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S u m m a r y .  - This 2aper deals with the oscillation and the asymptotic behavior o] the solutions o] 
superlinear di]]erential equations with general (retarded, advanced or mixed tyI)e ) deviating 
arguments. The equations considered involve a damping term. The results obtained extend 
known ]undamentat oscillation criteria ]or superlinear differential equations without damping 
terms and especially the recent basic reults o] Kitamura and Kusano [5], and Staikos [19, 20]. 

This pape r  is concerned  wi th  t he  osci l la t ion and  the  a s y m p t o t i c  behav io r  of the  
solut ions of n - th  o rder  (n > 1) di f ferent ia l  equa t ions  wi th  dev ia t ing  a rgumen t s  of 
the  fo rm 

(E, ~) [r(t)x(~-~)(t)]'~ - (~](t; x[g~(t)], .. . ,  x[g~(t)]) = O, t >_ to ((5 = :]: 1) 

where  r and  gs (] = 1, ...~ m) are cont inuous  rea l -va lued  func t ions  on the  in t e rva l  
[to, c~) and  ] is a cont inuous  rea l -va lued  func t ion  defined at  least  a n / ~  ~ ) / ~ ,  R+ = 
-= (0, c~) and  / ~  = (-- c% 0). The  fol lowing assumpt ions  ure made :  

(i) r is posi t ive on [to, cx3) and such that 

(ii) For  every t ~ to, 

] ( t ; y ) > O  for all y e R ~ ,  ] ( t ; y ) < O  ]or all yeR"_ 

and ](t; y) is increasing with respect to y in R~ L) t~" 

(iii) l im gj(t) = or (j = 1, ..., m ) .  

Note  t h a t  t he  increas ing  cha rac t e r  of rea l -va lued  func t ions  defiued on subsets  of R ~ 
is cons idered  wi th  respec t  to the  usual  order  in R "~ defined b y  the  posi t ive  cone 
{Y ---= (Yi~ ..., Y~) e R  m: (Yj = 1, ..., m ) y j ~  0}, i.e. as follows 

y ~ z  r (Yj = 1 ,  . . .~m)ys<=z~.  

(*) Entra ta  in Redazione il 9 febbraio 1980. 
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Throughout the paper, p will be a continuous real-valued function on the interval 
[t0~ c~) and % F will be continuous real-valued functions defined at  least on R --  {0}, 
R+ respectively. For these functions the following conditions are introduced: 

(I) p is nonnegative on [t0~ c~). 

(II) ~ is increasing on R --  (0} and has the sign property y?(y) > 0 /or  all y V: 0 ; 
~f is positive and increasing on R+; 

o o  - - c o  

q~(y-~(y) < ~ and 9(Y) ~(Y) < c~. 

We consider only such solutions x(t) of (E, ~) which are defined for all large t. 
Sufficient smoothness for the existence of such solutions are assumed. The oscil- 
latory character is considered in the usual sense, i.e. a continuous real-valued func- 
t ion which is defined on an interval of the form IT, c~) is said to be oscillatory if the 
set of its zeros is unbounded above, and otherwise it is said to be nonoseillatory. 

In  the last ten years there has been an increasing interest in s tudying theo scil- 
latory and asymptotic  behavior of the solutions of differential equations with deviat-  
ing arguments. Most of the literature, however, is concerned with equations involving 
retarded arguments. For  general interest on typical  oscillation results concerning 
such equations we refer to an excellent survey article of MI~]~OPOI.'SKII and ~EVELO [10]. 

The oscillatory and asymptotic  behavior of the solutions of superlinear differential 
equations with retarded or general deviating arguments has been the object of inten- 
sive studies. We choose to refer to GI~• SFICAS and STAIKOS [1], 
KI~A~U~A [4], KITA~V]~A and KvsA~o [5], KVSA~O [6], KvSA~O and O~osE [7, 8, 9], 
RYDEIr and WEND [13], ~EVELO and VAREH [14, 15], SFICAS [16], SFICAS and STAI- 
KOS [17, 18], and STAIKOS [19, 20]. The purpose here is to give oscillation results 
for superlinear equations including a damping term. 

The oscillatory and asymptot ic  behavior of the  bounded solutions of the diffe- 
rential  equation (E, b) is well described by the following theorem, which is a special 
case of a result of the author  [11]. 

THEO~EYl O. - .Let (i)-(iii) be satis]ied and suppose that: 

(Co) For every nonzero constant c either 

o r  

o o  

ft l( t ;  o, ..., v)ldt = 

d r ~  ll(s;e,...,c)l&dt= ~ .  

t 

Then for n even [resp. odd] all bounded solutions o] the differential equation (E, + 1) 
[resp. o] the equation (E, --  1)] are oscillatory, while ]or n odd [resp. even] every bounded 
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solution x o / t he  df/ /erential  equation (E, + 1) [resp. o / t he  equation (E, - - 1 ) ]  is either 
oscillatory or such that x (~) (i = O, 1, ..., n - -  2) and rx  (~-~) tend monotonically to zero at c~. 

