Fixed Point Theorems for Multivalued Weighted maps (*).

GIUSEPPE CONTI - JACOBO PEJSACHOWICZ (Roges, Cosenza)

Sunto. – Si dimostra un teorema di punto unito per una classe abbastanza ampia di mappe plurivalenti con pesi fra gli ANR metrici. Questo teorema contiene tanto i classici teoremi di punto fisso di Eilenberg-Montgomery, O' Neill, Darbo come i risultati di connettività di insiemi di punti fissi di famiglie parametrizzate di mappe dovuti a Leray e Browder.

Introduction.

It is well known that a multivalued uppersemicontinuous map which is *acyclic* in positive dimension $(i.e. H_n(F(x)) = 0, n > 0, \forall x)$ but not necessarily connectedvalued may not carry in general a nontrivial homology homomorphism. In fact R. DUNN [7] has shown that given any set S of natural numbers different from the following ones: $\{n, 2\}, \{n, 1\}, \{n\}$, there exists a continuous finitevalued *fixed point free* map F of the 2-cell B into itself such that the number of points of F(x) belongs to S for each x. Clearly, such a map cannot carry a nontrivial homomorphism in $H_0(B)$. In order to avoid this difficulties, G. DARBO in [3] introduced the concept of weighted carrier (w-carrier) which is, roughly speaking, an uppersemicontinuous multivalued map F such that to each piece (*i.e.* clopen subset) of F(x) a multiplicity (or weight) that is an additive function of pieces is assigned. Moreover, this multiplicity verifies a local invariance property of the same type as the multiplicity of polynomial roots. Namely; if the boundary of an open set U in the range of F does not intersect F(x), then the multiplicity of F(x) in U equals the multiplicity of F(x') in U whenever x' is close enough to x.

In the same paper he showed that an acyclic (in positive dimension) w-carrier from the 2-cell into itself having non zero index admits a fixed point. This result has been improved to n-cell by DAL SOGLIO ([2]).

In [4] G. DARBO introduced the category of weighted maps (that is finite-valued w-carriers) and defined a homology functor \mathcal{K} in this category such that whenever restricted to the category of continuous maps between ANR's it coincides with the singular homology. By means of this functor he gave a generalisation of the Lefschetz fixed point theorem for weighted maps defined in compact metric ANR's (see [6]).

In this note we shall improve the Darbo's result to a Lefschetz fix-point theorem for Lefschetz w-carriers between ANR's. This theorem generalizes several

^(*) Entrata in Redazione il 1º dicembre 1979.

well known fixed point theorems for set valued maps [8], [10], [19], and improves our earlier result [15].

To this aim we shall show that acyclic w-carriers between compact polyhedra induce a well defined homomorphism in the homology \mathcal{K} constructed in [4]. Moreover this homomorphism is invariant by acyclic w-carrier homotopies. In the context of set-valued maps such a property in general cannot be stated (see [19], [13], [11]).

The main difference with the classical approach in defining the induced homomorphism is that we approximate the acyclic w-carrier F by w-maps instead constructing chain maps. Using the fact that w-maps close enough to F induce the same homomorphism in Darbo's homology, we define the homomorphism induced by F as the homomorphism induced by a w-map φ close enough to F. In the proof of this fact we use several deep properties of the homotopy theory of w-maps proved in [16].

This paper is divided as follows.

In Section 1 we define w-carriers and we give some of their elementary properties. Sections 2 and 3 are devoted to showing that several set valued maps which appear in concrete geometric problems are w-carriers. In Section 4 we state our main result (Theorem 4.1) and define the homomorphiem induced in homology by an acyclic w-carrier by means of which a Lefschetz fixed point theorem for acyclic w-carriers from a finite polyhedron into itself is proved. In Section 5 we extend this theorem to compact w-carriers of a complete metric ANR of the form $f \circ F$ with f a singlevalued continuous map and F an acyclic w-carrier. Several consequences of this result are deduced. Furthermore we apply our results to derive the existence of a closed trajectory of a vector field in a full torus following an approach due to Fuller ([9]). Section 6 is entirely devoted to the proof of Theorem 4.1. The appendix contains the construction of the intersection index used in Sections 2 and 3. There is a variety of equivalent definitions of such an index. The main difference in our approach consists in dropping compactness assumptions

1. – Preliminaries and definitions.

Let X be a regular topological space. A *piece* of X is any open and closed subset of X. Clearly, the family $\mathcal{T}(X)$ of all pieces of X is closed under finite unions and intersections.

If K is a subset of X and U is an open subset of X such that $\partial U \cap K = \emptyset$, then $U \cap K$ is a piece of K. Conversely, if K is compact, by the regularity of X, it follows that any piece C of K is of the form $C = U \cap K$, with U open in X and $\partial U \cap K = \emptyset$.

Let us recall that a multivalued map $F: X \to Y$ is called *uppersemicontinuous* if

- i) F(x) is a compact subset of Y for any $x \in X$,
- ii) if $C \subset Y$ is closed, then $F^{-1}(C) = \{x \in X : F(x) \cap C \neq \emptyset\}$ is closed.

DEFINITION 1.1. – A multivalued uppersemicontinuous map $F: X \to Y$ will be called a *weighted carrier* (*w*-carrier) if, for any $x \in X$, to any piece C of F(x) is assigned a *weight* or *multiplicity* $\tilde{i}(C, F(x))$ belonging to some commutative ring **R** verifying the following conditions

- a) $\tilde{i}(\cdot, F(x))$ is an additive function on the set $\Im(F(x))$, *i.e.* $\tilde{i}(C_1 \cup C_2, F(x)) = \tilde{i}(C_1, F(x)) + \tilde{i}(C_2, F(x))$ whenever $C_1 \cap C_2 = \emptyset$;
- b) if U is open in Y, with $F(x) \cap \partial U = \emptyset$, we have that $\tilde{i}(F(x) \cap U, F(x)) = \tilde{i}(F(x') \cap U, F(x'))$ whenever x' is close enough to x.

REMARK 1.1. – We say that an open subset U of Y is admissible for F(x) if $F(x) \cap \partial U = \emptyset$. When this occurs, the multiplicity $\tilde{i}(F(x) \cap U, F(x))$ of the piece $F(x) \cap U$ of F(x) will be called the *multiplicity* or the *index* of F(x) in U and will be denoted by $\tilde{i}(U, F(x))$.

Notice that by the uppersemicontinuity of F we have that if U is admissible for F(x), then it is also admissible for F(x') with x' close enough to x. Thus property b) can be seen as a local invariance condition of the multiplicity $\tilde{i}(U, F(x))$. It states that if U is admissible for F(x), the multiplicity of F(x) in U equals the multiplicity of F(x') in U whenever x' is close enough to x.

Notice also that the multiplicity $\tilde{i}(Y, F(x))$ does not depend on $x \in X$ if the space X is connected. In this case this element will be called the *index* of F and we denote it by $\tilde{i}F$.

The following properties of w-carriers can be easily verified

- a) Let $F: X \to Y$ be uppersemicontinuous and suppose that F(x) is connected for every $x \in X$. Then F becomes a w-carrier by assigning multiplicity $1 \in \mathbf{R}$ to F(x). In particular any continuous singlevalued map is a w-carrier.
- b) Let $F: X \to Y$ be a w-carrier and $f: Z \to X$ (resp. $f': Y \to W$) be a single-valued continuous map. Then $F \circ f$ (resp. $f' \circ F$) is a w-carrier.
- c) Let $F: X \to Y$ be a w-carrier and $f: Z \to W$ be a continuous single-valued map. Then $F \times f: X \times Z \to Y \times W$ is a w-carrier.
- d) If $F: X \to Y$ is a w-carrier, then the graph map $G_F: X \to X \times Y$, $G_F(x) = = \{(x, y): y \in F(x)\}$ is a w-carrier.
- e) Let $F, T: X \to Y$ be *w*-carriers such that $F(x) \cap T(x) = \emptyset$, $\forall x \in X$. The sum $F \oplus T: X \to Y$ is defined as the multivalued map $x \to F(x) \cup T(x)$ with multiplicities assigned as follows: if C is a piece of $F(x) \cup T(x)$ then

$$\tilde{i}(C, F \oplus T(x)) = \tilde{i}(C \cap F(x), F(x)) + \tilde{i}(C \cap T(x), T(x)).$$

f) Let $F: X \to Y$ be a w-carrier and let W be an open set such that $\partial W \cap \cap F(x) = \emptyset$, $\forall x \in X$. Then F can be decomposed as $F = F_1 \oplus F_2$ with

$$F_1(x) = W \cap F(x)$$
 $\forall x \in X;$ $F_2(x) = W^c \cap F(x)$ $\forall x \in X.$

21 - Annali di Malematica

2. – Multiplicity function versus index.

