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Sunto. - Si dimostra un teorema di 29unto unito 29er u~a classe abbasfanza a~29ia di ~a2929e 
291urivalenti con 29esi Ira gli ANR metrici. Questo teorema contiene tanto i elassici teoremi di 
29unto ]isso di Eilenberg-Montgomery, O'Neil l ,  Darbo come i ~'isultati di connettivith di in- 
siemi di 29unti ]issi di ]amiglie 29arametrizzate di map29e dovuti a Leray e Browder. 

Introduction. 

It is well known that a multivalued uppersemicontinuous map which is acyclic 

in positive dimension (i.e. //~(F(x)) --~ 0, n > 0, Vx) but  not  necessarily connected- 
valued may  not  carry in general a nontrivial homology homomorphism. In  f a c t  
1~. D v ~  [7] has shown tha t  given any set S of natural  numbers different from the 
following ones: (n, 2}, (n, 1), (u}, there exists a continuous finitevalued ]ixed point  

]ree m a p  F of the 2-cell B into itself such tha t  the number  of points of F(x)  belongs 
to S for each x. Clearly, such a map cannot carry a nontrivial  homomorphism in 
Ho(B). In  order to avoid this difficulties, G. DAm3o in [3] introduced the concept 
of weighted carrier (w-carrier) which is, roughly speaking, an uppersemicontinuous 
mult ivalued map F such tha t  to each piece (i.e. clopen subset) of F(x)  a multiplicity 
(or weight) tha t  is an additive function of pieces is assigned. Moreover, this mul- 
tiplicity verifies a local invariance property of the same type as the multiplicity of 
polynomial roots, l~amely; if the boundary of an open set U in the range of /~  
does not intersect E(x) ,  then  the multiplicity of F(x)  in U equals the multiplicity of 
F ( x  r) in U whenever x' is close enough to x. 

I n  the same paper he showed tha t  an aeyelic (in positive dimension) w-carrier 
from the  2-cell into itself having non zero index admits a fixed point. This result 
has been improved to n-cell by  DAL SoGLIO ([2]). 

In  [4] G. DAICB0 introduced the category of weighted maps (that is finite-valued 
w-carriers) and defined a homology functor J~ in this category such tha t  whenever 
restricted to the category of continuous maps between ANl~'s it  coincides with the 
singular homology. By means of this functor he gave a generalisation of the Lefschetz 
fixed point theorem for weighted maps defined in compact metric ANI~'s (see [6]). 

In  this note we shall improve the Darbo's result  to a Lefschetz fix-point 
theorem for Lefschetz w-carriers between Al~R's. This theorem generalizes several 

(*) Entrata in Redazione il 1 o dicembre 1979. 
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well known fixed point  theorems for set valued maps [8], [10], [19], and improves 
our earlier result [15]. 

To this aim we shall show th a t  acyclic w-carriers between compact 'polyhedra 
induce a well de/ined homomorphism in the homology ;E constructed in [4]. ~o reo v e r  
this homomorphism is invar iant  by  acyclic w-carrier homotopies.  In  the  context  
of set-valued maps such a p roper ty  in general cannot  be s ta ted (see [19], [13], [11]). 

The  main difference with the classical approach in defining the induced homo- 
morphism is t ha t  we approximate  the  acyclic w-carrier F b y  w-maps instead con- 
s t ruct ing chain maps. Using the fact  t ha t  w-maps close enough to F induce the 
same homomorphism in Darbo 's  homology, we define the  h0momorphism induced 
by  F as the homomorphism induced by  a w-map ~ close enough to F .  In  the  proof 
of this fact  we use several deep propert ies  of the  homotopy  theory  of w-maps 
proved in [16]. 

This paper  is divided as follows. 

I n  Section 1 we define w-carriers and we give some of thei r  e lementary  properties.  
Sections 2 and 3 are devoted to showing tha t  several set valued maps which appear  
in concrete geometric problems are w-carriers. In  Section 4 we state our main resul t  
(Theorem 4.1) and define the homomorphiem induced in homology b y  an acyclic 
w-carrier by  means of which a Lefschetz fixed point  theorem for acyelic w-carriers 
f rom a finite polyhedron into itself is proved.  I n  Section 5 we extend this theorem 
to compact  w-carriers of a complete metr ic  ANR of the  form / o F  with ] a single- 
valued continuous map and F an acyclic w-carrier. Several  consequences of this 
result  are deduced. Fu r the rmore  we apply  our results to derive the existence of a 
closed t ra jec tory  of a vector  field in a full torus following an approach due to 
Fuller  ([9]). Section 6 is ent irely devoted to the proof of Theorem 4.1. The appen- 
dix contains the  construct ion of the  intersection index used in Sections 2 and 3. 
There  ]s a var ie ty  of equivalent  definitions of such an index. The main difference 
in our  approach consists in dropping compactness assumptions 

1.  - P r e l i m i n a r i e s  a n d  d e f i n i t i o n s .  

Let  X be a regular topological space. A piece of X is any  open and closed subset 
of X. Clearly, the family fl'(X) of all pieces of X is closed under  finite unions and 
intersections. 

I f  K is a subset of X and U is an open subset of X such tha t  ~ U c~ K ~ 0, then  
U n K is a piece of K.  Conversely, if K is compact,  b y  the regular i ty  of X, i t  follows 
tha t  any  piece C of K is of the  form C ~ U c~ K,  with U open in X and ~ U n K ---- 0. 

Le t  us recall t ha t  a mul t ivalued map F :  X -+ X is called uppersemicontinuous if 

i) i~(x) is a compact  subset of 17 for any  x e X,  

ii) if C c 17 is closed, then  ~-1(C) ---- (x e X:  F(x)  (~ C ve 0} is closed. 
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D E F I N I T I O N  1 . 1 .  --  A mul t iva lued  uppersemicont inuous  m a p  /~: X - +  Y will be 
called a weighted carrier {w-carrier) if, for any  x ~ X,  to any  piece C of F(x) is 
assigned a weight or mqzltiplicity ~(C, F(x)) belonging to some c o m m u t a t i v e  ring R 
ver i fying the following conditions 

a) ~(., F(x)) is an addi t ive  funct ion on the  set ff(F(x)), i.e. ~(C~ u C~, F(x)) = 
= + F(x) )  w h e n e v e r  Cl n = 0; 

b) if U is open in Y, with F(x) n OU = 0, we have  t h a t  ~(F(x) ~ U, F(x)) 
= ~(F(x')n U, F(x')) whenever  x' is close enough to x. 

