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S u m m a r y .  - The present pa~er deals with certain new aspects o/ the theory o/ 'algebra-valued 
generalized polars o] the product o/abstract homogeneous polynomials, opening up new avenues 
to the existing (and still very young) theory put ]orward by Marden and Zaheer (see Paei]ie 
J. Math., 74 (1978), n. 2, pp. 535-557). Oq~r main theorem here leads, on the one hand, to 
an improved version o] Walsh's cross-ratio theorem on critical points o] /unctions o] the ]orm 
]:f~/]~ (fi being complex-valued polynomials) and, on the other hand, it oilers a two-]old gene- 
ralization o] one o] the main theorems o] Zaheer in the paper cited above. 

1 .  - I n t r o d u c t i o n .  

During the last twenty five years a number of well-known classical results on the 
zeros of polynomials have been generalized to abstract homogeneous polynomials 
(a.h.p.) by H6rmander, Zervos, Marden and Zaheer. First in the series being the paper 
due to HOR~A~'])E~ [5] in 1954 which deals with Laguerre's theorem (cf. [6]; [7], 
p. 49), followed in 1966 and 1969 by  the ones due to HA~Dv,~ ([8] and [9]) on the 
theorems of BbCHER [1], G~AC~ [3], and Szw~5 [11]. The memorable work of ZE~- 
vos [22] in 1960 includes, among so many other variety of results, also the genera- 
lizations of these classical results in terms of ordinary polynomials from K to K 
(K being an algebraically closed field of characteristic zero). However, the studies made 
by ZAm~E~ in [17], [18] and [19] present a more general, systematic, and abstract 
theory of a.h.p.'s which puts all these scattered pieces in proper perspective and which 
offers much more general theorems that include in them the corresponding results 
on each of the aspects considered by  Hfrmandes,  Zervos and Marden. The work 
in [9] and [18] deals with composite a.h.p.'s, while the ones in [8] and [19] with gene- 
ralized polars (a variety of composite a.h.pPs) in particular. 

ZAn-E~ [19] has made a detailed and comparative study of certain aspects of 
the theory of generalized polars, obtaining generalizations of the results in [8] and 
providing, in addition, improved versions of B5cher's theorem (cf. [1]; [7], Theo- 
rem (20,2)) and of Walsh's two-circle theorems (see [13] and [14], or [7], Theo- 
rems (19,1) and (20,1)). Inspired by the scope of this theory we developed a strong 
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feeling for pursuing other  meaningful aspects (if any) in this subject area. The present  
paper, which is the result of such study,  deals with tha t  aspect of the theory  of alge- 
bra-valued generalized polars which has access to the well-known Walsh's cross-ratio 
theorem (cf. [I3]; [7], Theorem (22,2)) on the critical points of rat ional  functions of 
the form ]1]~/]2. I t  m a y  be noted tha t  this theorem does not  come in the purview 
of any  of the theorems in [19], whereas Theorem 2.5 in [19] does reduce to a special 
case of one of the  corollaries of our main theorem in this paper. 

The scheme of the present  paper  is as follows: Section 2 on preliminaries is intended 
to serve as a back-up mater ia l  for the  sections t h a t  follow and most  of the  discus- 
sion is based on the notat ions and results discussed in [19]. In  Section 3 we prove our 
main  theorem on generalized polars of a.h.p. 's and deduce an impor tan t  corollary as 
application. A more general formulat ion (to algebra-valued a.h.p. 's) of our main 
theorem of Section 3 has been proved in Section 4. This is the  most  general result  
of this paper  and, as a by-product ,  its application leads to a main theorem of Zaheer 
in [19]. 

2 .  - P r e l i m i n a r i e s .  

Given vector  spaces E and V over the same field K of characteristic zero, we 
define (cf. [5], pp. 55, 59; [4], pp. 760-763; [10], p. 303; [16], pp. 52-61) a vector- 
valued a.h.p, of degree n to be a mapping P :  J~ -~ V such tha t  (for each x, y e E) 

P(sx + ty) = ~_A~(x,y)s~t  ~-~ Vs, t e K ,  
k = o  

where the  coefficients Ak(x, y) ~ V depend only on x and y. I f  V ---- K, we shall call P 
simply us an a.h.p, and, if V is an algebra, P will be te rmed an algebra-valued a.h.p. 
We shall denote by  P* the  class of all vector-valued a.h.p. 's of degree n from E to V 
(even if V is an algebra) and by  P .  the class of all a.h.p. 's of degree n from E to K. 
The n- th  polar is the  unique symmetr ic  n-linear f o r m  P(x~, x2, ... ,x~):E'---> V such 
tha t  P(x,  x, ..., x) ----- P(x)  for every  x e E  (see [5], pp. 55, 59; [4], pp. 762-763 for its 
existence and uniqueness). We may  then  specify the k-th polar of P by the relation 

t ' ( x~ ,  . . . ,  x~, x) = .e(x~, . . . ,  x~, x ,  . . . ,  x ) .  

BLAnKeT ASSVMPTIO~. -- Throughout  the rest of this paper  K denotes an algebraic- 
ally closed field of characterist ic zero and V an algebra with ident i ty  over K. In  
part icular ,  the  field of complex numbers will be denoted by  C. 

