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Summary. — The present paper deals with certain new aspects of the theory of ‘algebra-valued
generalized polars of the product of abstract homogeneous polynomials, opening up new avenues
to the existing (and still very young) theory put forward by Marden and Zaheer (see Pacific
J. Math., 74 (1978), n. 2, pp. 535-557). Our main theorem here leads, on the one hand, to
an improved version of Walsh’s cross-ratio theorem on critical poinis of functions of the form
Fifalfs (f: being comples-valued polynomials) and, on the other hand, it offers a two-fold gene-
rolization of one of the main theorems of Zaheer in the paper cited above.

1. — Introduection.

During the last twentyfive years a number of well-known classical results on the
zeros of polynomials have been generalized to abstract homogeneous polynomials
(a.h.p.) by Hoérmander, Zervos, Marden and Zaheer. First in the series being the paper
due to HORMANDER [5] in 1954 which deals with Laguerre’s theorem (cf. [6]; [7],
p. 49), followed in 1966 and 1969 by the ones due to MARDEN ([8] and [9]) on the
theorems of BOCHER [1], GRACE [3], and SzrGO [11]. The memorable work of ZER-
vos [22] in 1960 includes, among so many other variety of results, also the genera-
lizations of these classical results in terms of ordinary polynomials from K to K
(K being an algebraically closed field of characteristic zero). However, the studies made
by ZABEER in [17], [18] and [19] present a more general, systematie, and abstract
theory of a.h.p.’s whieh puts all these scattered pieces in proper perspective and which
offers much more general theorems that include in them the corresponding results
on each of the aspects considered by Hormandes, Zervos and Marden. The work
in [9] and [18] deals with composite a.h.p.’s, while the ones in [8] and [19] with gene-
ralized polars (a variety of composite a.h.p.’s) in particular.

ZAHEER [19] has made a detailed and comparative study of certain aspects of
the theory of generalized polars, obtaining generalizations of the results in [8] and
providing, in addition, improved versions of Bocher’s theorem (cf. [1]; [7], Theo-
rem (20,2)) and of Walsh’s two-circle theorems (see [13] and [14], or [7], Theo-
rems (19,1) and (20,1)). Inspired by the scope of this theory we developed a strong
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feeling for pursuing other meaningful aspects (if any) in this subject area. The present
paper, which is the result of such study, deals with that aspect of the theory of alge-
bra-valued generalized polars which has access to the well-known Walsh’s cross-ratio
theorem (cf. [137]; [7], Theorem (22,2)) on the critical points of rational functions of
the form f,f,/f;. 1t may be noted that this theorem does not come in the purview
of any of the theorems in [19], whereas Theorem 2.5 in [19] does reduce to a special
case of one of the corollaries of our main theorem in this paper.

The scheme of the present paper is as follows: Section 2 on preliminaries is intended
to serve as a back-up material for the sections that follow and most of the discus-
sion is based on the notations and results discussed in [19]. In Section 3 we prove our
main theorem on generalized polars of a.h.p.’s and deduce an important corollary as
application. A more general formulation (to algebra-valued a.h.p.’s) of our main
theorem of Section 3 has been proved in Section 4. This is the most general result
of this paper and, as a by-product, its application leads to a main theorem of Zaheer
in [19].

2. — Preliminaries.
Given vector spaces K and V over the same field K of characteristic zero, we

define (cf. [51, pp. 55, 59; [4], pp. 760-763; [10], p. 303; [16], pp. 52-61) a wvector-
valued a.h.p. of degree n to be a mapping P: F — V such that (for each z, y € E)

P(sx + ty) =
k

Ay(w, y)s¥tr* Vs, te K,

e

where the coefficients 4,(x, y) € V depend only on # and . If V = K, we shall call P
simply as an a.h.p. and, if V is an algebra, P will be termed an algebra-valued a.h.p.
We shall denote by P: the class of all vector-valued a.h.p.’s of degree n from F to V
(even if V is an algebra) and by P, the class of all a.h.p.’s of degree » from ¥ to K.
The n-th polar is the unique symmetric n-linear form P(z,, @, ...,2,): B* — ¥V such
that P(z, , ..., #) = P(x) for every = € E (see [5], pp. 55, 59; [4], pp. 762-763 for its
existence and uniqueness). We may then specify the k-th polar of P by the relation

Py, ..y Bpy @) = P@qy covy Tpgy By ooy B) <

BLANKET ASSUMPTION. — Throughout the rest of this paper K denotes an algebraic-
ally closed field of characteristic zero and V an algebra with identity over K. In
particular, the field of complex numbers will be denoted by C.