Let X be a regular space and let $C \subset X$ be a compact subset. We denote by $\mathfrak{U}_{\mathcal{C}}$ the family of all open subsets of X which are admissible for C. By a multiplicity function on C we mean any additive function \tilde{i} defined on the family $\mathfrak{T}(C)$ of all pieces of C with values in **R** (alternatively \tilde{i} can be viewed as an element of the Čech-cohomology module $\check{\mathbf{H}}^{\circ}(C, \mathbf{R})$).

Each multiplicity function \tilde{i} on C can be extended to an additive function \tilde{i} defined on the family \mathfrak{U}_c of all admissible open sets for C by defining

$$\tilde{i}(U) = \tilde{i}(C \cap U) \quad \forall U \in \mathfrak{U}_{q}.$$

Moreover, \tilde{i} satisfies the following excision property:

If U_1 is an open subset of U with $C \cap (\overline{U} - U_1) = \emptyset$, then

$$U_1, \quad U \in \mathfrak{U}_{\mathcal{C}} \quad \text{and} \quad \tilde{i}(U_1) = \tilde{i}(U).$$

Conversely, any additive function \tilde{i} defined on \mathfrak{U}_c that verifies the excision property (such a \tilde{i} is usually called «index ») induces a multiplicity function on C as follows.

If S is any piece of C, by the regularity of X, S is of the form $S = C \cap U$ with $U \in \mathcal{U}_c$. Therefore we take $\tilde{i}(S) = \tilde{i}(U)$. By the additivity and excision properties $\tilde{i}(S)$ does not depend on the choice of U. Hence, \tilde{i} is well defined and it is clearly additive. As a concluding remark we observe that if C is a finite subset of X, a multiplicity function on C is actually a function from C to **R**.

Moreover, if $U \in \mathcal{U}_{\sigma}$ we have that

$$\tilde{i}(U) = \sum_{x \in C \cap U} \tilde{i}(x).$$

We shall see now how the indexes appear in the manifold setting.

Let M, N be topological manifolds of dimension m and n respectively. Let $L \subset N$ be a closed connected submanifold of dimension p with m - p = n. Suppose that M, N, L are oriented over \mathbf{R} . Let $f: M \to N$ be a continuous map such that the set $f^{-1}(L) = \{m: f(m) \in L\}$ is compact. For any open subset U of M which is admissible for $f^{-1}(L)$ we can assign an element $\tilde{i}(f, L, U)$ of R called the *intersection index* of f with L in U, such that the following properties are verified:

1) additivity if $U_1 \cap U_2 = \emptyset$ then

$$\tilde{i}(f, L, U_1 \cup U_2) = \tilde{i}(f, L, U_1) + \tilde{i}(f, L, U_2);$$

- 2) excision: if $U_1 \subset U$, $f(\overline{U} U_1) \cap L = \emptyset$ then $\tilde{i}(f, L, U_1) = \tilde{i}(f, L, U)$;
- 3) homotopy invariance: if $h: [0, 1] \times M \to N$ is such that $h^{-1}(L)$ is compact and U is admissible for $h_t \ \forall t \in [0, 1]$ then

$$\tilde{i}(h_0, L, U) = \tilde{i}(h_1, L, U)$$
.

As consequence of 1, 2) we get

4) if $\tilde{i}(f, L, U) \neq 0$ then $f(U) \cap L \neq \emptyset$.

The construction of such an index will be sketched in the Appendix.

Examples:

- a) If M, N are of the same dimension and L is a point $p \in N$, then $\tilde{i}(f, L, U)$ is the local degree of f at p (see [7]).
- b) If $N = M \times M$ and L is the diagonal Δ of $M \times M$, then the set $f^{-1}(L)$ is the fixed point set of f and $\tilde{i}(f, \Delta, U)$ coincides with the usual fix-point index i(f, U) (see [7]).

More generally, the coincidence index of two maps $f, g: M \to N$ can be described in the same way.

c) Let S be any orientable C^1 -manifold. Let $\mathcal{C}(S)$ be its tangent bundle. Given any vector field $X: S \to \mathcal{C}(S)$, let K(X) be the set of ritical points of X $(i.e. \ K(X) = \{s: X(s) = 0\})$. Let L be the zero section of $\mathcal{C}(S)$. For any admissible open set U the index $\tilde{i}(X, L, U)$ is just the index of critical points of X in U.

3. – Examples of *w*-carriers.

By a parametrized family of mappings from M to N we mean a continuous map $f: M \times P \to N$, where P is any locally path connected space. The following theorem shows that the solution set of a parametrized family of equations on manifolds is the graph of a w-carrier.

THEOREM 3.1. – Let M^m , N^n , L^p as in 2. Let $f: M \times P \to N$ be a parametrized family of maps such that for any compact set $B \subset P$ we have that $\bigcup_{p \in B} f_p^{-1}(L)$ is relatively compact in M.

Then the multivalued map S given by $S(p) = f_{\pi}^{-1}(L)$ is a w-carrier from P into M.

PROOF. – It is well known that a multivalued map is uppersemicontinuous if and only if it has a closed graph and it sends compact subsets of the domain into relatively compact subsets of the range. Now S has a closed graph because its graph is $\{(m, p): f(m, p) \in L\} = f^{-1}(L)$. The second condition is supplied by the hypothesis, hence S is uppersemicontinuous.

Fix $p \in P$. If U is an open admissible set for S(p), we can define $\tilde{i}(U, S(p))$ as the intersection index $\tilde{i}(f_r, L, U)$ of Section 2.

Since this index verifies the additivity and excision properties, it follows from the discussion made in Section 2 that this index induces a multiplicity function on S(p) for each $p \in P$. Thus a) of Definition 1.1 is verified.

To show that this multiplicity satisfies also b) let us observe that if U is admissible for S(p) then by uppersemicontinuity of S and since P is locally connected, there exists a path connected neighborhood W of p such that U is admissible for S(q) for each $q \in W$. For a given $q \in W$ let us take a path $\xi(t)$ in W with $\xi(0) = p$, $\xi(1) = q$. Let us consider the homotopy $h_t = f_{\xi(t)} \colon M \to N$ between f_p and f_q .

Since $\xi(t) \in W$ for each t, it follows that U is admissible for h_t , $\forall t \in [0, 1]$. From this fact, by the homotopy invariance of the index $\tilde{i}(h_t, L, U)$ we get

$$\tilde{i}(U, S(p)) = \tilde{i}(f_x, L, U) = \tilde{i}(f_q, L, U) = \tilde{i}(U, S(q)).$$

This achieves b) of Definition 1.1.

As a consequence of Theorems 3.1 we get the following examples of w-carriers.

3.1. Let M, N be of the same dimension. If $f: M \times P \to N$ verifies the assumption of Th. 3.1 with respect to a point $n \in N$, then the equation f(m, p) = n defines a unique w-carrier $S: P \to N$ with graph = $\{(m, p): f(m, p) = n\}$.

3.2. If $f: M \times P \to M$ is uniformly continuous and each f_p is compact, then the multivalued map $p \to \text{Fix}(f_p) = \{m: f(m, p) = m\}$ is a w-carrier.

Using the Leray fixed point index we can extend the above example to parametric families of compact maps between ANR's.

3.3. Let M, N be of the same dimension and $f: M \to N$ be a proper map. Then the multivalued map $f^{-1}: N \to M$ is a *w*-carrier such that $f \circ f^{-1} = \deg(f) \operatorname{id}_N$. In fact, let P = N and let us take the parametrized family $g: N \times M \to N \times N$, g(n, m) == (n, f(m)). Then, if L is the diagonal in $N \times N$ we get that $g_n^{-1}(L) = f^{-1}(n)$. Now the assertion follows from 3.1.

3.4. Let S be a compact C^1 -manifold, $\mathcal{C}(S)$ be its tangent bundle, $\Gamma(S)$ be the space of all C^0 vector fields on S endoved with the compact-open topology. Then the multivalued map that assigns to each vector field X the set K(X) of the critical points of X is a w-carrier from $\Gamma(S)$ into S. This follows by taking $\Gamma(S)$ as parameter space and using the critical point index defined in c) of Section 2.

3.5. Let S be a C¹-manifold, $X: S \to \mathfrak{C}(S)$ be a complete vector field and let $\varphi: S \times R \to S$ be the flow of X.