A scalar homomorphism (cf. [15], p. 253) on V is a mapping L:  V --> K such tha t  

(i) E(o~u + fly) = o:L(u) + tSL(v) Vu, v e V, c~, t ~ ~ K,  

(ii) JL(uv) = E(u)Z(v) Vu, v E V. 
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Ideal maximal subspaees ([15], p. 252) of V are characterized in a one-one manner  by  
sets of the form 

(2.1) {v e Nz(v)  = 0}, 

where /~ is a nontrivial  scal~r homomorphism on V (cf. [15], Theorem 2, p. 254). 
The following material  is borrowed from Zaheer [20]. 

Given P e P~* and scalars roT: (k ----- 1, 2, ...7 q), let us write 

(2.2) 

(2.3) 

O(x)  = P~(x )  . P ~ ( x )  ... P o ( x )  , 

O~(x) = P~(x )  ... P~_~(x) .P,~+~(x)  ... P~ (x )  , 

and define (cf. [19], p. 539) 

r x~, x) : ~ mkQT:(x)"-Pk(x~ x) 
k = l  

VX, xj ~ E. 

We shall call qi(Q; xl, x) as an algebra-valued generalized polar of the product Q(x). 
For V = K it will be termed simply a generalized polar, to  be in conformity with the 
notat ion ill [19], p. 539. If  we write n =- nl + n~ ~- ... -~ n~, we note (cf. [4], Theo- 
rem 26.2.3) tha t  Q e P*, Q~ e P*_** and P~(xl, x) is an Mgebra-valued a.h.p, of degree 
nk --  1 in x and of degree i in x~, l<<.k<~q. Therefore, qi(Q; x~, x) is an Mgebra-vMued 
a.h.p, of degree n -  1 in x and of degree 1 in x~. Given a nontrivial  scalar homo- 
morphism ~ on V and a polynomial P E P.*, we define the mapping Z P :  J ~ - + K  
by (LP)(x) = Z(_P(x)) for all x e E. I t  is obvious tha t  ]~P E P~. In  the notations 
of (2.2) and (2.3) the product  of the polynomials ZPk e P ~  is given by ZQ and the 
corresponding part ial  product  (ZQ)~ (got by  deleting the: k-th factor in the expres- 
sion for ZQ) is g i v e n b y  ZQ~. In  view of this, we record the following 

R ~ A ~ K  2.1. - The algebra-valued generalized polar q~(Q; x~, x) :of the product  
Q(x) and the generalized polar q~(ZQ; Xl, x) of the corresponding product  (ZQ)(x), 
with the same ink's, satisfy the  relation 

L(~(Q; xl, x)) = r x,, x) 

for every nontriviM scalar  homomorphism L on V. 
The concepts of generalized circular regions, Ko-convexity, and circular cones 

have appeared at  m a n y  places in the  li terature (cf. [17]; [18]; [19]). t towever,  we 
shall explMn these only briefly as follows. We know (el/ [5]; [2], pp. 38-40; [12], 
pp. 248-255) tha t  K must  have a maximal  ordered subfield Ko such tha t  K ~ K o (i), 
w h e r e -  i ~ is the un i ty  element of K.  Since every element z in K has the form 
z : a -~ ib with a, b ~ Ko ~ we define ~ : a--ib,  I~e (z) = (z -~ ~)/2, and Iz[ -~ ~- (a ~ -[- b~) �89 
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in analogy with  the complex plane. Let  K~ denote the projective field (see [19]; 
[22], pp. 353, 373) got by  adjoining to K an element co having the properties of scalar 

infinity.  A subset A c K is Ko-eonvex if ~ #~a~ e A for every a~ e A and /J~ e Ko§ 
i=I n 

(the set of all nonnegative elements of Ko) such tha t  ~/x~ -~ 1. Given ~ e K, we 
denote by 9~ the permutat ion of K~ given by ~=~ 

(2.4) 9~(z) = ( z - -  $)-~ u e K~.  

Obviously, ~r = 0 ~nd 9~($) ----- o~. The following concept is due to Z]m~vos [22]. 
We call a subset A of K o  a generalized circular region (g.e.r.) of K~ if A is either one 
of the sets r K,  Ko or A satisfies the following two conditions: 

(i) ~r is K0-convex for every ~ e K -  A;  

(ii) co e A if A is not  Ko-convex. 

D(Ko)  denotes the class of all g.c.r.'s of K~.  Some properties and details regarding 
g.c.r.'s, relevant i~o our present needs, are stated in [19]. 

The terms ((nucleus ~>, (~circular mapping)), and (,circular cone~) are due to 
Zaheer [17]. Given a nucleus ~V of E z an4 a circular mapping G: 2~ -->D(Ko~), we 
define the  circular cone Eo(iV, G) by  

where 

/~o(N, G) = U /~o(x, y ) ,  
(~,v)elV 

Ta(x , y) ---- (sx + ty :/= 0is , t e K ;  sit e G(x, y)}. 

I~MAr 2.2. -- (I) I f  G is a mapping from _AT into the class of all subsets of K ~  
the resulting set E0(h r, G) will be termed only a cone. 

(II) I f  dim E = 2, then  (of. [17], t~emark (2.1), p. 117) every circular cone 
Eo(N, G) is of the  form 

Eo(~,  G) = {SXo + tyo --/: ols, t ~ K; s/t e a }  

for some A ~l)(Ko,),  where xo, Yo are any  two linearly independent elements of J~, 

h r -- {(xo, Yo)}, and G(Xo, Yo) = A.  
The following proposition due to Zaheer (ef. [19], 1)roposition 2.1) tells us tha t  

any  two circular cones Cali always be expressed relative to u common nucleus. 