A sealar homomorphism (cf. [15], p. 253) on V is a mapping L: V — K such that

(1) L{ow + pv) = aL(u) + L) Yu,veV, o, fe K,
(if) I(uw) = L(u)L(v) Yu,ve V.
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Ideal maximal subspaces ([15], p. 252) of V are characterized in a one-one manner by
sets of the form

(2.1) {ve V|L(v) = 0},

where L is a nontrivial scalar homomorphism on V (ef. [15], Theorem 2, p. 254).
The following material is borrowed from Zaheer [20].
Given P € P, and scalars m;, (k = 1,2, ...,q), let us write

(2.2) Q@) = Py() Py(w) ... Po(),
(2.3) Qu(@) = Py() ... Pyy(2) Prya() ... Po(),

and define (cf. [19], p. 539)

D(Q; 21, #) = > MQu(@) Pr(@y, #) Vo, xy€ B,
. F=1

We shall call &(Q; @y, x) as an algebra-valued generalized polar of the product Q(x).
For V = K it will be termed simply a generalized polar, to be in copformity with the
notation in [19], p. 539. If we write n = 0, + %y + ... + R, we note (cf. [4], Theo-
rem 26.2.3) that Q ¢ P:, Q€ P:_nk and Py(x,, x) is an algebra-valued a.h.p. of degree
n, — 1 in @ and of degree 1 in @;, 1 <k<q. Therefore, O(Q; x,, x) is an algebra-valued
a.h.p. of degree » — 1 in » and of degree 1 in x,. Given a nontrivial scalar homo-
morphism L on V and a polynomial P e P, we define the mapping LP: E —~ K
by (LP)(z) = L(P(m)) for all w e B. It is obvious that LP e P,. In the notations
of (2.2) and (2.3) the product of the polynomials LP, e P, is given by L@ and the
corresponding partial product (L@), (got by deleting the: k-th factor in the expres-
sion for L)) is given by L@,. In view of this, we record the following

REMARK 2.1. — The algebra-valued generalized polar &(Q; x,, ) Zof the product
@(z) and the generalized polar @(LQ; x,, ») of the corresponding product (LQ)(«),
with the same m,’s, satisfy the relation

L(PQ; xy, 1)) = DILQ; 2y, @)

for every nontrivial scalar homomorphism I on V.

The concepts of generalized ecircular regions, K,-convexity, and circular cones
have appeared at many places in the literature (cf. [17]; [18]; [19]). However, we
shall explain these only briefly as follows. We know (cf: [5]; [2], pp. 38-40; [12],
pp. 248-255) that K must have a maximal ordered subfield K, such that K = K, (¢),
where — i? is the unity element of K. Since every element z in K has the form
2=a +ib with a, be K,, we define Z = a—ib, Re () = (2 +2)/2, and |¢| = + (a® +b%)}
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in analogy with the complex plane. Let K, denote the projective field (see [19];
[22], pp. 353, 373) got by adjoining to K an element o having the properties of scalar
infinity. A subset A C K is Ky-comvex if > pa,€ A for every a;€4A and u; € K.

i=1
(the set of all nonnegative elements of K,) such that z‘ul =1. Given (e K, we

denote by ¢, the permutation of K, given by =1
(2.4) e) = (=0 Vee Ko.

Obviously, ¢,(w) =0 and ¢,({) = w. The following concept is due to ZERVOS [22].
We call a subset A of K a generalized circular region (g.c.r.) of K, if A is either one
of the sets ¢, K, K, or A satisfies the following two conditions:

(i) @, (4) is K,-convex for every [ e K — 4;

(ii) we 4 it A is not Ky -convex.

D(K,) denotes the class of all g.c.r.’s of K,. Some properties and details regarding
g.c.r.’s, relevant to our present needs, are stated in [19].

The terms «nucleus», « circular mapping », and «circular cone» are due to
Zaheer [17]. Given a nucleus N of E® and a circular ma,ppmg G: N >D(Ey), w
define the circular cone E,(N, G) by

EO(N7 G) = U T@(“} Y,
(z,v)EN
where

T, y) = {sw + ty = 0Js, t € K; st € G(x, y)} .

REMARK 2.2. ~ (I) If G is a mapping from N into the class of all subsets of K,
the resulting set Eo(N, G) will be termed only a cone.