The purpose here is to s tudy the oscillatory character  and the asymptot ic  behavior  
of all solutions of the differential equat ion (E, ~). For  this purpose, we need the  fo]- 
lowing lemma which is originated in two well-known lemmas due to KIGUI~ADZE [2, 3]. 
This lemma is obtained here as a special ease of a lemma given by  the  same au thor  
in [12]. 

LE~L~A. - Suppose that (i) holds and let h be a positive and (n - -  1)-times di//eren- 

tiable /unct ion on an interval [T, c~), v ~ to, such that the /unc t ion  rh (~-~) is di//erentiable 
with its derivative o/ constant sign on [~, c~) and not identically zero on any interval 
o / t h e  /orm [~', c~), z ' ~  T. 

Then  there exist a T ~ ~ and an integer l, 0 ~_ 1 ~_ n, with n + 1 odd /or [rh(~-~)] ' 
nonposit ive or n ~ l even /or  [rh(~-~)] ' nonnegative so that 

1 ~ n - -  1 ~ (-- 1)t+Jh(J)> 0 

l > 1 ~ h (~) > 0 

o~ IT ,  ~ )  ( j  = l, . . . ,  n - -  1) 

on [T ,  cv) (i = 1, . . . ,  l - -  1 ) .  

I n  order to formulate  our results we introduce here the  hmct ions  g, R~ and  R~ 

defined on [to, c~) by  

g(t) -~ min {t, gl(t), ..., g.~(t)}, 

t t 

r(s) ds a~d R2(t) = r(s) 
to  g 

ds .  

THEORE~ 1. -- Let  the conditions (i)-(iii), (I)-(II) and the /o l lowing ones be satis/ied: 

(~) 

((;) 

Then  we have: 

It(t; Y, . . . ,  Y)I ~ P(t)lq)(Y)l /or all (t, y) e [to, c~) X ( R - -  {0}). 

c o  

r Rk[g(t)] (t)dt j = oo (k = 1, 2 )  

~) For  n even, all solutions o/ the di//erentia~ equation (E, -~ 1) are oscillatory. 

fl) For  n odd, every solution x of the equatio~ (E, + 1) is oscillatory or satis/ies 

&Yo) 

l im x(~(t) = 0 
t,--> oo  

lim r(t)x('~-l)(t) = 0 
t- '-> o o  

monotonically (i = O, 1, ..., n - -  2) 

monotonically.  
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T t m o ~ l ~  2. - Zet  the eonditions (i)-(iii), ( I ) - ( I I ) ,  (H) and (C) be satisfied. Then 
we have: 

o:) ~'or n even, every solution x o] the di]lerential equation (E, --1) is oseiUatory 

or satisfies one o] (Xo), 

(X~) l ira x(~)(t) = co (i = O, 1, . . . ,  n - -  2) and l i ra r(t)x("-~)(t) = c~, 
t - -~oo t--->~o 

(X_~) l ira x")(t) = - -  co (i = O, 1, . . . ,  n - -  2) and l i ra r(t)x(.-~)(t) = -- co .  
t - * c o  t----> r 

fl) For  n odd, every solution x o I the equation (E, - 1) is oscillatory or satisfies 
one o] (X~),  (X_.~). 

P ~ o o F  oF T r m o ~ v . ~  1. - T h e  s u b s t i t u t i o n  w = -  x t r a n s f o r m s  the  d i f fe rent ia l  

e q u a t i o n  (E, § 1) in to  t h e  e q u a t i o n  

[r(t) wC~-l)(t)] ' q- f ( t ;  w[g,(t)], . . . ,  w[g~(t)]) = O, 

w h e r e j ( t ;  y) ~ - - ] ( t ;  - - y )  for  all  (t; y) in t he  d o m a i n  of f. T h e  t r a n s f o r m e d  e q u a t i o n  

is sub jec t  to  t he  s ame  condi t ions  posed  for  t he  equa t i on  (E, q- 1) w i t h  t he  func t ion  
in  p lace  of ~0, w h e r e  ~(y) ---- - -  ~ ( - -  y) for  all  y E d o m  ~. Hence ,  w i t h  r e spec t  to  t h e  

nonosc i l l a to ry  solut ions of (E, ~ 1) we can  res t r i c t  our  a t t e n t i o n  on ly  to  t h e  pos i t ive  

ones. 
Since, b y  (i) a n d  (iii), l imRl ( t )  = co and  1.im~_~oog(t) = o% we h a v e  

Rl[g(t)] ~ 1 for  all  large  t 

a n d  therefore ,  in v iew of ( I I ) ,  we o b t a i n  

yJ(tt,[g(t)]) >= y)(1) > 0 for  all  la rge  t. 

