Global Solution of the Cauchy Problem
for a Class of Abstract Nonlinear Hyperbolic Equations (*).

Piero D’ANCONA

Summary. — This paper is concerned with the global solvability of the:Cauchy problem for the
abstract nonlinear equation

w' -+ g(u) Ay - gy(u) dyu = 0

where A,, Ay are non-negative symmelric operators on an Hilbert space, while ¢, ¢, are
locally Lipschitz continuous non-negative functions, in o Banach scale.

0. - Introduction.

This paper is concerned with the global solvability of the Cauchy problem

" L A'1 S(U) Ay =
" {u+<p<u) W+ go() Ay = 0

w(0) =y, %'(0) =u,

where A,, A, are nonnegative symmetric operators on an Hilbert space while ¢,, ¢,
are nonnegative funections.
A special attention will be paid to the case

@) piu) = [P, uy)  (i=1,2)

(with P; not necessarly equal to 4,) in view of the applications to the PDE’s. When
P,= A, problem (1) is of « variational type».
A special case of (1) is the problem

W'+ (<Au, wp) Au = 0
3)

w(0) = 4y,  u(0) = u,
which was investigated by many authors (see e.g. [B], [M], [D], [Po], [R], [AS1]);

here A:V — V' is a symmetric positive defined operator from a Banach space to

(*) Entrata in Redazione il 30 dicembre 1986.
Indirizzo dell’A.: Scuola Normale Superiore, Piazza Cavalieri 7, 56100 Pisa, Italia.
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its dual, i.e.

{ {Au, vy = (Av, u)

4) {Au, wy>clully  (¢>0)

while f(r) is a nonnegative function on R™.
Now PoHO0ZAEV ([P]) proved the global existence for (3) under the assumptions

(5)

f is locally Lipschitz continuous and
f(r)=»>0 on R,

provided that the initial data w,, u, are A*-analytic vectors.
We recall that a vector v e V is called A*-analytic if IK, A>0 such that

(6) YieN, AigeV and [K4iv, vy} < KAIj!.

A similar result was proved, under weaker hypotheses, in [AS1], where the global
exigtence for problem (3) is obtained provided that

f is continuous and >0 on R™

+ o0
ff(?)drz-{—oo or iqu< -+ oo,
]

The most natural step towards a generalization of problem (3) is probably prob-
Jem (1). Here (see Theorem 1 below) we prove a global existence result for (1) in a
Banach scale generated by an n-tuple B = (B, ..., B,) of operators.

More precisely, given a Hilbert triplet (V, H, V') (i.e. a reflexive Banach space V
together with a bounded symmetric embedding I of V into its dual space V', H
being the Hilbert space obtained by completing V in the inner produet (v, w)y:=
= {Iv, w); {,) is the duality map) and » operators B, ..., B, in £(V, H), such
that

(8) | [Bi, Bs]=0, hkEk=1,..,n

([,] denoting the commutator), we introduce the Banach spaces
9) X (B):={veV: |v],< 4 oo}, >0,

with the norms

(10) Jol, 1= sup [ Brol- 7.
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We have set for brevity
| B*= B¥o...0B" (o = (o1, .., xa) EN")

) 1B (2 B8 gem.
|o] =4

o )2

The family {X,(B)},., is called the Banach scale generated by the n-tuple B.
The elements of the Fréchet space

(12) Xp(B):= () X.(B)

are called the B-analylic vectors.
Our main result can then be stated as follows (see Th. 5.1):

THEEOREM 1. — Let us consider Pb. (1), assuming that A,, A, are bounded symmeiric
nonnegative linear operators from V info V', which satisfy the conditions

[4wola< H([oln+ [ Biola+ |B*0]n)
A, B*To||2\} . ABx~o, Beo)\t
(13) (la(z,.”[a#]@”) <0G + 2)( S (____q__v)) .

e al

106 1)6 + 2) z | B> o]lufh!

Vi e N (xe N»), for M, C>0, while g,(u), @s(u) are locally Lipschite continuous, bounded
functions >0 on V.

Then Pb. (1) is globally well-posed in X,.(B), in the sense that for each wuy, u, in
X,+(B) there is an unique solution

u € C2([0, 4 oo[; X+(B)) .
In the « variational» case in which
(14) pdu) = f({du, wp), 1=1,2
the functions f;: R* — R* are nonnegative, locally Lipschitz continuous, bounded
on R*.