RE~A~K 1.1. - We say t ha t  an open subset  U of Y is admissible for F(x) if 
F(x) • ~ U ~ O. When  this occurs, the  mul t ip l ic i ty  ~(F(x) n U, F(x)) of the  piece 
/7(x) (~ U of F(x) will be called the  multiplicity or the index of •(x) in U and will 

be  denoted  b y  ~(U, F(x)). 
l~otice t h a t  b y  the  upl~ersemicontinuity of F we have  t ha t  if U is admissible 

for F(x), then  it  is also admissible for F(x') with x '  close enough to x. Thus prop- 
e r ty  b) can be seen as a local invar ianee condition of the  mult ipl ic i ty  ~(U,/~(x)). 
I t  s tates t h a t  if U is admissible for Y(x), the  mul t ip l ic i ty  of F(x) in U equals the  

mul t ip l ic i ty  of F(x') in U ~ h e n e v e r  x '  is close enough to x. 
:Notice also t ha t  the mult ipl ic i ty  ~(Y, F(x)) does not  depend on x E X if the 

space X is connected.  I n  this case this e lement  will be called the index of F and we 

denote  it  b y  ~F. 
The following proper t ies  of w-carriers can be easily verified 

a) Le t  F :  X -+ Y be uppersemicont inuous  and  suppose t ha t  F(x) is connected 
for  every  x e X. Then _~ becomes a w-carrier b y  assigning mult ipl ic i ty  
i e R to F(x). I n  par t icular  any  continuous singlevalued map  is a w-carrier. 

b) Le t  i~: X -+ Y be a w-carrier and  ] : Z - + X  (resp. F: Y - + W )  be a single- 
va lued continuous map .  Then Foj  (resp. l'oF) is a w-carrier. 

c) Le t  F :  X -+ Y be a w-carrier and  ]: Z -+ W be a continuous single-valued 
map .  Then F • 2 1 5  Y •  is a w-carrier. 

d) I f  F :  X -~ Y is a w-carrier,  then  the  graph map  Gp: X - + X •  Y, GF(x ) = 
= {(x, y): y e F(x)} is a w-carrier.  

e) Le t  F ,  T:  X - +  Y be w-carriers such t ha t  F ( x ) n  T ( x ) =  0, Vx~ X. The 

sum F ~ ) T : X - - >  Y is defined as the  mul t iva lued  m a p  x~-+F(x) U T(x) 
with multiplicit ies assigned as follows: if C is a piece of /~(x) W T(x) then  

~(C, F |  T(x)) = ~(C n F(x),  F(x)) + ~(C n T(x), r ( x ) ) .  

]) Le t  F :  X ~ Y be a w-carrier and let W be an open set such t ha t  3W n 
n F ( x ) = 0 ,  V x e X .  Then  F can be decomposed as F = F ~ O F 2  with 

F~(x) = W n F(x) Vx e X ; Fdx) = W ~ n P(x) Vx ~ X .  

2 1  - A n n a l l  eli M a ~ e m a t i c a  
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2.  - M u l t i p l i c i t y  f u n c t i o n  v e r s u s  i n d e x .  

Let  X be a regular space and let  C c X be a compact  subset. We denote by  ~hc 
the family of all open subsets of X which are admissible for C. By  a multiplici ty 
funct ion on C we mean  any  addit ive funct ion ~ defined on the  family if(C) of all 
uieces of C with values in R (al ternatively ~ can be viewed as an element  of the 
Cech-cohomology module tt~ R)). 

Each  mult ipl ici ty funct ion ~ on C can be extended to an addit ive function 
defined on the  family RLc of all admissible open sets for C by  defining 

~'(U)=~(Crh U) VV'e%o. 

Moreover, ~ satisfies the  following excision proper ty :  
I f  U1 is a n  open subset of U with C (~ (U - -  U~) = 0, then  

b',, ~T e %0 and ~(U~) ----- ~(U). 

Conversely, any addit ive funct ion ~ defined on %c  tha t  verifies the  excision prop- 
e r ty  (such a ~ is usually called (~ index >)) induces a mult iplici ty funct ion on C as 
follows. 

I f  S i s  any  piece of C, by  the regular i ty  of X, S is of the form S = C n U with 
U e r Therefore  we take ~(S) = ~(U). B y  the addi t iv i ty  and excision propert ies 
~(S) does not  depend on the choice of U. Hence,  ~ is well defined and i t  is clearly 
additive. As a concluding remark  we observe tha t  if C is a finite subset of X,  a 
multipl ici ty funct ion on C is actually a funct ion from C to R. 

Moreover, if U e ~1s we have t h a t  

~(v)= ~ ~(x). 
~eO n g 

We shall see now how the  indexes appear  in the  manifold setting. 
Le t  M, N be topological manifolds of dimension m and n respectively. Le t  

Z c N be a closed connected submanifold of dimension p with m - - p  ----- n. Suppose 
tha t  M, N, L are oriented over R. Le t  ]: M -~ N be a continuous map such tha t  the 
set ]-I(L) ~ {m: ](m) e L} is compact.  For  any  open subset U of M which is admis- 
sible for ]-I(L) we can assign an element  ~(], L, U) of R called the  intersection index 
of ] with L in U, such tha t  the  following properties are verified: 

1) addi t iv i ty  if U1 f~ U2 = 0 then  

~'(t, z ,  ~T~ u TI,,) = ~'(I, Z,  ~T~) --1- ~(t, Z,  ~7~) ; 
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2) excision: if U~ c U, ](U - -  U~) ~ L ~- 0 then  ~(1, L, U~) -~ ~(], L, U) ; 

3) homotopy invariance: if h: [0, 1]•  M - * I V  is such tha t  h-l(Z) is compact 
and U is admissible for h, Vt e [0, 1] then  

i'(ho, L, U) = ~(h~, L, U). 

As consequence of 1), 2) we get 

4) if ~(], L, U) ve 0 then  ](U) n Z ve O. 

The construction of such an index will be sketched in the Appendix. 

Examples: 

a) I f  M, IV are of the same dimension and L is a point p e 57, then ~(], L, U) 
is the local degree of ] at  p (see [7]). 

b) If  IV = M •  and L is the diagonal A of M x M ,  then the set ]-I(L) is the 
fixed point set of ] and ~(], A, U) coincides with the usual fix-point index 
i(], U) (see [7]). 
More generally, the coincidence index of two maps ], g: M ~+ IV can be 
described in the same way. 

c) Let  S be any orientable Cl-manifold. Le t  ~(S) be its tangent  bundle. Given 
any  vector field X:  S -~ ~(S), let K ( X )  be the set ofc ritical points of X 
(i.e. K ( X ) =  {s: X(s) ---- 0}). Let  L be the zero section of ~(S). For  an3 
admissible open set U the index ~(X, L, U) is just the index of critical points 
of X in U. 

3. - E x a m p l e s  o f  w-carriers.  

By a parametrized family of mappings from M to IV we mean a continuous map 
]: M • -* IV, where P is any locally path  connected space. The following theorem 
shows tha t  the solution set of a parametrized family of equations on manifolds is 
the graph of a w-carrier. 

TttEOt~EI~ 3.1. -- .Let M ~, IVY, Z ~ as in 2. Let f: M •  --~ N be a parametrized 
]amily o] maps such that ]or any compact set B r 2 we have that [J ]-~l(L) is relatively 
compact in M. ~B 

Then the multivalued map S given by S(p) ~ ]-~(L) is a w-carrier ]rom P into M. 

P~oor .  - I t  is well known t h a t  a mult ivalued map is uppersemicontinuous if 
and only if it  has a closed graph and it sends compact subsets of the domain into 
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relat ively compact  subsets of the  range. :Now S has a closed graph because its graph 
is {(re, p):  ] (m ,p )E  L ) =  ]-l(Z). The second condition is supplied by  the hypoth-  
esis, hence S is uppersemicontinuous.  

F ix  p e 2 .  I f  U is a n  open admissible set for  S(p), we can define ~{ U, S(p))  as 
the  intersection index ~(]~, JS, U) of Section 2. 

Since this index verifies the addi t ivi ty  and excision properties,  it  follows from the 
discussion made in Section 2 tha t  this index induces a mult iplici ty funct ion on S(p) 
for each p e P.  Thus a) of Definit ion 1.1 is verified. 

