Oscillatory and Asymptotic Behavior of Strongly Superlinear
Differential Equations with Deviating Arguments (*).
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Summary. — This paper deals with the oscillation and the asymplotic behavior of the solutions of -
superlinear differential equations with general (retarded, advanced or mixed type) deviating
arguments. The equations considered involve a damping term. The results obtained extend
known fundomental oscillation criteria for superlinear differential equations without damping
terms and especially the recent basic reults of Kitamura and Kusano [5], and Staikos [19, 20].

This paper is concerned with the oscillation and the asymptotic behavior of the
solutions of #-th order (» > 1) differential equations with deviating arguments of
the form

(&, 0) [r(®) @O + 6f(t; algu(®)], -y 2[ga(®)]) =0, 1=ty (6 = £ 1)

where r and ¢, (j =1, ..., m) are continuous real-valued functions on the interval
[ts, o0) and f is a continuous real-valued function defined at least on R} U R”, R, =
= (0, o) and E_ = (— oo, 0). The following assumptions are made:

(i) r is positive on [f,, co) and such that

o0

dt
==

flt&;9)=0  for all ye RY, fE; ) =<0  for all ye R”

(ii) For every t = t,,

and f(t;y) is increasing with respect to y in BT U KE”:

(iii) limg,(f) = co  (j=1,..,m).

t—>co

Note that the increasing character of real-valued functions defined on subsets of R»
is considered with respect to the usual order in R» defined by the positive cone
{¥ = Wy ..., Ym) ER™: (Vj = 1, ..., m)y,; = 0}, i.e. as follows

Y=z Vi=1,..,my;=z.

(*) Entrata in Redazione il 9 febbraio 1980.
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Throughout the paper, p will be a continuous real-valued function on the interval
[ty, oo) and g, ¥ will be continuous real-valued functions defined at least on R — {0},
R, respectively. For these functions the following conditions are introduced:

(I) p is nonnegative on [,, co).

(XI) @ is increasing on R — {0} and has the sign property yp(y) > 0 for all y = 0;
v is positive and increasing on I, ;

(=] - o0

dy J‘ dy
—_— d —_— )
f ¢(y)w(y)< co <p(y)w(y)< «

We consider only such solutions x() of (H, 6) which are defined for all large ¢.
Sufficient smoothness for the existence of such solutions are assumed. The oscil-
latory character is considered in the usual sense, i.e. a continuous real-valued func-
tion which is defined on an interval of the form [T, co) is said to be oscillatory if the
set of its zeros is unbounded above, and otherwise it is said to be nonoscillatory.

In the last ten years there has been an increasing interest in studying theo scil-
latory and asymptotic behavior of the solutions of differential equations with deviat-
ing arguments. Most of the literature, however, is concerned with equations involving
retarded arguments. For general interest on typical oscillation results concerning
such equations we refer to an excellent survey article of MITROPOL'SKII and SEVELO [107].

The oscillatory and asymptotic behavior of the solutions of superlinear differential
equations with retarded or general deviating arguments has been the object of inten-
sive studies. We choose to refer to GRAMMATIKOPOULOS, SFICAS and STAIKos [1],
KiraAMURA [4], K1TAMURA and KusaNo [5], Kusano [6], KusAaNo and ONosE [7, 8, 9],
RYDER and WEND [13], SEVELO and VAREH [14, 15], SFICAS [16], SFIcAs and STAI-
ko8 [17,18], and StATKOS [19, 20]. The purpose here is to give oscillation results
for superlinear equations including a damping term.

The oscillatory and asymptotic behavior of the bounded solutions of the diffe-
rential equation (F, 6) is well described by the following theorem, which is a special
case of a'result of the author [11].

THEOREM 0. — Let (i)-(iii) be satisfied and suppose that:
(Co) For every nonzero constant ¢ either

flf(t; 0y ..v, 0)|dE = 00
or . : ’

f%; f(f(s; ¢ ...,0)|dsdt = oo.