This  a n d  cond i t ions  (I) a n d  (C) give 

c o  

fR2[g(t)] (t) dt P 

a n d  consequen t ly  

o o  

f R,(t) p(t) dt = ~ . 

F u r t h e r m o r e ,  we consider  a n  a r b i t r a r y  c o n s t a n t  eve  0 a n d  we suppose  t h a t  

r  

fit(t; e, . . . ,  0)ldt < c ~ .  
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In  view of (H), we have 

If(t; c , . . . ,  e)l~p(t)lq~(c)l, t ~ t o ,  

where ~ ( c ) r  0. So, we get 

c ~  

fR~(t)[l(t; c, ..., c)[dt = c~. 

Therefore, it  is a mat te r  of elementary calculus to derive tha t  

c o  c ~  

l" t ~ - 2  /' j j I1( ; ..., c ) l e s e t :  

We have thus proved tha t  the condition (C) implies (Co). Hence, by  Theorem 0, 
we can confine our discussion only to the unbounded solutions of the differential 
equation (E, + 1). 

Let, now, x be a positive unbounded solution on an interval [30, c~), To ~ to~ of 
the differential equation (E, ~ 1). Moreover, let ~ ~ v0 be chosen, by  (iii), so tha t  

gj(t) ~ To for every t ~ T (j : 1, ..., m). 

Then, by taking into account (ii), (H), (I) and (II), from (E, ~ 1) we obtain tha t  
for every t ~ 

-[r(t)x('- '(t)] '  = / ( t ;  x[g,(t)], ..., x[g~(t)]) 

>__ ](t; min x[g,(t)], ..., rain x[gj(t)]) 

p(t)~( rain x[g,(t)]) ~ O. 
~ l ~ j < m  

Thus, the function [rx(n-~)] ' is nonpositive on [T, c~). Moreover, [rx(n-~)] ' is not  iden- 
tically zero on any  interval of the  form [3', c~), 3 ' ~  T, since, because of (C), the 
sa.me holds for the function p. Hence, by  Lemma,  there exist a T ~ 3 and an integer l, 
0 ~ l ~ n - - 1 ,  with n + l  odd so t ha t  

[ (-- 1)~+!x(~)(t) > 0 

x(i)(t) ~ 0 

for every t ~  T (j = l, ..., n - - l )  

for every t ~ T (i = 1, ..., 1 --  1), provided tha t  1 ~ 1. 

Because of the unboundedness of x, we always have 1 ~ 1. 
Next,  by  (iii), we choose a T~ ~ T so t ha t  

gj(t) ~ T for every t ~ T1 (j = 1, ...7 m). 
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Then, by  taking into account (ii) and the  fact t ha t  x is increasing on [T~ cxD), from 
(E, -~ I) we obtain 

- -  [r(t)x('-~)(t)]'= /(t; x[g~(t)], ..., x[g~(t)]) 

> ](t; x[g(t)], ..., x[g(t)]) 

for all t > T~. Therefore, in view of (H), we get 

- -  [r(t)x(n-!)(t)]'>~ p(t)q~(x[g(t)]) , t > T~. 

Thus~ for every  t, t* with T~ _< t < t* we derive 
t* 

r(t) x(~-~)(t) ~ r(t*)x(~-~)(t *) + fp(u)~(x[g(ul]) du 
t* t 

t 

Fur thermore ,  if 1 < n - -  1, by  using the  Taylor  formula with integral remainder,  for 
every  t, t* with T1 _< t ~< t* we obtain 

t 

~-2 (t - -  t*) j-' 1 f 
~=~ ( j - l ) !  ( n -  2 - 1 ) !  

t* t* 
~-~(t* - t )  ~-~ 1 f ( s  - t p -~ -~  = ~, ~-- ~i [(- ~),,~x,~,(t,)] + (~ _ 2 - z) i ~ [ ~ ( s ) ~ - , ( s ) ] ~  

t* t* t 

> (~ - 2 - ~)! r(s) p(~)~(x[g(,~)])d~ds. 
t s 

Kence,  for T1 ~< t _< t* we have 

x,')(t) >= 

t* 

if ~(~ p(u)q~(x[g(u)J)du, if 1 = n - - 1  

t 

t* t* 

1 f (S - - t )  "-~-~ 

t s 

if l < n - - 1 .  