To show tha t  this mult ipl ici ty satisfies also b) let us observe tha t  if U is admis- 
sible for S(p) then  by  uppersemicont inui ty  of S and since P is locally connected, 
there  exists a pa th  connected neighborhood W of p such tha t  U is admissible for 
S(q) for each q e W. For  a given q e W let us take a pa th  ~(~) in W with ~(0) - -  p, 
~(1) ~- q. Le t  us consider the  homotopy  h~ = f~(): M - ~  iV between ]~ and ]~. 

Since ~(t) e W for each t, it follows tha t  U is admissible for h~, Vte [0, 1]. F ro m  
this fact,  by  the homotopy  invariance of the index ~(h~, L, U) we get 

~(~, S(p)) - ~(1~, L ,  ~7) = ~0'o, -~, ~7) = ~(u, S(q)).  

This achieves b) of Definition 1.1. 
As a consequence of Theorems 3.1 we g e t  the following examples of w-carriers. 

3.1. Le t  M, N be of the  same dimension. I f  ]: M X P  --* N verifies the assump- 
t ion of Th. 3.1 with respect to a point  n ~ N,  then  the  equation ](m, p)  ~-- n de- 
fines a unique w-carrier S: P -* N with graph = {(m, p):  ](m, p)  ---- n}. 

3.2. I f  1: M •  --> M is uniformly continuous and each 1~ is compact,  then  the 
mult ivalued map p --~ F ix  (f~) -~ {m: ](m, p)  = m} is a w-carrier. 

Using the  Leray  fixed point  index we can extend the above example to parametr ic  
families of compact  maps between ANR's .  

3.3. Le t  M, N be of the same dimension a n d / :  M -+ N be a proper  map.  Then 
the  mult ivalued map ]-1: N - .  M is a w-carrier such tha t  ]o]-1-----deg (1)ida. In  
fact, let  P = N and let us take the parametr ized  family g: N • M --> N • N,  g(n, m) = 
= (n, ](m)). Then,  if L is the  diagonal in N • iV we get t ha t  g-~(L) ---- ]-~(n). Now 
the assertion follows from 3.1. 

3.4. Le t  S be a compact  Cl-manifold, ~(S) be its tangent  bundle,  /~(S) be the  
space of all C o vector fields on S endoved with the compact-open topology. Then 
the multivMued map t h a t  assigns to each vector  field X the set K ( X )  of the eritmai 
points of X is a w-carrier from _P(S) into S. This follows by  taking F(S) as parameter  
space and ~sing the critical point  index defined in v) of Section 2. 

3.5.  Le t  S be a Cl-manifold, X:  S - >  ~(S) be a complete vector  field and let  
: S • R -> S be the flow Of X. 
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Le t  L c S be a submanifold of codimension one. We shall denote by  F(s) the 
t ra jec tory  of X passing by  s at the t ime 0. 

Suppose tha t  {t: of(s, t) e ~, s e K} is compact  for any compact  set K. The mul- 
t ivalued map s ---> F(s) n L is a w-carrier from S to L. In  fact, by  Theorem 3.1 the 
mult ivMued map z ( s ) =  {t: ~ ( s , t ) e L }  is a w-carrier from S to R. On the other 
hand  / ~ ( . ) n  L coincides with 

S i d x ~  9) 
> S x R - ,  >- S .  

4. - Approximation of w-carrler by w-maps and induced homomorphism. 

By a weighted m.ap (w-map) we mean any  w-carrier 2": X -+ Y such tha t  F(x) is a 
finite subset of Y for any  x e X. 

Actually,  as defined by  G. D~kR~O ([4]), a w-map is an equivalence class of finite 
valued w-carriers, bu t  the  above definition is more adeguate to our purposes and it 
does not  give any  substantial  difference with those of [4] (see also [18]). In  partic- 
ular all the  results of [16] holds. 

In  order to avoid any possible confusion, w-maps will be denoted with greek 
let ter  s % y~, .... The composit ion of two w-maps is a w-map. Moreover, w-maps 
can be added and multiplied by  scalars in R. Actually, the set of all w-maps from 
X to Y have  an R-module s t ructure  compatible with the composition of w-maps. 
Hence the  w-maps between Hausdorff  spaces form an additive category which con- 
tains as a subcategory the topological one. 

For  any  Hausdorff  space X, G. DA]~Bo has defined in [4] a graded homology 
module JC(X) = {JCq(X)}q>_. o such any  w-map ~: X -~ :Y induces in a functoriM way 
a homomorphism ~ . :  Je~(X) -+ JG~(17). Moreover, ~ .  is a a-homotopy invariant  of ~. 

The funetor  Je verifies all the  axioms of a homology theory  with compact  sup- 
ports.  Therefore,  it  coincides with the singular homology with coefficients in R at  
least when X is a compact  metr ic  ANR. 

Le t  X be a metr ic  space and let  D be a subset of X. We shall deno te  by  sD its 
e-neighborhood in X,  tha t  is 

SD = {x e X :  d(x, D) < s} . 

Let  us denote by  ~q(D) the inverse limit over the family of e-neighborhoods of 
D of Jeq(sD). 

In  general ;Eq(D) depends on the shape of D in X, but,  if X is an ENI~, D c X 
is a compact  subset, then J~q is just  the q-th Ceeh homology module of D. 

To see this we observe tha t  Vs > O, eD, being an open subset of an ENR,  is an 
ENR.  Hence, by  the above discussion we have tha t  Vs > 0 Je~(sD)= H~ln~(sD). 
Since, as it was already observed in [7], the (~ech homology of a compact  subset of 
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an EIqR can be obta ined as the  inverse l imit  of the  singular homology of its neigh- 

borhoods,  we get  

J~q(D) = lira. inv. JC,(eD) = lim. inv. Hq~'"(eD) = [t,(.D) . 

DEFI~ITIO~ 4.1. -- A w-carrier/7:  X -> Y will be  called acyclic if Vx e X J6q(/7(x)) ----- o, 

V q >  0. 

I~E~a~K 4.1. - I~otice t ha t  ;~o(/7(x)) need not  be  R.  For  example ,  if each com- 
ponent  of/7(x)  is an aeyelie set t h e n / 7  is an aeyelic w-carrier.  I f  R = Q, ~,(/7(x),  Z)  

are finite groups V q > l ,  Vx a X t h e n / 7  is an acyclic w-carrier over  the  r ing Q. Also, 
since any  open subset  of the  real  line is a disjoint union of open intervals,  it follow 

tha t  ~ , (C)  ----- 0 for each q > 0, C c R. Thus any  w-carrier wi th  values in the  reM 

line is aeycl.ic. 

])EFII~ITION 4.2. -- We say t ha t  a w-map 9: X -+ Y is an e -approximat ion  of a 
w-carrier /7: X -+ IT if 

i) 9(x) ce/7(ex) Vx e X ; 

ii) ~(C, 9 ( @ ) =  ~(C,/7(x)) for any  piece C of e/7(ex). 

We  are now in a posi t ion of s ta t ing our main  approx imat ion  result.  

Tm~ORE~ 4.1. - Let X o c X be a ]inite polyhedral pair, let ~ be a metric AI~I~ and 

le t /7:  X -+ ~ be an acyclie w-carrier. 