Let $L \subset S$ be a submanifold of codimension one. We shall denote by $\Gamma(s)$ the trajectory of X passing by s at the time 0.

Suppose that $\{t: \varphi(s, t) \in L, s \in K\}$ is compact for any compact set K. The multivalued map $s \to \Gamma(s) \cap L$ is a *w*-carrier from S to L. In fact, by Theorem 3.1 the multivalued map $\tau(s) = \{t: \varphi(s, t) \in L\}$ is a *w*-carrier from S to R. On the other hand $\Gamma(\cdot) \cap L$ coincides with

$$S \xrightarrow{\operatorname{id} \times \tau} S \times R \xrightarrow{\varphi} S .$$

4. - Approximation of w-carrier by w-maps and induced homomorphism.

By a weighted map (w - map) we mean any w-carrier $F: X \to Y$ such that F(x) is a finite subset of Y for any $x \in X$.

Actually, as defined by G. DARBO ([4]), a *w*-map is an equivalence class of finite valued *w*-carriers, but the above definition is more adeguate to our purposes and it does not give any substantial difference with those of [4] (see also [18]). In particular all the results of [16] holds.

In order to avoid any possible confusion, w-maps will be denoted with greek letters φ , ψ , The composition of two w-maps is a w-map. Moreover, w-maps can be added and multiplied by scalars in **R**. Actually, the set of all w-maps from X to Y have an **R**-module structure compatible with the composition of w-maps. Hence the w-maps between Hausdorff spaces form an additive category which contains as a subcategory the topological one.

For any Hausdorff space X, G. DARBO has defined in [4] a graded homology module $\mathscr{K}(X) = \{\mathscr{K}_q(X)\}_{q \ge 0}$ such any w-map $\varphi \colon X \to Y$ induces in a functorial way a homomorphism $\varphi_* \colon \mathscr{K}_q(X) \to \mathscr{K}_q(Y)$. Moreover, φ_* is a σ -homotopy invariant of φ .

The functor \mathcal{K} verifies all the axioms of a homology theory with compact supports. Therefore, it coincides with the singular homology with coefficients in \mathbf{R} at least when X is a compact metric ANR.

Let X be a metric space and let D be a subset of X. We shall denote by εD its ε -neighborhood in X, that is

$$\varepsilon D = \{x \in X \colon d(x, D) < \varepsilon\}.$$

Let us denote by $\hat{\mathcal{R}}_q(D)$ the inverse limit over the family of ε -neighborhoods of D of $\mathcal{K}_q(\varepsilon D)$.

In general $\hat{\mathcal{R}}_q(D)$ depends on the shape of D in X, but, if X is an ENR, $D \subset X$ is a compact subset, then $\hat{\mathcal{R}}_q$ is just the q-th Čech homology module of D.

To see this we observe that $\forall \varepsilon > 0$, εD , being an open subset of an ENR, is an ENR. Hence, by the above discussion we have that $\forall \varepsilon > 0$ $\mathcal{K}_{q}(\varepsilon D) = H_{q}^{\text{sing}}(\varepsilon D)$. Since, as it was already observed in [7], the Čech homology of a compact subset of

an ENR can be obtained as the inverse limit of the singular homology of its neighborhoods, we get

$$\widehat{\mathcal{H}}_q(D) = \lim_{\epsilon \to \infty} \operatorname{inv.} \mathcal{H}_q(\epsilon D) = \lim_{\epsilon \to \infty} \operatorname{inv.} H_q^{\operatorname{sing}}(\epsilon D) = \check{H}_q(D)$$
.

DEFINITION 4.1. – A w-carrier $F: X \to Y$ will be called *acyclic* if $\forall x \in X \ \hat{\mathcal{K}}_q(F(x)) = 0$, $\forall q > 0$.

REMARK 4.1. – Notice that $\hat{\mathcal{K}}_0(F(x))$ need not be R. For example, if each component of F(x) is an acyclic set then F is an acyclic *w*-carrier. If R = Q, $\hat{\mathcal{K}}_q(F(x), Z)$ are finite groups $\forall q \ge 1$, $\forall x \in X$ then F is an acyclic *w*-carrier over the ring Q. Also, since any open subset of the real line is a disjoint union of open intervals, it follow that $\hat{\mathcal{K}}_q(C) = 0$ for each q > 0, $C \subset R$. Thus any *w*-carrier with values in the real line is acyclic.

DEFINITION 4.2. – We say that a w-map $\varphi: X \to Y$ is an ε -approximation of a w-carrier $F: X \to Y$ if

- i) $\varphi(x) \subset \varepsilon F(\varepsilon x)$ $\forall x \in X;$
- ii) $\tilde{i}(C, \varphi(x)) = \tilde{i}(C, F(x))$ for any piece C of $\varepsilon F(\varepsilon x)$.

We are now in a position of stating our main approximation result.

THEOREM 4.1. – Let $X_0 \subset X$ be a finite polyhedral pair, let Y be a metric ANR and let $F: X \to Y$ be an acyclic w-carrier.

Given any $\varepsilon > 0$ there exists a $\delta > 0$ such tath any δ -approximation $\varphi: X_0 \to Y$ of F restricted to X_0 can be extended to an ε -approximation $\tilde{\varphi}: X \to Y$ of F.

The proof will given in Section 6.

COROLLARY 4.1. – Let $F: X \to Y$ be an acyclic. For each $\varepsilon > 0$ there exists an ε -approximation $\varphi: X \to Y$ of F.

PROOF. - Take $X_0 = \emptyset$ in the above theorem.

COROLLARY 4.2. – Let $S: X \times [0, 1] \to Y$ be an acyclic w-carrier. Then for any $\varepsilon > 0$ there exists a $\delta > 0$ such that if $\varphi_i: X \to Y$, i = 0, 1 are δ -approximations of S restricted to $X \times \{i\}$, i = 0, 1, then there exists an ε -approximation $\psi: X \times [0, 1] \to Y$ of S such that ψ restricted to $X \times \{i\}$ coincides with φ_i .

PROOF. - Let us take $X_0 = X \times \{0\} \cup X \times \{1\}$ and let $\varphi: X_0 \to Y$ be defined by $\varphi(x, 0) = \varphi_0(x); \ \varphi(x, 1) = \varphi_1(x), \ \forall x \in X$. Now Theorem 4.1 applies.

COROLLARY 4.3. – Let $F: X \to Y$ be an acyclic w-carrier. Then there exists $\delta > 0$ such that any two δ -approximations φ_0 , φ_1 of F are σ -homotopic (i.e. homotopic as w-maps). **PROOF.** – Let us take $S: X \times [0, 1] \to Y$ defined by S(x, t) = F(x) and apply Corollary 4.2 with $\varepsilon = 1$.

THEOREM 4.2. – Any acyclic w-carrier $F: X \to Y$ induces a graded homomorphism $F^a_{+}: \mathscr{K}_q(X) \to \mathscr{K}_q(Y), \ \forall_a \geq 0$ such that

a) If two acyclic w-carriers F_1 , $F_2: X \to Y$ are joined by an acyclic w-carrier homotopy, then

$$F_{1*}^{q} = F_{2*}^{q} \colon \mathcal{H}_{q}(X) \to \mathcal{H}_{q}(Y) ;$$

b) when the sum of F and T is defined we have

$$(F \oplus T)^{\mathfrak{q}}_{\star} = F^{\mathfrak{q}}_{\star} + T^{\mathfrak{q}}_{\star} \colon \mathscr{H}_{\mathfrak{q}}(X) \to \mathscr{H}_{\mathfrak{q}}(Y);$$

c) if $v: Z \to X$ is a continuous single-valued map and $F: X \to Y$ is an acyclic w-carrier, then

$$(F \circ v)^q_+ = F^q_+ \circ v^q_+ \colon \mathcal{K}_q(Z) \to \mathcal{K}_q(Y);$$

d) when $F: X \to Y$ is a w-map, F coincides with the homomorphism defined in [4].

PROOF. – Given any w-carrier $F: X \to Y$ and $\delta > 0$ as in Corollary 4.3, if $\varphi: X \to Y$ is any δ -approximation of F then the homomorphism $\varphi_*^q: \mathcal{H}_q(X) \to \mathcal{H}_q(Y)$ does not depend on such a φ . Hence, we define $F_*^q \equiv \varphi_*^q: \mathcal{H}_q(X) \to \mathcal{H}_q(Y)$.

By Corollary 4.2 if F_1 , F_2 are joined by an acyclic homotopy, then any two sufficiently close approximations are σ -homotopic and therefore they induce the same homomorphism in homology. This proves a). b) follows from the fact that if φ , ψ are δ -approximations of F and T, then $\varphi + \psi$ is a 2δ -approximation of $F \oplus T$. The last two properties are trivial.