However, in this special case the assumption of boundedness can be replaced
by the following ome: -

+ o
(15) f fir) dr = + oo
0

for one or both functions f,.
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Thus in particular we have the following result for PDE’s (see Theorem 6.1):

CorOLLARY 2. — Consider the Cauchy problem, for real p, ¢>1:

U, — (f@oﬁ dw dy)pum-— (fuf, dw dy)qum, =0
2 (7]

(16) u(w, 4y, 0) = uy(@, y)

ui(w? Y, 0) = 21/1(90, '.’/)

where Q is a given rectangle in R®. Then for every uy, w, analytic Q-periodic functions
there ewists an unique solution w in C2(R?X [0, 4 co). Moreover, u(+,-,t) and u,(+,", 1)
are analytic Q-periodic, for every t>0.

1. — Notations.

We begin with some preliminary definitions and results. For a more thorough
treatment, see [AS2], [C].

DEFINITION 1.1. — A Banach scale is a family {X,},.; of Banach spaces, I interval
of R, with norms |-|,, such that each X, is continuously embedded in each X,_;,
8> 0 (it is usnally supposed that |-[,_,<]-[,)-
The spaces X, := |} X,_; and X, := ()] X, are endowed with the locally convex
I

>0
inductive limit topology.

The space X, :={) X,_; will have the inverse limit topology with respect to
>0
the embeddings of the scale; it is a Fréchet gpace.

Finally, the analyticity radius of a vector ve X, is defined as the number
re=sup{rel:veX,}.

DErINITION 1.2. — A Banach scale is said to be dense in itself if, for every r,
r406el, >0, X, is dense in X .

DEFINITION 1.3. — A linear operator 4 on |J X, is said to be of order m in the
I
scale if, when »,r— deI, 6 >0, AX,C X,_; and there exists a constant K such

that

(1) | [ 4v]—s< 2ol

In the infroduction we defined the concept of a Banach scale generated by an
n-tuple of operators. We repeat it here in a more general setting.
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DEFINITION 1.4. — Let B = (B, ..., B,) an n-tuple of operators on the Hilbert
space H. With D, (B) we denote the intersection of all of the D(B; o...o0 B,),
i1y ey by varying in {1, ..,n} and & in N. B is said to be closed if, given any se-
quence {v,}y contained in all of the D(B,), converging to a v € H, and such that

n
B, —>w;, i =1,..,n, then ve() D(B,) and w;,= B;v,i=1,..,% B is said to

i=1

be commuting if [B,, B;,] = 0 on D (B).

DEFINITION 1.5. — Let B be a closed commuting n-tuple of linear operators on H.
The family of Banach spaces

X,.(B) = {v€ De(B): [0, < + o0}  (r>0)

with norms

(18) fol, == sup | B 1

(employing notation (11)) is called the Banach scale gemerated by B.
In this frame it is possible to define a new kind of order for linear operators,
stronger than the one in def. 1.3.

DEFINITION 1.6. — Given a pair (m, 4) of positive numbers, a linear operator A
on D_(B) is said to be of w-order (m, A) with respect to B if there exists a constant
K s.t.

Aitm—r

i+m
(19) [ B Av|z <K-(j -+ m)! hZO ﬂBh””H‘—I‘”—
for every je N and »e D_(B).

REMARK 1.7. — If an operator A has w-order (m, A) with respect to B, then it
hag order m in the scale {X (B)},_,, (def. 3). For a proof, see [AS2].

REMARK 1.8. — Two Banach scales {X,};, {¥,}; are said to be equivalent if
Yr-—tig; Xrg; Y'r+6

with continuous embeddings, whenever 6 > 0,7 — 4, r,r - d e I.
In this case, the first Banach scale is dense in itgelf (def. 1.2) iff the second is.
In particular, the scale generated by B is equivalent to the secale

(20) £.(B):= {ve Do(B): |loll, < + oo} (r>0)

with norms
, 1

(21) ol := (,-Z% H B"vnﬂj—!—z)? .
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2. — The global existence in the linear case.

The theorem of this paragraph, due to ARosto and SpaaNoLo ([AS2], [S]), will
be crucial in order to get our global existence result for Pb. (1); thus we reproduce
it here for sake of completeness.

We begin by establishing our basic setting, in which both linear and non-
linear global existence results (see § b) are obtained.

Suppose that:

i) a Hilbert triplet (V, H, V') is given;
ii) an n-tuple B = (B, ..., B,) of commuting operators of £(V, H) is given;
iii) the norms ||, and |v|z+ 2 [B.v]x are equivalent on V. For sake
i=1

of simplicity, we will assume that

=2 toly = (lola -+ 3, 18013
iv) a positive constant A is given, and the Banach scale

{Xr(B)}o<r< 1/4

is dense in ltself (def. 1.2).