PI~0P0SlTIOI~ 2.3. -- Given a circular cone ~o(2V, G) and an arbitrary nueler 2V'c_ E ~, 
there exists a circular mapping G': N'--> D(Ko~) such that Eo(AV, G) = Eo(iV', G'). 
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The following definition a n d  the related discussion has been taken from [19], 
p. 550. The term << homographic trttnslormation ~ has been used by  Zervos for the 
usual linear fractional transformation. Such transformations preserve the class 
D(K~) (see [22], p. 353). 

D v . ~ o ~  2.4. - Given distinct elements ~,, ~ ,  ~a e K,  we define the cross- 
ratio mapping (with respect to ~,~ ~ ,  ~a) to be the homographic transformation 
h: K~ -> K~ given by  

(2.5) h(~) - = ~ - -  ~ . ~ x - - ~ =  (~, ~:, ~ ,  ~3), say u ~ K ~ .  ~ - - ~  ~ - -  ~ 

We call (~ Q~ ~ ,  ~3) as the cross-ratio of ~ with ~ o~ ~a. In  case any  one of the ~ ' s  
is taken as co, we define the corresponding cross-ratio to be the expression got by  
deleting in (2.5) the factors which thereby involve co. E.g. (for ~ ---= co) 

(2.6) (e, co, ~ ,  ~3) = (e -- ~)/(~ -- es) etc. 

Obviously, the homographic t ransformation h maps ~ ,  ~ ~, to 1, 0, co, i~speetively, 
and there is no other homographic t ransformation with this property. Consequently, 
ident i ty  mapping is the only homograrphic t ransformation which can map 1, 0 o~ 
to 1, 0, co, respectively. 

Rv.MA~K 2.5. -- Le t  us note t ha t  (2.6) follows natural ly  from (2.5) and tha t  the 
two together  cover all the cases when ~1, ~ Qa are distinct elements of K~= However, 
even in the case when ~x~ ~ ,  ~3 are not  distinct elements of K~,  we agree to denote 
the expression (~ --  ~)(~1--  ~3)/(~ - -  ~3)(~ --  ~2) by (~, ~1, ~ ~a). But ,  in this case, 
h is not a homographic t ransformation even if h is a function. 

3. - The m a i n  theorems on  general ized polars. 

As a first step towards obtaining our most general theorem of this paper concern- 
ing algebra-valued generalized polars from E to V, we s tudy first the corresponding 
simpler situation when V = K. In  fact, we are able to establish the following result 
on the generalized polars of a.h.p. 's from E to K.  This result will be shown to include 
Walsh's cross-ratio theorem (cf. [13]; [7], Theorem (22,2)) on critical points of rational 
functions of the form /xf2/fa, ]~ being polynomials from C to C. In  the following 
theorem we take circular cones with a common nucleus (cf. Proposition 2.3) and denote 
by Z~.(x, y) the  null-set of P (relative to x, y e E) defined by  

Zp(x, y) = {sx + ty # O]s, t e K ;  P(sx + ty) = 0}.  

~[x, y] denotes the subspace of E generated by x and y. 
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TttEO~E~ 3.1. - Zet E~ ~) --  Eo(N, G~)7 i -= 17 27 3, be circular cones with --o~(~ ~ --oE(~) ~ 

--o N(a~ = 0 and let P~ e P,~ (k - - -  1, 2, ...~ q) such that 

(3.1) Z~(x, y) _c 

T~(x, y) 

T~o(x, y) 

T~.(x, y) 

/or k = 1, 2, ...7 ~(< P < q) 

]or k = r §  

]or k = p  § l , . . . ~ q  

for all (x, y) ~ ~ .  _Let ~5(Q; x~ x) be the generalized polar o] the product Q(x) (cf. (2.2)) 
q 

with m ~ > O  for Ic = 1,2,  . . . , p  and m ~ < O  for k = p + 1, ...T q such that ~ m~ = O. 

I]  A~ = m~ and A~ = ~ m~ then r 0 for all linearly independent ele- 
k= l  k = r + l  4 

merits x~ x~ o] E such that x e E - -  U ~'(~) where N (~) - -  Eo(N, G) is the cone defined by ~ 0  ' ~ 0  

G(x,y)  = {~ eK~](~,r  ~ ,  ~)-------A~/A~; ~ e G J x ,  y), i = 1 , 2 , 3 }  V(x, y) e N .  

4 

PRoof .  - Let  x, x~ be l inearly independent  elements such tha t  x ~ U E~ ). These 
~=~ 

elements determine a unique element  (Xo, Yo)e s (~ ~*[x, x~], a unique set of scalars 

~7 fi, 7, ~ (with ~ - - f l T ~ 0 )  such tha t  x = ~xo 4 - f i yo  ~nd x ~ = T x o 4 - 6 y o .  This 
means t ha t  ~/fi does not  belong to any  of the sets G,(xo7 Yo) or to G(xo, Yo). I f  _P~ is 

given by  
~ k  

t'~(sx + tx~) = I] (a~s - 7,~t) , 
~ = ~  

then  P~(x) V= 0 for l < k < q  ~nd so r V: 0 for l<} <n ~ : ,  k = 1, 2, ..., q. P u t  Q~.~: ---- 

= 7j,/6~,. Since (for e~ch k = 1, 2, ...~ q) 

the  hypotheses (3.1) imply  t ha t  

Vl<~<n~, 

fl0Jk + 

{ G~(xo, Yo) 
- -  e G~(Xo7:Yo) 

Gs(Xo 7 yo) 

V l < j < n ~  7 k---- 1~ 2, ..., r 

V l < j < n ~ ,  k = r -~ 1, ..., p 

V l < j < n ~  ~ = p -~ 1~ ..., q. 

