) and fli~o(v(s))ii ~ as < + ~ ,  and let u be a noncontinuable strong 
solution to (1.1). -~ 

Then u is de]ined on [0, T]. 
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PRoog. - Clearly /~ is a 3~-dominated and thus Theorem 3.1 applies. Le t  
0 

v e Ce, ( [ - -z ,  0]; H) wi th  v(O)sD(cf) and fIl~9O(v(s))li~as< § ~ ,  and le t  u be a 
- -T  

noncont inuable  strong solution to (1.1) whose existence is ensured by  Theorem 3.1 
and Zorn's lemma.  

Le t  us assume by  contradic t ion t h a t  u is defined on [0, To) wi th  0 < To G T 
To complete  the  proof i t  suffices to show th a t  the  l imit  

(5.1) U(To-- 0) : =  l im u(t) 
t~To 

exists 

(5.2) u( .To- -0)eD(~) ,  

and  
0 

(5.3) f II~~ + 81)I12 as < + ~ .  

---g 

Indeed,  once (5.1), (5.2) and (5.3) are proved,  by  a simple t rans la t ion a rgument  
c omb ined  wi th  Theorem 3.1, we conclude tha t ,  e i ther  u can be cont inued to the  
r ight  of To as a strong solution of (1.1) if To < T, or u can be ex tended  to [0, T] 
if To ~ T, the reby  contradict ing the  init ial  supposition t h a t  u is noncontinuable.  

In  order  to prove (5.1), (5.2) and (5.3), le t  us rewri te  the  equat ion in (1.1) as 

u'(s) + h(s) -~ -~(s, u(s), u~) a.e. for d e (0, To), 

where h: [0, T o ] - ~ H  satisfies h(s)~ ~cp(u(s)) a.e. for s e (0, To). F ro m  the  above 
equat ion we obviously have 

ii~'(s)ll ~ + ~(~'(s), h(s)) + Ilh(~)]l~ = II~'(s, ~(s), ~)I1 ~ 

a.e. for s e (0, To). Since h(s) ~ 3cf(u(s)) a.e. for s e (0, To), we then conclude that 

I1u'(s) Ii ~ + 2 ~ ~(u(s)) + Ilh(s)]12 = llF(s, u(s), u~)]l ~ 

a.e. for s e (0, To). In tegra t ing  this equal i ty  bo th  sides over  [0, t] c [0, To), neg- 
lecting the  first integral  on the  lef t  hand  side and taking into account  t ha t  

we get  

I]~~ =< [Ih(~)]I a.e. for se  (0, To), 

t t 

~v(~(t)) + f  ii ~vo(~(s))E[~,~ =< 2v(~(o)) + f  lI~(s, ~,(s), ~,~)ii ~ ds 
0 0 
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for each t r [0, To). Now, using the growth condition tha t  2~ satisfies, after  some 
obvious rearrangement ,  we obtain 

t t 0 t 

2~(~(~)) + (~-  k)ftl~r ~ e~ ~ ~(~(o)) + k~f fl,~r + o))li~ do e~ +fc(s)e~ 
0 0 - - v  0 

for each t e [0, To). 
After  the change of variable s -J- 0 = ~=, we arrive a t  

t ~ s t 

2~(u(t)) -~ (1-- k)f  U ~~ ~ 27(v(0)) -~K~f f l[~?~ ds ~-fe(s) ds 
0 O S - - ' c  0 

and hence 
t t s t 

2~(~(t)) <(1-k)ftl~r es_< 2~(~(o))+ K~f fll~r +fc(s) es 
O 0 - - v  0 

for each t ~ [0, To). 
F rom this inequality~ we easily obtain 

t t s 

2~(~(t)) + (1-~)flI~r ~ + k~f fll~r ~ e~es 
0 0 0 

for each t ~ [0, To), where 

0 

= 2~(v(o)) + ~lTfll ~r ~ a~. 

Inasmuch as ~o is nonnegative and k e (0, 1), from Gronwall's inequal i ty  we con- 
clude both  

To 

fll~vo(u(s)) II ~ a s  < + co 
0 

(5.4) 

and 

(5.5) sup ~(u(t))< + oo. 
t e l 0 ,  To)  

Therefore 

To To  D To 

fllor =<ftlor o es =flt~r ~ e8 +fl1~.(~(8))11o es < + ~ ,  
T o - - V  - - v  --~ 0 

and thus (5.3) holds. 
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Next,  recalling the growth condition t h a t  _P satisfies and (5.4), we deduce tha t  
t -->F(t, u(t), ut) belongs to Z~([O, To]; H). As a consequence, the problem 

w'(t) + v~(w(t)) ~ F(t, u(t), ~ ) ,  

w(0) = v(0), 

O < t < T o ,  

has a unique strong solution w defined on [0, To] which obviously must  coincide 
with u on [0, To). Since w is continuous on [0, To] this implies (5.1). Finally,  from 
(5.1), (5.5) and the fact t ha t  ~ is 1.s.c.; we obtain (5.2), thereby completing the 
proof. 

t~ElVIAICK 5.1. -- The reader m a y  easily verify tha t  both  Theorems 5.1 and 5.2 
can be suitably restated to handle as well as the case when the delay is infinite. Of 
course, as pointed out in Remark 4.1, in order to do t h a t  one has to replace 
C~v([-- T, 0]; H) by C~((-- 0% O]; H ) ~ t h e  lat ter  being endowed with  its usual 
sup -norm. 