Given any e >  0 there exists a O ~ 0 such tath any O-approximation 9: Xo--> y 
o/ /7  restricted to Xo can be extended to an e-approximation ~: X -->- ~ o] t ~. 

The proof  will g iven in Section 6. 

C01~OLLA1R, Y 4.1. - -  ~ e t  /7: X - - > - ~  be an acyelic. ~7or each e > 0 there exists an 

e-approximation 9: X -+ Y o] /7. 

P~ooP. - Take  X o = 0 in the  above theorem.  

C01r 4.2. - Let S: X X [ 0 ,  1 ] - +  17 be an aeyclie w-carrier. Then /or any 

e > 0 there exists a 5 :> 0 such that i] 9#  X , - +  Y, i ~ 0, 1 are O-approximations o] S 

restricted to XX{i},  i ~ O, 1, then there exists an e-approximation ~0: X X [ 0 ,  1 ] - +  17 

o] S such that ~p restricted to X X {i} coincides with 9~. 

P~ooP. - Le t  us t ake  X o = X X {0} w X X {1} and  let  9: Xo -+ Y be defined by  

9(x, 0) = 9o(x); 9(x, 1) = 91(x), Yx e X.  l~ow Theorem 4:1 applies. 

C0~OLLA]~Y 4.3. -- Let /7: X -> Y be an acyclic w-carrier. Then there exists (~ > 0 

such that any two O-approximations 9o, 91 o] /7 are a-homotopic (i.e. homotopic as 
w-maps). 
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PlCOOF. -- Le t  us take S: X•  1]--> :Y defined by  S ( x , t ) ~ - F ( x )  and apply 
Corollary 4.2 with e ~ 1. 

Tm~OlCE~ 4.2. - A n y  acyvliv w-carrier .E: X -~ Y induces a graded homomorphism 
F ~ : JC~(X) -~ Jr V~>~ 0 such that 

$ 

a) I /  two acyclic w-carriers _~, 2'~: X -+ Y are joined by an acyvlic w-carrier 
homotopy, then 

1 5  - -  2 ,  ~ 

b) when the sum o] _F and T is de]ined we have 

(2~ | T):  = F ~ + T ~. Jco(x) -~  ~ e . ( y ) ;  

c) i] v: Z --> X is a continuous single-valued map and F:  X --> Y is an acyclic 
w-carrier, the~ 

d) when ~ :  X --> Y is a w-map~ F coincides with the homomorphism de/ined in [4]. 

P~oo~ ~. - Given any w-carrier F :  X --> Y and 6 > 0 as in Corollary 4.3, if ~: X -+ Y 
is any  5-approximation of F then  the homomorphism ~0~: J~(X) -+ Jr z) does not  
depend on such a q~. Hence,  we define F ~, _~- ~..q" JC~(X) -+ JCq(IT). 

By  Corollary 4.2 if F~, F~ are joined by  an acyclic homotopy,  then  any two suf- 
ficiently close approximations are a-homotopic and therefore they  induce the same 
homomorphism in homology. This proves a). b) follows from the  fact tha t  if (f, 
are ~-approximations of F and T, then  ~ ~- ~0 is a 2(~-approximation of F O  T. The 
last two propert ies  are trivial. 

Le t  R be a field (or ~ principal integral  domain). 
Le t  X be a finite polyhedron,  F :  X - ~  X be an acyclic w-carrier f rom X into 

itself. The Le]schetz number of F is defined as ~(F) = ~ (-- 1) ~ trace F q. $ 

q : 0  

With our definition of F .  the following Lefschetz fix-point theorem for acyclie 

w-curriers is an immediate  consequences of those for w-map~. 

TKEOt~E~ 4.3. - Let X and F:  X - +  X as above. I]  ~(F):/: 0, then there exists 

x E X such that x ~ F(x) .  

PROOF. -- Suppose tha t  Vx ~ X, x r Then by  the  uppersemicont inu!y of 
the  distance funct ion d(x, F{x)~ and since X is compact,  there exists ~ > 0 such 
tha t  x @ O F ( O x ) V x e X .  Therefore~ each ~-approxim~tion ~ : X - ~ X  o r E ,  with 
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(Y < ~, is f ix-point  free. Hence,  b y  a resul t  of [6] we have  t h a t  ~(~v) = 0. Thus also 

s ~ 0 which proves  the  theorem.  
Le t  us observe thdt  if F is an acyclie uppersemicont inuous  map ,  then  F is an 

~cyelic w-tarr ier ,  more  generally,  suppose t ha t  F :  X -+ X is a mul t iva lued  conti- 

nuous m a p  such tha t  

i) F(x) has  n acyclic components  Vx e X;  

ii) F(x)  has n or 1 aeyclic components .  

Le t  us assigne mul t ip l ic i ty  I to each componen t  of F(x) in the  first case. I n  the  

second case if F(x) has n components  we assinge to each component  the  mult ipl ic i ty  
1 and, if F has 1 component ,  then  we take  it with mult ipl ic i ty  n. I t  is easy to see 

t h a t  F ,  endowed with this mult ipl ic i ty ,  becomes an acyclie w-carrier. ] Hence  our 

result  generalizes the  well known Ei lenberg-Montgomery  [8], O'Neill  [19] fixed point  

theorems.  
:Notice, also, t ha t  F .  is uniquely  de te rmined  b y  the w-carrier F and  it is invuriant  

under  homotopy .  This p rope r ty  is not  satisfied b y  O'lqeill 's construct ion [19]. 

5.  - F i x e d  p o i n t  t h e o r e m  for  L e f s e h e t z  w-carr iers .  

I n  what  follows we assume tha t  R is a field or a P . I .D .  
Le t  us recall t ha t  if h = {hi}~> o is an endomorph i sm of a graded R-module  E 

with finitely generated image then  we can define the  Lefschetz n u m b e r  of h as 

follows : 
Le t  L = {L~} be any  finitely genera ted submodule  of E such t ha t  I m  h c L. 

We define ~(h) -~ ~ (--  1) j t race  (h~/Lj). I t  is not  difficult to see t ha t  ~(h) does not  

depend upon the  choice of L. 

DEFINITION 5.1 .  -- A w-carrier f rom a complete  met r ic  ANI~ X into itself will 

be called a Le/schetz w-carrier if 

a) it is compact  (i.el F(X) is a compact  subset  of X ) ;  

b) F can be factorized in the  fo rm 

F 
X > X  

where G: X - +  Y is an acyclic w-carrier f rom X into a complete  metr ic  

A N R  spa te  Y and  r:  Y -+ X is a singlevalucd map .  
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THE0~]~I 5.1. -- Let F: X -~ X be a .Le/sehetz w-carrier o / t h e / o r m  F = reff. Let 
h: JC(X)-->JC(X) be de]ined by h ~ r ,oG, .  Then I m h  is /initely generated (hence 
s is de/ined). Moreover i/  s r 0 there is x ~ X such that x e F(x).  

P~ooF. - F i rs t ly  suppose t ha t  X is a compac t  polyhedron.  Suppose t h a t  x ~ F(x) 
for every  x e X .  Then b y  the  compactness  of X there  exists e >  0 such t ha t  

x~sF(~x) ,  Vx e X .  
F r o m  L e m m a  7.1 of [10] it  follows t h a t  there  exists a compact  A N R  Z c ~ such 

t h a t  Z o G(X). We  have  t ha t  the  restr ict ion of r to Z is un i formly  continuous and 

hence there  exists a 80; ~ > (~o > 0 such t ha t  

d(r(z), r(z')) < s ,  Yz, z' with d(z, z') < ~o. 