(I1) If dim E = 2,’ then (ef. [17], Remark (2.1), p. 117) every circular cone
Eo(N, G) is of the form

Ey(N, G) = {sz, + ty, # 0Js, t€ K; sft € A}

for some A4 € D(K,), where z,, ¥, are any two linearly independent elements of %,
N = {(%0; ¥o)}, and G(a, %) = 4.

The following proposition due to Zaheer (cf. [19], Proposition 2.1) tells us that
any two circular cones can always be expressed relative to a common nucleus.

PROPOSITION 2.3, — Given a cireular cone Ey(N, @) and an arbitrary nucleus N'C E?,
there exists a circular moapping G': N'— D(K o) such that Ey(N, G) = E,(N', ¢').
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The following definition and the related discussion has been taken from [19],
p. 550. The term « homographic transformation » has been used by Zervos for the
usual linear fractional transformation. Such transformations preserve the class
D(K,) (see [22], p. 353).

DEFINITION 2.4. — Given disfincet elements g, g,, 0; € K, we define the cross-

ratio mapping (with respect to p;, g, 0s) to be the homographic transformation
h: Ky — K, given by

@ — 03 01— 0
2.5 h(p) = ——= "= say Voe K.
(2.5) (0) 0 — 05 01— 0s (0y 015 025 0s) 5 y Vo

We call (g, 01y 025 03) a8 the eross-ratio of ¢ with p,, 0,, 0;. In ease any one of the g,’s
is taken as w, we define the corresponding cross-ratio to be the expression got by
deleting in (2.5) the factors which thereby involve w. E.g. (for g, = w)

(2.6) (0, w, 02y 0s) = (0 — 02)/(0 —0s) ete.

Obviously, the homographic transformation » maps g,, ga, 05 to 1, 0, w, respectively,
and there is no other homographie transformation with this property. Consequently,
identity mapping is the only homograrphic transformation which can map 1, 0 ®
to 1, 0, w, respectively. '

REMARK 2.5. — Let us note that (2.6) follows naturally from (2.5) and that the
two together cover all the cases when g, g,, g5 are distinet elements of K,. However,
even in the case when gy, 9, 0; are not distinct elements of K,, we agree to denote

the expression (o — g)(01 — 0s)/(e — 03)(01 — 02) DY (0, 01, 02, 0s). But, in this case,
h is not a homographic transformation even if h is a function.

3. — The main theorems on generalized polars.

As a first step towards obfaining our most general theorem of this paper concern-
ing algebra-valued generalized polars from ¥ to V, we study first the corresponding
simpler situation when ¥V = K. In fact, we are able to establish the following result
on the generalized polars of a.h.p.’s from E to K. This result will be shown to include
Walsh’s cross-ratio theorem (cf. [13]; [7], Theorem (22,2)) on critical points of rational
functions of the form f,f,/f;, f; being polynomials from C to C. In the following
theorem we take circular cones with a common nucleus (cf. Proposition 2.3) and denote
by Z,(z,y) the null-set of P (relative to x, y € E) defined by

Z(®,y) = {sz -ty # 0]s, te K; P(sw + ty) = 0} .

L[z, y] denotes the subspace of E generated by « and y.
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THEOREM 3.1. — Let B = By(N, G,),i = 1, 2, 3, be circular cones with EY N E® N
NEP =0 and let PreP, (k=1,2,...,q) such that
To(, 9) for k =1,2, -°-7;"(<p<9)
(3.1) Zp(@y) 1 To(@yy) for k=r+1,..,p
Tol2yy) for k=p+1,..,¢
for all (z,y) € N. Let D(Q; w,, ) be the generalized polar of the product Q(x) (cf. (2.2))

q

with my >0 for k = 1,2, ..., p and m; <0 for k = p + 1, ..., ¢ such that 3 m; = 0.

r . k=1
If A, = 3> m, and A, =3 my, then O(Q; @, 2) =0 for all linearly independent ele-
k=1 k=r-+1 4
ments x, , of B such that x € E —\J BY, where B = Hy(N, G) is the cone defined by

=1

Gz, y) = {Q € Kol(0) 03y 02y 01) = —As[Ay; 0:€ G2, y), ¢ =1,2, 3} V(x,y) e N.

