Fixed Point Theorems for Multivalued Weighted maps (*).

GIUSEPPE CONTI - JACOBO PrJsAcHOWIOZ (Roges, Cosenza)

Sunto. — Si dimostra un teorema di punto unito per una classe abbastanza ampia di mappe
plurivalenti con pesi fra gli ANR metrici. Questo teorema contiene tanto © classici teoremi di
punto fisso di Eilenberg-Montgomery, O’ Neill, Darbo come i risultati di connettivite di in-
stemé di punti fissi di famiglie parametrizeate di mappe dovuti a Leray e Browder.

Introduction.

It is well known that a multivalued uppersemicontinuous map which is acyelic
in positive dimension (fi.e. H (F(x)) =0, n >0, Vm) but not necessarily connected-
valued may not carry in general a nontrivial homology homomorphism. In fact .
R. Dunx [7] has shown that given any set S of natural numbers different from the
following ones: {n, 2}, {n,1), {n}, there exists a continuous finitevalued fized poini
free map F of the 2-cell B into itself such that the number of points of F(x) belongs
to 8 for each x. Clearly, such a map cannot carry a nontrivial homomorphism in
Hy(B). In order to avoid this difﬁcultiés, G. DARrRo in [3] introduced the concept
of weighted carrier (w-carrier) which is, roughly speaking, an uppersemicontinuous
multivalued map F such that to each piece (i.e. clopen subset) of F'(x) a multiplicity
(or weight) that is an additive function of pieces is assigned. Moreover, this mul-
tiplicity verifies a local invariance property of the same type as the multiplicity of
polynomial roots. Namely; if the boundary of an open set U in the range of ¥
does not intersect F(x), then the multiplicity of F(x)in U equals the multiplicity of
P(2’) in U whenever ' is close enough to x.

In the same paper he showed that an acyeclic (in positive dimension) w-carrier
from the 2-cell into itself having non zero index admits a fixed point. This result
has been improved to n-cell by DAx Socrio ([2]).

In [4] G. DARBO introduced the category of weighted maps (that is finite-valued
w-carriers) and defined a homology functor JC in this category such that whenever
restricted to the category of continuous maps between ANR’s it coincides with the
singular homology. By means of this functor he gave a generalisation of the Lefschetz
fixed point theorem for weighted maps defined in compact metric ANR’s (see [6]).

In this note we shall improve the Darbo’s result to a Lefschetz fix-point
theorem for Lefschetz w-carriers between ANR’s. This theorem generalizes several

(*) Entrata in Redazione il 1o dicembre 1979.



320 G1UsEPPE CONTI - JACOBO PEJSACHOWIOZ: Fived point theorems, ete.

well known fixed point theorems for set valued maps [8], [10], [19], and improves
our earlier result [15].

To this aim we shall show that acyclic w-carriers between compact polyhedra
induce a well defined homomorphism in the homology J¢ constructed in [4]. Moreover
this homomorphism is invariant by aecyelic w-carrier homotopies. In the context
of set-valued maps such a property in general cannot be stated (see [19], [13], [11]).

The main difference with the classical approach in defining the induced homo-
morphism is that we approximate the acyclic w-carrier F by w-maps instead con-
strueting chain maps. Using the fact that w-maps close enough to F induce the
same homomorphism in Darbo’s homology, we define the homomorphism induced
by F as the homomorphism induced by a w-map ¢ close enough to F. In the proof
of this fact we use several deep properties of the homotopy theory of w-maps
proved in [16].

This paper is divided as follows.

In Section 1 we define w-carriers and we give some of their elementary properties.
Sections 2 and 3 are devoted to showing that several set valued maps which appear
in concrete geometric problems are w-carriers. In Section 4 we state our main result
(Theorem 4.1) and define the homomorphiem induced in homology by an acyelic
w-carrier by means of which a Lefschetz fixed point theorem for acyeclic w-carriers
from a finite polyhedron into itself is proved. InSection 5 we extend this theorem
to compact w-carriers of a complete metric ANR of the form foF with f a single-
valued continuous map and F an acyclic w-carrier. Several consequences of this
result are deduced. Furthermore we apply our results to derive the existence of a
closed trajectory of a vector field in a full torus following an approach due to
_ Fuller ([9]). Section 6 is entirely devoted to the proof of Theorem 4.1. The appen-
dix contains the construction of the intersection index used in Sections 2 aud 3.
There is a variety of equivalent definitions of such an index. The main difference
in our approach consists in dropping compactness assumptions

1. — Preliminaries and definitions.