Then for n even [resp. odd] all bounded solutions of the differential equation (B, - 1)
[resp. of the equation (B, — 1)] are oscillatory, while for n odd [resp. even] every bounded
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solution x of the differential equation (B, + 1) [resp. of the equation (B, — 1)] is either
oscillatory or such that x® (i = 0, 1, ..., n — 2) and re™? tend monotonically to zero at oo,

The purpose here is to study the oscillatory character and the asymptotic behavior
of all solutions of the differential equation (#, ). For this purpose, we need the fol-
lowing lemma which is originated in two well-known lemmas due to KIGURADZE [2, 3].
This lemma is obtained here as a special case of a lemma given by the same author
in [12].

LuEMMA. — Suppose that (i) holds and let h be a positive and (n — 1)-times differen-
tiable function on an interval [T, co0), T = 1,, such that the function rh"=2 is differentiable
with its derivative of constant sign on [r, co) and not identically zero on any inferval
of the form [, c0), T'Z= 7.

Then there exist a T = v and an integer 1, 0 <1< n, mth n + 1 odd for [rhi»—1Y]
nonpositive or n + 1 even for [rh"=]" nonnegative so that

1w —1=>(—1y*ha0>0 on [T, ) (j=1,..,n—1)
I>1=>hr>0 on [T, 00) (¢ =1,..,1—1),

In order to formulate our results we introduce here the funetions ¢, R, and R,
defined on [4,, co) by

g(?) = min {t’ Gul8)y ory gm(t)} ’
¢

(=9 G
Rl(t)—f—r(sj_—ds and Rz(t)_f ) ds.

to ]

THEOREM 1. — Let the conditions (i)-(iii), (I)-(IT) and the following ones be satisfied:

(H) It 9y ooy M| Z W @) for all (B, y) € [t, o0) x (B — {0}) .
) [ _Eudgt) di=oco (k=1,2).
© [v@taproa=c ¢=12

Then we have:
«) For n even, all solutions of the differential equation (E, + 1) are oscillatory.

B) For n odd, every solution x of the equation (H, -~ 1) is oscillatory or satisfies

Lm 2%(t) = 0 monotonically (i = 0,1, ..., — 2)
b—>co

X,
(o) lim r($)z"b(t) = 0  monotonically .

t->o0
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THEOREM 2. — Let the conditions (i)-(iii), (I)-(I1), (H) and (O) be satisfied. Then
we have:

o) For n even, every solution x of the differential equation (E, — 1) is oscillatory
or satisfies one of (X,),

(X)) Hma9() = oo (¢t =0,1,...,n —2) and lim r(t)a"D(t) = oo,
{~>00 {—>o0

(X_o) lma¥t)=—oco (1=0,1,..,7—2) and lim r(f)z" V() = — oo.
t—>00 f—>o0

B) For n odd, every solution & of the equation (B, —1) is oscillatory or satisfies
one of (Xe); (X _co).

Proor oF THEOREM 1. — The substitution w = — 2 transforms the differential
equation (E, -+ 1) into the equation

[r() w=2@)] + f(t; wlgs(8)]; ..., wlga(®)]) =0,
where f(t; y) = — f(t; — y) for all (¢; y) in the domain of f. The transformed equation
is subject to the same conditions posed for the equation (¥, 4 1) with the function ¢
in place of ¢, where §(y) = — @(—y) for all y € dom ¢. Hence, with respect to the
nonoseillatory solutions of (F, - 1) we can restrict our attention only to the positive
ones.
Since, by (i) and (iii), lim R, () = oo and %Egcg(t) = oo, we have
Rig@t))=1 for all large ¢
and therefore, in view of (I11), we obtain
p(Rig®]) = »(1) >0 for all large t.
This and conditions (I) and (C) give
[Rdgtyipia = oo
and consequently

fRz(t)p(t) it = oo.

Furthermore, we consider an arbitrary constant ¢+ 0 and we suppose that

fif(t; 6y ery €)|dE < 00,
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In view of (H), we have
lf(t; ¢, -.-,0)121)(”[99(0)], t= 1,
where (¢} 5= 0. So, we get
fRa(t)[f(t; 0y ..y )|t = 00 .

Therefore, it is a matter of elementary calculus to derive that

(=]

P
fr(t) f‘f(S; Cy evny G)Idsdt: co.
’ t

We have thus proved that the condition (C) implies (C;). Hence, by Theorem 0,
we can confine our discussion only to the unbounded solutions of the differential
equation (¥, - 1).