Let \boldsymbol{R} be a field (or a principal integral domain).

Let X be a finite polyhedron, $F: X \to X$ be an acyclic w-carrier from X into itself. The Lefschetz number of F is defined as $\mathfrak{L}(F) = \sum_{q=0}^{\infty} (-1)^q$ trace F_*^q .

With our definition of F_* the following Lefschetz fix-point theorem for acyclic w-carriers is an immediate consequences of those for w-maps.

THEOREM 4.3. – Let X and $F: X \to X$ as above. If $\mathfrak{L}(F) \neq 0$, then there exists $x \in X$ such that $x \in F(x)$.

PROOF. – Suppose that $\forall x \in X, x \notin F(x)$. Then by the uppersemicontinuity of the distance function d(x, F(x)) and since X is compact, there exists $\delta > 0$ such that $x \notin \delta F(\delta x) \quad \forall x \in X$. Therefore, each δ -approximation $\varphi: X \to X$ of F, with

 $\delta' \leq \delta$, is fix-point free. Hence, by a result of [6] we have that $\mathfrak{L}(\varphi) = 0$. Thus also $\mathfrak{L}(F) = 0$ which proves the theorem.

Let us observe that if F is an acyclic uppersemicontinuous map, then F is an acyclic w-carrier. More generally, suppose that $F: X \to X$ is a multivalued continuous map such that

- i) F(x) has *n* acyclic components $\forall x \in X;$
- ii) F(x) has n or 1 acyclic components.

Let us assign multiplicity 1 to each component of F(x) in the first case. In the second case if F(x) has *n* components we assinge to each component the multiplicity 1 and, if *F* has 1 component, then we take it with multiplicity *n*. It is easy to see that *F*, endowed with this multiplicity, becomes an acyclic *w*-carrier.] Hence our result generalizes the well known Eilenberg-Montgomery [8], O'Neill [19] fixed point theorems.

Notice, also, that F_* is uniquely determined by the *w*-carrier F and it is invariant under homotopy. This property is not satisfied by O'Neill's construction [19].

5. – Fixed point theorem for Lefschetz w-carriers.

In what follows we assume that \boldsymbol{R} is a field or a P.I.D.

Let us recall that if $h = \{h_i\}_{i \ge 0}$ is an endomorphism of a graded **R**-module *E* with finitely generated image then we can define the Lefschetz number of *h* as follows:

Let $L = \{L_i\}$ be any finitely generated submodule of E such that $\operatorname{Im} h \subset L$. We define $\mathfrak{L}(h) = \sum (-1)^j$ trace (h_j/L_j) . It is not difficult to see that $\mathfrak{L}(h)$ does not depend upon the choice of L.

DEFINITION 5.1. – A w-carrier from a complete metric ANR X into itself will be called a *Letschetz w-carrier* if

- a) it is compact (i.e. $\overline{F(X)}$ is a compact subset of X);
- b) F can be factorized in the form

where $G: X \to Y$ is an acyclic *w*-carrier from X into a complete metric ANR space Y and $r: Y \to X$ is a singlevalued map.

THEOREM 5.1. – Let $F: X \to X$ be a Lefschetz w-carrier of the form $F = r \circ G$. Let $h: \mathfrak{K}(X) \to \mathfrak{K}(X)$ be defined by $h = r_* \circ G_*$. Then Im h is finitely generated (hence $\mathfrak{L}(h)$ is defined). Moreover if $\mathfrak{L}(h) \neq 0$ there is $x \in X$ such that $x \in F(x)$.

PROOF. - Firstly suppose that X is a compact polyhedron. Suppose that $x \notin F(x)$ for every $x \in X$. Then by the compactness of X there exists $\varepsilon > 0$ such that $x \notin \varepsilon F(\varepsilon x)$, $\forall x \in X$.

From Lemma 7.1 of [10] it follows that there exists a compact ANR $Z \subset Y$ such that $Z \supset G(X)$. We have that the restriction of r to Z is uniformly continuous and hence there exists a δ_0 ; $\varepsilon > \delta_0 > 0$ such that

$$dig(r(z),r(z')ig)$$

For any $\delta < \delta_0$ let $\varphi: X \to Z \subset Y$ be a δ -approximation of the acyclic *w*-carrier *G*. Since $\varphi(x) \subset \delta G(\delta x) \quad \forall x \in X$, we get that

$$\psi(x) = r \circ \varphi(x) \subset \varepsilon F(\delta x) \subset \varepsilon F(\varepsilon x) .$$

Thus ψ is fixed point free and $\mathfrak{L}(\psi_*) = \mathfrak{L}(r_* \circ \varphi_*) = 0$. From definition of G_* we get that $\mathfrak{L}(r_* \circ G_*) = \mathfrak{L}(h) = 0$ which proves the assertion.

Before going further we recall the following well known result ([10]).

PROPOSITION 5.1. - Let

be a commutative diagram of graded homomorphism of graded modules. Then $\mathfrak{L}(h)$ is defined if and only if $\mathfrak{L}(h')$ is defined and $\mathfrak{L}(h) = \mathfrak{L}(h')$.

Suppose now that X is a compact ANR. Let $\varepsilon > 0$ be such that $d(x, F(x)) > \varepsilon$. By Corollary 6.2 of [12] there exists a compact polyhedron Z and two singlevalued maps $g: X \to Z$, $f: Z \to X$ such that

- i) $d(f \circ g(x), x) < \varepsilon;$
- ii) $f \circ g$ is homotopic to id_x

Let us call F' the composition

$$Z \xrightarrow{f} X \xrightarrow{F} X \xrightarrow{g} Z.$$

Then $F' = r' \circ G'$, where $r' = g \circ r$, $G' = G \circ f$.

Furthermore F' is fixed point free. In fact, if $z \in F'(z) = g \circ F \circ f(z)$, then $f(z) \in f \circ g \circ F \circ f(z)$. For x = f(z) by i) we have that $x \in \varepsilon F(x)$ contradicting the assumption. By the first step of the proof $\mathfrak{L}(r'_{\bullet} \circ G'_{\bullet}) = 0$.

Applying the above proposition to the diagram

which is commutative since by ii) $f_* \circ g_* = id$, we get that $\mathfrak{L}(h)$ is defined and $\mathfrak{L}(h) = \mathfrak{L}(h') = 0$.

Finally, if X is any metric ANR, let us take Z to be any compact ANR containing $\overline{(FX)}$. Let $G': Z \to Y$ be the restriction of G to Z and let $F' = r \circ G'$. It is clear that F and F' have the same fixed points. Furthermore, the diagram

commutes. Therefore, $\mathfrak{L}(h)$ is defined and $\mathfrak{L}(h) = \mathfrak{L}(h')$. This completes the proof.

COROLLARY 5.1. – Let C be an acyclic metric ANR.

Then any Lefschetz w-carrier F from C into itself with $\tilde{i}(F) \neq 0$ has a fixed point.

PROOF. - Since C is acyclic we get $\mathfrak{L}(h) = \operatorname{trace} r^0_* \circ G^0_*$: But $r^0_* \circ G^0_*$: $\mathfrak{K}_0(C) \to \mathfrak{K}_0(C)$ maps each class $\xi \in \mathfrak{K}_0(C) \simeq \mathbf{R}$ into $\tilde{\imath}(F) \cdot \xi$. Thus $\mathfrak{L}(h) = \tilde{\imath}(F) \neq 0$, hence F has a fixed point. COROLLARY 5.2. – Let $B = \{x : ||x|| \leq \varrho\}$ be a closed ball in a Banach space E. Let $F : B \to E$ be a Lefschetz w-carrier with $\tilde{i}(F) \neq 0$. If $x \in \partial B$ and $\lambda x \in F(x)$ implies that $\lambda \leq 1$, then F has a fixed point.

PROOF. – Let $\varrho: E \to B$ be the radial retraction defined by

$$arrho(x) = \left\{ egin{arrhy}{ll} x & ext{when } \|x\| < arrho \\ rac{arrho x}{\|x\|} & ext{when } \|x\| > arrho \ . \end{array}
ight.$$

 $\varrho \circ F$ is a Lefschetz w-carrier from B into itself with index different from zero. Hence there exists $x \in B$ such that $x \in \varrho F(x)$. Thus $x = \varrho(y)$ for some $y \in F(x)$.