Let X be a regular topological space. A piece of X is any open and closed subset
of X. Clearly, the family $(X) of all pieces of X is closed under finite unions and
intersections.

If K is a subset of X and U is an open subset of X such that 0U N K = @, then
U N K is a piece of K. Conversely, if K is compact, by the regularity of X, it follows
that any piece C of K is of the form ¢ = U N K, with U openin X and dUNK = 0.

Let us recall that a multivalued map F: X — Y is called uppersemicontinuous if

1) F(w) is a compact subset of Y for any ze X,

ii) if 0c Y is elosed, then F-1(0) = {w e X: F(z) N C 0} is cloged.
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DEriNrrion 1.1. — A multivalued uppersemicontinnous map F: X — ¥ will be
called a weighted carrier (w-carrier) if, for any we X, to any piece C of F(z) is
assigned a weight or multiplicity §(C, F(»)) belonging to some commutative ring R
verifying the following conditions

a) i(+, F(x)) is an additive function on the set §(F(x)), i.e. 1(C, U Oy, F(z)) =
= {(0y; F(x)) + 7(Cy, F(»)) whenever 0, N C, = §;

b) if U is open in Y, with F(z) N 9U = 0, we have that {(F(z) N U, F(z)) =
=i(F(z'y N U, F(2')) whenever 2’ is close enough to x.

REMARK 1.1. — We say that an open subset U of Y is admissible for F(x) if
F(z) N 2U = @. When this occurs, the multiplicity #(F(x) N U, F(x)) of the piece
F(z) N U of F(z) will be called the multiplicily or the index of F(z) in U and will
be denoted by (U, F(z)).

Notice that by the uppersemicontinuity of ¥ we have that if U is admissible
for F(x), then it is also admissible for #(»') with 2’ close enough to ». Thus prop-
erty b) can be seen as a local invariance condition of the multiplicity (U, F(x)).
It states that if U is admissible for ¥ (z), the multiplicity of F(») in U equals the
multiplicity of F(x') in U whenever «' is close enough to 2.

Notice also that the multiplicity (Y, F(»)) does not depend on ze X if the
space X is connected. In this case this element will be called the index of F and we
denote it by iF.

The following properties of w-carriers can be easily verified

a) Let F': X — Y be uppersemicontinuous and suppose that F(z) is connected
for every xe X. Then ¥ becomes a w-carrier by assigning multiplicity
1 e R to F(r). In particular any continuous singlevalued map is a w-carrier.

b) Let F: X — Y be a w-carrier and f: Z — X (resp. f': ¥ — W) be a single-
valued continuous map. Then Fof (resp. f'oF) is a w-carrier.

¢) Let F': X — Y be a w-carrier and f: Z — W be a continuous single-valued
map. Then FXf: XXZ — YXW is a w-carrier.

d) If F: X — Y i3 a w-carrier, then the graph map 6¢,: X - XX Y, G, (») =
= {(», y): y € F(2)} is a w-carrier.

¢) Let P, T: X — Y be w-carriers such that F(z) N I'(x) = §, Yo e X. The
sum FPT: X - Y is defined as the multivalued map o ~ F(z) U T(x)
with multiplicities assigned as follows: if € is a piece of F(x) U T'(x) then

10, F&® T(@)) = i(C N Fx), F(z)) + 1(C N T(z), T(x)) .

f) Let F: X — Y be a w-carrier and let W be an open set such that oW N
NF(x)=90, Yve X. Then F can be decomposed as F = F, P F, with

Fio)=WnFz VreX; Fyx)=W°N Flw) VYeeX.

21 —~ Annali di Malematica
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2. —~ Multiplicity function versus index.

Let X be a regular space and let ¢ c X be a compact subset. We denote by Usg
the family of all open subsets of X which are admissible for €. By a multiplicity
function on ¢ we mean any additive function i defined on the family (C) of all
vieces of ¢ with values in R (alternatively 7 can be viewed as an element of the
Cech-cohomology module H(C, R)). '

Each multiplicity function 7 on C can be extended to an additive function 3
defined on the family U of all admissible open sets for € by defining

) =HCNT) VYUeUs.

Moreover, 7 satisfies the following eweision property:
If U, is an open subset of U with ¢ N (U — U,) = 9, then

Ui, UeUe and {U)=%T).