In this same setting, we will say that a linear operator 4 on D_(B) satisfies a
quasi-commutativity condition with B if

.A. B“ 1:21’2’ . AB“ ’Bd %
#) (,,ZM—MTM) <0(7+2)A(M§=_(__.{!_2_ﬁ)) .
- - T

Aite-
h!

+oli+ 1) +2) 3 |B'ol

for some nonnegative constant ¢, for every je N, ve X+(B). [, ] denotes the com-
mutator, and we have employed notations (11). 4
We recall that a linear operator A:V — V' is said to be symmetric if

(24) | {Aw, wy = (Aw, vy,
and nonnegative if
(25) {4v, v>>0.
We can now state the global existence theorem for the linear problem

{ o' A(f)p =0

(26) 2(0) =9, V(0)=1v,.
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THEOREM 2.1. — Let the setting be as in (22). Let

(27) Ael,

loc

(0, + 003 £V, V1))

be a family of symmetric nonnegative linear operators A(t): V — V', operating on
Xo+(B).
Assume that, for every je N, a e N* and v e X.(B)

(28) B* A(-)v 48 H-measurable ,

A(2) satisfies, for each t>0, the quasi-commutativity condition (23) with B, and precisely

(29) ([;_Mf <\/07@(j+2)/1(2 i*A_Bﬁ’z_B”‘_”))*JF

o l? laf=7 ol2
aeN»

+ )+ 1) + 2) g | Brola et fh!
(30) 4@ olz<p@)([v]z+ [B o]z + |B*v]xa)

for some nonnegative locally integrable functions «(f) and (1)

Then Pb. (2) is globally solvable in X,.(B).

More precisely, if the initial data v,, v; belong to X, (B) for some r,<1/A, and
we set

¢
(31) r(1) 1= 7, exXp [—./1(1 -+ \Z—En)f\/o_c(_s) ds]
¢ 0

then there exists an unique solution

we() () HY0, T; X.(B)).

I'>0 r<r(T)

REMARK 2.2. ~ Actually, we won’t need this theorem in its full generality; in
fact, we are interested in the special case of the problem

(32) { 0" (au(t) A1+ ay(f) A)v = 0

2(0) =1y, 0(0)=w,.

Licad

It is easy to see that, in order to satisfy hypotheses (27)-(30), it is sufficient to
require that, for ¥ =1, 2:

(33) @€ Liy(0, 4 oo);
(34) a,>0;
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(35) A,e &V, V') is symmetric and nonnegative;
(36) A, satisfies the quasi-commutativity condition (23) with B;

(37 A, is of w-order (2, A) with respect to B (def. 1.6) (and therefore operates
on X,:(B): remark 1.7).

3. — An extension of a theorem by Nishida.

In order to prove our global existence result for Pb. (1) we shall firstly prove
the local existence. To this end, we will use a nonlinear version of Ovéiannikov’s
Theorem; such a result was obtained by Kano and NIsHipA for a first order equa-
tion (see [KN] for the original proof). It’s not too difficult to generalize it to the
case of an m-th order equation, for m>2.

TaEOREM 3.1. — Let {X }; be a Banach scale, I = [, go]. Consider the Problem

uD(0) =u;, j=1,...,m—1, u,eX,,.

m—

1
Lot By= 3 T’|u],,, and R > R,.
0

§=

We will assume that:

i) the mapping (t, u) — F(t, u) is continuous on [0, T1x{u € X : |u|,< R} with
values in X,_, (for every o, 0 — 8 €@, ol, 6> 0).
Moreover, there exists @ k>0 s.1.

1F(t, 0)],< @_%Tn for every o €[g, o .

ii) For every g, 0’'€ [, oo, with o> o, and wu, v in X, with |u],< B, |v],< R,

lu—v]y

(39) [ F(t, u) — F(t, ’U)”e<0 (o'— o)™ .

Then there ewists a positive constant o such that (38) has an wunique solution w in
O([0, (90— @)[; X,) for every g€ [8, ool. Moreover, |u(t)],< R.

Proor. ~ The proof closely follows the idea of Nishida’s theorem. However,
we exhibit it for sake of completeness. We divide it into several steps.

1) We can suppose g = 0. — Simply translate the scale, i.e. set ¥,:= X .-
and reformulate the theorem in this frame.
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2) Integral version of the problem. — (38) is equivalent to

t to tm

u(t) = Uslt) + f dt, | dt, ... f ds F(s, u(s))
0 0

0

m

where Uy(t):= Y tu;. Note that any solution of the integral equation is = as
i=0

soon as it is continuous.

3) We can suppose F(t, 0) = 0. — 1t is sufficient to set
T,= U0+Hf1w(s, 0)ds, F(t,w):= F(, w)— P, 0).