For  any  ~ < (~0 let  of: X -+ Z c Y be a 5-approximat ion  of the  acyclic w-carrier G. 

Since ~(x) c ~G(~x) Vx e X, we get t h a t  

W(x) = ro~(x) c sF( tx)  c sF(ex) .  

Thus y~ is fixed point  free and  s = s  ---- 0. F r o m  definition of G,  we get 
t ha t  s  s  0 which proves  the  assertion. 

Before going fur ther  we recall the  following well known result  ([10]). 

Pn0POSlTIO~ 5.1. - Let 

E h ~ _ E  

h' 

be a commutative diagram o] graded homomorphism o/ graded modules. Then s is 
de/ined i/ and only i] s is de]ined and s = s 

Suppose now t h a t  X is a compac t  ANR.  Let  s > 0 be such t h a t  d(x, F(x))  > e. 
B y  Corollary 6.2 of [12] there  exists a compac t  polyhedron Z and two singlevalued 

maps  g: X -+ Z, ]: Z -~ X such tha t  

i) d(/og(x), x) < ~; 

ii) /og is homotopie  to id x 
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Let us call 2,' the composition 

Z f ~ X , 2 ,  g �9 > X  , Z .  

Then 2 , '=  r' oG', where r ' =  go r, G '= Gof. 
Furthermore 2,t is fixed poin t  free. In fact, if z e F ( z )  = go2,of(z), then /(z) e- 

e fogo2,of(z). For x----f(z) by i) we have that  x e e2,(x) contradicting the assump- 
tion. By the first step of the proof s = O. 

Applying the above proposition to the diagram 

J e ( x ) .  h = r*O,v* .-~ Je(x) 

~e(z) . ~  Je(z) 
! [ 

h ~ -= r ,oG,  

which is commutative since by ii) f , o g ,  = id, we get that  s is defined and s 
-: s ~ O. 

Finally, if X is any metric ANI~, let us take Z to be any compact ANR containing 
(2,X). Let G': Z --~ I~ b e t h e  restriction of G to Z and let 2 , '=  toG'. I t  is clear that  
2' and 2,t have the same fixed points, l~urthcrmore, the diagram 

~ ( x )  .,, 

i ,  

~(zI 

h ---- r ,  oG, 

h ' =  r, oG,: 

i ,  

~e(z) 

commutes. Therefore, s is defined and s ~(h'). This completes the  proof. 

CO~OLLA]~u 5.1. - Let C be an acyclie metric AIqI~. 
Then any Ze/schetz w.earrier 2, from C into itself with ~(2,) ~ 0 has a fixed point. 

PROOF. -- Since C is acyelic we get s = trace r~176 But r~176 JCo(C ) -+ JCo(C ) 
maps each class teJEo(C ) ~ R  into ~(F).$. Thus s ~(F)=A 0~ hence F has 
fixed point. 
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COI~OLLAI~Y 5 . 2 . -  Let  B ~- ( x :  Ilxtl be a closed ball in  a Banach  space E .  Le t  

F :  B ~ E be a Lefschetz  w-carrier wi th  ~(F) :/: O. I ]  x ~ ~B and  2x e F (x )  impl ies  
that 2 <1~ then F has a f ixed point .  

P ~ o o r .  - Le t  ~: E --~ B be the  radial  re t rac t ion  defined b y  

e ( x )  = 

x w h e n  Hx[I 

~x 
iix[ I when Ilx]t > ~ .  

~oF is ~ Lefschetz w-carrier  f rom B into itself wi th  index different f rom zero. Hence  
there  exists x e B such t h a t  x e ~F(x) .  Thus x --~ ~(y) for  some y e F(x).  

I f  Hyll > ~, x = ~y/I]ylt and hence 2 x e F ( x )  with 2----[ txH/~> 1, which contra-  
dicts the  hypothesis .  Thus HY[[ < ~  and so x = ~(y) ---- y e F ( x ) .  

COrOLLArY 5.3. -- .Let F :  E---> E be a Lefschetz  w-carrier wi th  ~(F)':/: O. Then  

either the set (x: 2x ~ F(x )  for some 2 > ~} is bounded or F has a f ixed  point .  

P ~ o o L  - I f  {x: 2 x E F ( x )  for some 2 ~  1} is conta ined in some bal l  B, we get 
t ha t  the  restr ic t ion of F to 3B satisfies the  hypothesis  of the  above  corollary. 

C O r O l L A r Y  5.4 .  -- = {x  + E :  i[xll = e}  be the boundary of a ball in an in- 
finite dimensional  Banach  space E .  Le t  F :  ~ B - - > E  be a Lefsehetz w-carrier w i t h  

~(F) =/= O. I f  inf ([IyH : x e 8B, y e F(x)} > 0, then there exists 2 > 0 such that 2x e F(x )  
for some x e ~B. 

P~ooF. - r ( ~ B ) c { x : e < H x l l < r } = D  , for some e, r > O ,  0 < ~ < r .  Le t  
g: D --~ 8B be defined b y  g(x) : ~x/IIx u. We have  t h a t  F o g  is a Lefsehetz w-carrier 
f rom D into itself with index different f rom zero. But  D is aeyclic, being deformable  

to the  boundary  of a ball. Hence,  b y  Corollary 5.1, there  exists some x E D such 

t h a t  x e F(g(x)) = F(@x/Uxll ). P u t t i n g  y : o~x/UxiI , 2 = Hx]l/@ we get  2y ~ F (y ) .  

COROLLARY 5.5. -- .Let E = R ~, B c E be a ball and let E :  B -.~ E be a Lefschetz 

w-carrier wi th  ~(P) r O. Suppose  that inf {<x, y>: x e 8/3, y e F(x)} > 0. Then  for 
some x e B ,  0 e F (x ) .  

PROOF. -- Le t  D:  B -> E be defined b y  D(x)  = {y: x - -  y e F(x)}. D is a Lefsehetz  
w-carrier since it can be decomposed in the  fo rm 

D ~ > E •  " 

where (~, is the g raph  of F and  d(x, y) = x - -  y. We shall see t ha t  D satisfies the  
hypothesis  of Corollary 5.2. 
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Suppose tha t  x e ~B with 2x ~ D(x). Let  y e F(x)  such t h a t  2x ~ - x - - y ,  then  
y ~-- (1 - - 2 ) x .  By  hypothesis  we have (x, y} ---- ( 1 -  A)(x, x } > 0 ,  hence 2~<1. There- 
fore, by  Corollary 5.2, D has a fixed point  x in B. Thus 0 ~ F(x). 

By Remark  4.1 we have tha t  any  w-carrier with values in the real line is a Lefschetz 
w-carrier. Thus from the above corollary we get 

COIr 5.6. - Let F:  [a, b ] - * R  be a w-carrier /tom the interval [a, b] inlo 
R with ~(F) V= O. Suppose that ~(a) c R- ,  F(b) c R +. Then ]or some x e [a, b], 0 ~ F(x).  

PgooF. - I t  suffieies to apply Corollary 5.5 to the w-carrier ~v,: [ - -1 ,  1 ] - ~ R  
defined by  t~'(x) = F (x. (b --  a)/2 ~- (b -~ a)/2). 