Conversely, any additive function 7 defined on U, that verifies the excision prop-
erty (such a 7 is usually ecalled «index») induces a multiplicity function on € as
follows.

If 8'is any piece of C, by the regularity of X, § is of the form § = ¢ N U with
UeUye. Therefore we take i(8) = #(U). By the additivity and excision properties
i(8) does not depend on the choice of U. Hence, 7 is well defined and it is clearly
additive. As a concluding remark we observe that if ¢ is a finite subset of X, a
multiplicity function on C is actually a function from ¢ to R.

Moreover, if U e Uy we have that

W)= 3 i@).

geCalU

We shall see now how the indexes appear in the manifold setting.

Let M, N be topological manifolds of dimension m and = respectively. Let
Lc N be a closed connected submanifold of dimension p with m — p = n. Suppose
that M, N, L are oriented over R. Let f: M — N be a continuous map such that the
set f~1(L) = {m: f(m) € L} is compact. For any open subset U of M which is admis-
sible for f~(L) we can assign an element i(f, L, U) of R called the intersection index
of f with L in U, such that the following properties are verified:

1) additivity if U; N U, = @ then

Z(fy L, U,V U,) = 5(7._7 L, U,) + 'i(f; L, U,);
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2) excision: if U,c U, (U — U,) N L= 0 then i(f, L, U,) =i(f, L, U);
3) homotopy invariance: if h: [0, 11X M — N is such that A—1(L) is compact
and U is admissible for h, Vie[0,1] then
%(ho, L,U)= g(hu L, U).

Ags consequence of 1), 2) we get

)y if i(f, L, U) # 0 then f(U)N L # 0.

The construction of such an index will be sketched in the Appendix.
Bzamples:

a) It M, N are of the same dimension and L is a point p € N, then i(f, L, U)
is the local degree of f at p (see[7]).

b) If N = M x M and L is the diagonal 4 of M X M, then the set f—*(L) is the
fixed point set of f and i(f, 4, U) coincides with the usual fix-point index
i(f, U) (see [T]).

More generally, the coincidence index of two maps f, g: M — N can be
described in the same way.

¢) Let S be any orientable Cl-manifold. Let G(S) be its tangent bundle. Given
a,nv vector field X S - B(8), let K(X) be the set ofc ritical points of X

(i.e. K(X)= {s = 0}). Let L be the zero section of G(S). For any
admissible open set U the index #(X, I, U) is just the index of critical points
of X in U.

3. — Examples of w-carriers.

By a parametrized family of mappings from M to N we mean a continuons map
f: M XP — N, where P is any locally path connected space. The following theorem
shows that the solution set of a parametrized family of equations on manifolds is
the graph of a w-carrier.

THEOREM 3.1. — Let M™, N*, L* as in 2. Let f: M X P — N be a parametrized
family of maps such that for any compact set B C P we have that | f,*(L) is relatively
compact in M. veB

Then the multivalued map S given by S(p) = f,*(L) is a w-carrier from P into M.

Proor. — It is well known that-a multivalued map is nppersemicontinuous if
and only if it has a closed graph and it sends compact subsets of the domain into
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relatively compact subsets of the range. Now 8§ has a closed graph because its graph
is {(m, p): f(m, p) € L} = f~*(L). The second condition is supplied by the hypoth-
esis, hence § is uppersemicontinuous. ,

Fix pe P. If U is an open admissible set for S(p), we can define 3(U, S(p)) as
the intersection index i(f,, L, U) of Section 2.

Since this index verifies the additivity and excision properties, it follows from the
discussion made in Section 2 that this index induces a multiplicity function on S(p)
for each p € P. Thus a) of Definition 1.1 is verified.

To show that this multiplicity satisfies also &) let us observe that if U is admis-
sible for S(p) then by uppersemicontinuity of § and since P is locally connected,
there exists a path connected neighborhood W of p such that U is admissible for
8(q) for each g W. For a given g € W let us take a path &) in W with £(0) = p,
£(1) = ¢q. Let us consider the homotopy &, = f¢,: M — N between f, and f,.

Since £(t) € W for each i, it follows that U is admissible for ., Vte[0,1]. From
this fact, by the homotopy invariance of the index i(h;, L, U) we get

E(Uy S(p)) = U(fs, L, U)= g(fa: L, U)= 7"'V(U7 S(Q)) .