But ,  if 1 > 1, by  the Taylor  formula with integral remainder,  we derive tha t  for t > T1 
t 

~-1 (t -- T1) ~-1 1 f (t -- s)Z-~x(Z)(s)ds 
x ' ( t )  : i = l  ~ ( i  - -  1 ) !  x(i)(T1) ~- (~.-- 2) . - . . . - ?  

T1 
t 

1 f ( t -  s)'-~x(')(s)ds 
> i z -  2)! 

T~ 



C~. G. PmLos:  Oscillatory and asymptotiv behavior, etc. 
o 

349 

_> 

t 

1 f (t - s)"-~ ( n -  3) ! r(s) [r(s)x(.-~)(s)Jas, if Z - -  n - 1 

t 

1 f(~_s)~_,x,Z)(s)ds ' if l<n--I (~-2)! 
T, 

t 

(n --3)t r(s) ~ls r(t)x(~-~(t), if l ---- ~* -- 1 
T~ 

t 

( 1 -  2)! (t - s)~-~ds z.)(t)  = (l - :t)-------~ if ~<n--l. 

W e  have thus proved that for all t, t* with T~ ~< t ~ t* 

( , )  ~'(t) ->_ 

t* 

if p ( u ) ~ ( < g ( u ) ] ) d ~ ,  if 1 = z = ~ - i  

t 
t t* 

( t -  s) ~ l 
(~ 3)! r ( ~  ~ j  p ( ~ ) ~ ( ~ [ g ( ~ ) ] ) a ~ ,  i ~ l < ~ = ~ - I  

T~ t 

t* t* 

t s i f  l < n - - 1 .  

By using the Taylor formula with integral remainder~ for every t >= T~ we obtain 
$ 

._2 xl~( T1) 1 f x(t) = k~o k! �9 ( t--  T1) k + (n--  2)-------~ (t--s)'~-~x(~-l)(s)ds 
T~ 

t 
n:2xC~)(T1) 1 f (t --  S) n-2 

T1 
t 

But, by applying the L'Hospital rule, we can easily derive that  

lim ( t-- i~)k 0 (k-~- O, 1, . . . ,n-- 2), 
t ~ ,  / ~ ( t )  

t 

lim 1 f ( t - - s )  ~-~ 

T~ 
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and consequently 

l im sup x(t) < rCT~)x("-X)(T~) 

Soy there  exists a constant  ~ with a ~ 1 so tha t  

x(t) ~ aR1(t) for every t ~ T~. 

Tex t ,  for t ~ T~ we define 

r(s) ds and R~(t; T~) = r(s) 
T~ Tx 

By applying the  I?Hospi ta l  rule, we immediately obtain 

/~( t ;  T~) 
lira - -  ----= 1 (k 1, 2) 
t--,~ R~(t) 

and hence there  exist a positive constant  fi and a s > T~ so tha t  

n~(t;  r ~ ) > = ~ ( t )  ~or a n  t > = 2 ~  (k = ~ , 2 ) .  

ds. 

Fur thermore ,  we choose a T~ ~ ~ such tha t  

Then we have 

gj(t) ~ ~ for every  t ~ T2 (j = 1, ..., m). 

R~[g(t); T~] ~ flR~[g(t)], t ~ T2 (k = 1, 2). 

Tow,  let  t* be an arb i t rary  number  with t* ~ T~. We divide bo th  sides of ( . )  by  
qD[x(t)/~]~[x(t)/o:], where T1 ~ t ~ t*~ and integrate  it over IT1, t*] obtaining 

t* ~(t*)/~ 
dy 

f qD[x(t)/~Ix{t)/~] dt=:r f ~(y)~(y)>= 
T1 ~(T1)lcc 

t* t* 

f 1 ~[x(t)l~]~[~(t)/~]'r(t--~ p ( ~ ) ~ ( x [ g ( ~ ) ] ) a u d t ,  if  1 = ~ = ~ -  1 
Tx t 

�9 ; ~  

T, ~ t if 1 <  l ---~ n - - 1  __> 
t* t* 

f f ( 1 - 1 ) , ( n .  - 2--~11 ~[x(t)l~[x(t)lo:] ( -m~),-~ (s-t).-,-,r(s) 
T~ t 

t* 

�9 jp(u)q~(x[g(u)])dudsdt, if l <  n -- 1 
t d  
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t* t 

f "u" ~ ~ .,~(x[g(u)]) 
T~ T~ 

1 
vEx(t)/o~] - - d t d u ,  if l = l = n - - 1  

t* ~ t 

(n - r(s) 
T1 Tx T~ 

~] .~(x[g(u) ] )  
~[x(t)/~] v[x(t)/=] ~t~u, 

if l<l-----n--i 

1 f ( l - -  1)! ( n - - 2 - - 1 ) !  
T~ 

t t  ~t 

T1 t 

1 
VL t~J/J-~x""~ e/tdu, if 1 < n -- :t 

>= 

t* g(u) 

f f z.~(xEg(u)])a p(u) r(t-'-) ~[x(t)/~] ~[x(t)/~]dtdu' 
Tj T1 

i f l ~ l = n - - 1  

t* g(u) t 

( n -  3). ;(~ asj V[x(t)/=] V[x(t)/~] atau, 
T2 T 1 T~ 

if 1 <  l = n - - 1  
t* g(u) g(u) 