4) The basic space. — Let « be a positive constant, whose value will be precised
in the following. Let X be the Banach space of functions belonging to
O([0, a(eo— @)[; X,) for every g€ [0, o[, with the norm

M{u]:= sup sup ﬂu(t)]{e(l—

e¢el0,00[ t€[0,x(eo—0)[

=a)
(00— 0)
(finite on X). Define inductively the approximate solutions

w(t) = Uolt)
tegalt) = Uol®) +[ [ [B(s, ua(s)) ds

and set o= 20, 0,y = o — oty 2772, 80 that oy o

We have to show that the u;’s are well defined (namely, that their values are
in the domain of #, for suitable values of {).

We will proceed by induction. Suppose that for k = 0, ..., n

|ue®),< B when g€ [0, g, ?€ [0, culgo— o) -

In this case we sce immediately that wu,,; is well defined, continuous on
[0, ctnya(o— @)[ Wwith values in X . The same is true for v = wu,— u; (for
E=0,..,n).

5) More norms. — Put, for k>0,

{ 14
M [u]:= sup su w(t (1——»—)
du] Qe[O,@a[tE[O,m(]go—e)[ w0, ar(go— 0)

and note that, for k=1, ..,n

Ar= M [v,] < + co.
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In fact, if “vic-—l(t)”g<00 for o&[0, oof, t€[0, ot _s(0o— @)[, then ”/Uk(t)”9<
f fds Joea(8)] (0 — @)™ < O Oy of for te[0, o _1(00— 0)[ (and any o'e€Jo, ol)

(a pply (39)).

6) Hstimate of A, — Set o(s) = {oo— s/otp + Q) from (39) and the assumption
in step 3 we have

1B, ua(0)l < - ( (eo—~§o))"’"-||uo<t>ue(s)

(note that, if s [0, o(0o— 0)[, then g(s) € Jo, oo[) whence

S oMy ¢
< sUp  su {OR (fff~————————ds)(1——————)}
’ eeto,gu[teto,mo(g—e)[ ’ (“0(90—9) _s)m {00 — @)

The integral here equals (writing o = «(go— 0))

2™ oty n o - 2™ t
(m—1)!" 06—t “(m—1)'!o—t
50 that
2mOR,
40 < .
(40) h< 1)1 %

Now Z;: in this case we set o(s) = 4(go— $/or,; + 0); we have

[22a(? e<0ff ”k ”em fffl—s/%@o—@ (8))) (98)—90)

by the definition of 4,. If in the last formula we replace o with oy, (note that
o1 < o), after a few passages we have

054 (? ”Q <C1,2 [Xk+1fff Zaial@o— Q___;;}iﬂ ds .

{05744_1 Go—

Applying the estimate of the Appendix, with ¢ = o ;(0,— @), we finally obtain

ell—— Y
e ha (1 o “k_;_l(Qo—” Q))

for o €[0, g4, ¢ € [0, 0tz 1(go— 0)[. Therefore

—1
A ”<2m+l oo

—1 —1
Ak+1<2 +1 | 2?n+1 ; ca’g’.ﬂk A

0oy A <
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If «, is sufficiently small, we have then, for 1 =0, ..., n—1
(41) <t
T} Well-definition of u,’s. — First of all note that, for k=0, ..., n
loe@l, < e (1 — oqfora)~

when g € [0, go[, t €[0, otra(00— @) (by def. of ;) so that

| uk+1(t)“9<lk(1 ~ tyafon) ™t 4 [lux(?) ”Q< Ec: Al — otpyafor )"t - [ uo(2) ”Q

i=0

for k=0, ...,n (by summing up for j = 0 to k). From (41) it follows
k
> Ml — apafe) <124
i=0

(a8 (1 — otzyafos) ™t = 2920, [ar; < 27+2). But from (40), if we choose a (possibly) smaller
%, we can obtain A,< (B— Ry)/24 and finally, for %k =0,..,n, o€[0, g,
t€[0, arya(0o— o)L

R—R,
”uk+1(t)”g< _—2‘— “I“ Ro< ¥id

whence the desired well-definition condition on u,,;. But note that the estimates
(40), (41) are independent of n, so that with our choice of «, (and consequently of
o = op[2) the approximated solutions u, will be well defined and continuous for k>0.