This achieves b) of Definition 1.1.
As a consequence of Theorems 3.1 we get the following examples of w-carriers.

3.1. Let M, N be of the same dimensgion. If f: M X P —> N verifies the assump-
tion of Th. 3.1 with respect to a point » € N, then the equation f(m,p)=n de-
fines a unique w-carrier §: P — N with graph = {(m, p): f(m, p) = n}.

3.2. If f: M X P — M is uniformly continuous and each f, is compact, then the
multivalued map p ~ Fix (f,) = {m: f(m, p) = m} is a w-carrier.

Using the Leray fixed point index we can extend the above example to parametric
families of compact maps between ANR’s.

3.3. Let M, N be of the same dimension and f: M — N be a proper map. Then
the multivalued map f-2: ¥ — M is a w-carrier such that fof~! = deg (f)id,. In
fact, let P = N and let us take the parametrized family g: N X M — N X N, g(n, m) =
= (n, f(m)). Then, if L is the diagonal in N X N we get that g (L) = f}(n). Now
the assertion follows from 3.1.

3.4. Let 8 be a compact C-manifold, B(8) be its tangent bundle, I'(S) be the
space of all C° vector fields on S endoved with the compact-open topology. Then
the multivalued map that assigns to each vector field X the get K(X) of the criticai
points of X is a w-carrier from I'(8) into S. This follows by taking I'(S) as parameter
space and using the critical point index defined in ¢) of Section 2.

3.5.- Let § be a Ci-manifold, X: 8§ — B(8) be a complete vector field and let
@: §XE — 8§ be the flow of X.
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Let Lc § be a submanifold of codimension one. We shall denote by I'(s) the
trajectory of X passing by s at the time 0.

Suppose that {¢: ¢(s, t) € L, s € K} is compact for any compact set K. The mul-
tivalued map s ~ I'(s) N L is a w-carrier from 8§ to L. In fact, by Theorem 3.1 the
multivalued map 7(s) = {t: ¢(s,¢) € L} is a w-carrier from S to R. On the other
hand I'(-) N L coincides with

g AXT g @

8.

4. — Approximation of w-carrier by w-maps and induced homomorphism.

By a weighted map (w-map) we mean any w-carrier I': X — ¥ such that F(z) is a
finite subset of Y for any z e X.

Actually, as defined by G. DARBO ([4]), a w-map is an equivalence class of finite
valued w-carriers, but the above definition is more adeguate to our purposes and it
does not give any substantial difference with those of [4] (see also [18]). In partic-
ular all the results of [16] holds.

In order to avoid any possible confusion, w-maps will be denoted with greek
letters ¢, v, .... The composition of two w-maps is a w-map. Moreover, w-maps
can be added and multiplied by scalars in R. Actually, the set of all w-maps from
X to Y have an R-module structure compatible with the composition of w-maps.
Hence the w-maps between Hausdorff spaces form an additive category which con-
tains as a subcategory the topological one. ]

For any Hausdorff space X, G. DARBO has defined in [4] a graded homology
module Je(X) = {J€,(X)},>, such any w-map ¢: X — Y induces in a functorial way
a homomorphism @, : J,(X) — J,(¥). Moreover, ¢, is a c-homotepy invariant of ¢.

The functor JC verifies all the axioms of a homology theory with compact sup-
ports. Therefore, it coincides with the singular homology with coefficients in R at
least when X is a compact metric ANR.

Let X be a metric space and let D be a subset of X. We sghall denote by &D its
g-neighborhood in X, that is

eD = {we X:d(z, D)< e}.

Let us denote by J‘éq(D) the inverse limit over the family of e-neighborhoocds of
D of X, (D). '

In general feq(D) depends on the gshape of D in X, but, if X is an ENR, Dc X
is a compact subset, then %, is just the g-th Cech homology module of D.

To gee this we observe that Ve > 0, eD, being an open subset of an ENR, is an
ENR. Hence, by the above discussion we have that Ve > 0 J&,(eD) = H:‘“g(sD).
Since, as it was already observed in [7], the Cech homology of a compact subset of
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an ENR can be obtained as the inverse limit of the singular homology of its neigh-
borhoods, we get

®,D) = lim. inv. J,(eD) = lim. inv. H*(:D) = H,(D).

DEFINITION 4.1. — A w-carrier F': X — Y will be called acyclicif Vo e X JA(iq(F(m)) =0,
Vg > 0.