Let, now, « be a positive unbounded solution on an interval [7,, c0), 74 > #, of
the differential equation (E, 4+ 1). Moreover, let 7= 7, be chosen, by (iii), so that

g;t)= 1, forevery t=7t (j =1,..,m).

Then, by taking into account (ii), (H), (I) and (II), from (¥, + 1) we obtain that
for every t = 1

I

— [r@)a-v@)] = f(t; 2lg:(1)], --- 2Lgm(D)])
/

= f(¢; min 2[g,(8)], ... ' 22},, x[g;(1)])

C1sism
p(t)p( min afg,)]) 2 0.

1sigm

\%

Thus, the function [ra"—v] is nonpositive on [7, o). Moreover, [ra™V] is not iden-
tically zero on any interval of the form [7/, co), 7' = 7, since, because of (C), the
same holds for the function p. Hence, by Lemma, there exist a T = 7 and an integer I,
0=1=n—1, with » 4+ 1 odd so that

(—=1)ig(t) >0 forevery t=T (j=1,..,n—1)

() > 0 for every t= T (i =1, ...,1—1), provided that I> 1.

Because of the unboundedness of z, we always have [ = 1.
Next, by (iii), we choose a T, = T so that

g=T for every t= T, (j =1, ..., m).
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Then, by taking into account (ii) and the fact that « is increasing on [7, oo), from
(B, + 1) we obtain

— @201 = f(t; 2lgutd)]; ---, #lgn(®)])
= f(t; alg®)], -.., 2lg(®)])
for all t= T,. Therefore, in view of (H), we get
—[r® a2z p(t)glalg®)]), t=Ti.
Thus, for every ¢, t* with T, < ¢ < t* we derive

i*

P Z ) 2) o fp plaTg(w)]) du

= f p(uw w[g
Furthermore, if | << # — 1, by using the Taylor formula with integral remainder, for

every ¢, t* with 7, < ¢ < t* we obtain
12

n—2 (§ — Y-
2ty = 521 (j(j_—f%l—mm(t*) -+ (7—2%_1)_' f(t__ 82—ty (s) ds
¢ 1
" — )it A — f\n—2—1
= ’ZZ %[(_ 1) g ()] + - :2L - l)!f(s ?FZ) [7(s)sn—1)(s)]ds

i* t*

¢
1 — F\n—2~1
(n—2—1)! f . ,.fi) f p(w)p(#[g(w)]) duds .
11

8

v

Hence, for 7; < t < t* we have

A

1 .
@) fp(“)tr(w[y(u)])du, fle=n—1

¢
x‘l)(t) g ™ *

1 —f\n—2—1
n—2—1)! f = fp(%)qo(w[g(u)])duds , ifl<n—1.
¢ v

7(s)

8

But, if >1, by the Taylor formula with integral remainder, we derive thé,t fort =T,

i~1 (t —_ Tl)t—l

540’(t)=i=1 Yy a9(T 1)—|-

t
f (t — 8)2W(s)ds

T,

(t—2)!

3

S — f (t — s)i-2ad(s)ds
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i
1 1 — g)n—3 .
m-snf(mg [r(s)a-(s)]ds, El=n—1
T,
¢

f(t—s)’*”w“’( sjds, ifl<n—1

Ty

1
[

b

1 (t—s)n-s - '
(n ~3)g[f 7(s) ds]'r(t)m( @, iHl=n—1

1

v

4

1

We have thus proved that for all ¢, t* with 7, St < ¢*
t*
1 .
o f (wp(gu))du, Hfl1=I=n-—1

3 t*

1 £ — g)n-s _

1

[
1 — Fyn—2—1
(t—1)n—~2—-1)! e~ ) f(i—t)‘—‘f Yp{alg(u)])duds
§ ifl<n—1.

By using the Taylor formula with integral remainder, for every t = T, we obtain

4
n=2 g (T, s
o) = 3 S = o [ artoeas

T1

_ e U072 s
~k20 A (& — Ty)* +( ~2),J‘ [7(s)x—D(s)])ds

n k() r(Ty)a\=D(T}) (’f~t‘>’)"~2
S TH GV sy PR

1

But, by applying the 1’Hospital rule, we can easily derive that

: (t _ Tl)k
lim
{—~oco Rl(t)

(t—s) "*2
=1
Ehmf (o)

=0 (k=0,1,..,m—2),
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and consequently

L al) _ (T,
TP RG=" ol

So, there exists a constant o with «= 1 so that
2(l) < aBy(t) for every t=1T,.
Next, for 1= T, we define ‘
|3
ds and Ry(; Ty =f

1

4
(t — 8)11——2

(s — T2
r(s)

) ds.