8) Comvergence of {u;}. — On [0, x(oo— 0)[ (0 € [0, o)

R I =) I =

therefore
M[uk_x_l - uk] < lk J

The convergence of > A, implies the convergence of {ux} in X to an wu(f), such
that

[u(®)],<Ro+

BE—R,
5

for ¢ in [0, a(ge— o)[.
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u is o solution. — Fix o'e Jo, go; for ¢ [0, a(g,— o)

Uy(t) -l—fff 8, u(8)) ds — u(s)

<f fﬂF (8, u(8)) — F(s, us(s Nl ds + [#a(t) — u()],<

Q)mfff} — (8 dS‘ -+ H'”’lc-)-l(t) _ u(t)”Q

and observe that the convergence in X implies the uniform convergence of u, with
values in X, (for any g€ [0, ).

<

10) Uniqueness. — Fix a g,€ 10, go[, and set on X

Mi[u]:= sup  sup )”“(t)ﬂe(l*&@lt_—g))'

0el0,e,] te[0,x(e1—0)l
If u,v are solutions, then M'[u], Mi[v] are finite (as M<< M).
Setting w = u— v, o(s) = (0 + 01— /o),

lw)],<0f [ {106} (e — &) ds

on [0, a(o,— o)[, and therefore

lro®le=2" OaMHMl[w]ﬂ f {o( @1— 0) —t}f"“ -

Applying again the estimate given in the Appendix (with o = «(g,— g)) We have

1 t_\*
”w(t)ng<2m—l—10. W coem (l —_M)
s0 that

1 2m+1 1
Miyw]< T Com MY w] .

If o is small enough, this implies M[w] = 0, that is,
wit) =0 on [0, x(o,— o),

and this result holds for any g,€]0, go[. ®

REMARK 3.2. — Actually, an analogous proof is valid for the integral equation

ta

w(t) = fdt2 &, .. fdspt 5, u(s))

0

for any u, continuous on [0, 4,(gy— g)[ with values in X, (0 €10, gof; 40> 0), and
such that |u,(t)],<k,.
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4. — The local existence.

In this section, we first specialize Th. 3.1 to Pb. (1); secondly, to the particular
case @g(u) = fi((Pru, u>), where P, can be different from A;.

In the following section, it will be showed that the local solution thus obtained
can be prolonged to a global one, under suitable assumptions.

Suppose we have a Banach space V, together with its dual space V', and a
Banach scale {X,},_, in V. Actually, all that is needed is a scale {X,},, with I
containing a (left) neighbourhood of 7,, 7, being the index of the space X, where
the initial data are chosen.

We consider problem (1) with the following assumptions (k =1, 2):

(42) A, Xz — Xz is a linear operator of order 2 in the scale {X,} . (def. 1.3),
with 0 <7 <1,

and

(43) @it Xz = C  is locally Lipschitz continuous .

THEOREM 4.1. — Problem (1) under assumptions (42), (43) 4s locally solvable in
the scale {X,},—; more precisely, for every initial data uy, u, in X, , 1y > 7, there ewisis
a positive constant o such that (1) has an unique solution in C*([0, a(ro— 7)[; X,) for
every r € [T, 1o[.

Proor. - Set, for u e X5,
Fu) = — g(u) A% — go(u) Agu .

Pb. (1) becomes a particular case of (38), with m = 2 and F independent of i
We need only prove that F satisfies assumptions i), ii) of Th, 3.1. Continuity is self-
cvident; we have to estimate the difference F(u)— F(v).

Fix an B> [ugl, -+ T]ull,, (T > 0 arbitrary). Denote with L, the Lipschitz
constant of ¢, on {u € X;: |u];<< R}; it will be as well its Lipschitz constant on
all of the sets {u € X,: |u], < R} with F<r<r,. Denote with %, the constants such
that, whenever #'> r>7 '

QB

(r'— )3

Aol <k,

for every ve X,.. Then we have, if u, ve X,., |u. < R, |v|.< R

H(Pz'(u)Aiu - (Pi('”)Az‘?J“r< “(Pz(“)Azu — ‘Pi('U)Aiu”r + ”‘Pz‘(/”)Aiu - ‘Pi(”)Ai””r<

ki !
<(L:R 4 o)) - =7 e — v
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and majorizing |p,(v)| with
p:0)] + lps(v) — @ul0)| < lp(0)] + R-Ls

we obtain
lu— 2],

|[#(0) — Flo)l, <0

with ¢ = Y (2L;B + |p/0)|-%k;). &
i=1,2
For the next result we have to make an additional hypothesis on the Banach

scale: we will suppose that

(44) the embeddings X, C V are continuous for »>7.

This is always the case for Banach scales generated by operators (as it is readily
seen).
We will consider the problem

"+ Fi({Pry uy) Ayt + fo((Potty u)) Ayu = 0

(45) '
u0) =u, %(0)=u

where, for k=1, 2,

(46) fz: G — C  ig locally Lipschitz continuous .