N 4
PROOF. — Let #, #; be linearly independent elements such that x ¢ U E?. These

. i=1
elements determine a unique element (x,, %) € N N £%x, #,], 2 unique set of scalars
o, By 7, 6 (With ad — By == 0) such that @ = o, + ¥ and x, = yz, 4 dy,. This
means that «/f does not belong to any of the sets G (@, yo) or to G(wx,, y,). IL Py is
given by

Rig

Pylsx -+12,) = H (0568 — Yar?)

ji=1

then P(x) # 0 for 1<k<gq and 80 0, 0 for 1<fi<m, bk =1,2,...,9. Put g =
= y;1/0;. Since (for each &t =1, 2, ..., q)

Plogx + 21) = Pyl{aom + y) @ + {Bos + Nol =0  Vi<ji<m,
the hypotheses (3.1) imply that

i@, 4) Vi<j<ng, k=1,2,..,7
-ggjk—j:ge Ga(®s 40)  V1<j<mu, k=7-+1,..,p
| Pl Gi(@os 90) Vi<j<mu, k=p+1,...,q.

If we put of = (ags + )/(Bos + ) then g = (dop— 7)/(—Ben + 0 = Ulow),
say, so that. '

U(Gy(#, o)) Vi<i<me, b =1,2, .7
(3.2) o€ UGy, %)) Vi<j<mp, k=7r+1,..,p

U(Ga(wo,yo))v Vi<j<ng, b=p+1,..,4,
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where U is the homographic transformation of K, given by U(g) = (dop—y)/(—pfe +o).
Sinca Gi(wo, ¥y) € D(Ky) and U preserves the class D(Ko) (cf. [22], p. 353), we
3

note that U(@,(x,, ¥,)) € D(Ko) for 4 = 1,2, 3. Due to the fact that a/f ¢ | Gi(2o, %)
i=1
and U(x/f) = o, we see that o $ U(G (o, ¥)) for any i. From definition of g.c.r.,

U(G (20, 4o)) are Ky-convex g.c.r.’s of K, and (hence) relations (3.2) give

UGy, 90))  Yi<k<r
(3.3) uk(say)=2—e,ke U(Ga(20, %)) Vr+1<k<p
=i ( (@os %)) VP +1<k<q.

Observe that each of the sets of sealars m,fd4, (for k =1,2,...,7), my/4, (for k=7 +1,
w.y D)y, and myfA; (for £ =p + 1,..., q) consists of positive elements of K, with

a
sum as 1 (As denoting the sum zmk) Therefore (cf. (3.3)), there exist elements
E=p+1

QiEGz‘(xoy%) for i =1,2,3
such that
(3.4) vifd; = Ulg:) = (dgi—y)/(—Po: + ) #w, i=1,2,3,

where

r » a
= z My iy o Vo = z Myl s Vg = z My s -

k=1 k=r+1 k=p+1

First, we claim that the »s cannot vanish simultaneously. For, otherwise, y/6 would
be common to all the g.c.r.’s Gz, yo) (ef. (3.4)), implying that @, = yx, + dy, is
common to all the sets Ty (o, %,). This would mean that ; belongs to all the circular
cones B, contradicting the hypothesis that BY N BE® N E® = . v
Therefore, in order to show that v, - », + »; %= 0, we may assume (without loss
of generality) that at most one of the »,s is zero. Now, with this assumption, if on
the contrary », -- ¥, - v; were to vanigh, equation (3.4) would imply that A4,U(g,) -+
+ 4, U{g,) + 4;U(gs) = 0. Since 4, + A, + 4, = 0 (cf. hypotheses on m;), we have

(3.3) Ai[U(o1) — Ulgs)] -+ As[U(gs) — Ulgs)] = 0 .
A routine computation then provides:

(3.6) Ulp,) — Ulos) = A(Ql— 03)/(— Bo. + a)(— fos + @)

U(p2) — Uloy) = A — 03)[(— fo. + a)(— Bos + o),

24 ~ Annali di Matematica
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where A = ad — By = 0. Since «/f is not a member of any Gz, y,), we can say
that «/B # ¢, i.6. —Po; + = 0 for ¢ =1, 2,3. Equation (3.5) says that U(g,) —
— U(gs) = 0 if and only if U(g,) — U(g;) = 0, which can happen if and only if g, =
= g, = s = 0 (5ay) (Recall that U is one-one and onto). This would mean that
0 € G(w, 4o) for all 4, contradicting that B’ N BF N B = @. Therefore, g, 0., 05
must all be distinet elements of K. First, we take up the case when no o, is w. In
view of this and the fact that U(g,) 5 o for any ¢ (ef. (8.4)), we conclude that none
of the expressions in (3.6) can take the value 0 or w. Gonsequently, equations (3.5)
and (3.6) give

U(g) —Ulgs) 01— 0 —Boata_ A

U(p:) — Ulps) o O:— O3 “591 + o 4,

or,
(=) o= gy

(a/f — 1) es—es

irrespective of whether § is or is not zero (because f = 0 and 4 = 0 imply that & = 0).
That is, by Definition 2.4 we have

(3.7) (/By @35 02y 01) = — As[4,.