- f 

say, so t h a t  

(3.2) ~ 

~(Gl(x07 y.)) 
v(Go(x07 yo)) 
v(G~(~07 yo)) 

V1<i<nl :7  k = 1 , 2 ,  ..Tr 

V l < j < n ~  7 k = r § l ,  ...T p 

V l < ~ < n ~  7 k = s  §  
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where U is the homographic t ransformation of K~ given by U(O) : (OO--?)/(--flO H-~). 
Since G,(xo, yo) e])(Km) and U preserves the class D(Km) (cf. [22], p. 353), we 

note t ha t  U(G,(xo, Yo)) e D(Km) for i = 1, 2, 3. Due to the fact tha t  a//7 r U G,(xo, Yo) 
i = 1 

and U(a/fi) -=- co, we see tha t  co r U(G~(xo, Yo)) for any  i. F rom definition of g.c.r,, 
U(Gt(xo~ Yo)) are K0-convex g.e.r.'s of K~ and (hence) relations (3.2) give 

(3.3) 
.~ ~ [ v(a~(Xo, u.)) 

#k(say) = ,~1 ~kk e,k ~ [ U( G2(20:~ go)) 
= ~(d~(Xo, ~o)) 

Vl<.k<r 
Vr  H- ~ < / ~ < p  
Vp ~ l < / ~ < q .  

Observe tha t  each of the sets of scalars m~/Ax (for lc = 1, 2, ..., r), m~/A~ (for k : r + 1, 
...~p), and m~/A, (for k = p + 1, ...~ q) consists of positive elements of K.  with 

q 
sum as 1 (A~ denoting the sum 2 m~). Therefore (el. (3.3)), there exist elements 

k = ~ + l  " 

~ e G~(Xo, yo) for i : 1, 2, 3 

such tha~ 

(3A) vi/Ai : U(~i) = ((~Oi--y)/(--fl~i -~ ~) ~ oJ, i = 1, 2, 3, 

where 

2~ q 

~=I ~=r+l k=~+l 

First ,  we claim tha t  the v~'s cannot vanish simultaneously. For, otherwise, },/5 would 
be common to all the g.c.r.'s G~(xo, Yo) (cf. (3.4)), implying tha t  xl = yxo H- 5yo is 
common to all the sets Te,(Xo , Y0). This would mean tha t  xl belongs to all the circular 

E ~)  (~  E (S~ = fi.  ~,") contradicting the hypothesis tha t  E(o ~) n _ ,  -o cones ~0 , 
Therefore, in order to show tha t  v~ -[- ~ H- v3 r 0, we m a y  assume (without loss 

of generality) tha t  at most  one of the v~'s is zero. Now, with this assumption, if on 
the contrary h -k ~ -k v8 were to vanigh, equation (3.4) would imply tha t  A~ U(~J -k 
-k A2 U(~2) -k A~ U(~s) = 0. Since A~ -k A~ -~ A8 ---- 0 (el. hypotheses on m~), we have 

(3.5) AI [U(@I) -  U(~s)] ~ A2[U(@~)- U(~a)] = 0 .  

A routine computat ion then provides: 

(3.6) v ( e . ) -  uff,.) = z l (e , - -e . ) / ( - -  #e, + ,z)(-  #e. + ~) 

2 4  - A n n a l t  d i  M a t e m a ~ i v a  
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where A = ~ - - f i 7  # 0. Since ~/fl is not  a member  of any  O~(Xo, Yo), we can say 
t ha t  a / f l #  ~ ,  i.e. - - f l ~  + a r  0 for i = 1, 2, 3. Equa t ion  (3.5) says tha t  U(~,) - -  

U(~3) = 0 if and only if U(~) - -  U(~3) = 0, which can happen if and only if Q, = 
= e~ = ~a = ~ (say) (1Cecal1 tha t  U is one-one and onto). This would mean tha t  

e e G~(Xo~ Yo) for all i, contradict ing tha t  --o~(1> (3 E~ ~ (3 --o~) = 0. Therefore, e, ,  e~, ea 
must  all be dist inct  elements of K~.  First ,  we take  up the case when no e~ is co. In  
view of this and the  fact  t ha t  U(~) # eo for any  i (cf. (3.4)), we conclude tha t  none 
of the  expressions in (3.6) can take  the value 0 or o~. Consequently~ equations (3.5) 

and (3.6) give 

u ( ~ )  - u ( e ~ )  _ ~ - e~ . -  ~ + ~ A ~  

ory 

(~/~-e=).e=-e, 2=/A,, 
(~/~--~1) e=--e, 

irrespective of whether  fl is or is not  zero (because fl = 0 and A # 0 imply tha t  a # O). 
Tha t  is, by  Definition 2.4 we have 

(3.7) 