6.  - E x a m p l e s .  

As a first example we consider the nonlinear diffusion equation with infinite 
delay 

t 

T / - -  A~(u) = ~(t--s)  A~(~) 
- - cx )  

(6.1) 
~(u(~, x)) = o ,  

~(s, x) = v(8, x ) ,  

ds ,  a.c. for (t, x) e (0, T) x D ,  

a.e. for (t, x) e (0, T) x 3 9 ,  

for each s e ( - - 0 % 0 ]  and a.e. for x e ~ .  

Here ~9 is a bounded domain in R s, N>= 1, wi th  smooth boundary  3fJ, a, fi: R -+R  
are continuous and nondecreasing with  ~(0) =/5(0) ---- 0, and k e / ~ ( [ 0 ,  ~- co) ; R). 

For  the  specific choice ~ ( r ) =  f l ( r )= r[r[ ~-I for each r e  R, where m > O is a 
given constant,  this equation describes the gas flow through a porous medium in 
which the concentration speed depends not  only on the instantaneous diffusion, bu t  
also on the  cummulat ive  his tory of the diffusion. 

Before proceeding to the  exact s ta tement  of the  existence result  concerning (6.1) 
we introduce some notations.  

Firs t ,  let  us define J :  R - + R  by  

J(r) :=fg(0)  dO for each r e R ,  
0 
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and let us recall tha t  C~(( - ~ ,  O]; H) is the space of all uniformly continuous 
and bounded functions from (-- c% 0] into H. In  all t ha t  follows, we denote by 
l[" ][o,~ the  norm of H~(/2) defined by 

llwl]o,  := (f  dx)* for each w e H ~ ( ~ ) ,  

where [.] s tands for the euclidean norm o~ R ~, and by [l'[[-~ the norm of H-~(~) 
- - t h e  dual of H~(~2). 

We have 

[IAwll_m= II~llo,~ for each weH~(~), 

where --A: H~(/2)-~Ho~(~2) is the natura l  isomorphism between 
~J(~9), i.e., 

( -  Aw)(v):=fVw.Vvdx for each v, w e l l S ( 9 ) .  

/-/~(9) and 

l~ow, we are preparated to formulate  the m~in existence result referring to (6.1). 

T ~ o R E ~  6.1. - •et Q be a bounded domain in R ~, N ~ 1, whose boundary ~2  
is an ( N - -  1)-dimensional mani]old o/ class C ~, let 0 6 f le  C(R; R) N CX(R; R -  {O}) 
be two given ]unctions satis]ying: 

(~1) There exist c > O and p > (~Y-- 2) /N i] ~ > 2, p > O i/  l ~ N ~ 2, such 
that 

(6.2) ~'(r) => clrI ~-~ /or each r e R - -  {O} ; 

(Ha) There exists Co > 0 such that 

(6.3) O~f l ' ( r )gCos  ]or each r e R - -  {O} 

and ~et k e L = ( [ 0 ,  + ~ ) ;  R). Then, /or each v e  C"~((-- ~ ,  O]; ~-~(~9)) with ~(s) e 
E Z~(~9) n / / - ~ ( / 2 ) ,  a(v(s)) c H~(t2) a.e. /or s e (-- ~ ,  O). v(O) e L~(D), J(v(0)) e L~(t2), 

0 

and f [[-1 ds < -~ c% there exists at least one globa~ solution u to (6.1) in the 
- - r  

]ollowing sense: 

e ~([o, T]; ~-~(~9)), u(~) = v(s) /or {ach s e ( -  ~ ,  o], 

~(u), fl(u) eL~([o, T]; H~(~9)), eu - ~ e z  fro, T]; ~-~(~2)), 
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and u satis]ies (6.1) in the sense o] distributions ( - -A  is understood as the natural 
isomorphism between H~(Q) and H-~(Q)). 

P~oo~. - In  order to appear to Theorems 3.1 and 5.2--see also ~emarks 4.1 
~nd 5.1--set  H ---- H-I(d2) and  let  us define ~: H-1(/2) -->~+ by 

f J(u(x)) dx 
q~(u) :=  

if u ~ LI(~) and J(u) ~ L1(~2), 

o t h e r w i s e .  