In case, however, any one of p,, g, or g; (say, ¢.) is o, equation (3.4) gives U(g:) =
= — 8B # o (30 that f  0). Starting with this change in equation (3.4) and making
the corresponding changes all along in the above analysis, we still arrive at the same
relation (3.7) (cf. the definition of cross-ratio for the case when any one g; = w).
Since (3.7) holds in both the cases considered above, the element o/ € G(2, ¥,), which
implies that # = o, + Yo € Te(®e, ¥o)- This means that z e EY, contradicting the
choice of 2 already made. We have, therefore, shown that

Tk

(3.8) 1;:: ;

ak=v1+"’2+7371;0'

$]§

But, we know (cf. [19], p. 543) that

3.9 0(0;m,0=—[ 3 § %en) (kIijkw));

k=1i=1 M

Sinee Py(x) = 0 for k = 1, 2, ..., g, relations (3.8) and (3.9) imply that &(Q; ., #) # 0.
This completes the proof

The following corollary is essentially an improved form of a result due to Walsh {13]
(cf. also [7], Theorem (22,2)). Here we take g.c.r.’s of C,» whereas Walsh considers
only the classical c.r.’s (a proper subclass of g.c.r.’s—see [19], p. 536). We shall use
the notation « Z(f) » for the set of all zeros of a polynomial f.
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COROLLARY 3.2. — For each i = 1, 2, 3, let f, be a polynomial (from C to C) of degree
n; and let O, e D(Co) such that Z(f)C C;. If ny + np =ng3 and if C; N 0, N Cy = G,
4

then every finite zero of the derivative of the function f(2)f.(2)/fs(2) lies in |J C,, where
=1

Ci = {0 € Cul(g) 055 025 01) = — Mafmy; 0. € Oyy & =1,2,3}.
Proor. — For i = 1, 2, 3, let us take the circular cones
BY = By(N, G,) = {sw, -+ ty, # 0[s, 1 C; st 03}

in the 2-dimensional vector space H = C? (cf. Remark 2.2(II)), where z, = (1, 0),

21
Yo = (0,1), N = {(#0, %)}, and G, y,) = C;. Letting fi(z) = D a.#* observe
that the mappings P,: C* — C, defined by k=0

Pix) = Psmy + tyo) = 2 08"t Vo = (s,1) € C*
k=0

are a.h.p.’s of degree n; such that Z,(,, %) C T, (%, Yo)- (Because P(sw, + ty,) =
= t"f,(s/t) for all nonzero elements & = (s, ) and because Z(f;) C C; = G (=, ). ).
Now, let us consider the generalized poldr of the product Q(x) = Py(x) Py(x) Py(2),
defined by

{3.10) ¢(Q7 Xy @) = 1y Py(2y, %) Pyo(x) Py() + 0y Py(@) Pol@y, @) Py() —
— 3 Py(20) Py(@) Py(w,, @)

for all elements # = (s, t) and #, = (s, ,) of C2. Then the polynomials P;, the circular
cones B\, and the generalized polar &(Q; »,, ») satisfy all the hypotheses of Theo-
rem 31 withr =1,p=2,¢q=38,m =n, =4,>0, m=mn, =A4,>0, and m; =
= —n; < 0. We know (ef. [8], equation (2.4) or [19], p. 545) that

oP,

1
311) Pifas, ) = (5

oP; .
—f—tl——a‘i—), 1/:1,2,3,

and that P(x) = t™ f,(s/t), 8P,/ds = " f,(s/t) for all i and for all nonzero élements .
If we now take z, = ®, (so that s, = 1 and ¢, = 0), from (3.10) and (3.11) we can easily
obtain (setting f = f;7:/fz)
(3.12)  B(Q; @y, @) = trtrinI[f (/1) fo(s/t) fols[t) + Fulsf?) fals/t) fulsft) —

— Fu(8[8) fulst) fals[t)] = trasmmbrad-Tfo(s[t)]2- f'(s]2) .
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Now, Theorem 3.1 comes in to say that @(Q; x,, #) 7% 0 whenever the element x = (s, ?)
4 .

is linearly independent to #, such that » ¢ | J B, where
i=1

B = By(N, G) = {swy + tyo 7 0ls, t € C; s/t € G(%,, Yo)}
and

G (%o Yo) = {Q € Collo, 03y 02y 01) = — A3[A}; 0:€ Gil@o, Y0), © =1, 2, 3}

= (, - (since 4; = n,;, 4, = n,).