1 f p(~t)f (t -- T1) ~-1 [ f  (s-t)n-~-z ds] (p(x[g(~t)]) 
(1 - -  1 )  ! ( n  - -  2 - -  l) ! r ( s )  ~ [ x ( t ) l ~ ]  

T~ TI t 

1 
VL (o)I j - ' -x ' " '~"  d t d u ,  i l  l < q~ - -  i .  

But ,  for every  u, t with T~ g u g t* and T1 ~ t ~ g(u) we have 

x[g(u)]_~ x(t) >_ x(t)/~, R,[g(u)] > -%(0 > x(t)/~ 

and therefore,  by  (II),  we obtain 

~(x[g(u)]) >_ ~[x(t)/~], 

Thus, we get 

x(t*)/~ 

~(Rl[g(~)]) > Kx(t) /~] .  
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>= 

>= 

~* g(u) 

',,,i ~ dt du ,  if 1 = 1 = n -  1 

T2 Tz 
t* g(u) t 

1 .  1 dsdt] 
T~ Tx Tz 

t* 

I ~ I . 

(1 - -  1) t(n -- 2 - -  l ) !  J F(/t~[g(u)]) 
T~ 

a(u) g(u) 

T~ t 

t* 

(n -- 2) t J v(R~[g(u)]) 
T~ 

1 ( /~ Ig (u ) ;  r~]p(u)du if Z< ~ - 1  

T~ 

( n -  ~1! ~(~[g(~)] )  ' 
T~ 

t *  

fi f R~[g(u)] p(u)du if / <  n - - 1 .  {~- ~)t v(~[g(u)] )  ' 
T~ 

du~ Jf l < l ~ - n - - 1  

ds dt] du , if 1 < ~ -- 1 

We have thus proved t ha t  

x(t*)l~ t* 

where R = R1 for 1 = n - -  1~ R = R~ for l < n - -  1. Finally,  since t* is arbi t rary  with 
t* ~ T~, by  taking  the limits us t*" --> c% we get 

c o  c o  

f > (Rig(t)] p(t) t. 
j ~(yl~(y) = (~ 2)! J ~ ] )  

�9 (T1)I c~ T~ 

This contradicts  the  conditions (II) and (C). 

P~ooF oF T~O~EM 2. - Condition (C) implies (Co) and hence, by  Theorem 0, it  
suffices to prove tha t  every  unbounded nonoscil latory solution x of (E, - -1 )  satisfies 
one of (Xco), ( X _ J .  Fur thermore ,  the  subst i tut ion w = - - x  transforms ( E , -  1) 
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into an equat ion of the  same form sat isfying the  assumpt ions  of the theorem wi th  
the  funct ion ~ in place of ~, where q3(y) = -  ~ ( - - y )  for all y e dora ~v. Thus, wi th  

respect  to the  nonosci l latory solutions of (E, - - 1 )  we can confine our discussion only 

to the  posi t ive ones. 
Le t  now x be a posi t ive unbounded  solution on an in te rva l  [~o, oc), % > to, of 

the  equat ion (E, - - 1 ) .  Moreover,  let ~ > ~o be chosen so t h a t  

gr > "Co for every  t > z (j = 1, ..., m). 

Then,  as in the  proof  of Theorem I, we conclude t h a t  [rx~'-~)] ' is nonnegat ive  on 

[% c~) and  not  identicMly zero on any  in te rva l  of the  fo rm [z', c~), z ' >  z. Thus,  

b y  L e m m a ,  there  exists a T > ~ and  an integer l, 0 _< 1 --< n, wi th  n + 1 even so t h a t  

l < n - - 1  => (--1)Z+Jx{J)(t)>0 for every  t ~ T  (j = l , . . . , n - - 1 )  

l > l  :=>x")(t)>O for every  t > = T  (i = l , . . . , 1 - - 1 ) .  

The unboundedness  of x ensures t h a t  1 =>_ ] .  Also, since n + 1 is even, we always 

h~ve 1 # n -  1. So, we consider the  following two cases. 

Case 1. l g l < n - - 1 .  Let  T,>--T be chosea so t h a t  

gr > T for every  t > s (j = 1, ..., m). 