In  ease, however,  any  one of Q,, e2 or Q8 (say, e~) is o~, equat ion (3.4) gives U(Q~) : 
: - -  ~[fi # co (so tha t / ?  ee 0). Star t ing with this change in equat ion (3.4) and making 

the  corresponding changes all along in the above analysis, we still arrive at the  same 
relation (3.7) (cf. the  definition of cross-ratio for the case when any  one e~ = ~o). 
Since (3.7) holds in bo th  the  cases considered above, the  element  ~/fi ~ G(xo, Yo), which 

~(4) contradict ing the implies tha t  x : :r A- fiYo e Ta(xo, Yo). This means t h a t  x =~0 , 
choice of x already made. We have,  therefore,  shown tha t  

( 3 . s )  k~l  ~=1 ~-k ~jk ~--- ~1 --~- ~2 "~- ~13:X z~ 0 .  

But ,  we know (el. [19], p. 543) tha t  

~n~ [21 
Since P~(x) # 0 for k = 1, 2, ..., q, relations (3.8) and (3.9) imply tha t  ~b(Q; x,,  x) =~ 0. 

This completes the  proof 
The following corollary is essentially an improved form of a result  due to Walsh [13] 

(cf. also [7], Theorem (22,2)). ] tere  we take  g.e.r?s of C~ whereas Walsh considers 
only the classical c.r?s (a proper  subclass of g.c.r . 's--sec [19], p. 536). We shall use 
the  nota t ion <(Z(]) ~ for the  set of all zeros of a polynomial  t. 
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CO]~OLLA]~Y 3.2. - ~or  each i = 1, 2, 3, let f, be a polynomial (from C to C) of degree 
n, and let C i e D ( C ~ )  such that Z(ft) ~_ C~. I f  n~ + n~ = h a  and if  C~ (3 C~ ~ Ca = 0~ 

4 

then every finite zero of the derivative o / the  function f~(z)f~(z)/fa(z) lies in [J Cl, where 
~ 1  

Ca = {~ e C~I(~, ~ ,  ~ ,  ~ )  = --n~/nx; ~i e Ci, i = 1 ~ 2, 3} .  

P~oo~ .  - F o r  i = i, 2, 3: let us t a k e  t he  c i rcular  cones 

E(') =-- Eo(:V, Gi) = {sxo -~ tyo :/: O[s, t e C; sit e Ci} 0 

in t he  2-d imens iona l  vec to r  space E - -  C ~ (cf. R e m a r k  2 .2( I I ) ) ,  where  xo = (1, 0), 

Y o =  (0~ 1), N = {(Xo~ Yo)}, a n d  Gi(xo, Yo) = Ci. L e t t i n g  fi(z) -= ~ a~,z~ observe  

t h a t  t he  m a p p i n g s  P i :  C ~ --~ C, defined b y  ~=o 

t ) i ( x )  - -  P i ( s x o  § tyo) = ~ ,  a~is~t  n'-~ 
/c=O 

Yx = (s, t) e C ~ 

are a .h .p . ' s  of degree ni such t h a t  Zp,(Xo, Yo) c_ Ta~(Xo~ Yo). (Because Pi(sxo -4- tyo) = 
= t"']i(s/t) for all nonzero  e lements  x = (s,t) and  because  Z(fi)c_ Ci = Gi(xo~Xo).). 
Now,  let us consider  the  general ized polar  of t he  p r o d u c t  Q(x) = Px(x)P2(x)P3(x), 
defined b y  

(3.1o) ~(Q;  x~, x) = n~P~(x~, x ) P d x ) P d x )  § n~P~(x)P~(x~, x ) P d x )  - -  

- -  n3Pl(x) P~(x) P3(xl~ x) 

for  all e lements  x = (s, t) a nd  x~ = (sl, t~) of C ~. Then  the  po lynomia l s  Pi~ the  circular  

~,(i) a nd  the  general ized po la r  r  x~, x) sat isfy  all t h e  hypo these s  of Theo-  c o n e s  ~ o  

r em  3 . 1 w i t h  r -= l ,  p -=-- 2, q = 3 ,  ml = n l  = A I > 0 ,  m~ = n 2  = A 2 > 0 ,  a n d m 3  = 

= - -  n3 < 0. W e  k n o w  (cf. [8], equa t ion  (2.4) or  [19], p .  5.45) t h a t  

(3.11) i = i , 2 , 3 ,  

and  t h a t  Pt(x) -= t"' f,(s/t), ~Pi/~s = t"i-lf~(s/t) for all i and  for  all nonzero  e lements  x. 

I f  we now t ake  xl = Xo (so t h a t  sl = 1 and  t l =  0)~ f r o m  (3.10) and  (3.11) we can  easi ly 

ob ta in  (set t ing / = fl ]~/f~) 

(3.12) ~5(Q; Xo, x)  = t - ,+n ,+- , - Ir f ' ( s l t ) /~ ( s / t )  f3(slt) + f~(s/t) f',(8/t) ]3(slt) - L I I 

l 
- f l(s/ t)f~(s/ t)  f~(s/t)] = t~,+,,+~,-~. [f~(s/t)]~. f ' ( s / t ) .  
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:Now, Theorem 3.1 comes in to say tha t  ~(Q; Xo, x) :~ 0 whenever the element x --~ (s, t) 
4 

is l inearly independent to x0 such tha t  x ~ [_j ~(~ where 

E(4) ~ Eo(N, G) = {SXo § tyo v ~ O[s, t ~ C; s/t ~ G(xo, Yo)} 0 

and 

G(xo, Yo) = (~ e C,~I(~, ~3, ~ ,  ~1) -= - -  A~/A1; ~ e G,(xo, Yo), i ----- 1, 2, 3} 

---- C~ (since A1 ---- ni~ A~ --~ n2). 