Ry(t; Th) =
Ty

By applying the L’Hospital rule, we immediately obtain

Ryt Th) _
bemm T

and hence there exist a positive constant § and a 7', > T, so that
Ry(t; T)= BRy(t) for all t= T, (& =1, 2).
Furthermore, we choose a T,= T, such that
g =T, forevery t=T, (j =1,...,m).

Then we have
B,lg(t); Ti1= BRig()], =T, (k =1,2).
Now, let t* be an arbitrary number with t* = T,. We divide both sides of (%) by

ole(t) /el ple(t)/x], where T, << t*, and integrate it over [T, t*] obtaining
> o(¢*)/x

A0 . dy
f o plame] @~ f v =
7, " (T o ' "
1 1 .
[ sty v | Pertsanas, £ 1=1=n—1
Ty i
t* [ [2d
1 1 (& — s)»3 ] dud
) qo[w(t)/a]w[w(t)/a]” | [pe wetswaua,
P, T, ¢ fl<l=n—1

v

t* i*

1 1 myie (s =2t
=016 =51 somvema " f Z0

Ty

i*

-fp(u)qo(m[g(u)])dudsdt, if l<wn—1

&
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(@) gla(t) /tx] “plad)]a]

3

T, I, T

1 T fe=sr= 1 plelgw)) 1
<n-3>1f p‘“)f ” ) ds] Ple®]a] pia)a]

fl<l=n—1

8§ — t)n—z—-l

didu ,

—TTez= f”(“)ft‘ ” )

__1___
“[w(t) /o]

1(0) pla@)e] yle)e]

t* olu) ¢

dtdu,

ds] plalg()])

ple(t)/«]

if l<m-—1

fp(u)fl pelo) 1 g i 1—1—n—1

v
bl
I
"

e o(u)

1 (t—sp= 7 plelg@)]) 1
(n—3>zf p‘“’f ” (®) ds] lae] e 4

ifl<le=n—1

2 1

L
pl(t) o]
But, for every u, ¢ with I, <« < t* and 7, < { < g(u) we have
afgu)] = a(t) = 2(t)fec, Rilg(u)]= Ry() = (t)/a
and therefore, by (II}, we obtain
plalgw)]) Z gla(®)ja],  p(Bilgw)]) = plat)/a] .
Thus, we get
z{t*)/x

_ 9y
(W) vly)

o(Ty)a

v

o(u)
L 1Tl =ty
(z~1>!<n—24)!_,!p(“)f”‘“ U O

didu

] plelgw)])
ol(t)/e]

ifl<n—1.
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& . o)
1
BTy —gtldu, #1=1=n—1
Tf w(Rl[gw)])p(“’H 7(0) ]“ ! n
t#
1 t_s)n—s ] .
di| d , if 1= -
(n—3) fw(Rl[g [f f —————dsdt | du 1< n—1
g
1 J‘ 1 '
(=Dt =2 =)L) p(Elgw])
g(u) a{u) s
[f(t_ z—f( ?’2) dsdt]du, ifl<n—1
[4
t‘
1 Ri[g(u); T1] .
: a l=n—
=21 ) pE gy PN Imn
= :‘
1 (RlgwiTd o
=] p(Efg) PO TS
t*
p f Bi[g(u)] p 1 n1
(n—2)!T 'P(Rl[g(u)])p(u) u, i n
) B : By[g(w)]
o gLU P it 1 4
("*2)!!1/)(131[9(“)])]0(")“’ Hl<n—1

We have thus proved that

w(t*)/ = i*

dy B fR[g(u)] 0
P )= (n—2)1 ) p(RiLgtuyy) P

x(Ty)/% T,

%

o

where B = R, forl =n —1, B = R, for | < n — 1. Finally, since t* is arbitrary with
t*= T,, by taking the limits as ¢* — co, we geb

oo

@ ; f Blg®] .-
i f ¢(y)w(y)%(n~2)1T ?/’(Rl[g(t)])p(t) i

w(Ty)/ o

This contradicts the conditions (II) and (C).