Then,  following the  a rguments  used in the  proof of Theo rem 1, for every  t, t* with 

T,  --< t ~ t* we obtain 
t* t* 

n--2--~ 

7L ( t - -  ~ ,  j r(s) J p(u)9(x[g(u)])duds ( , )  x'(t) > (l -- 1)! (n --  2 --  l)! 
t s 

Fur the rmore ,  b y  

get 

x(t) = 

using the  Taylor  formula  wi th  integral  remainder ,  for t > T, we 

t 

. -2  x(~)(T1) (t -- TI)~ + 1 ( ( t - -  s)"-~ [r(s)x(.-~)(s)]as 
zot k=0  

T, 
t 

~ - 2  x~)(T~) (t - / ' ~ ) ~  + 1 f (t - s) ~-~ 
=< ~=o ~ ~---r-. (n - 21 .~ r ( s ~  [ -  r(s)x(~-'(s)] as 

T, 
t 

, - 2  x(~)(T,) (t -- T,) ~ + -- r(T*)x(~-*)(T*) ( (t -- s) ~-~ 

T, 

Thus,  as in the  proof  of Theorem 1, there  exists a constant  cx > 1 so t h a t  

x(t) ~ ~Rl(t) for every  t ~ T1. 

2 3  - A n n a l l  di Malematiea 
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~Text, we define 
t 

Tz 

ds,  t ~ T~ 

and, as in the  proof  of Theorem 1, we conclude t h a t  for some ~ ,  > T~ 

t~(t; T~) > flB~Ct) foe all t > ~ ,  

where fl is a posi t ive constant .  Fur thermore ,  we choose a T~ >= ~x such t h a t  

gr > ~i for every  t >= T~ (j = 1, �9 , m). 

Then the  same arguments  as in the  proof  of Theorem 1 lead to  

x(t*)la t* 

f dy ~(y)~(y) ~ (-~fl-- 2) ! f ~,/~'[g(u)] .u .~ 
z(g't)l~ T~ 

for all t* > T~. Le t t ing  t* -+ oo in this inequali ty,  we obta in  

dy ~ ~ ~ r  v(t)at, 
~r Tx 

which, by (II) and (C), is a contradiction. 

Case 2. 
we obta in  

1 = n. B y  using the  Taylor  formula  wi th  integral  remainder ,  for t ~ T 

t 
. -2 (t 1 ( t -  s)--~ 

x(t) = ~=o ~ + ( ~ -  2)~. r(s) [~(s)x(~"(s)]ds 
T 

t 

rC~)x("-~)(T) ( t -  s) .-~ 
- r ( s )  a s .  

T 

Thus,  for some rl  > T we have  

xCt) > ~,/r for all t > ~:1, 

where 7 is a posi t ive constant .  Fur thermore ,  we choose a z~ ~ r, so t h a t  

gAt) ~ z, for every  t ~ v2 (j = 1, ..., m). 
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Then, b y  taking into account (ii) and the  fact  tha t  x is increasing on [T, oo), for t ___ 33 
we get 

[r(t) x('-~)(t)] '--- ](t; x[g~(t)], ..., x[g,,(t)]) 

>= ](t; x[g(t)], ..., x[g(t)]) 

/(t; rR~[g(t)], ..., ~,R,[g(t)]). 

Therefore, because of (H), we obtain 

[r(t) x(~-~'(t)]'~_p(t) q~(TR~[g(t)]) , t ~ 3~. 

But,  b y  (II), it is easy to derive tha t  

lim ~(y) y~(y) 

and hence 

~ ( y ) ~  Y for all large y .  

Thus, for some 3a _~ 32 we have 

qg(~R~[g(t)]) > 7R*[g(t)] > /~l[g(t)] 
= F(~Rl[g(t)]) = ? ~p(R~[g(t)]) 

for all t ~  T3, where the constant  ? is considered to be chosen so tha t  0 < ? ~ 1. 
So, for  every t ~ 33 

R~[g(t)] p(t) [r(t)x(~-~)(t)]'~ y F ~ ] )  

and therefore, b y  integration, we obtain tha t  for t ~ T3 

f 21[g(s)] p(s)ds. r(t)x(n-1)(t) ~ ~'(ra)X(n-1)(T3) -~ ~ ~0(Ri[g(8)] ) 
Ta 

Hence, b y  condition (C), w e get 

lim r ( t ) x ( ~ - l ) ( t )  = c o .  
t--> cr  

This, in view of (i), gives 

l i m x ( ~ ) ( t )  = c ~  ( i  = 0 ,  1 ,  . . . ,  n - -  2 )  

and consequently the solution x satisfies (X~). 
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:Next, let us  consider the special case where r = 1, i.e. the  differential equat ion 

($J, ~) x(~'(t) + ~l(t; x[g~(t)], . . . ,  x[g~(t)]) = o ,  t>= to, 

where there  is no loss of general i ty to suppose to > 0. Then we have 

1 
/~i(t) ----/~2(t) - -  (t -- to) "-1 t ~ to 

n - - I  ' - -  

and consequently there  exist two constants e1~ e2 with 0 ~ e~ ~ e~ ~ 1 so tha t  

0 ~ c l t  n-1 ~ R1(t) = R2(t) ~ e2t n-~ for all large t. 