If $||y|| > \varrho$, $x = \varrho y/||y||$ and hence $\lambda x \in F(x)$ with $\lambda = ||x||/\varrho > 1$, which contradicts the hypothesis. Thus $||y|| \leq \varrho$ and so $x = \varrho(y) = y \in F(x)$.

COROLLARY 5.3. – Let $F: E \to E$ be a Lefschetz w-carrier with $\tilde{i}(F) \neq 0$. Then either the set $\{x: \lambda x \in F(x) \text{ for some } \lambda > 1\}$ is bounded or F has a fixed point.

PROOF. – If $\{x: \lambda x \in F(x) \text{ for some } \lambda > 1\}$ is contained in some ball B, we get that the restriction of F to ∂B satisfies the hypothesis of the above corollary.

COROLLARY 5.4. – Let $\partial B = \{x \in E : ||x|| = \varrho\}$ be the boundary of a ball in an infinite dimensional Banach space E. Let $F : \partial B \to E$ be a Lefschetz w-carrier with $\tilde{i}(F) \neq 0$. If $\inf \{||y|| : x \in \partial B, y \in F(x)\} > 0$, then there exists $\lambda > 0$ such that $\lambda x \in F(x)$ for some $x \in \partial B$.

PROOF. $-F(\partial B) \subset \{x: \varepsilon < \|x\| \le r\} = D$, for some ε , r > 0, $0 < \varepsilon < r$. Let $g: D \to \partial B$ be defined by $g(x) = \varrho x/\|x\|$. We have that $F \circ g$ is a Lefschetz *w*-carrier from *D* into itself with index different from zero. But *D* is acyclic, being deformable to the boundary of a ball. Hence, by Corollary 5.1, there exists some $x \in D$ such that $x \in F(g(x)) = F(\varrho x/\|x\|)$. Putting $y = \varrho x/\|x\|$, $\lambda = \|x\|/\rho$ we get $\lambda y \in F(y)$.

COROLLARY 5.5. – Let $E = \mathbb{R}^n$, $B \subset E$ be a ball and let $F: B \to E$ be a Lefschetz w-carrier with $\tilde{i}(F) \neq 0$. Suppose that $\inf \{\langle x, y \rangle : x \in \partial B, y \in F(x)\} \ge 0$. Then for some $x \in B$, $0 \in F(x)$.

PROOF. - Let $D: B \to E$ be defined by $D(x) = \{y: x - y \in F(x)\}$. D is a Lefschetz w-carrier since it can be decomposed in the form

$$D \xrightarrow{G_F} E \times E \xrightarrow{d} E$$

where G_F is the graph of F and d(x, y) = x - y. We shall see that D satisfies the hypothesis of Corollary 5.2.

Suppose that $x \in \partial B$ with $\lambda x \in D(x)$. Let $y \in F(x)$ such that $\lambda x = x - y$, then $y = (1 - \lambda)x$. By hypothesis we have $\langle x, y \rangle = (1 - \lambda)\langle x, x \rangle > 0$, hence $\lambda < 1$. Therefore, by Corollary 5.2, D has a fixed point x in B. Thus $0 \in F(x)$.

By Remark 4.1 we have that any w-carrier with values in the real line is a Lefschetz w-carrier. Thus from the above corollary we get

COROLLARY 5.6. – Let $F: [a, b] \to R$ be a w-carrier from the interval [a, b] into R with $\tilde{i}(F) \neq 0$. Suppose that $F(a) \subset R^-$, $F(b) \subset R^+$. Then for some $x \in [a, b]$, $0 \in F(x)$.

PROOF. – It sufficies to apply Corollary 5.5 to the w-carrier $F': [-1, 1] \rightarrow R$ defined by $F'(x) = F(x \cdot (b-a)/2 + (b+a)/2)$.

COROLLARY 5.7. – Let X be path connected, $F: X \to Y$ be a w-carrier with $\tilde{i}(F) \neq 0$. Then for each $a, b, \in X$ there is a connected compact subset $C \subset F(X)$ joining F(a) with F(b).

PROOF. - Let $\gamma: [0,1] \to X$ a path between a and b and let $\overline{F} = F \circ \gamma$. Now $D = \overline{F}([0,1])$ is a compact subset of Y. If does not exist a compact connected set $C \subset D$ joining $\overline{F}(0)$ with $\overline{F}(1)$, there is a continuous function $f: D \to \{-1, 1\}$ that maps $\overline{F}(0)$ into $\{-1\}$ and $\overline{F}(1)$ into $\{1\}$. But this contradicts Corollary 5.6 since the w-carrier $\overline{F}: [0,1] \to \{-1,1\} \subset R$ defined by $\overline{F} = f \circ \overline{F}$ satisfies all the assumptions of 5.6 and $0 \notin \overline{F}(x), \forall x \in X$.

Jointly with Theorem 3.1 this gives

COROLLARY 5.8. – Let M, N, L, as in Theorem 3.1, $f: M \times [0, 1] \to N$ be a homotopy such that $f^{-1}(L)$ is a compact subset of $M \times [0, 1]$. Suppose that $\tilde{i}(f_0, M, L) \neq 0$. Then there exists a compact connected set $C \subset f^{-1}(L)$ such that $M \times \{0\} \cap C \neq \emptyset$ and $M \times \{1\} \cap C \neq \emptyset$.

PROOF. – Apply Corollary 5.7 to the w-carrier $F(t) = \{(m, t) : f(m, t) \in L\}$.

REMARK 5.1. – For fixed point sets of parametrized family of compact mappings between ANR's the above result is well known ([1]). It was also used by P. RA-BINOWITZ in proving the existence of unbounded branches of solutions for nonlinear Sturm Liouville problems [20]. In the form stated as in Corollary 5.7 it has been used by H. SHAW for nonlinear partial differential equations ([21]).

Hence Corollary 5.7 can be viewed as an extension of this connection property to Lefschetz w-carriers. Actually the same result holds for all w-carriers defined as solution sets of equations depending on parameters (see [17]).

We shall give now an example firstly due to Fuller which states a sufficient condition for existence of closed trajectories of vector fields in a full torus.

Let $C = B^2 \times S^1$ be the full 2-torus that is the product of the 2-ball B^2 with the circle S^1 . Let X be a vector field on C pointing inward on the boundary $S^1 \times S^1$ of C.

This implies that the trajectory of a point is defined for all time $t \ge 0$. Hence, X generates a semiflow $\Phi(c, t)$ defined in $C \times R^+$. The universal covering of C is a cylinder $D = B^2 \times R$. The covering map $\pi: D \to C$ is defined by $\pi(x, \theta) = (x, e^{i\theta})$. The angular coordinate $e^{i\theta}$ defines a 1-form ω on C such that $\pi^*(\omega) = d\tilde{\theta}$ where π^* is the induced map on contangent bundle and $\tilde{\theta}: D \to R$ is given by $\tilde{\theta}(x, \theta) = \theta$.

For $c \in C$ and $t \in R^+$ let us consider the integral of the form ω over the part of the trajectory going from c to $\Phi(c, t)$, that is

$$\eta(c, t) = \int_{0}^{t} \omega(X_{\varPhi(c,\tau)}) d\tau$$
.

If $\lim_{t \to \infty} \eta(c, t) = \infty$ uniformly in c, then there exists a closed trajectory of the field X.

PROOF. – The vector field X induces a vector field \tilde{X} on D such that the semiflow $\tilde{\Phi}(d, t)$ covers the semiflow $\Phi(c, t)$ under the covering projection π . If $d \in D$, $c = \pi(d), t \ge 0$, we have that the integral of the form ω over the trajectory from c to $\Phi(c, t)$ coincides with the integral of the form $d\tilde{\theta} = \pi^* \omega$ over the path of trajectory from d to $\tilde{\Phi}(d, t)$. Hence we get $\eta(c, t) = \eta(d, t) = \tilde{\theta}(\Phi(d, t)) - \tilde{\theta}(\Phi(d, 0))$. Therefore the coordinate $\tilde{\theta}(\tilde{\Phi}(d, t))$ of the trajectory passing by d must go to infinity with t. Let h_0 , h_1 be the imbeddings of the ball B^2 in D given by $h_0(x) = (x, 0), h_1(x) = (x, 1)$. Thus, $S_i = h_i(B^2) = \tilde{\theta}^{-1}(i), i = 0, 1$ are 2-dimensional submanifolds of D.

By the above discussion the set $\{t: \tilde{\theta}(\tilde{\Phi}(h_0(x), t)) = 1, x \in B^2\}$ is compact. Therefore, exactly as in example 3.5, the multivalued map $\tau(x) = \{t: \tilde{\Phi}(h_0(x), t) \in S_1\}$ is a *w*-carrier which is acyclic by Remark 4.1. Since $\tilde{\theta}(\tilde{\Phi}(h_0(x), t)) \to \infty$ as $t \to \infty$, it is not difficult to see that the index $\tilde{i}(\tau) = 1$.