That is, D(Q; @y, v) £ 0 for all elements » = (s,t) = sx, + ty, for which ¢ 0 and
4
for which s/t ¢ J C,. Finally, (3.12) says that f(s/t) = 0 for all s, € C such that

=1

t# 0 and sft ¢ C;U 0, U C; U C,. This establishes our corollary.

REMARK 3.3. — (I) If we define the formal derivative f'(2) of a polynomial f(z) =

n w
= > a,2* (from K to K) to be the polynomial f'(2) = > kae* (cf. [19], p. 553;
k=0 k=1

[21]), we can easily verify that the formal derivative of the product f,f, of two poly-

nomials f, and f, is given by (ef. [21], Proposition (1.2)) (fifs)' = fifa + fifs- If we
now define the formal derivative of the quotient f,/f, to be given by (f,/f.) =
= (fufo— f172)/f2, then the formal derivative of the quotient f,(2)f.(2)/fs(2) (f; being
polynomials) is easily seen to be given by

(3.13) [fl ) 1a(2) fa(2) + fulz fz 2) fa(#) — f1(2) fo(R) fa ]/{fa }

(II) In view of the definition of formal derivatives f'(z) of a polynomial f(2)
from K to K and the definition of formal partial derivatives ¢P/ds of a polynomial
P(s, t) from K2 to K (cf. [19], p. 553), we remark that Corollary 3.2 can be easily ex-
tended to the field K in gemeral. The proof being exactly the same as that of Corollary 3.2
except only that we replace C by K all along. Note that the expression (3.13), which
is precisely the formal derivative of the function f(z) = f,(2) f.(2)/fs(2), justifies the
validity of step (3.12) in the proof of Corollary 3.2.

4. — The main theorem on algebra-valued generalized polars.

Before we come to our main cross-ratio theorem for algebra-valued generalized
polars, we define the concept of fully supportable subsets of V and establish a lemma,
which we shall need in the proofs of our results in this section. As regards the concept
of supportable subsets of a vector space we refer to Hormander [5], p. 59. The ana-
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logous concept in an algebra V is given in the following (originally due to ZAHEER [20],
Definition 2.2).

DErFINITION 4.1. — A subset M of V is called fully supportable if every point &
outside M is contained in some ideal maximal subspace of ¥ which does not intersect M.
That is, for every & € V — M, there exists (cf. (2.1)) a unique nontrivial scalar homo-
morphism I on V such that L(£) = 0 but L(v) # 0 for every ve M.

Tf M is a fully supportable subset of V, then M is naturally a supportable subset
of V (regarded as a vector space), but not conversely. In view of the statement (2.1)
concerning ideal maximal subspaces, it is easy to see that the complement in V of
every ideal maximal subspace of V is a fully supportable subset of V' (cf. [20], Pro-
position 2.3).

Given PEP: and a fully supportable subset M of V, we shall write (for any
given x, y € H)

4.1) B (z,vy) = {sv -ty 0ls, t e K; P(sw +ty) ¢ M} .

REMARK 4.2. — Since K is a field and the identity map from K to K is the only
nontrivial scalar homomorphism on K, it is obvious that M = K — {0} is the only
fully supportable subset of K (Take V = K in Definition 4.1) and that the eorrespond-
ing set E,(z, y) reduces essentially to the null-set Z,(z, y) of P defined earlier in Sec-
tion 3.

LEMMA 4.3. — Given 21> 0 and g.cr.’s G, € D(Ko) for ¢ =1,2,3, let us define
¢ = {0 € Kolloy 025 05y 02) = — 4; 0:€ G4, 1 =1,2,3}.
If G = Gy and G, Gy =0, then GC G U G,.