I t  is well known tha t  ~o is proper, 1.s.c. and convex and its subdifferential is given by 

~q(u) = -  As(u) 

for each u ~ / ) ( ~ ) ,  where D(~v) = {u e H-~(~) r L~(~); a(u) ~ H~(~)}. See for in- 
s tance [5, or 2, Proposition 2.10, p. 67]. 

Since ~ satisfies (6.2), by  Sobolev's embedding theorem combined with Schauder's 
theorem [6, Th6or~me VIA, 13.90], we easily conclude tha t  q is of compact type.  

l~lext, let  us define--see Remark  4 . 2 - -  

~ o]; ~-~(~)) -~ ~ - , (~ )  ~ :  [o, T] xD(a~) x vow((- ~ ,  

by 
0 

~(t, u, v ) : = f k ( -  o) A#(v(o)) do 
--c~o 

for each (t, u, v) e [0, ~'3 •  •  ~ ,  o]; H-I(~)). 
Clearly, ~ does not  depend on ( t ,u)~ [0, T] • and in addition, by  (6.3), 

we have 
0 

0 

0 

0 

f : II0,1 
- - c o  

0 

f f 2 - - c o  

Since k eL~([O,--}-c~); R)~ this inequal i ty  shows tha t  

0 0 

IIF(t, u, v)It~1 <= K f IIA~(v(O))lt~-i dO = g f I1 @:(v(O))ll~ dO 
- - o o  - -  c ~  
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~~ 0]; H-~(/2)), where K >  0 is a given for each (t, u, v) e [O, Y] X D(~o) x C~( ( - -  ~ ,  

constant .  Thus, F is ~-domina ted~ and more  t h an  this, i t  satisfies the  growth con- 
dit ion in Theorem 5.2. Next, we prove t h a t  F is ~v-demielosed. To this aim let  us 
define B: D(B) c H-1(/2) -+ H-~(s b y  

Bu : =  - A/~(u) 

for each u e D(B), where D(B) is defined in a similar way as D ( ~ ) .  Fur the rmore  
le t  us define 

by  

O: D(O) c L~([0, T]; H-1(/2)) -~ 2 L~(E~ r]; H-'(o)) 

o 1 : =  {i~L~([o,  ~ ] ; / z - ~ ( ~ ) ) ;  i(t)eBf(t)  a.e. for t e  (o, r)}  

for each ]~ D(O), where 

D(O) = {]eL~([O, T]; H-1(/2)), ](t)eD(B) a.e. for t e  (0, T) 

and there  exists j e L l ( J 0 ,  T]; H-1(/2)), j ( t )eBl( t )  a.e. ~or r e (0 ,  Y)}. 

Since O is m-accretive in Z~([O, T]; H-1(/2)), a simple a rgument  involving [2, Pro- 
positioIt 3.5, p. 75] shows t h a t  2w is ~q0-demiclosed. 

Finally,  le t  us observe t ha t  (6.1) m ay  be rewr i t t en  as 

u'( t )  + ~q~(u(t)) = ~'(t ,  u( t ) ,  u , )  , o < t < ~ , 

u(s )  = ~(s) , - ~ < s <= O , 

where ~v and V satisfy all the  hypotheses  of Theorems 3.1 and 5.2--see also 
Remarks 4.1 and 5 .1 - -and  this completes the  proof. 

The second example we analyze refers to the  !qavier-Stokes equations with 
delay on the  viscosity. Namely,  let  us consider the problem (6.4) below, where /2 
is a bounded domain in R ~ 

(6.4) 

t 
~ u  3 ~ u  /" 
-- f f --Au + ~ = ~ ] ~ u ~ = f - - V p * + J k ( t - - s ) A u d s  

- "  a.e. for (t, x) e (,O, T) • /2, 

div u = 0 a.e. for (t, x) e (O, T) • .(2, 

u = O  a.e. for (t, x) e (0, T) • ~/2, 

u(s, x ) :  v(s, x) for each s e ( - -c% O] and a.e. for x E ~Q. 
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In  order to rewrite this problem in the form (1.1) let  us introduce the function 
spaces 

o :  (~9):= {~ = (ul, u~, u~); u , c  r div~ = 0} ; 

H(~9) : =  [~(~9)]~ ; 

H~(~9) : =  the  completion of C~ (Y2) in the H(~9) no rm.  

Let  us denote by P~:  H(t9)-+H~(Y2) the orthogonal projection from H(Y2) onto 
H~(Y2), and let  us define also 

H~(~9) : =  [H~(~9)] ~ r~ ~ . ( 9 ) .  

~Iow, let us consider the function 9: H~(~9) -+ R +, given by 

"2 ~.~ Ox~ dx if u~H~(~Q), 
~ ( u ) : =  

Jr oo otherwise.  