ProoF oF THROREM 2. — Condition () implies (C,) and hence, by Theorem 0, it
suffices to prove that every unbounded nonoscillatory solution z of (B, — 1) satisfies
one of (X ), (X Furthermore, the substitution w = — « transforms (E, —1)

—ca)e



CH. G. PatLO8: Oscillatory and asympiotic behavior, ete. 353

into an equation of the same form satisfying the assumptions of the theorem with
the function ¢ in place of ¢, where ¢(y) = — p(—y) for all ¥ € dom ¢. Thus, with
respect to the nonoscillatory solutions of (E, — 1) we can confine our discussion only
to the positive ones.

Let now x be a positive unbounded solution on an interval [z,, co), 7, > #,, of
the equation (¥, —1). Moreover, let v = 7, be chosen so that

g:(t) =71 for every i=7 (j =1,...,m).

Then, as in the proof of Theorem 1, we conclude that [rz"~]" is nonnegative on
[7, co) and not identically zero on any interval of the form [7', co), 7= 7. Thus,
by Lemma, there exists a T = 7 and an integer 1, 0 < 1 < », with » + ! even so that

I<n—1 = (—1)z(t) >0 for every 1 =T (j=1,..,n—1)
I1>1 = 29() >0 for every t= T (i =1,...,1—1).

The unboundedness of @ ensures that l=1. Also, since n 4 [ is even, we always
have I+ n—1, So, we consider the following two cases.

Oase 1. 1=<T<n—1. Let T, = T be chosen so that

g ) =T forevery t=1T, (j =1,..,m).

Then, following the arguments used in the proof of Theorem 1, for every t, * with
T, <t < t* we obtain
t* i*

1 — f\n—2—1
W P02 ey - 1 S [ sttt duds.

r(s)
i ]

Furthermore, by using the Taylor formula with integral remainder, for t= T, we

get
[1

n—2 p(k) Tl 1 — Q\n—2
o) =3 i - mp ot [ e s
T,
[
n—2 k) Tl 1 —_— n~2
=3 T e— 4 2 [ e ds
T
[
RO | T)ET) [ s
—S—,ZO- At (n—2)1 f 7(s) ds .-
Ty

Thus, as in the proof of Theorem 1, there exists a constant =1 so that

x(t) £ aR,(t) for every t=1T,.

23 — Annali di Matematica
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Next, we define
i

Ry(t; T,) = f

T,

(s — Ty

) ds, =1,

and, as in the proof of Theorem 1, we conclude that for some T, > T,

Ry(t; Ty) = fRy(t) for all t=T,,

where § is a positive constant. Furthermore, we choose a T, = T, such that

g,)=T, for every t= T, (j =1,. ,m).

Then the same arguments as in the proof of Theorem 1 lead to

z(t*)x i*
dy B J' Byfg(w)]
L4

e v~ (n—2)! ) p(Ri[g(w)])
TV 7,

v

p(u)du

for all t*= T,. Letting t* — co in this inequality, we obtain

(o) oo

dy B Rulg(t)]
" f o) v(y) = (n—2)! f PRI p(t)dt,

(Tl T,

which, by (II) and (C), is a eontradiction.

Case 2. 1 == n. By using the Taylor formula with integral remainder, for t= T

we obtain
t

n—2 (4 H . e\n—2
2(t) = Z =1 a®(T) -+ (n—%Z)! f(t T(Z; [r(s)a—1(s)]ds

T

t
r(I)z(T) [ (t—s)*2
=" n—2)! f )

Thus, for some 7, > T we have
()= yRy(t) for all i= 7y,
where y is a positive constant. Furthermore, we choose a.‘fz = 1, 80 that

9=, foreverytzt, (j=1,..,m).
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Then, by taking into account (ii) and the fact that » is increasing on [T, o0), for t = 7,
we get

[(t) 2-(t)]

Il

f(t 2[g:()], .,w[gm(t)])
(t; alg(®)), ..., @[g(1)])
( ; YRy[g(®)], ..., VRl[g(t)]) .

=

/
f

%

Therefore, because of (H), we obtain

[r() 220 zp(t) p(yBilg(D)]), 1= 7,.