PROOF. — Suppose on the contrary that ¢ ¢ G, U &,. Then there exists an element
o €@ such that ¢ ¢ G, U G, and (g, gz, 05, 02) = — A for some py, g, € G, and some
0, € G4, where g,, 0, 7 0;. Let us also note that no element of & can come from two
coincident elements g, and g; of G, (cf. Remark 2.5). That is, 0;, ga, 0s must all be
distinet. Now, since the transformation k() = (0, 02, 035 01) M&PS 04, 03, 0250 1,0, @
(respectively) and sinced > 0, we have that o # g, 0z, 05

First, we claim that g # w. Because, ¢ = w would imply that g, ¢z 0a 7 @,
and (in view of (2.5)) we have h(w) = (0; — 05)/(gs — 02) = — A. That is (see the
notation in (2.4)),

(4.2) (05— 02)7t + Alo1— 02)7 = [9,,(05) + Ap,,(021)] = 04

where @, (03) and ¢, (0,) are elements of ,,(G,). Since G, € D(Ko) and g ¢ G4, from
the definition of a g.c.r. we see that ¢, (Gy) is K,-convex and (hence) that

(Gf- (4‘2)) [§092<Q3) -+ ﬂ-(ng(Ql)]/(l +4) =0 EQDQZ(Gl) .
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Therefore, there exists a o* € G, such that 1/(* — p,) = 0. Since g, # w, we must
have p* = w = g, contradicting that ¢ ¢ G,.

Having shown that o<~ w and that the elements g, g,, g, 05 are all distinet, we
now claim that

(4.3) v [@elo1) + Ape(ea))/(1 + A) = @olge)
where ¢, is as defined in (2.4). To this effeef, we congider the following cases:

Case 1. g4, 02y 055 w. In this case g, p,, 02, 05 are all distinct elements of K and
the expression of cross-ratio (cf. (2.5)) gives (0 — 05)(0s — 01)/(0 — 01)(02 — 05) = — 4.
Hence '

1+ (01— 02)/(0 — 0] + A1+ (0s—02)/(0 —@s)] =1 + Aa

or,

(e — o)™ + Ao — 0a) /(X + 4) = (0 — )" .
This is precisely the equation (4.3).

Case 2. One of the p’s is w. The definition of cross-ratio (cf. (2.6)) implies

(4.4) (06 —03)f(ea—0s) Ho=o
(4.5) —Ai=1 (e—@lfle—e) iHo=0
(4.6) (s — Qx)/(@ -~ Q1) if g=0

From (4.4) and (4.6), we get

(4.7) (e —edflea—gs) i or=w
=G+ = ,
(4.8) (e2—0)le—eo) U op=o.

On taking the quotient of the expressions in (4.4) and (4.7), and on rewriting the
equations (4.3) and (4.8), we have:

Mo—0a ™A+ 1) =(e—e)'; (e—0) '+ Ao —gs) ' =0;
(o —0) (A 4+ 1) = (0 —go)?

according as 9, = ®, g, = w, OF gy = w. Or, in terms of the funection ¢,, these equa-
tions are respectively given by:

Apo(9s)[(A + 1) = @plga) 5 @el01) + Apolos) = 035 @el01)/(A + 1) = @olea) .
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Since @olg:) = (0. — o)™ = 0 € @o(G,) it and only if o, = w, we see that the last
three equalities are, essentially, the special cases of equation (4.3) in the respective
cases when g,, 0,, OT p; is taken as o.

Now since equation (4.3) has been established for all cases and since p ¢ @, €
€ D(K,), the set @o(G,) is Ky-convex and (hence) equation (4.3) implies that ¢,(p,) €
€ go(G4). That is, g, € G;, which contradicts the fact that G, N G, = 0. Therefore,
our assumption in the beginning must be false, and the proof is complete.

Now, we stablish the most general theorem of this paper. We make use of Theo-
rem 3.1 in the proof of this theorem.

THEOREM 4.4, — Let B = H(N, @), i = 1, 2, 3, be circular cones such that B N
NEP NEP =0, M a jully supportable subset of V, and let PLe P, (k=1,2,...,q)
such that

Te(@yy) for k=1,2,...,n(<p<q)
By (@, y)C 1 Tolwyy) for k=vr+1,..,p
Telwyy) fork=p+1,..,4¢

for all (xz,y) e N. If ®(Q; ®,, x) is the algebra-valued generalized polar with m, satisfy-
ing the hypotheses of Theorem 3.1, then D(Q; xy, ) € M for all linearly independent
4

elements @, x, of B such that x € E —\J B, where E® = H,(N, ) is the cone corre-
i=1
sponding to G as defined in Theorem 3.1.