That  is, r ; x0, x) r 0 for all elements x -~ (s, t) = sxo § tyo for which t ~ 0 and 
4 

for which s/t ~ [j C~. Finally,  (3.12) says tha t  ]'(s/t)V= 0 for all s, t e C such tha t  

t ~ 0 and s/t ~ Ci W Q w Ca U C4. This establishes our corollary. 

]~w~A~K 3.3. -- (I) I f  we define the formal derivative ]'(z) of a polynomial 1(z) = 

= (nora K to K) to be the polynomial l ' ( z ) =  (a .  [19], p. 553; 
/ ~ = 0  k = l  

[21]), we can easily verify t ha t  the formal derivative of the product  11]~ of two poly- 
nomials fl and 13 is given by  (cf. [21], Proposition (1.2)) (111~)'-~ 1'~I2 § ]11~. I f  we 
now define the formal derivative of the quotient ]1[1~ to be given by  (fl/1~)'~-- 
---- (1~' 12-- 1112)/]~; ~ then  the formal derivative of the quotient 11(z)12(z)/18(z ) (1~ being 
polynomials) is easily seen to be given by  

(3.13) ! ! ~ ! 2 []l(z)]~(z)]~(z) + ]l(Z)]~(z)/~(z) - ]~(z)]~(z)J3(z)] / { / . (z )}  �9 

(II) I n  view of the definition of formal derivatives ]'(z) of a polynomial ](z) 
from K to K and the definition of formal part ial  derivatives 3P/3s of a polynomial 
_P(s~ t) from K ~ to K (ef. [19], p. 553), we remark tha t  Corollary 3.2 can be easily ex- 
tended to the field K in general. The proof being exactly the same as tha t  of Corollary 3.2 
except only tha t  we replace C b y  K all along. Note tha t  the expression (3.13), which 
is precisely the formal derivative of the function ](z) = ]l(z)f~(z)/ls(z), justifies the 
val idi ty of step (3.12) in the proof of Corollary 3.2. 

4. - The m a in  theorem on  algebra-valued generalized polars. 

Before we come to our main cross-ratio theorem for algebra-valued generalized 
polars, we define the concept of fully supportable subsets of V and establish a lemma, 
which we shall need in the  proofs of our results in this section. As regards the concept 
of supportable subsets of a vector space we refer to H6rmander  [5], p. 59. The ana- 
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logous concept in an algebra V is given in the following (originally due to ZAm~]~ [20]~ 

Definition 2.2). 

D V . F ~ T m ~  4.1. -- A subset M of V is called ]~Ily supportable if every  point  

outside M is contained in some ideal maximal  subspace of V which does not  intersect M. 
Tha t  is, for every  ~ ~ V - -  M, there  exists (cf. (2.1)) a unique nontr ivial  scal~r homo-  

morphism Z on V such t h a t  L(~) = 0 but /~(v)  :/= 0 for every  v e M. 
I f  M is a fully supportable subset of V, t hen  M is natura l ly  a supportable subset 

of V (regarded as a vector  space), b u t  not  conversely. In  view of the s ta tement  (2.1) 
concerning ideal maximal  subspaces, it is easy to see tha t  the complement  in V of 
every  ideal maximal  subspace of V is a fully supportable subset of V (el. [20], Pro- 

posi t ion 2.3). 
Given P e P* and a fully supportable subset M of V, we shall write (for any  

given x~ y e E) 

(4.1) E~,(x, y) = (sx -~ ty :/: Ols , t e K;  P(sx § ty) ~ M} . 

I~E~ARK 4.2. -- Since K is a field and the ident i ty  map from K to K is the  only 

nontrivi~l scalar homomorphism on K, it is obvious tha t  M ~-- K ~ (0} is t h e  only 
fully supportable  subset of K (Take V ~- K in Definition 4.1) and tha t  the correspond- 
ing set Ee(x~ y) reduces essentially to the null-set Z~(x, y) of P defined earlier in Sec- 

t ion 3. 

LEPTA 4.3. -- Given ~ ~ 0 and g.c.r.'s G~ ~ D(K,~) ]or i - ~  1~ 2, 3, let us de]ine 

G = (e eK~l (e ,  ~o~, 5~, 51) = ~ ;  5~eG~, i = ~, ~ ,~} .  

I] G~ -~ G~ and G~ ~ G~ --- 0~ then G c_ G1 0 Gu. 