COROLLARY 4.2. — Consider Pb. (45), where A, and f, satisfy (42) and (46) respec-
tively, while P, (k =1, 2) satisfies one of the following assumptions:

(47) ' P.el(V, V)
or
(48) P,: X; — X; is of finite order in the scale (def. 1.3), and a continuous em-

bedding V C V' is given .

Finally, we suppose that the scale satisfies (44).

Then Pb. (45) is locally solvable in the scale {X,},. ;; more precisely, for every initiol
data o, wy in X, , 75> T, there ewists a positive constant o such that (45) has an unique
solution in C*([0, a(r,— r)[; X,) for every r € [F, r[.

PRrROOF. — We just have to prove, under both hypotheses on P,, that ¢, ()=
= f,({P;u, wp) is locally Lipschitz continuous on X;. Fix an R >0, and u,v€ X5
with ulz, o]z < B.
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In the first case (47)
[<Pyu, 2| <[ Byleqr,ry 0® 07 o]z

if ¢ is such that |-|y<ol-|; (hyp. (44)).
In the second case (48)

[<P oty 03| < [ Pottlly* |0l 5

the continuity of V C V' implies |- “V'<01“ ]{;, and fixed a 6 > 0, the continuity
of X;,SV implies. Il <0a] 540, 50 that

<Pty 05| <000 Ptz o< o 0l 5ol

gm
(where m; is the order of P, in the scale and k, its constant).

In both cases, we see that |(P;u,v)|is bounded by a constant dependent only
on R, if |u[;, |v];< R; therefore f; can be considered to be Lipschitz contlnuous,
with eonstant Z,, in the following inequalities:

i) — ()| <fi(<Pstty wD) — fl{Psty 03)| + [ful<Pst, vD) — ful{Pysw, vD)|<
<L(KPsuy u— v)| + [KPilu— v), D)

and, applying the preceding estimates, we obtain the thesis. m

5. — The global existence in the nonlinear case.

We have now all the necessary tools to prove our global existence results for
Pb. (1). The setting will be the one stated in (22): a Hilbert triplet (V, H, V'), a
commuting n-tuple B in £(V, H) generating the norm of ¥V, and the resulting Banach
scale {X,(B)},.,, dense in itself for r e 10, 1/A[.

THEOREM b.1. — Let us consider problem (1) under the following assumptions,
F=1,2:

(49) A,e UV, V') is a symmetric nonnegative operator of w-order (2, A) with respect
to B (def. 1.6);

(50) A, satisfies the quasi-commutativity condition (23) with B; ¢: X,.(B) — R*
18 a bounded nonnegative function, locally Lipschitz continuous on X, for any
r>0.
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Then Pb. (1) s globally solvable in Xy..(B).
More precisely, if @., g, are bounded by the constant M, and we set

T(t) == 7'0 eXp [—‘A(l +:\7’]%‘*Z) .Mt] 3

then for every choice of the initial data wy, uy in X, , with 0 <7r,<1/A, there exists
an unique solution

we(} [) 00, T1; X.(B)) .

T>0 r<r(T)

ProoF. ~- 1) LeMMA. — If we O%([0, T[; Xx(B)), with 0 <7 <1, is a solution of
Pb. (1), then % € C*([0, T1; X.(B)) for every r < v(T), T<T (where r(t) is the function
defined above); moreover, when t — T, u(t) and u'(t) converge in X, for r < r(T).

To prove this, put (k =1, 2)

; f 0, 7,
anlt) ::{ @r(u(t)) or te| [

0 for i>T.

Each g, is nonnegative, bounded by M and continuous on [0, 7 (as ¢, is con-
tinuous on X,).
Then the problem

{ " @y (1) Ao - ay(t) Adyo = 0

(51) o0) =1y, 0'(0) = uy

satisfies conditions (32)-(37) of Remark 2.2, therefore (as the solution of (51) is
unique)

G=ve | (] HY{0,T; X.(B)).

T>T>0 r<¢(T)

Note that, if ve O([0, T[; X.(B)), (I'<T), then A4, is in O([0, T; X,.(B)) for
every r'<r (as A, is of finite order in the scale), whence v e C2([0, T[; X,(B));
but v is in C([0, T[; X,(B)) when 0 <T<T, 0 <r < r(T), so that

% = v e C*([0, T1; X,(B))

(from the continuity of r(t)).
Finally, remarking that

v e 0Y([0, T[; X,(B))



PiERO D’ANCONA: Global solution of the Cauchy problem, ete. 33

when T > 0, 0 < r < #(T), (in fact, v" has its only discontinuity point in 7', but has
finite right and left limits there) we complete the proof of the Lemma.