Thus, by  (iii) and (II), we obtain t h a t  for all large t 

/~l]g(t)] ---- tt2[g(t)] >- c~[g(t)] ~-~ , ~f(R,[g(t)]) <= ~p(e~[g(t)] ~-~) <= ~p([g(t)]~-~). 

Therefore for k = 1, 2 

/~[g(t)] > e [g(t)]n-~ for all large t .  
~p(R,[g(t)]) -~ ~ ~f([g(t)] "-~) 

Hence, in the considered case the condition (C) follows from the following one 

[g(t)]~_ ~ 
(C) y~([g(t)]~_l) p( t )d t  -~ co .  

From Theorem 1, by  applying it for t h e  differential equat ion (E, + 1), we obtain 
the main result of a recent paper  b y  K I ~ A ~ A  and K~SA~O [5]. The method  used 
in proving Theorems 1 and 2 pat terns  ~fter t h a t  of Ki t~mura  and Kusano in the 

paper  ment ioned a b o v e .  

We now turn  our a t tent ion to differential equations of the  form 

(/)) Jr(t) x('-l)(t)]'~ - a(t) qS(x[g~(t)], ..., x[g.~(t)]) ----- O, 

where a is a continuous real-valued funct ion on the interval  [to, c~) and ~ is a con- 
t inuous real-valued function defined wt least o n / ~  W / ~ .  Fol  the functions a, ~b we + 

introduce the  conditions: 

(iv) a is of constant sign on [to~ c~). 

(iv) ~ is increasing on R ~  ~ R ~ _ and has the sign proper ty  

qS(y) > 0 for all y e t t~  , ~ ( y )  < 0 ]or all y e R~_ . 

We have  the following corollary. 
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COrOLLArY. -- Let the conditions (i), (iii), (iv) and (v) be satis]ied. Moreover, le~ 
the di]/erential equation (D) be strongly superlinear in the sense that 

dy dy 
( I I I )  qS(y,... ~ y) < co and q~(y,... ~ co. 

Then, under the condition 
c o  

(A) j-R~[g(t)]]a(t)Idt = co (k = 1, 2), 

we have the ]ollowing: 

~ )  For a nonnegative and n even, all solutions of (D) are oscillatory. 

fl~) For a nonnegative and n odd, every solution x o] (D) is oscillatory or satis]ies (Xo). 

~2) For a nonpositive and n even, every solution x o] (D) is oscillatory or satis]ies 
one o] (Xo), (X~), (X_oo). 

fi~) For a nonpositive and n odd, every solution x o] (D) is oscillatory or satis]ies 
one o/ (X~) ,  (X_~). 

PaooF. - The differential equution (D) is of the form (E, 5) with ~ = + 1 for 
a ~ 0  or (5 = - - 1  for a g 0 ,  and / ( t ;y)  -- ]a(t) lq~(y ) for (t ;y) e [ t o ~ O o ) • 1 6 2  
By (v), the function ] satisfies (ii). Next,  we define 

p(t) = la(t)l for t ~  to, 

y,(y) = 1  for y ~ 0 ,  

~(y) = q~(y, ..., y) for y ~ 0 .  

Then, by  taking into account (v) and (III),  we can see tha t  (I), (II) and (H) are sat- 
isfied. Also, (C) reduces to (A). Hence, the corollary follows immediately from Theo- 
rems 1 and 2. 

For  ordinary or advanced differential equations of the form (D) the condition (A) 
becomes 

c o  

(A*) fRk(t)[a(t)]dt = c~ (k -= 1, 2). 

When the equation (D) is an equation of retarded or mixed type, our corollary, in 
general, ceases to hold if the condition (A) is replaced by (A*). This is illustrated by 
the following four examples of retarded differential equations. These equations fail 
to satisfy (A). However~ they  satisfy the rest of the conditions of Cor01]ary and the 
condition (A*). 
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E x A m ' ~  1. - The equation 

[tl/3x,(t)],  .~_ I t_5/3xs(tl/8 ) = O, t > 1 

has the nonoscillatory solution x(t) = t ~/2, a contradiction to conclusion ~)  of Corollary. 