P}~ooF. - Suppose on the contrary  tha t  G ~t G1 w G2. Then there exists an element 

e G such that 5 ~ G, U G~ and (5~ ~2, 53, 5~) - ~ - - ~  for some @1, 53~ G~ and some 
~ e G2, where ~ ,  53 :/: ~ .  Let  us also note  tha t  no element  of G can come from two 

coincident elements 5~ and ~ of GI (cf. l~emark 2.5). Tha t  is, ~ ,  52, 5~ must  a l l be  
distinct. Now, since the t ransformat ion h(5) ---- (~, 5~, 53, 51) maps 5z~ 53~ 5~ to 1, 0, co 

(respectively) and sinceA ) 0, we have tha t  5 =/= 51~ 5~, ~o~. 
First ,  we claim tha t  5 r co. Because, ~ = co would imply tha t  5~, ~ 5 3 r  co, 

and (in view of (2.5)) we have h(co) = (51--5~)/(e~--e~) = -  ~. Th a t  is (see the  

nota t ion in (2.4)), 

(4.2) ( e ~ -  5~) -~ § ~(e~--5~) -~ = [~(e~)  § ~ ( 5 ~ ) ]  = 0 ,  

where ~0e,(58) and ~0~(51) are elements of (pe~(G1). Since G1 e / ) ( K ~ )  and 52 ~ G,, from 
the  definition of a g.e.r, we see tha t  FQ~(G~) is K0-convex and (hence) tha t  

(e~. (4.2)) [~,(53) + ~,(~ol)]/(1 + ~) = 0 e ~ , ( G 1 ) .  
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Therefor% the re  exists  a @* e G~ such t h a t  1/(@* - -  @~) = 0. Since @~ =/: ~o, we m u s t  

have  ~* = co = ~, con t r ad i c t i ng  t h a t  ~ ~ G~. 

t~av ing  shown t h a t  ~ co a nd  t h a t  the  e lements  ~, ~ ~ ,  ~a are  all dis t inct ,  we 

now cla im t h a t  

(~.3) [~(e~) + k~(q~)]/(~ + k) = ~(e~),  

where  ~ is as defined in (2.4). To this  effect, we consider  the  fol lowing cases:  

Case 1. ~ ,  5~ ~ r  (o. I n  this  case 5, g~, ~ ,  5a arc  all d is t inc t  e lements  of K and  

the  express ion of cross-rat io  (cf. (2.5)) gives (o - -  ~)(Q~ - -  ~)/(~ - -  ~)(9~ - -  5~) ---- - -  ~. 

t t e n c e  

or~ 

[~ + ( e l - -  e~)/(e - -  e , ) ]  + ,~[m + ( e ~ - -  5~)/(5 - -  e~)] = ~ + ,~, 

[(e - -  q~)-~ + 2(e  - -  e~ ) -q / (~  + 2) = (e - -  e~)-~ �9 

This is precisely t he  equa t ion  (4.3). 

Case 2. One of the  ~ ' s  is co. The  definit ion of cross-rat io (cf. (2.6)) implies 

(4.~) 

(4.5) 

(4.6) 

_ ~ =  (~ - ~ ) / ( ~  - e,)  

( 5 ~ -  5~)I(~ - ~ )  

if ~ = ~  

if ~ = 

if ~a = oo 

F r o m  (4.4) a nd  (4.6), we get  

(4.7) [ ( e - -  e~ ) / ( e~ - -  e~) if  51 = 
- -  (,~ + 1) = l (4.8) ( ~ - -  ~)1(~ - -  ~ )  i f  Qa = co.  

On t a k i n g  t he  quo t i en t  of the  expressions in  (4.4) and  (4.7), and  on rewr i t ing  the  
equa t ions  (4.5) a nd  (4.8), we h a v e :  

,t(e - e . ) - ' / ( 2  + z)  = (5 - -  e~) - ' ;  

( 5 -  e , ) - l / (  z + 1) = ( q -  5~)-,  

(~o - -  ~1) - t  + Z(q - 5,) -1 = o ;  

accord ing  as 51 = co, P~ = w, or  03 = co. Or, in  t e rms  of the  func t ion  ~e~ these  equa-  
t ions are respect ive ly  g iven  b y :  
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Since ~o(fl~)= (~ i - -~ ) -1  : 0 e ~ ( G i )  if and only if ~ = co, we see tha t  the last 
three equalities are, essentially, the  special cases of equat ion (4.3) in the respective 
cases when fl~, ~ ,  or ~3 is taken  as co. 

:Now since equat ion (4.3) has been established for all cases and since ~ r G~ 
e D(K~), the  set To(G1) is Ko-convex 8nd (hence) equat ion (4.3) implies tha t  Fo(~) e 

~%(G~). Tha t  is, ~ e G~, which contradicts the  fact t h a t  G~ ~ G~ = 0. Therefore, 
our assumption in the  beginning must  be false, and the proof is complete. 

Now, we stab]ish the most  general theorem of this paper.  We make use of Theo- 
rem 3.1 in the proof of this theorem. 

_ = ~(i) TH~OR~ 4.4. Let --o~(~) =-- Eo(N, G~), i I, 2, 3, be circular cones such that --o 
(h E (2) (~ E (3) = O, M a fully supportable subset o/ V, and let P~ e P *  (k = 1, 2, q) 

--0 --0 " "  " ' , 

such that 

To~(x, y) 

E~(x ,  y) c Ta.(x , y) 

T~.(x, y) 

for k = l ,  2, ... , r ( <  p < q) 

for k = r  + 1 ,  . . . , p  

for k ---- p + l , . . . ,  q 

for all (x, y) e N.  I f  qS(Q ; x~, x) is the algebra-valued generalized polar with mk satisfy- 
ing the hypotheses of Theorem 3.1, then ~b(Q; x~, x ) e  M for all linearly independent 

4 

eZements x, x~ of E such that x ~ E - -  U ~(~) where ~(4) ~ Eo(N, G) is the cone corre- 

sponding to G as defined in Theorem 3.1. 