2) It is easy to see that all of the assumptions of Theorem 4.1 are satisfied
(see in particular Remark 1.7). This guarantees the existence of a local solution.

Let now 7% be the supremum of the T >0 such that Jr,e]0,r[, Jue
02([0, T[; X, (B)) solution of (1). We will show that T* = -}- co.

From the uniqueness part of Th. 4.1 it follows that two any local solutions
coincide on the intersection of their domains.

This allows us to define a « maximal » golution % on [0, 7*[. For every I' < T*, %
is in C€2([0, TT; X,,(B)) and therefore in '

N o0, T1; X.(B))

T*>T>0 ¢<e(T)

(Lemma). Suppose now that T#*< 4 co; @ and %' have a left limit in T* (in X,
with » < #(T*)), so that we can apply Th. 4.1 again, starting in ¢ = I*. This pro-
duces a solution % on [T%, T* - ¢[, and % prolonged with % is at least C*. Proceed-
ing as in the proof of the Lemma, i.e., linearizing the equation, we obtain that the
prolonged solution is in

N N oo, I1; X,(B))

T*+e>T>0 r<r(T)

thus contradicting the maximality of I'*.
A last application of the Lemma gives us the final result; uniqueness is an ob-
vious consequence of the uniqueness of the local solution. ®H

In Corollary 4.2 we gave a local existence result for a particular form of Pb. (1),
namely

(45) { %" f(CPyuy uD) Ayt 4 fo((Pouy D) Ayt = 0

w(0) =%y, w(0) = u,.
We will suppose now in addition that, for k=1, 2
(62) fr: C — R* is a nonnegative, bounded, locally Lipschitz continuous function.

COROLLARY 5.2. — Suppose that, for k = 1, 2, A, verifies (49), (50), while f;, verifies
(62). If each P, satisfies one of the following conditions

P.el(V, V)
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or

Py, is a linear operator on Xy+(B), of finite order in the scale {X,(B)},. , (def. 1.3)
then Pb. (45) is globally solvable in X .(B).

More precisely, the conclusion of Th. 5.1 holds true (if f,, f, are bounded by the
constant M).

&51 PROOF. — Cor. 4.2 holds under assumption (44), that is always verified by Banach
seales generated by operators; moreover, V is continuously embedded in V' in an
Hilbert triplet. Proceed now as in the proof of Th. 5.1, using Cor. 4.2 instead of
Th. 41. m

‘We finally focus our attention on a very special case of Pbs. (1), (45), the «va-
riational » problem

{ %'+ fi({Avu, wp) Ayu - fo(CAzu, wp) Ayu = 0

(53) u(0) = u,, w(0) = u,,

which is particularly interesting, as in this case we can replace the hypothesis
(564) f= bounded

with the more useful one
-} o0

(55) f 1) dr = 4 oo

0

THEOREM 5.3. — Suppose that, for k=1,2, A, verifies (49), (50), while each
fr: Rt — R* is a nonnegative, locally Lipschitz continuous function, verifying one of
the assumptions (54), (55).

Then Pb. (53) is globally solvable in X,:(B).

More precisely, there ewists a constant M > 0 such that the conclusion of Th. 5.1
holds.

ProoF. — Set F(s):= f fi(r) dr. If u(?) is a solution of (53) on the interval [0, TT,
we define its energy as °

B.(t) == §{Fy(<Asult), w(t)) + Fao({Aault), u(®)>) + v/ @) -
It is easily verified that E,= 0, so that
B(t) = B,(0) it te[o, TT[.

Note that the nonnegativity of f, implies the nonnegativity of 7, therefore
Fo(<Azu(t), u(®)y) (k =1, 2) is bounded on [0, TT.
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Suppose now that f, verifies (55): then Fy(r) — - co if and only if # - + oo,
then {A,u(t), u(t)> is bounded, too. As f, is a continruous function, it follows that
fo({A,u(t), u(t))) is bounded on [0, TT.

If f, is itgelf bounded, the same result holds.

We can now proceed as in the proof of Th. 5.1: the only difference is that, when
linearizing the equation, the boundedness of a,(f) follows from the argument above
(instead of being an immediate consequence of the assumptions). m

REMARK 5.4. — All of the preceeding results can be extended to the more general
problem

{ w' - pu)Au + o pa(u)du =0
(56)

u(0) = 1o, w'(0) =u,

with no particular difficulty. Note also that it’s possible to perform any sort of
« redistribution » of the assumptions: each ¢, can satisfy any one of the conditions
stated in Ths. 5.1, 5.3, and Cor. 5.2, the thesis remaining the same.