For each $d \in D$, let us denote by $\Gamma(d) = \{ \tilde{\Phi}(d, t) : t \ge 0 \}$ the trajectory of the vector field \tilde{X} passing trough d. Since the multivalued map $G(x) = \Gamma(h_0(x)) \cap S_1$ can be decomposed as

$$B^{2} \xrightarrow{h_{0} \times \tau} D \times R \xrightarrow{\tilde{\Phi}} D,$$

it follows that G is a Lefschetz *w*-carrier. Since $G(B^2) \subset S_1$, it follows that $F = h_1^{-1} \circ G$ is a Lefschetz *w*-carrier from the ball B^2 into itself. Furthermore $\tilde{i}(F) = \tilde{i}(\tau) \neq 0$. Hence by Corollary 5.1 F has a fixed point. But the fixed points of the map F correspond to the closed trajectories of the field X since $\pi h_1 = \pi h_0$.

6. – Proof of the main theorem.

We start with some auxiliary propositions.

Let U, V be open subsets of X such that $U \subset V$. We say that U is *banal* in V if the homomorphism $\mathcal{K}_q(U) \xrightarrow{i} \mathcal{K}_q(V)$ induced in homology by the inclusion $i: U \to V$ is equal to zero $\forall q \ge 1$.

PROPOSITION 6.1. – Let X be a compact polyhedron, let Y be a metric ANR and let $F: X \to Y$ be an acyclic w-carrier. Then for any $\varepsilon > 0$ there exists $\delta > 0$, $\delta < \varepsilon$, such that $\delta F(\delta x)$ is banal in $\varepsilon F(\varepsilon x)$, $\forall x \in X$.

PROOF. - Since $\forall x \in X$, $\hat{\mathcal{K}}_q(F(x)) = 0$, $\forall q > 0$, by the construction of $\hat{\mathcal{K}}_q$ we have that there exists ε_x , $0 < \varepsilon_x < \varepsilon$, such that $2\varepsilon_x F(x)$ is banal in $\varepsilon F(x)$, $\forall x \in X$.

By the uppersemicontinuity of F, $\forall x$ there exists $\delta_x \leq \varepsilon_x$ such that $F(\delta_x x) \subset \varepsilon_x F(x)$. Let δ be the Lebesgue number of the covering $\{\frac{1}{2} \delta_x x\}_{x \in X}$. Then for every $x \in X$ there exists $x' \in X$ such that $\delta x \subset \delta_{x'}$, x' and hence $F(\delta x) \subset \varepsilon_x$, F(x'). Since $\delta \leq \delta_{x'} \leq \varepsilon_{x'}$, we have that $\delta F(\delta x) \subset 2\varepsilon_x F(x') \subset \varepsilon F(x')$. Moreover, since $x' \in \varepsilon x$, we get that $\delta F(\delta x) \subset c \varepsilon F(x') \subset \varepsilon F(\varepsilon x)$.

The banality of $\delta F(\delta x)$ in $\varepsilon F(\varepsilon x)$ follows now from the commutativity of the diagram

$$\begin{array}{c} \mathfrak{K}_{q}(2\varepsilon_{x'}F(x')) \xrightarrow{0} \mathfrak{K}_{q}(\varepsilon F(x')) \\ i & \downarrow i \\ \mathfrak{K}_{q}(\delta F(\delta x)) \xrightarrow{i} \mathfrak{K}_{q}(\varepsilon F(\varepsilon x)) \end{array}$$

PROPOSITION 6.2. – Let Y be as in Theorem 4.1. A w-map $\varphi: \{0, 1\} \to Y$ can be extended to whole of [0, 1] if and only if for any component C of Y we have that

$$\tilde{i}(C,\varphi(1)) = \tilde{i}(C,\varphi(0)).$$

PROOF. – That this condition is necessary follows from b) of Definition 1.1.

To show that it is also sufficient, let us notice that $\varphi(0)$, $\varphi(1)$ are singular 0-chains that can be decomposed in a sum of 0-chains with support in each connected component. Thus we can assume that Y = C is connected. Since $\tilde{i}(C, \varphi(0) - \varphi(1)) = 0$, the singular chain $\varphi(0) - \varphi(1)$ is a reduced singular 0-cycle. Hence it is a boundary of some singular 1-chain $\sum \lambda_i \sigma_i$.

The w-map $\psi(x) = \sum \lambda_i \sigma_i(x)$ is the desired extension.

PROPOSITION 6.3. — Let $U \subset V$ be an open subset of Y such that U is banal in V. Any w-map φ from the q-sphere S^q into U can be extended to a w-map ψ from the q+1-ball B^{q+1} into V, $q \ge 1$.

PROOF. – Let us denote with $\sigma[S^a; Y]$ the **R**-module of all σ -homotopy classes of *w*-mappings from S^a into Y with index 0.

By Theorem 3.5 of [16] we have that, if $j \in \mathcal{K}_q(S^\circ)$ is a generator of $\mathcal{K}_q(S^\circ) \simeq \mathbf{R}$ and Y has the homotopy type of a *CW*-complex, then the Hurewicz map $h: \sigma[S^\circ; Y] \to \mathcal{H}_q(Y)$ given by $h(\varphi) = \varphi_*(j)$ is an isomorphism for every q. From this, by the

335

commutativity of the diagram

it follows that $i^{\sharp} = 0$. Thus, any w-map of index 0 from S^{q} into U considered as w-map into V is null homotopic. Therefore, it can be extended to B^{q+1} . When ψ has arbitrary index the problem can be reduced to the above one taking $\varphi = \psi - -i(\psi)y$ with $y \in U$. This achieves the proof.

PROOF OF THEOREM 4.1. – Suppose that dim $(X \setminus X_0) = n$. Using Proposition 6.1 we shall construct a sequence $\{\varepsilon_i\}_{0 \le i \le n}, \varepsilon_i > 0 \ \forall_i$, in the following way.

Let $\varrho(\varepsilon) = \sup \{\delta : \delta < \varepsilon, \, \delta F(\delta x) \text{ is banal in } \varepsilon F(\varepsilon x) \, \forall x \in X, \, \forall q > 0 \}$. We take $\varepsilon_0 = \varepsilon$ and define $\varepsilon_i = \frac{1}{2} \varrho(\frac{1}{2}\varepsilon_{i-1})$.

Clearly, we have

- 1) $4\varepsilon_i \leqslant \varepsilon_{i+1}, \ 0 \leqslant i \leqslant n-1;$
- 2) $2\varepsilon_i F(2\varepsilon_i x)$ is banal in $\frac{1}{2}\varepsilon_{i+1}F(\frac{1}{2}\varepsilon_{i+1}x), \forall x \in X$.

Since F is uppersemicontinuous, for every $x \in X$, there exists an open neighborhood U_x with diam $U_x < \varepsilon_0$ such that $F(U_x) \subset \varepsilon_0 F(x)$, $\forall x \in X$.

Let (K, L) be a triangulation of (X, X_0) with mesh less than the Lebesgue number of the covering $\{U_x\}_{x \in X}$.

To prove our theorem it is enough to show that any ε_0 -approximation $\varphi: L \to Y$ of the *w*-carrier *F* restricted to *L* can be extended to an ε_r -approximation $\varphi: K^{(r)} \cup \cup L \to Y$ of $F|_{K^{(r)}UL}$ (where $K^{(r)}$ denotes the *r*-skeleton of the simplicial complex *K*).

Let us choose for each simplex σ of K not in L a point x_{σ} such that $\sigma \in U_{x_{\sigma}}$ (this is always possible by the above construction). Also there are not restrictions in assuming that if σ is actually a vertex v of K not in L then $x_{\sigma} = v$.

We extended now φ from L to $K^{(0)} \cup L$ in the following way.

Let v be a vertex of K not in L. Since F(v) is compact it meets only a finite number of components of the open set $\varepsilon_0 F$ ($\varepsilon_0 v$), say C_1, \ldots, C_r . Let us choose a point y_i in each component C_i . We define φ by

$$\varphi(v) = \sum_{i=1}^{r} \tilde{i}(C_i, F(v)) y_i.$$

Clearly, φ is an ε_0 -approximation of $F|_{K^{(0)}\cup L}$.