COROLLARY 5.7. -- Let X be path connected, 2~: X -~ Y be a w-carrier with ~(F) V= O. 
Then ]or each a, b, ~ X there is a connected compact subset C c F (X)  joining F(a) 
with ~(b). 

PROOF. - Le t  y: [ 0 , 1 ] - ~ X  a pa th  between a and b and let P = F o y .  Now 
D ~ IV([0, 1]) is a compact  subset of :Y. I f  does not  exist a compact  connected set 
C c D joining F(0) with _~(1), there  is a continuous funct ion ]: D--> {--1~ 1} tha t  
maps ~V(0) into {--1} and _~(1) into {1}. Bu t  this contradicts Corollary 5.6 since the 
w-carrier ~ :  [0, 1] -> {-- 1, 1} c R defined by  ~ = ]o_F satisfies all the  assumptions 
of 5.6 and 0 ~F(x) ,  Vxe  X .  

Jo in t ly  with Theorem 3.1 this gives 

COROLLARY 5.8. - Let M, s L, as in Theorem 3.1, ]: MX [0 ,  1] - ~ N  be a homo- 
topy such that ]-I(L) is a compact subset o/M X [0~ 1]. Suppose  that ~(]o~ M~ L)V= O. 
Then there exists a compact connected set C c ]-~(L) such that M •  {0} ~ C V= 0 and 
M• n r 

PROOF. -- Apply Corollary 5.7 to the  w-carrier ~'(t) ---- {(m, t ) : / (m,  t) e L}. 

I~E~A~K 5.1. -- For  fixed point  sets of parametr ized family of compact  mappings 
be tween  ANI~'s the  above resul t  is well known ([1]). I t  was  also used b y  P. RA- 
m~owiTz in proving the  existence of unbounded  branches of solutions for nonlinear 
S turm Liouville problems [20]. In  the form stated as in Corollary 5.7 it has been 
used by  H. SHAW for nonlinear part ial  differential equations ([21]). 

Hence Corollary 5.7 can be viewed as i~n extension of this connection proper ty  
to Lefschetz w-carriers. Actual ly  the same result  holds fo r  all w-carriers defined as 
solution sets of equations depending on parameters  (see [17]). 

We shall give now an example firstly due to Fuller  which states a sufficient con- 
dition for existence of closed trajectories of vector  fields in a full torus. 

Le t  C ~ B '~ • S 1 be the full 2-torus tha t  is the  product  of the 2-ball B ~ with the 
circle ~1, Le t  X be a vector  field on C pointing inward on the boundary  S 1 • S 1 of C. 
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This implies tha t  the  t ra jec tory  of a point  is defined for all t ime t > 0 .  Hence,  X 
generates a semiflow q~(c, t) defined in C • R +. The universal  covering of C is a cylinder 

= B ~ •  The covering map ~: D--> C is defined by  s(x, 0 ) =  (x, e~~ The an- 
gular coordinate e ~~ defines a 1-form co on C such tha t  s*(~) ~ dO where z* is the 
induced map on con t ingen t  bundle and 0: D - - > R  is given by  0 (x, 0 ) =  0. 

For  v e C and t e R+ let  us consider t h e  integral of the form co over ithe par t  of 
the  t r a jec to ry  going from c to qD(c, t), that is 

t 

t) =~(X~(~,~)) d-~. ~(c, 
0 

I f  lira ~(c, t) -~ oo uni /ormly in c, then there exists a closed trajectory o] the ]ield X .  
$--->oo 

PROOF. -- The vector  field X induces a vector  field X on D such tha t  the semiflow 
r  t) covers the semiflow ~b(c, t) under  the  covering projection ~. i f  d ~ D, c---- 
---- ~(d), t>~0, we have tha t  the integral of the form co over the t ra jec tory  from c to 
~(c, t) coincides with the integral of the form d0 ---- z*(o over the pa th  of t ra jec tory  
from d to qb(d, t). Hence we get ~(c, t) ---- ~(d, t) : 0(q)(d, t)) - -  0(~b(d, 0)). There- 
fore the coordinate O(~(d, t)) of the  t ra jec tory  passing by  d must  go to infinity with t. 
Le t  ho, hi be the imbeddings of the ball B ~ in D given by  ho(x) = (x, 0), h~(x) = (x, 1). 
Thus, S, ~-h~(B 2) ~-0-~(i),  i----0,  1 are 2-dimensional submanifolds of D. 

By  the above discussion the set {t: 0(~(ho(x), t ) ) =  1, x ~ B  ~} is compact.  There- 
fore, exact ly as in example 3.5, the mult ivalued map ~ ( x ) =  { t :~(ho(x) , t )ES~}  
is a w-carrier which is aeyclie by  l~emark 1.1. Since 0(~(ho(x), t)) -~ oo as t--> 0% 
it is not  difficult to see tha t  the index {(~) ~ :l. 

For  each d E D, let us denote b y  F(d) = {r t) : t > 0} the t ra jec tory  of the vector  
field X passing t rough d. Since the mult ivalued map G(x) = F(ho(x)) n S~ can be 
decomposed as 

B~ h~ ~> D X R  ~ ~ D , 

it follows tha t  G is a Lefschetz w-carrier. Since G(B 2) c $1, it follows tha t  F ~ h-[toG 
is a Lefschetz w-carrier f rom the ball B ~ into itself. Fu r the rmore  ~(F) = ~(~) :/= 0. 
Hence by  Corollary 5.1 F has a fixed point. Bu t  the fixed points of the map F cor- 
respond to the closed trajectories of the  field X since ~hl = xh0. 

6. - Proof  o f  the  m a i n  theorem.  

We star t  with some auxiliary propositions. 
Le t  U, V b e  open subsets of X such tha t  U c V .  We say tha t  U i s  banal in V 

if the homomorphism JC~(U) - ~ / ~ ( V )  induced in homology b y  the  inclusion i:  U --> V 
is equal to zero Vq>l .  
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P ~ o P o s ~ o ~  6.1. - Zet X be a compact polyhedron, let Y be a metric A_NR and 
let ~ :  X - +  ~ be an acyelic w-carrier. Then ]or any e > 0 there exists ~;> O, 3 <  ~, 
s~ch that 3F(3x) is banal in e~(sX)~ Vx e X. 

PROOF. -- Since Vx ~ X ,  ~=(/7(x)) = 0, Vq > 0 ,  by  the  construction of ; ~  we have 
tha t  there exists e~, 0 <  e~< e, such tha t  2e~/V(x) is banal in eF(x), V x e X .  

By the uppersemicontinuity of lv, Vx there exists ~ < e~ such tha t  1~(~ x) c e~/7(x). 
Let  ~ be the Lebesgue number  of the covering {�89 ~ x}~x. Then for every x e X there 
exists x ' e X  such tha t  ~xc  ~ ,  x' and hence F(Ox)ce~,F($') .  Since O<3~,<e~, we 
have tha t  3F(Ox) c 2~F(x ' )  c eF(x'). Moreover, since x' e ex, we get tha t  ~/~(~x) c 
c ~:F(x') c ~/~(~x). 

The banal i ty  of 3F(ax) in aF(ex) follows now from the commutat iv i ty  of the 
diagram 

0 

:PROPOSITION 6.2. -- Zet ~Y be as in Theorem 4.1. A w-map ~f: (0, 1} --> ~ can be 
extended to whole o] [0, 1] i] and only i] ]or any component C o/ ~ we have that 

v(1)) = v (o) ) .  