REMARK 5.5. — A slightly more general result can be proved: namely, in Pb. (56)
we can suppose that, for some (one or more) K,

Age (V, H) is of w-order (1, A) with respect to B

(with no assumption of nonnegativity, symmetry or commutativity) while the cor-
responding ¢y satisfy

@x is bounded, locally Lipschitz continuous on X,(B) for every > 0

(with no agsumption of nonnegativity, or even to be realvalued).
This is not surprising, as we can see such terms as «perturbations» of order
one to an equation of order 2.

6. — Applications.

Let £ be a parallelepiped in R». With #
analytic Q-periodiec functions on R=,
Consider the problem, for real p, ¢>1,

Uyy— (fui dx dy)pum—— (fuj dx dy)quw =0
0 . 0

(2) we will denote the space of

per

(16) w(®@, 4, 0) = ta(, 9)
7fbt(xy Y, 0) = ul(ma ?J)

where 2 is a rectangle in R*= R _xR,.
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THEOREM 6.1. — Pb. (16) is globally solvable in #,,.(2). More precisely, given any
Uyy Uy € Apor(2), theve exists a umique solution w in C*(R*X[0, + oof), and for every
1>0, u(-,,t) and u,(-,-, %) are in A (Q2).

ProOF. — Set H = L*(Q); V = {ve Hi,(2): v is Q-periodic}, with the norm of
HY(Q); V' will result to be the space of Hy ! Q-periodic functions.

We choose B = (3/cz, ©,0y); with this agsumption, D (B) is the space of C
Q-periodic functions, while X,.(B) are spaces of analytic £-periodic functions with
uniform radius of convergence. Moreover, X .(B) = A, (2).

Writing A, = — 0%[0x?, 4,= — 0%[dy?, our equation becomes

per

w4 (i, wdyP A J -+ ((Aaw, wp)?d,u =0,

satisfying the assumptions of Th. 5.3 (note that 4,, 4, commute with B*, so that
(28) is trivially verified, and are of order (2, 4) for any A > 0).

Finally, the scale X,(B) is dense in itself: apply Remark 1.8 (noting that, for
r> 0,X,(B) contains the trigonometric polynomials). M

Consider now the problem in R XRf

n
u”—(f [Vou)2 dm) Au— 3 (@i(2)y,)s, = 0

(57) g hi=1

u(w7 O) = uO(x) ’ ut('% O) = ul(w)

under the assumptions
@;€ ‘feper(‘Q)’ ’l:,j:]_, ey M
(58) [D* (@) < Oy A, Vee N2, we Q

o,=a; and > a;EE>0 for every (&,..,&)eR".

THEOREM 6.2. ~ Pb. (57) under the assumptions (58) is globally solvable in A . (£2).
More precisely, given any uy,w,€ £,,(Q), there exists an unique solution wu in
C*(R# % [0, + oof), and for every t>0, u(-,1) and u,(*,1) are in Ao(R).

per

ProOF. — The proof follows the lines of the preceding one, with 4,=— 4,,
Ay=— 3 (a;(®)0,)e,, (r) =1, fy=1, B = (0[0xy, ..., 0[0w,). The only difference
is the verification of hypotheses (49), (50), that follows, under assumptions (58),
from Lemmas 4.1, 4.2 of [AS2]. ®=

In a similar way, an application of Corollary 5.2 yields an analogous global
existence result in A (£2) for the problem

woi— du— f V2 dcc) 3 (@@ ,)e = O
(59) @
w(z, 0) = ug(x), w2, 0) = u;()
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under hypotheses (58), and assuming that

(60) p: R — R, is nonnegative, bounded and locally Lipschitz continuous .

7. — Appendix.

LeMMA. — Let 0> 0, t€[0, o[, m>2; then

13 tm
o+ s 2(m —1) t\!
I(t) =1di,... 1 d < —1 .
0 jaz fs(a_s)mﬂ e )
0 (i}

Proor, — As

a1 1 am 1
e Vo | == — gym—-1 _ | —_— _— —_ e — gy m
dsm[m!a—~s] (0=, dsm'[(m——l)lln(g S)] (6—=s)™,
writing
o+ s
:2 . —m—1___, —_— -m
o gyt a(c—s) (0 —s8)™,
we obtain
1 2 1 8=t 21 1 oc—1
1) =|— ! . — = 1
Im [m!a~sT(m—1)!ln(G 8)]3=0 m!(a—t)+(m—1)! o
AsInz<e—1,
1 12 o 2(m—1) o
< —(m—=—(m—2)-
I()<m!(m (m ) )a—-t m!  o—1 -
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