I t  is known tha t  ? is proper, ].s.c. convex and of compact type,  a n d  ulso tha t  

for each 

u c .D(g~o) = [~(~q)]~ ~ [H~(,o)] ~ n H,,(Q). 

Thus, (6.4) m a y  be rewri t ten as an equation in H~(Q) of the  form 

{ ,,'(t)+a~(,,(t))=F(t,,,(t),,,~), 0 < t < ~ ,  
(6.5) u(s) --- v(s) , - -  oo~< s <= O, 

where ~ is as above while 

ub o]; H(~9)) -~/to(~9) F:  [0, T] •215 0~((--  ~ ,  

is defined by 
0 

F(t,  u, v) : =  - -  P~ ~=1 us OxJ P~f(t)  + k(-- O) ~o(v) dO 
- - o o  

~b 0]; Ho(~Q)). See Remark  4.2. for each (t, u, v) e [0, T] x D ( ~ )  •  0% 



ENzo lV[t~IDI~n[ - I O i N  I. VI~ABIE: A class OJ strongly eto, 145 

In  all t h a t  follows we denote  by  []" 1[ the  usual norm of H(D). 
The main  existence resul t  concerning (6.4), or (6.5) is the  following. 

Tg.EOI~E~ 6.2. - ~et Q be a bounded domain in R 3 whose boundary 8Q is 
a 2-dimensional manifold of class C a and let k eLP ( J0 , - ] - cx ~ ) ;R) .  Then,  for 

~~ 0]; H(Y2)) with v(O) e H~(Y2) and each f e L ~ ( [ 0 ,  T]; H(D)) a~d e ~h  v e Co~((-- o% 
0 

fllP0A,,(s)[l~ds<§ co there exists Toe(O,  T] such that the problem (6.5) has at 
- - c o  

least one strong solution dejined on [0, To]. 

PgooF.  - Since, as we a l ready po in ted  out  ? is proper,  1.s.c., convex and of 
compact  type ,  in order  to apply  Theorem 3.1, we have mere ly  to check tha t  F is 
8~-demiclosed and 89-dominated.  The proof of the  fac t  t ha t  2~ is 8~0-demiclosed 
follows exac t ly  the  same lines in the  proof of [21, Lem m a  4.10.5] and therefore  we 
omit  it. 

To show t h a t  F is 8~0-dominated we resor t  to the  following lemma whose proof 

m a y  be found in [22, p. 119]. 

I ~ A  6.1. - There exists a constant C > O depending only on Y2 such that 

] P~ ~, =< c( f (ul )~t ]P~ A all .~ 
i 

]or each u e D(Sq~). 

F r o m  Lemma  6.1 we easily deduce,  via Cauchy's inequal i ty  tha t  

for each u e D(Sq)), and therefore,  a f te r  some s tandard  calculations, we conclude 

t h a t  F is 8~0-dominated. 
Thus the  conclusion is a direct  consequence of Theorem 3.1, and this complete 

the  proof. 

t~E~A~K 6.1. -- Using similar a rguments  we can also prove a local existence 

resul t  for the  following system of Lotka-Vol terra  type  

Og-~tSt - -  Au = uMl(u ,  v) + f kl(t - -  s) div (gl(Vu)) ds a.e. for  (t, x) e (0, T) • tQ, 

- - c o  

8tS"~v_ Av = vM2(u, v) @ f k ~ ( t -  s) div (g~(Vv)) ds , 
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~n e fll(~) a.e. for  (t, x) e (0, T) • ~ 2 ,  

~v 
~n eP~( v ) a.e. for  (t, x) ~ (0, T) • ~s 

u(s,  x) ---- ~ ( s ,  x) /or  e a c h  s e ( - -  co, O] a n 4  a .e .  for  x e ~ ,  

v(s, x) -~ v~(s, x) for  each  s e ( --  co, 0] a n d  a.e. for  x e s 

H e r e  ~ is a b o u n d e d  d o m a i n  in  R N, Z; ~ 1, whose  b o u n d a r y  ~ is an  ( P g - - 1 ) -  

d imens iona l  m a n n i f o l d  of class C ~, M~(.,  �9 ), M~(-, �9 ) a re  con t inuous  func t ions  f r o m  

R •  i n to  R, k~ k, eJS~([0, ~- oo); R), g~('), g , ( ' )  a re  C ~ a n d  g lobal ly  L ipseh i tz  

f r o m  R in to  R, fl~, fl are  m a x i m a l  m o n o t o n e  g raphs  in  R •  w i t h  0 e fl~(0), i ~- 1~ 2, 

whi le  ~ ,  v~e C~o(( - 0% 0]; ~ ( ~ ) )  sa t i s fy  u~(0), v~(0) eZ~(~2). 
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