But, by (II), it is easy to derive that -

lim 2@ v@) _
Y~=rQ0 y
and hence
o)=L for all large y.
¥(Y)

Thus, for some 7, = 7, we have

yE[g(?)] > R,[g(t)]

PlyBiLg()]) = RO =7 p(Rilg(1)])

for all = 7,, where the constant y is considered to be chosen so that 0 < y=1.
So, for every t= 1,

R,[g(1)]

[r()am—(t)) = y mIATTON)

p(t)

and therefore, by integration, we obtain that for ¢= 7,

i

r(8)a"0(t) Z 1(75) @™ 1(15) + y f

Ts

EB,fg(s)]

M IATTON e

Hence, by condition (C), we get (

lim r(¢)2"9(¢) = oo.

t—>00
This, in view of (i), gives

limae¥(t) =00 (1=0,1,..,0—2)

{—>00

and consequently the solution » satisfies (X_,).
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Next, let us consider the special case where r = 1, i.e. the differential equation
(&, 9) #(t) + Of(t; 2[g:(D)], ..., #[gu(D]) =0, 121,
where there is no loss of generality to suppose #, > 0. Then we have
R,(t) = R,(t) = il (t—1t)"1, t=t,

and consequently there exist two constants ¢,, ¢, with 0 < ¢, =< ¢, <1 so that
0 < o1 < Ry(t) = Ry(t) < e, it for all large .
Thus, by (iii) and (II), we obfain that for all large ¢
RJg)] = Bl = elg®),  p(Bulg®)]) < p(elg®]) = v(g®)]") -

Therefore for k =1,2

Rilg®)] -, [o@)r—
pELo0)]) ™ " w(lg®])

_for all large ¢.

Hence, in the considered case the condition (C) follows from the following one

oo

' ' [g()]** _
© f p(g®]Y) P}t = co.

From Theorem 1, by applying it for ‘the differential equation (#, -+ 1), we obtain
the main result of a recent paper by KiraAMURA and KusANo [5]. The method used
in proving Theorems 1 and 2 patterns after that of Kitamura and Kusano in the
paper mentioned above..

We now turn our attention to differential equations of the form

(D) [r(8) a-(@)]) + a(t) D(x[gs )], ..., 2[gn(®)]) =0,

where a is a continuous real-valued function on the interval [f,, oo) and @ is a con-
tinuous real-valued function defined at least on R} U R”. Foi the functions a, @ we
introduce the conditions:

(iv) @ is of constant sign on [%y, oo).
(iv) @ is increasing on RY U BT and has the sign property
D{y) >0 for all ye RY, D)< 0 for all ye R™.

We have the following corollary.
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COROLLARY. — Let the conditions (i), (iil), (iv) and (v) be satisfied. Moreover, let
the differential equation (D) be strongly superlinear in the sense that

(=) banlie o]

dy f dy
III —_— and < oo,
(1) f(p(?/a---’?/) * ¢(y,-.-,y)v ”°

Then, under the condition
(4) [Rignatiar = o e =1,2),

we have the following:
o) For a nonnegative and n even, oll solutions of (D) are oscillatory.
B1) For a nonnegative and n odd, every solution x of (D) is oscillatory or satisfies (X,).

o) For a nonpositive and n even, every solution x of (D) is oscillatory or satisfies
one of (Xo), (Xeo)y (X oo).

Bs) For a nonpositive and n odd, every solution x of (D) is oscillatory or satisfies
one of (Xaw)y (X _w)-

Proor. — The diffevential equation (D) is of the form (&, ¢) with 6 = -1 for
a=0 or §d =—1 for a0, and f(t; ) = |a®)|@y) for (¢;y)€[t, oo)Xdom P.
By (v), the function f satisfies (ii). Next, we define

p{t) = |a(t)] for = t,,

wy) =1 for y >0,
P(y) = Py, ...,y) for y+0.

Then, by taking into account (v) and (I1I), we can see that '(I), (IT) and (H) are sat-
igfied. Also, (C) reduces to (4). Hence, the corollary follows immediately from Theo-
rems 1 and 2.

For ordinary or advanced differential equations of the form (D) the condition (4)
becomes

(4%) [Rtyamidt = 0o (k =1,2).