REMARK 4.1. — Notice that J%(,(F(w)) need not be R. For example, if each com-
ponent of F(z) is an acyclic set then F is an acyclic w-carrier. If R = Q, R,(F (), Z)
are finite groups Yg¢>1, Yo € X then F is an acyeclic w-carrier over the ring Q. Also,
since any open subset of the real line is a disjoint union of open intervals, it follow
that ,(C) = 0 for each ¢ > 0, C c B. Thus any w-carrier with values in the real

_line is acyclic.

DEFINITION 4.2. ~ We say that a w-map ¢: X — Y is an ¢-approximation of a
w-carrier F: X — Y if
1) o(x)ceF(ex) Vee X ;
ii) (0, ) =17(C, F(x)) for any piece O of ¢F(ex).

- We are now in a position of stating our main approximation result.

THEOREM 4.1. — Let X, Cc X be a finite polyhedral pair, let Y be a metric ANR and -
let F: X - Y be an acyclic w-carrier.

Given any &> 0 there exists ¢ 6> 0 such tath any JS-approvimation ¢: X, -~ Y
of F restricted to X, can be extended to an s-approximation §: X — Y of F.

The proof will given in Section 6.

COROLLARY 4.1. — Let F: X — Y be an acyclic. For each ¢ > 0 there exists an
e-approvimation p: X - Y of F.

Proor. — Take X, = § in the above theorem.

COROLLARY 4.2. — Let 8: XX[0,1] = Y be an acyclic w-carrier. Then for any
£ > 0 there exists a &> 0 such that if g2 X — Y, i = 0, 1 are 6-approvimations of 8
restricted to X X {i}, i = 0,1, then there exists an e-approvimation y: X x[0,1] > T
of 8 such that y restricted to X X {i} coincides with ;.

Proo¥F. — Let us take X, = XX {0} U X x {1} and let ¢: X, -~ Y be defined by
@, 0) = @y(2); @z, 1) == ¢i(x), Yo € X. Now Theorem 4.1 applies. '

COROLLARY 4.3. ~ Let F: X — Y be an acyclic w-carrvier. Then there exists 6> 0
such that any two S-appromimations ¢,, ¢, of F are g-homotopic (i.c. homotopic as
W-Maps).
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ProoF. — Let us take §: XX[0,1] - Y defined by S(x,¢) = F(x) and apply
Corollary 4.2 with ¢ = 1.

THEOREM 4.2. —~ Any acyclic w-carrier F: X — Y induces o graded homomorphism
F: y(X) = Ho(Y), Vo0 such that

a) If two acyclic w-carriers F,, Fo: X — Y are joined by an acyclic w-carrier
homotopy, then

Fi, = Fy: K(X) - Ko(X);
b) when the sum of F and T is defined we have
FDI), =F, + Ti: K(X) - K(Y);

¢) if v:Z — X is a continuous single-valued map and F: X — Y is an acyclic
w-carrier, then

(Fov)l = Fiovi: B(Z) — Ky(Y);
d) when F: X — Y is a w-map, F coincides with the homomorphism defined in [4].

Proor. — Given any w-carrier F: X — Y and § > 0 as in Corollary 4.3,if ¢: X — Y
is any d-approximation of F' then the homomorphism @?: J(X) — J,(Y) does not
depend on such a ¢. Hence, we define Ff==g2: J,(X) — J(Y).

By Corollary 4.2 if F;, F, are joined by an acyeclic homotopy, then any two suf-
ficiently close approximations are g-homotopic and therefore they induce the same
homomorphism in homology. This proves a). b) follows from the fact that if ¢, p
are J-approximations of F and T, then ¢ + v is a 2d-approximation of @ T. The
last two properties are trivial.

Let R be a field (or a principal integral domain). .

Let X be a finite polyhedron, F: X — X be an acyeclic w-carrier from X into

[==]

itself. The Lefscheiz number of F is defined as L(F) = > (—1)7 trace F.
a=0
With our definition of ¥, the following Lefschetz fix-point theorem for acyclic
w-carriers is an immediate consequences of those for w-maps.

THEOREM 4.3. — Let X and F: X — X as above. If C(F) 40, then there ewists
wve X such that x € F(x).

PrOOF. — Suppose that Ve e X, # ¢ F(z). Then by the uppersemicontinury of
the distance function d(x, Fi(»)) and since X is compact, there exists d > 0 such
that «¢ 6F(dx) Vo e X. Therefore, each J-approximation ¢: X — X of F, with
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' <8, is fix-point free. Hence, by a result of [6] we have that £(p) = 0. Thus also
£(F) = 0 which proves the theorem.