Proor. Let £€ V — M. Since M is fully supportable subset, there is a unique
nontrivial scalar homomorphism I on V such that L(§) = 0 but L(v) 7= 0 for every
ve M. We easily see that Z,, (%, y) € B, (x,y). From this and the hypotheses on
the P,, we conclude that the polynomials LP, satisfy the hypotheses (3.1). In view
of Remark 2.1 and the discussion immediately preceding it, L is essentially the
product of polynomials LP, e P, and

(4.9) L(D(Q; @1, @) = DLQ; @1, 7)

both sides using the same m,’s. Consequently, the circular cones E{’, the polynomials
LP;€ P, , and the generalized polar ®(LQ; @,,x) of the product

(LQ)(z) = kH (LPy) ()
=1

satisfy the hypotheses of Theorem 3.1. Therefore, ®(LQ; «,, )7 0 for all »,
as claimed in the present theorem. Finally, the relation (4.9) then says that &(@;
%y, @) # & for all @, , as claimed. Since £ is arbitrary in our arguments, the proof
is complete.
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In the special case when V = K (so that P, = P,) and M = K — {0} is the fully
supportable subset of K (¢f. Remark 4.2), Theorem 4.4 reduces to Theorem 3.1,
and (hence) the most general result of this paper. Furthermore, we deduce the fol-
lowing result (cf. [20], Theorem 2.6) as an important application of Theorem 4.4.

COROLLARY 4.5. — Let BY = Ey(N, §3), i =1, 2, be disjoint circular cones, M a
fully supportable subset of V, and let P, P:h (k=1,2,...,q) such that

To(@yy) for k=1,2,...,p(<q)

B, (%, y) <
' To(@wyy) fork=p-+1,..,q
for all (x,y) e N. If ®(Q; v, x) is the algebra-valued generalized polar of Theorem 4.4,
then @(Q; 2y, x) € M for all linearly independent elements x, z, of B such that x € B —
. E(l) v B?

0 0 °

ProoOF. — It is easily seen that the hypotheses in Corollary 4.5 are a restatement
of the hypotheses in Theorem 4.4 after we interchange the roles of the circular cones E*
and E¥ in the statement of Theorem 4.4 and the take G, = @, (so that Gy(z,y) =
= G4z, y) for all (z,y)e N, and EY = E). Consequently, Theorem 4.4 implies
that @(Q; x,, )€ M for all linearly independent elements z, x, of E such that
zeH—EY U BP U EY, where BY = E(N, G) and

Gz, y) = {9 € Kol(o, 025 O3y 01) = — Au[A1; 01, 0:€ Gu(@, ¥)y 02 € Gy, y)}

for all (z, y)e N. Since Gy(z, y) = G4(z, y) and Gy(z, y) N Gy(z, y) =0 for all (z, y) e N,
Lemma 4.3 with A = 4,/A, implies that

Gz, y) C Gi(z, y) VU Gylw,y) Viz,y)eN.

Therefore, B C B U E®| and the rest of the proof is obvious.

In the case when V = K and M = K — {0}, the above corollary gives a result
due to Zaheer ([19], Theorem 2.5) on generalized polars of a.h.p.’s from E to K. Con-
sequently, Marden’s theorem ([19], Corollary 2.6) and Bocher’s theorem ([19], Corol-
laries 2.7 and 2.8) automatically follow from Corollary 4.5.

CONCLUDING REMARKS. — (I) Since Theorem 2.5 in [19] becomes a special case of
Corollary 4.5 of Theorem 4.4 and since Theorem 4.4 is the most general result of
this paper, we conclude from Example 2.9 in Zaheer [19] that none of the present -
theorems can be generalized for nonalgebraically closed fields of characteristic zero.
Due to same reasons as indicated above, Example 2.10 in [19] suggests that in none
of our resulté here can we replace the g.c.r.’s G,(z, y) or C; by g.c.r.’s adjoined with
arbitrary subsets of their boundary.
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(II) Since there do exist (ef. [17], pp. 123-125) circular cones By (N, @) and

a.h.p.’s P € P, such that Z,(», y) C T(x, y) for every (z,y)€ N, we conclude that
the hypotheses (3.1) in Theorem 3.1 are valid and that our theorems are not vacu-
ously true.
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