PROOF. Le t  ~ e V - -  M. Since M is fully supportable subset, there  is a unique 
nontr ivia l  scalar homomorphism ~ on V such tha t  L(~) ---- 0 bu t  Z(v) V= 0 for every  
v e M. We easily see tha t  Z~F~(x , y)c_ Ep~(x, y). From this  and the  hypotheses on 
the -Pk, we conclude tha t  the polynomials  JLP~ satisfy the  hypotheses (3.1). In  view 
of Remark  2.1 and the  discussion immediate ly  preceding it, LQ is essentially the 
p roduc t  of polynomials L_P'~ e P ~  and 

(4.9) ~ ( r  xl,  x)) = r x~, x), 

~.") the polynomials bo th  sides using the same mk's. Consequently, the circular cones ~ o ,  
JSPk e P ~ ,  and the generalized polar q~(LQ; xl,  x) of the  product  

q 

(LQ)(x) = l-[ (~P~)(x) 
k = l  

s~tisfy the hypotheses of Theorem 3.1. Therefore, qS(LQ; x l , x ) : / :  0 for ~]l x, xl 
as claimed in the present  theorem. Finally,  the relation (4.9) then  says tha t  ~b(Q; 
x~, x) :/: ~ for all x, x~ as claimed. Since ~ is a rb i t rary  in our arguments,  the proof 

is complete.  
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In  the  special ease when V = K (so t h a t  P~* ~ P~) and M = K -  {0} is the  fully 
supportable subset of K (ef. l:~emark 4.2), Theorem 4.4 reduces to Theorem 3.1, 
and (hence) the most  general result  of this paper. Fur thermore ,  we deduce the fol- 
lowing result  (cf. [20], Theorem 2,6) as an impor tan t  applicat ion of Theorem 4.4. 

C0~0LLAI~Y 4.5. -- Zet E ~) -- Eo(N, Gd, i = 1, 2, be disjoint circular cones, M a 
~ 0  

]ully supportable subset o] V, and let P~ ~ P*~, (k ---- 1, 2, ...~ q) such that 

c I T.~(x, y) ~(~, Y) [ T~.(x, y) 

]or k = 1, 2, . . .~p(<  q) 

]or k = p + ], ..., q 

]or all (x, y) ~ N.  I / ~ ( Q ;  x~ x) is the algebra-valued generalized polar o] Theorem 4.4, 
then qS(Q; x~ ~ x) ~ M ]or all linearly independent elements x, x~ o] E such that x ~ E --  

~ 0  - - 0  " 

t)~oo~. - I t  is easily seen tha t  the hypotheses in Corollary 4.5 are a res ta tement  
of the hypotheses in Theorem 4A af ter  we interchange the  roles of the circular cones E~ ~( 
and --oE(3~ in the  s ta tement  of Theorem 4.4 and the take  G~ ~ G3 (so tha t  Gl(X, y) ~- 
----Ga(x, y) for all (x, y )E  N, and --o~(~1= E(o3~). Consequently, Theorem 4.4 implies 
tha t  ~b(Q; x~, x) e M for all l inearly independent  elements x, x~ of E such tha t  
x e E - -  E (~ ~) E (~) ~) ~.(~ where E (~ _~ Eo(N, G) and ~ O  ~ 0  ~ 0  ' ~ 0  

for all (x, y) ~ N.  Since G~(x, y) = G3(x, y) and G~(x, y) (~ G~(x, y) = 0 for all (x, y) ~ iV, 
Lemma 4.3 with ~ = A2/A~ implies tha t  

G(x, y) c G~(x, y) U G2(x, y) u y) ~ N . 

Therefore, E(4) c E (1) ~) ~(~ and the rest of the  proof is obvious. ~ 0  - - ~ 0  ~ 0  ' 

In  the  ease when V = K and M = K - -  {0}, the  above corollary gives a result  
due to Z~heer ([19], Theorem 2.5) on generalized polars of a.h.p. 's  from E to K. Con- 
sequently,  Marden's theorem ([19], Corollary 2.6) and 136cher's theorem ([19], Corol- 

laries 2.7 and 2.8) automat ical ly  follow from Corollary 4.5. 

C0~CLVDI~G ~V.~IARKS. -- (I) Since Theorem 2.5 in [19] becomes a special case of 
Corollary 4.5 of Theorem 4.4 and since Theorem 4.4 is the most  general result  of 
this pape r ,  we conclude from Example  2.9 in Zaheer [19] tha t  none of the present  
theorems can be generalized for nonalgebraicMly closed fields of characterist ic zero. 
Due to same reasons as indicated above, Example  2.10 in []9] suggests t ha t  in none 
of our results here can we replace the g.c.r.'s G~(x, y) or C~ by  g.c.r.'s adjoined with 
a rb i t ra ry  subsets of their  boundary.  
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( I I )  Since the re  do exist  (cf. [17], pp .  123-125) c ircular  cones Eo(N, G) ~nd 

a .h .p . ' s  P c P,, such t h a t  Z / x ,  y) ~_ T~(x, y) for  eve ry  (x, y) e 5 ~, we conc lude  t h a t  

t im hypo these s  (3.1) in T h e o r e m  3.1 ~re val id  ~nd t h a t  our  theorems  are no t  v a c u -  

ous ly  t rue.  
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