T.et us observe that if F is an aecyclic uppersemicontinuous map, then F is an
acyclic w-carrier. More generally, suppose that F: X — X is a multivalued conti-
nuous map such that

i) F(x) has n acyclic components Vo e X;

ii) F(x) has » or 1 acyclic components.

Let us assigne multiplicity 1 to each component of F{x) in the first case. In the
second case if F(z) has n components we assinge to each component the multiplicity
1 and, if F has 1 component, then we take it with multiplicity #. It is easy to see
that 7, endowed with this multiplicity, becomes an acyclic w-carrier. ] Hence our
result generalizes the well known Eilenberg-Montgomery [8], O'Neill [19] fixed point
theorems. A '
Notice, also, that F, is uniquely determined by the w-carrier I’ and it is invariant
under homotopy. This property is not satisfied by O’Neill’s construction [19].

5. — Fixed point theorem for Lefschetz w-carriers.

Tn what follows we assume that R is a field or a P.1.D.

Let us recall that if h = {h;};5, is an endomorphism of a graded R-module ¥
with finitely generated image then we can define the Lefschetz number of A as
follows:

Let L = {L;} be any finitely generated submodule of K such that Imhc L.
We define £(h) = 3 (— 1)’ trace (h;/L;). It is not difficult to see that £(h) does not
depend upon the choice of L.

DEFINITION 5.1. — A w-carrier from -a complete metric ANR X into itself will
be called a Lefschetz w-carrier if

a) it is compact (i.e. F(X) is a compact subset of X);

b) F can be factorized in the form

X—F——>X

G%'
Y

where G: X — Y is an acyclic w-carrier from X into a complete metric
ANR space Y and 7: ¥ — X is a singlevalued map.



GIUSEPPE CONTI - JACOBO PEJSACHOWICZ: Fived poini theorems, eic. 329

TEEOREM 5.1. — Let F': X — X be a Lefscheiz w-carvier of the form F = ro@. Let
h: (X) - K(X) be defined by h = ryoGy. Then Imh is finitely generated (hence
£(h) is defined). Moreover if L(h) % O there is w € X such that x € F().

Proor. — Firstly suppose that X is a compact polyhedron. Suppose that = ¢ F(x)
for every x € X. Then by the compactness of X there exists £¢> 0 such that
xv ¢ eF(ex), Yo e X.

From Lemma 7.1 of [10] it follows that there exists a compact ANR Z cY such
that Z > G(X). We have that the restriction of r to Z is uniformly continuous and
hence there exists a d,; £ > d,> 0 such that

d(r(e), r(2")) <e, Ve with d(z,2') < §,.

For any 6 < 4, let ¢: X — Z Y be a J-approximation of the acyclic w-carrier G.
Since @(z) c 6G(dz) Yo e X, we get that

p(x) = rogp(x) C eF(dx) ceF(ew) .
Thus w is fixed point free and L(y,) = L(ryop,) = 0. From definition of G, we get

that L(ryo@s) = L(h) = 0 which proves the agsertion.
Before going further we recall the following well known result ([10]).

ProrosiTioN 5.1. — Let B}

h
El ’ E/

be a commutative diagram of graded homomorphism of graded modules. Then C(h) is
defimed if and only if L(k') is defined and L(h) = L(h').

Suppose now that X is a compact ANR. Let e > 0 be such that d(z, F(x)) > e.
By Corollary 6.2 of [12] there exists a compact polyhedron Z and two singlevalued
maps g: X - Z, f: Z - X such that

i) d(fog(x), z) <e;

ii) fog is homotopic to id,
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Let us call F’ the composition

ztox T.x 9.4

Then F'= r'o, where r'= go r, G'= Gof. _

Furthermore ¥’ is fixed point free. In fact, if 2 € F'(2) = goFof(2), then f(2) e-
€ fogoFof(z). For & = f(2) by i) we have that » € eF(x) contradicting the assump-
tion. By the first step of the proof £(r;oG;) == 0.