PROOF. -- That  this condition is necessary follows from b) of Definition 1.1. 
To show tha t  it is also sufficient, let us notice tha t  ~(0), ~(1) are singular 0-chains 

tha t  can be decomposed in a sum of 0-chains with support in each connected com- 
ponent.  Thus we can assume tha t  Y = C is connected. Since ~(C I ~(0) --  ~(1)) ---- 0, 
the singular chain ~ ( 0 ) -  ~(1) is a reduced singular 0-cycle. Hence it is a boundary  
of some singular 1-chain ~ 2 , a , .  

The w=map ~(x)----~ ~,a~(x) is the desired extension. 

PROPOSITION 6.3. -- Zet U c V be an open subset o] ~ such that U is banal in V. 

A n y  w-map q~ ]rom the q-sphere Sq into U can be extended to a w-map ~p ]rom the q~-l-balt 
B ~+1 into V~ q ~ 1. 

PROOF. -- Let  us denote with a[Sq; :Y] the R-module of all a-homotopy classes o~ 
w-mappings from S~ into Y with index 0. 

By  Theorem 3.5 of [16] We have tha t ,  if j e Jr q) is a generator of JCq(2q) _~ R 
and Y has the homotopy type  of a CW-eomplex, then  the Hurewicz map h: a[Sq; :Y] --> 
--~JCq(Y) given by  h(~0)= ~o.(j) is an isomorphism for every q. Prom this, by  the 
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e o m m u t a t i v i t y  of the  d iagram 

~[S~; U] �9 a[S~; V] 

i , =  0 
~ ( U )  - ~ ) . V )  
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it  follows t h a t  i ~ = 0. Thus,  any  w-map  of index 0 f rom Sq into U considered as 
w-map  into V is null  homotopic .  Therefore,  i t  can be ex tended  to Bq+~. When  
has a rb i t r a ry  index the  p rob lem can be reduced to the  above  one tak ing  ~ = ~o 
- -  i (~)y with y e U. This achieves the  proof. 

P~ooF oF ~n]~o~E~ 4.1. - Suppose t h a t  d im ( X \ X o )  ~ n. Using Proposi t ion 6.1 
we shall cons t ruc t  a sequence {e~}o<~< n , s~ > 0 V~, in the  following way.  

Le t  ~(s) ---- sup {(~: ~ < e, (~F(~x) is bana l  in eF(ex) Vx e X ,  Vq > 0}. We take  
so ---- e and  define et = �89 0(�89 

Clearly, we have  

1) 4s~<e~+a~ 0 < i < n - - 1 ;  

2) 2e,F(2e,x) is b a n a l  in 1 1 ~e~+~F(~e~+~X), Vx e X .  

Since F is uppersemicont inuous ,  for every  x ~ X ,  there  exists an open neighborhood 
U~; wi th  d iam U ~ <  eo such t h a t  /~(U~)ceoF(x)~ Vx E X .  

Let  (K, ]5) be  a t r iangula t ion  of (X, Xo) with mesh less t h a n  the  Lebesgue n u m b e r  
of the  cover ing {U~}~ x .  

To prove  our theorem it is enough to show t h a t  any  e0-approximation ~v: L -+ ]C 
of the  w-carrier F res t r ic ted  to L can be extended to an e~-approximation ? :  K (~) [j  

U L -+ Y of ~VlK(~)VL (where K (r) denotes the  r-skeleton of the  simplicial complex K).  
Le t  us choose for each s implex a of K not  in L a point  x, such t h a t  ~ c U~. (this 

is a lways possible b y  the  above  construction).  Also there  arc not  restr ict ions in 
assuming t h a t  if a is ac tual ly  a ve r t ex  v of K not  in L then  x ,  : v. 

We ex tended  now ~v f rom L to  K (~ D ]5 in the  following way.  

Le t  v be  a ve r t ex  of K not  in E. Since F(v) is compac t  it  mee t s  only a finite n u m b e r  
of components  of the  open set eoJY (soy), say C~, ..., C~. Le t  us choose a poin t  y~ 
in each componen t  C~: W e  define q b y  

r 

~(~) = Z ~(c~, F(~))  y , .  
i = 1  

Clearly, ~ is an co-approximation of ~IK~o)~. 

We ex tend  now ~ to K(~)wL.  Le t  a -  <vo, v~> be a 1-simplex of K not  in L. 
Since a c U~. and  d iam U~, < co, we have  t h a t  

3) Coy i C eoff C 2eoXa" 
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Let  W----2soF(2sox~). Since ~ is an co-approximation of FI~r we have t h a t  

~(v~) c So:~(SoVJ c So~(2SoX~) c W by  3). 
We will ex tend  ~: ha -+ W to whole of a. By  Proposi t ion 6.2 it sufficies to prove 

tha t  ~(C, ~(Vo)) ---= ~(C, ~(vl)) for each component  C of W. In  fact, if C is any  such 
component  we have tha t  

C~ = C ~ SoF(Sov~) a r e  pieces of soF(SoVJ, i = 1, 2 .  

B y  excision and since ~ is an so-approximation of F[o, we obtain 

~(c, v(v~)) = ~(c~, v(v~)) = ~(c~, ~(v,))  = ~(c, ~ ( ~ ) )  ~ = 0, ~ .  

B ut  /~: ~ - >  W is a w-carrier; therefore  by  connectedness of a we have tha t  

i(C, F(vo)) : ~(C, ~V(v,)). Hence ~(C, ~(Vo)) ~- ~(C, ~(vz)). 
Le t  ~: ~ --~ W be any  extension of ~: ha --~ W. We will see tha t  ~ is actual ly 

an el-approximation of Fl~. 
l~rom 1) it follows t ha t  2eoX~ c e~x, Vx ~ a. Hence,  

4) W -~ 2SoE(2eoX~) c s~(e~x) ,  Vx ~ g. 

Thus, we obtain tha t  ~(~)c  eiF(s~x), Vx ~ (r. This shows i) of Definition ~.2. 
In  order to prove ii), let us observe tha t  by  4) if C is any piece of s~F(slx) then  

C~ ---- C n W is a piece of W. Since ~(~) c W, F(a) c W, by  b) of Definition 1.1 we 
have that 

~ ( c .  ~(v~ = ~(c~, v(x)) ; ~ ( c .  ~(~0)) = ~ ( c .  F ( x ) ) ,  Vx e ~ .  

Hence by  excision 

~(c, v(x)) = ~(cl ,  ~(x)) = ~(cl ,  V(Vo)) = ~(c~, ~(Vo) = ~(c~, T(x)) = ~(c, F ( x ) ) .  

This proves ii). 
By  glueing together  each approximat ion ~%: a --~ Y with those defined on sim- 

plexes t ha t  meet  a, we get an el-approximation ~ o f /~  restr ic ted to K(1) w ]5. 
Suppose tha t  ~: K (~) W L -~ Y is an e,-approximation of F restr ic ted to K (~) W ]L. 

Le t  a be a (r -~ 1)-simplex of K not  in L. We have  t h a t  T is defined on the  boundary  
ha of a and V x e h a ,  cf(x) ce~F (s,x). Since aCeoX~CS~x~, we have t h a t  ~0(~a) c 
c e~F(2e~Xo) c 2e~E(2e~xo). 