EXAiI~PLE 2. -- T h e  equation 

[t~13x"(t)]' @ l t-s13~8(t~/s) = 0 ~  t > l  

has the nonoscillatory solution x(t) = t ~/2 for which we have lim x(t) = c~, a contradic- 
t-->oo 

t ion to conclusion fl~) of Corollary. 

EXAMPLE 3 .  - The equation 

Et~i*x"(t)] ' _  3t-mx3(t*/.) = 0 ~  t > l  

has the nonoscillatory solution x(t) = t 31~ for which we have l im x(t) = lira x'(t) = c~ 
t ->co t->co 

while lim x"(O = l imtlZ~x"(t )= O, a contradiction to conclusion e2) of Corollary. 
t - - - ~  b - > ~  

E x A ~ L E  4. - The equation 

[tl~x"(t)]'- lt-~/,x3(t,/3) = 0 ,  t->=l 

has the nonoscillatory solution x ( t ) =  t 1I= for which we have l i m x ( t ) =  oo while 

lim x'(t) -----lim tmx"(t) = 0, a contradiction to conclusion 82) of Corollary. 
t--~co t---~co 

Differential equations of the form (D) subject to the condition 

(IV) l iminf  R ~ ] >  0 (k = 1, 2) 

include obviously the ordinary, advanced equations a n d  some other ones of retarded 
or mixed type. For  such equations the condition (A) is equivalent to (A*) and hence 
our corollary leads to the following result- 

Let the conditions (i), (iii), (iv), (v), (III) and (IV) be 8ati8fiVd. Then, under the con. 
dition (AS), we have the conclusion o] Corollary. 

Note tha t  the condition (IV) cannot be removed from this result, as it is demon- 
strated by Examples 1-4 of retarded equations for which (IV) fails while all other 
assumptions are satisfied. 
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Moreover, we notice tha t  in the  special case where r = 1 the condition (IV) is 
satisfied if 

- 

(IV) lira inf > 0 (j = 1, ..., m) 
t - - , ' . e~  

and the condition (A*) becomes 

(3:,) 

Indeed, in thi.~ c~se we have 

o o  

ft+-.la(t) ldt 

R ~ ( t )  = R , ( t )  - 

and, provided tha t  (IV) holds, 

g(t) -= et 

where 

c = rain 

1 
- n ~ - i  ( t  - to )  ~ - 1  , t__> to 

for all large t ,  

I1, l l i m i n f g ~ t ) ,  ...,-~llim infgm(t))---7-[> O. 
L 2 t-+++ t ~_>++ ~ j 

Next, let us consider the special case of the differential equation 

(f)) x(n)(t) ~ a(~) qb(x[gl(t)], ..., x[g,~(t)]) -= O, 

which is obtained from (D) for r = 1. For  this equation the condition (A) reduces to 
c o  

(3:) f [g(t)]'-l]a(t)]dt = co 

and our corollary leads to  the following result: 

Let the conditions (iii), (iv), (v) and (III)  be satisfied. Then, under the condition (.~), 
we have the conclusion o] Corollary ]or the di]]erential equation (1~). 

S~IIKos [19, 20] proved the following result: 

Let the conditions (iii), (iv), (v) and (III)  be satisfied. Moreover, let a be a continuously 
di]]erentiable and increasing ]unction on the interval [to, oo) with lira a(t) -~ co and 

g---> c ~  

such that 

a(t) ~ rain {t, gl(t), ..., g~(t)}, t ~ to. 

Then, under the condition 
c o  

f [~(t) ]~-lia(t)ldt = co, 

we have the conclusion o] Corollary ]or the equation (D). 
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Our  resul t  g iven above  is a subs tan t i a l  i m p r o v e m e n t  of this  Sta ikos  ~ result .  This 

is i l lus t ra ted  b y  t he  fol lowing example  due to  KI~A~v~A and  KuSA~O [5]. 

E x ~ I P L E  5. - F o r  t he  different ial  equa t ion  

x"(t) ~- t -7/4x~[t ~- (t - -  t m) sin t] : O ,  t ~ 1 

we can  app ly  our  resul t  (cf. [5]) to  conclude t h a t  all solutions are  oscil latory.  On the  

o the r  hand ,  the  Staikos ~ resul t  c anno t  be appl ied  (cf. [5]) for this  equat ion.  

F ina l ly ,  i t  r emains  an  open  ques t ion  to  the  au tho r  if t he  results  of this  pape r  can  

be ex t ended  for more  general  differential  equa t ions  of the  fo rm 

+  1(t; x[go(t)]) = 0 ,  

where  r~ (i = 1, ..., n -  1) are pos i t ive  con t inuous  func t ions  on t he  in te rva l  [to, oo) 

such t h a t  
cog 

r t ~ =  oo (i = 1, ..., n - - 1 ) .  
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