We extend now φ to $K^{(1)} \cup L$. Let $\sigma = \langle v_0, v_1 \rangle$ be a 1-simplex of K not in L. Since $\sigma \in U_{x_{\sigma}}$ and diam $U_{x_{\sigma}} < \varepsilon_0$, we have that

3) $\varepsilon_0 v_i \subset \varepsilon_0 \sigma \subset 2\varepsilon_0 x_{\sigma}$.

Let $W = 2\varepsilon_0 F(2\varepsilon_0 x_\sigma)$. Since φ is an ε_0 -approximation of $F|_{K^{(0)} \cup L}$ we have that $\varphi(v_i) \subset \varepsilon_0 F(\varepsilon_0 v_i) \subset \varepsilon_0 F(2\varepsilon_0 x_\sigma) \subset W$ by 3).

We will extend $\varphi: \partial \sigma \to W$ to whole of σ . By Proposition 6.2 it sufficies to prove that $\tilde{i}(C, \varphi(v_0)) = \tilde{i}(C, \varphi(v_1))$ for each component C of W. In fact, if C is any such component we have that

$$C_i = C \cap \varepsilon_0 F(\varepsilon_0 v_i)$$
 are pieces of $\varepsilon_0 F(\varepsilon_0 v_i)$, $i = 1, 2$.

By excision and since φ is an ε_0 -approximation of $F|_{\partial\sigma}$ we obtain

$$\tilde{i}(C,\varphi(v_i)) = \tilde{i}(C_i,\varphi(v_i)) = \tilde{i}(C_i,F(v_i)) = \tilde{i}(C,F(v_i)) \quad i = 0,1.$$

But $F: \sigma \to W$ is a w-carrier; therefore by connectedness of σ we have that $\tilde{i}(C, F(v_0)) = \tilde{i}(C, F(v_1))$. Hence $\tilde{i}(C, \varphi(v_0)) = \tilde{i}(C, \varphi(v_1))$.

Let $\varphi: \sigma \to W$ be any extension of $\varphi: \partial \sigma \to W$. We will see that φ is actually an ε_1 -approximation of $F|_{\sigma}$.

From 1) it follows that $2\varepsilon_0 x_\sigma \subset \varepsilon_1 x$, $\forall x \in \sigma$. Hence,

4)
$$W = 2\varepsilon_0 F(2\varepsilon_0 x_{\sigma}) \subset \varepsilon_1 F(\varepsilon_1 x), \ \forall x \in \sigma.$$

Thus, we obtain that $\varphi(\sigma) \subset \varepsilon_1 F(\varepsilon_1 x)$, $\forall x \in \sigma$. This shows i) of Definition 4.2.

In order to prove ii), let us observe that by 4) if C is any piece of $\varepsilon_1 F(\varepsilon_1 x)$ then $C_1 = C \cap W$ is a piece of W. Since $\varphi(\sigma) \subset W$, $F(\sigma) \subset W$, by b) of Definition 1.1 we have that

$$\tilde{\imath}\big(C_1,\varphi(v_0)\big) = \tilde{\imath}\big(C_1,\varphi(x)\big) ; \quad \tilde{\imath}\big(C_1,F(v_0)\big) = \tilde{\imath}\big(C_1,F(x)\big) , \quad \forall x \in \sigma .$$

Hence by excision

$$\tilde{i}(C,\varphi(x)) = \tilde{i}(C_1,\varphi(x)) = \tilde{i}(C_1,\varphi(v_0)) = \tilde{i}(C_1,F(v_0)) = \tilde{i}(C_1,F(x)) = \tilde{i}(C,F(x)).$$

This proves ii).

By glueing together each approximation $\varphi_{\sigma}: \sigma \to Y$ with those defined on simplexes that meet σ , we get an ε_1 -approximation φ of F restricted to $K^{(1)} \cup L$.

Suppose that $\varphi: K^{(r)} \cup L \to Y$ is an ε_r -approximation of F restricted to $K^{(r)} \cup L$. Let σ be a (r + 1)-simplex of K not in L. We have that φ is defined on the boundary $\partial \sigma$ of σ and $\forall x \in \partial \sigma, \varphi(x) \subset \varepsilon_r F$ ($\varepsilon_r x$). Since $\sigma \subset \varepsilon_0 x_\sigma \subset \varepsilon_r x_\sigma$, we have that $\varphi(\partial \sigma) \subset \varepsilon_r F(2\varepsilon_r x_\sigma) \subset 2\varepsilon_r F(2\varepsilon_r x_\sigma)$.

Let $W = \frac{1}{2}\varepsilon_{r+1}F(\frac{1}{2}\varepsilon_{r+1}x_{\sigma})$. By 2) we have that $2\varepsilon_r F(2\varepsilon_r x_{\sigma})$ is banal in W. Thus by Proposition 6.3 we can extend φ to a w-map $\varphi: \sigma \to W$.

In order to show that φ is an ε_{r+1} -approximation of $F|_{\sigma}$, let us observe that $\frac{1}{2}\varepsilon_{r+1}x_{\sigma} \subset \varepsilon_{r+1}x$, $\forall x \in \sigma$. This implies that $W \subset \varepsilon_{r+1}F(\varepsilon_{r+1}x) \quad \forall x \in \sigma$. Since $\varphi(\sigma) \subset W$ it follows that i) holds.

In oder to prove ii) let C be a piece of $\varepsilon_{r+1}F(\varepsilon_{r+1}x)$. Let $C^1 = C \cap W$. By the above argument C^1 is a piece of W. Take some x_0 belonging to the boundary $\partial \sigma$. Since $F: \sigma \to W$ is a *w*-carrier, by the connectedness of σ we get for every $x \in \sigma$

$$\widetilde{i}(C, \varphi(x)) = \widetilde{i}(C^1, \varphi(x)) = \widetilde{i}(C^1, \varphi(x_0)) = \widetilde{i}(C^1, F(x_0)) = \widetilde{i}(C^1, F(x)) = \widetilde{i}(C, F(x))$$

This achieves the proof of the theorem.

7. - Appendix.

We shall give here a sketch of the construction of the intersection index of Section 3.

We shall use the singular homology theory.

Let M be a topological *n*-manifold oriented over a ring \mathbf{R} and let K be a compact subset of M. We denote by $O_{\kappa} \in H_n(M, M-K)$ the orientation class of M around K [7]. This class is caracterized as follows: $\forall q \in K$ if \tilde{i}_q : $(M, M-K) \to (M, M-q)$ is the inclusion of pairs, we have that $\tilde{i}_{q*}(O_{\kappa}) \in H_n(M, M-q)$ is just the orientation class O_q of M at q.

If U is an open set admissible for K we denote with $O_{K \wedge U} \in H_n(U, U - U \cap K)$ the image of O_{κ} by the composition

$$H_n(M, M-K) \xrightarrow{i_*} H_n(M, M-K \cap U) \xrightarrow{\text{excision}} H_n(U, U-K \cap U).$$

From the above characterization of orientation classes it follows that $O_{K \wedge U}$ is just the orientation class of the submanifold U of M around the compact set $K \cap U$. For this reason we shall call $O_{K \wedge U}$ the orientation class around K in U. Notice also that $O_{K \wedge U} = O_{K' \wedge U}$ where $K' = K \cap U$.

LEMMA 7.1. – Let U be a disjoint union of a family $\{U_{\lambda}\}$ of admissible open sets. Let $i^{\lambda}: (U_{\lambda}, U_{\lambda} - K \cap U_{\lambda}) \to (U, U - U \cap K)$ be the inclusion of pairs. We have

$$O_{K\wedge U} = \sum_{\lambda} i^{\lambda}_{*}(O_{K\wedge U_{\lambda}}),$$

the latter sum being finite since $K \cap U_{\lambda} = \emptyset$ for all but a finite number of $\lambda - s$.