When the equation (D) is an equation of retarded or mixed type, our corollary, in
general, ceases to hold if the condition (A4) is replaced by (4*). This is illustrated by
the following four examples of retarded differential equations. These equations fail
to satisfy (4). However, they satisfy the rest of the conditions of Corollary and the
condition (4%). ' :
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ExXAMPLE 1. — The equation

[t (8) Y + Ilé gty =0, =1

has the nonoscillatory solution x(f) = #/2, a contradiction to conclusion «,) of Corollary.
ExAMPLE 2. — The equation
[t”am"(t)]'—{—— %t—e/ams(tlla) =0 , tg 1
has the nonoscillatory solution #(#) = 12 for which we have %1_1)130 () = oo, a contradie-
tion to conclusion f,) of Corollary.

ExaumprE 3. — The equation

[tl/zmlﬂ(t)]/__‘Z_t—q/zw:a(tl/s) =0 , t; 1

has the nonoscillatory solution x(t) = t*/2 for which we have }gg 2(t) = }1&10 z'(t) = oo
while 1¢_>m3° z"(t) = }_1_)11;10 112" (1) =0, a contradiction fo conclusion «,) of Corollary.

ExAMPLE 4. — The equation

[illzm”(t)]’-——-1—t‘5/2m3(t1/3) =0 , t;_>~= 1

has the nonoscillatory solution «(f) = #/* for which we have }lglo z(t) = oo while
}Ln;lo z'(t) = }_1{2, tY22"(t) = 0, a contradiction to conelusion 5,) of Corollary.

Differential equations of the form (D) subject to the condition

oo o Bulg(h)] .
av) hﬂ;ﬁm> 0 (k=1,2)

include obviously the ordinary, advanced equations and some other ones of retarded

or mixed type. For such equations the condition (4) is equivalent to (4%) and hence
our corollary leads to the following result”

Lét the conditions (i), (iil), (iv), (v), (III) and (IV) be satisfied. Then, under the con-
dition (4%), we have the conclusion of Corollary.

Note that the condition (IV) cannot.be removed from this result, as it is demon-
strated by Examples 1-4 of retarded equations for which (IV) fails while all other
assumptions are satisfied.
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Moreover, we notice that in the special case where » =1 the condition (IV) is
satisfied if

(V) mmmﬂ”>o (G=1,..,m)

t—>co

and the condition (4%*) becomes

o

(4*) : f t-ta(t)|dt = oo .
Indeed, in this case we have
1
Ry(t) = R,(t) = n—1 (t—t)*, t=1,

and, provided that (IV) holds,

g(t) = ¢t for all large ¢,

where

o= min{t, Ziimint 2, .. Liim e =0} 0,

f—>co t {00 t

Next, let us consider the special case of the differential equation

~

D) o 2 + a(t) D(a[gu(t)] ..., #[gn(t)]) =0,

which is obtained from (D) for » = 1. For this equation the condition (4) reduces to

-~

() - [or-ami = o

and our corollary leads to the following result:

Let the conditions (iii), (iv), (v) and (I11) be satisfied. Then, under the condition (4),
we have the conclusion of Corollary for the differential equation (D).

STAIKOS {19, 20] proved the following result:

Let the conditions (iii), (iv), (v) and (I11) be satisfied. Moreover, let ¢ be a continuously
differentiable and increasing function on the inierval [t,, co) with }_1:9010 o(t) = co and
such that

G(t) g min {t7 gl(t)1 e gm(t)} 9 tg tﬂ'
Then, under the condition
[t 1=2ja)jat = oo,

we have the conclusion of Corollary for the equation (D).
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Our result given above is a substantial improvement of this Staikos’ result. This
is illustrated by the following example due to KrramMUrA and Kusano [5].

ExampLE b. — For the differential equation
@'(t) + Ut (E— 1) sint] =0, t=1

we can apply our result (cf. [3]) to conclude that all solutions are oscillatory. On the
other hand, the Staikos’ result cannot be applied (ef. [5]) for this equation.

Finally, it remains an open question to the author if the results of this paper can
be extended for more general differential equations of the form

[Faca® [roat® ] Ire0 @@ @11} | | 8505 ola(0) -y algm(®)]) = 0,

where 7, ({ =1, ..., n — 1) are positive continuous functions on the interval [f,, co)
such that

oot

= (=1 .n=1).
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