Let W-~ �89189 By 2) we have that 2e~F(2e~x~) is banal in W. Thus 

by Proposition 6:3 we can extend ~ to a w-map ~: ~ --> W. 

In order to show that ~ is an s~+~-approximation of /~I~, letus observe that 

�89 c e~+lx, Vw e ~. This implies tha t  W c ~+lF(s~+~x) Vx ~ ~. Since ~(~) c W it 
follows tha t  i) holds. 
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I n  oder to prove  ii) let  C be a piece of s~+~(s~+~x). IJet C ~ =  C (3 W. B y  the  
above  a r g u m e n t  C ~ is a piece of W. Take  some xo belonging to the  bounda ry  3a. 

S ince /~:  ~ -+ W is a w-carrier,  b y  the  connectedness of a we get  for every  x ~ 

v ( x ) )  = v ( x ) )  = = = r ( x ) )  = F ( x ) ) .  

This achieves the  proof  of the  theorem.  

7. - Appendix. 

We shall give here a sketch of the  construct ion of the  intersect ion index of Sec- 

t ion 3. 
We shall use the  singular homology theory.  
Le t  M be a topological n-manifold  oriented over  a r ing R and let  K be a compac t  

subset  of M. We denote b y  0 x e H ( M ,  M - - K )  the  or ienta t ion class of M around  

K [7]. This class is earacterized as follows: Vq ~ K if ~: (M, M - -  K)  -+ (M, M -  q) 
is the  inclusion of pairs,  we have  t h a t  ~.(0x) e H , ( M ,  M - -  q) is jus t  the  or ientat ion 

class 0~ of M a t  q. 
I f  U is an  open set admissible for K we denote with 0~A ~ e H . ( U ,  U - -  U (~ K)  

the  image of 0~ b y  the  composi t ion 

H.(M~ M - -  K)  i ,  > t t~(M, M - -  K (3 U) excision H~(U, U - -  K (3 U).  

F r o m  the above character izat ion of or ienta t ion classes it follows t h a t  0KA v is 

jus t  the  or ienta t ion class of the submanifold  U of M around the  compact  set K N U. 

For  this reason we shall call 0KA v the orientation class around K in U. Notice also 

t h a t  OKA u = OK,A~ where K ' =  K ~  U. 

L]mv~A 7.1. - Let U be a disjoint union o] a ]amily {U~} o] admissible open sets. 
Let i~: (U~ U~--  K (3 U~) -+ (U, U - -  U (3 K) be the inclusion o] pairs. We have 

= y, i ,(OKA 
A 

the latter sum being ]inite since K ~ U~ = 0 ]or all but a ]inite number o] ~ - -  s. 

P~ooF. - Consider the  composi t ion 

h: @ H.(U~,  U~ - -  U~ (3 K) {i*~}> Ha(U, U - -  K) jq* > H~(U, U - -  q) 

where q e K n U. Now, h sends all components  of (0KAv~ } into zero except  those 

2 2  - A n n a l i  ell Matemat ica 
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2o one for which q e K ~ Ua,. The last one goes into 0~^ v.  Therefore,  

jq[{j~,} ({0~^ v~})] = 0~^ tr, Vq ~ K ~ U.  

Hence,  by  the character izat ion of the orientat ion class, we get 

~ ' ~  **(o~ ^,~) = {i~,} ({o~ ^,~}) = o~  ^ ~ .  

A 

L]~a~'~A 7.2. - Assume that K r Q are compact, W c U are open sets such that 
(U ~ W) c~ Q = 0, I1 i , :  H.(W.  W - Q  (~ W) --->H~(U, U - - K  ~ U) is the excision 
o/pairs  (W, W - - Q  ~ W) --~ (U, U ~  K (~ U) we have that 

i,(Oo^rz) = Olr ̂  rj . 

In  particular i /  

a) K = Q  then i,(O~^rz ) = O~Atr , 

b) W ~ -  U then i,(Oo^tr ) = OK^tr , 

W c U ,  

K c Q .  

P~ooF. - !ffotice tha t  K (~ U = K n W c Q n W. Iqow, for Vq e K (~ U consider 
the following diagram 

H~(W, W-- Q n w) 

i ,  

H~( U, U-- K ~ U) - 

J~ 

J~ 

H.(W, W-- q) 

H~( ~;, U-- q) 

H~(M, M--  q)t 

Since j ,  sends 0~^ W into Oqh v we get t ha t  Vq e K (~ U 

j ~ . ( i , ( o ~ ^ ~ ) )  = o ~ ^  ~ , 

hence, by  the  definition of or ien ta t ion  class, we have  t h a t  

i , (Oo^~) = 0~^ v .  

Let us consider an oriented (n + k)-manifold N. 
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Let  L be a closed connected oriented submanffold of ~r with dim Z----k. Let  
e H.(s N --  ]5) be its transverse class in h r which is a generator of i t ( X ,  N ~ I,) 

(see [7]). Le t  ]: M - +  N be a continuous map such tha t  K ~ ]-I(L) is a compact 
set. ]?or any  admissible set U we denote by ] v the restriction of ] to U viewed as a 
map of pairs iv: (U, U -  If) -+ (N, N -  L). 

The intersection index o/]  with s in U is defined as the unique r ~ ~(], L, U) e R 
such tha t  

lv,(OxAv) = r . ~  i n / / . ( N ,  ~ - - L ) .  

We will see tha t  the intersection index satisfies all the properties of 2.1. 

1) Additivity. By Lemma 7.1 we have 

- / ,  = = . 1, 5, 

Then by definition of ~(/, L~ U) we get 

v) = Z L, 

2) Excision. I f  W c  U a n d  U - - W C ~ K : 0 t h e n b y L e m m a  7.2 w i t h Q = K  
i . :  H.(W, W - -  K n W) --~ H.(U, U - -  K ~ U) sends the orientation class OKA w 
into OKAv. Thus we have 

and hence 

~(h s  u) = ~(/, L, w ) .  

3) Homotopy property. Let  h: M • I ---~. N be such tha t  Q = {x e U: h(x, t ) e L  
for some t} is a compact subset of U. 

Let  _Ko = {xe  U: h(x, O) eL} ,  K1 : ( x e  U: h(x, 1)'e L}. 
Then K. ,  K1 are compact sets contained in Q. Applying Lemma 7.2 with U = W 

to the pairs i~ .(U, U - - Q ) - +  (U, U--Ko) ; i~: (U, U--Q)--> (U~ U--K1)  we get 

i~ = O~c.Av; i~,(%Av) = O~.Av. 

Since ~: (U, U -  Q)•  -+ (N, N - - L )  is a homotopy of pairs we have tha t  

]i ~ = ~ .  l t . (U, U - Q )  --> H.(N, N - - L )  $ $ "  �9 
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The ~bove relation~ jointly with the commutut iv i ty  of the diagram 

H . ( V  

id 

i o 
U - Q )  * x - / / ~ (  u ,  u -  Ko) 

H~(N, N - -  L) ~ . ( U )  

~ -  Q) . ~ H~(U, U--  K~) 
i,  ~ 

implies tha t  

= h , ( , ( 0 ~ ^ , ) )  = hO,(O~.^,) o io )io,(oQ ̂  ~) ,  

h~,(O~.^ ~) = h,~(~i,(Oo ̂ , ) )  = ~,(0o ^ , ) .  

Therefore h(OK, AV ) -----h(O~^v) which achieves the proof. 
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