PROOF. – Consider the composition

$$h: \bigoplus_{\lambda} H_n(U_{\lambda}, U_{\lambda} - U_{\lambda} \cap K) \xrightarrow{\{i_*^{\lambda}\}} H_n(U, U - K) \xrightarrow{j_{q^*}} H_n(U, U - q)$$

where $q \in K \cap U$. Now, h sends all components of $(O_{K \wedge U_{\delta}})$ into zero except those

22 - Annali di Matematica

 λ_0 one for which $q \in K \cap U_{\lambda_0}$. The last one goes into $O_{q \wedge U}$. Therefore,

$$j_{\mathfrak{q}}[\{j_{\mathfrak{s}}^{\lambda}\}(\{O_{K\wedge U_{\mathfrak{s}}}\})] = O_{\mathfrak{q}\wedge U}, \quad \forall_{\mathfrak{q}}\in K\cap U.$$

Hence, by the characterization of the orientation class, we get

$$\sum_{\lambda} i^{\lambda}_{\ast}(O_{K \wedge U_{\lambda}}) = \{i^{\lambda}_{\ast}\} \left(\{O_{K \wedge U_{\lambda}}\}\right) = O_{K \wedge U}.$$

LEMMA 7.2. – Assume that $K \subset Q$ are compact, $W \subset U$ are open sets such that $(\overline{U} - W) \cap Q = \emptyset$, If $i_*: H_n(W, W - Q \cap W) \rightarrow H_n(U, U - K \cap U)$ is the excision of pairs $(W, W - Q \cap W) \rightarrow (U, U - K \cap U)$ we have that

$$i_*(O_{Q \wedge W}) = O_{K \wedge U}.$$

In particular if

- a) K = Q then $i_*(O_{K \wedge W}) = O_{K \wedge U}$, $W \subset U$,
- b) W = U then $i_*(O_{Q \wedge U}) = O_{K \wedge U}$, $K \subset Q$.

PROOF. – Notice that $K \cap U = K \cap W \subset Q \cap W$. Now, for $\forall q \in K \cap U$ consider the following diagram

Since j_* sends $O_{q \wedge W}$ into $O_{q \wedge U}$ we get that $\forall q \in K \cap U$

$$j^{U}_{q^*}(i_*(O_{Q\wedge W}))=O_{q\wedge U},$$

hence, by the definition of orientation class, we have that

$$i_*(O_{Q\wedge W}) = O_{K\wedge U}.$$

Let us consider an oriented (n + k)-manifold N.

Let *L* be a closed connected oriented submanifold of *N* with dim L = k. Let $\eta \in H_n(N, N-L)$ be its transverse class in *N* which is a generator of $H_n(N, N-L)$ (see [7]). Let $f: M \to N$ be a continuous map such that $K = f^{-1}(L)$ is a compact set. For any admissible set *U* we denote by f^U the restriction of *f* to *U* viewed as a map of pairs $f^U: (U, U-K) \to (N, N-L)$.

The intersection index of f with L in U is defined as the unique $r = \tilde{i}(f, L, U) \in \mathbf{R}$ such that

$$f^{U}_{*}(O_{K \wedge U}) = r \cdot \eta \quad \text{in } H_{n}(N, N-L) \,.$$

We will see that the intersection index satisfies all the properties of 2.1.

1) Additivity. By Lemma 7.1 we have

$$f^{U}_{*}(O_{K\wedge U}) = f^{U}_{*}\left(\sum_{\lambda} i^{\lambda}_{*}(O_{K\wedge U_{\lambda}})\right) = \sum_{\lambda} f^{U}_{*}i^{\lambda}_{*}(O_{K\wedge U_{\lambda}}) = \sum_{\lambda} f^{U_{\lambda}}_{*}(O_{K\wedge U_{\lambda}}).$$

Then by definition of $\tilde{i}(f, L, U)$ we get

$$\tilde{i}(f, L, U) = \sum_{\lambda} \tilde{i}(f, L, U_{\lambda}).$$

2) Excision. If $W \subset U$ and $\overline{U} - W \cap K = \emptyset$ then by Lemma 7.2 with Q = K $i_*: H_n(W, W - K \cap W) \rightarrow H_n(U, U - K \cap U)$ sends the orientation class $O_{K \wedge W}$ into $O_{K \wedge U}$. Thus we have

$$f^{U}_{*}(O_{K \wedge U}) = f^{U}_{*} \circ i_{*}(O_{K \wedge W}) = f^{W}_{*}(O_{K \wedge W})$$

and hence

$$\tilde{i}(f, L, U) = \tilde{i}(f, L, W)$$
.

3) Homotopy property. Let $h: M \times I \to N$ be such that $Q = \{x \in U: h(x, t) \in L \text{ for some } t\}$ is a compact subset of U.

Let $K_0 = \{x \in U : h(x, 0) \in L\}, K_1 = \{x \in U : h(x, 1) \in L\}.$

Then K_0 , K_1 are compact sets contained in Q. Applying Lemma 7.2 with U = W to the pairs $i^0: (U, U-Q) \rightarrow (U, U-K_0); i^1: (U, U-Q) \rightarrow (U, U-K_1)$ we get

$$i^0_*(O_{\mathbf{Q}\wedge U}) = O_{K_0\wedge U}; \ i^1_*(O_{\mathbf{Q}\wedge U}) = O_{K_1\wedge U}.$$

Since $\tilde{h}: (U, U-Q) \times I \to (N, N-L)$ is a homotopy of pairs we have that

$$\tilde{h}^0_{\star} = \tilde{h}^1_{\star} \colon H_n(U, \ U - Q) \to H_n(N, \ N - L) \,.$$

The above relation, jointly with the commutativity of the diagram

implies that

$$\begin{split} h^0_*(O_{K_b \wedge U}) &= h^0_*(i^0_*(O_{Q \wedge U})) = \tilde{h}^0_*(O_{Q \wedge U}) \,, \\ h^1_*(O_{K_b \wedge U}) &= h^1_*(i^1_*(O_{Q \wedge U})) = \tilde{h}^1_*(O_{Q \wedge U}) \,. \end{split}$$

Therefore $h(O_{K_1 \wedge U}) = h(O_{K_1 \wedge U})$ which achieves the proof.

REFERENCES

- F. B. BROWDER, On continuity of fixed points under deformations of continuous mappings, Summa Brasil. Math., 4 (1960), pp. 183-190.
- [2] L. DAL SOGLIO, Grado topologico e teoremi di esistenza di punti uniti per trasformazioni plurivalent di n-celle, Rend. Sem. Mat. Univ. Padova, 27 (1957), pp. 103-131.
- [3] G. DARBO, Grado topologico e teoremi di esistenza di punti uniti per trasformazioni plurivalenti di bicelle, Rend. Sem. Mat. Univ. Padova, 19 (1950), pp. 371-395.
- [4] G. DARBO, Teoria dell'omologia in una categoria di mappe plurivalenti ponderate, Rend. Sem. Mat. Univ. Padova, 28 (1958), pp. 188-224.
- [5] G. DARBO, Sulle coincidenze di mappe ponderate, Rend. Sem. Mat. Univ. Padova, 29 (1959), pp. 256-270.
- [6] G. DARBO, Estensione alle mappe ponderate del teorema di Lefschetz sui punti fissi, Rend. Sem. Mat. Univ. Padova, 34 (1961), pp. 46-57.
- [7] A. DOLD, Algebraic Topology, Die Grund. der Math. Wiss. Band 200, Springer-Verlag, 1972.
- [8] S. EILENBERG D. MONTGOMERY, Fixed points for multivalued transformations, Amer. J. Math., 69 (1946), pp. 214-222.
- [9] F. B. FULLER, Fixed points of multiplevalued transformations, Bull. Amer. Math. Soc., 67 (1961), pp. 165-169.
- [10] A. GRANAS, Topics in fixed point theory, Séminaire Jean Leray, Paris, 1969/70.
- [11] B. HALPERN, Algebraic topology and multivalued mappings, Proc. Conf. Suny at Buffalo N.Y., Lect. Notes in Math., vol. 171, Springer-Verlag, Berlin, 1970.
- [12] S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
- [13] S. LEFSCHETZ, On coincidences of transformations, Boll. Soc. Math. Mex., 2 (1957), pp. 16-21.

- [14] J. LERAY, Théorie des points fixes, indice total et nombre de Lefschetz, Bull. Soc. Math. Fr., 87 (1959), pp. 221-233.
- [15] J. PEJSACHOWICZ, A Lefschetz fixed point theorem for multivalued weighted maps, Boll. Un. Mat. Ital. (1977), pp. 391-397.
- [16] J. PEJSACHOWICZ, Relation between the homotopy and the homology theory of w-mappings, Boll. Un. Mat. Ital., 15-B (1978), pp. 285-302.
- [17] J. PEJSACHOWICZ I. MASSABÒ P. NISTRI, to appear.
- [18] R. JERRARD, Homology with multivalued functions applied to fixed points, Trans. Amer. Math. Soc., 213 (1975), pp. 407-428.
- [19] B. O'NEILL, Induced homology homomorphism for set valued maps, Pac. J. Math., 7 (1957), pp. 1179-1184.
- [20] P. F. RABINOWITZ, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), pp. 487-513.
- [21] M. SHAW, A nonlinear elliptic boundary value problem, Nonlin. Funct. Analysis and Differ. Equat. Proc. of the Michigan St. University, M. Dekker, New York-Basel, 1976.