Applying the above proposition to the diagram

! ’
h'= rsoQs

which is commutative since by ii) fiog, = id, we get that £(k) is defined and £(h) ==
= €Y = 0.
Finally, if X is any metric ANR, let us take Z to be any compact ANR containing

"(FX). Let G': Z — Y be the restriction of G to Z and let F'= roG'. It is clear that
F and F’ have the same fixed points. Furthermore, the diagram

Je(X) h = ryoly

ik

3%(2) —— — %(2)
h = "'*OG* ’

commutes. Therefore, (k) is defined and C(k) = £(k’). This completes the proof.

. COROLLARY 5.1. - Let C be an aéyclio metric ANR. , _
Then any Lefschetz w-carrier F from C into itself with %f(_F)# 0 has a fized point.
ProoF. - Since C is acyclic we get £(h) = trace rjoG): But rjoG: ¥y(0) — 3,(0)

maps each class &€, ,(0) =~ R into i(#)-& Thus £(h) = §{(F) ++ 0, hence F has a
fixed point.
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COROLLARY 5.2. — Let B = {w: |2 <g} be a closed ball in a Banach space B. Let
F: B —E be a Lefschetz w-carrier with {(F) % 0. If v € 0B and Jwv € F(x) implies
that 4<1, then F has a fived point.

Proor. — Let ¢o: B — B be the radial retraction defined by

» when || <p

o(e) =y ox
m when |z >p .

gol’ is a Lefschetz w-carrier from B into itself with index different from zero. Hence
there exists # € B such that # € oF(x). Thus x = p(y) for some y € F(x).

If |y| > ¢, # = oy/|y| and hence Az e F(x) with 4 = |jz]/e > 1, which contra-
diets the hypothesis. Thus [y <o and so # = g(y) = y € F().

COROLLARY 5.3. — Let F: B —E be a Lefschetz w-carrier with 3(F) 0. Then
either the set {x: Aw € F(x) for some A > 1} is bounded or F has a fized point.

Proor. —~ If {: Az € F(») for some 1> 1} is contained in some ball B, we get
that the restriction of F to 2B satisfies the hypothesis of the above corollary.

COROLLARY 5.4. — Let 8B = {x € H: ||| = o} be the boundary of a ball in an in-
finite dimensional Banach space E. Let F: 0B —E be a Lefschetz w-carrier with
i(F) s 0. If inf {|y|: = € 0B, y € F(x)} > 0, then there ewists A > 0 such that iz e F(x)
for some x € 0B.

ProoF. — F(0B)c{x:e<|#|<r} =D, for some & r>0, 0<e<r. Let
g: D — 0B be defined by g(x) = gx/|x|. We have that Fog is a Lefschetz w-carrier
from D into itself with index different from zero. But D is acyclic, being deformable
to the boundary of a ball. Hence, by Corollary 5.1, there exists some z € D such
that » e F(g(w)) = F(ow/|||)). Putting y = ow/|z], A = ||=]/e we get iy € F(y).

COROLLARY 5.5. — Let B = R, BC F be a ball and let F:+ B — E be a Lefschetz
w-carrier with 3(F) == 0. Suppose that inf {(x,y>:we B, ye F(x)}>0. Then for
some we B, 0 € F(x). : :

Proo¥. — Let D: B — E be defined by D(z) = {y: 2 —y e F(»)}. Disa Lefschetz
w-carrier since it ean be decomposed in the form

D——%EXE-L>E'

where G, is the graph of F and d(z,y) = ¢ —y. We shall see that D satisfies the
bypothesis of Corollary 5.2,
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Suppose that € 0B with Az e D(x). Let y e F(») such that v = o —y, then
y = (1 — A)o. By hypothesis we have {w, y) = (1 — A){%, > >0, hence A< 1. There-
fore, by Corollary 5.2, D has a fixed point  in B. Thus 0 € F(x).

By Remark 4.1 we have that any w-carrier with values in the real line is a Lefschetz
w-carrier. Thus from the above corollary we get

COROLLARY B5.6. — Let F:[a,b] — R be a w-carrier from the interval [a, B] into
R with 1(F) # 0. Suppose that F(a)c R-, F(b) c R*. Then for some x € [a, b], 0 € F(x).

Proor. — It sufficies to apply Corollary 5.5 to the w-carrier #':[—1,1] -~ B
defined by F'(z) =F (z-(b—a)/2 + (b + a)/2).

COROLLARY B.7. — Let X be path connected, F: X — Y be a w-carrier with 3(F) = 0.
Then for each a, b, X there is a connected compact subset CcC F(X) joining F(a)
with F(b).

PROOF. — Let y:[0,1] — X a path between a and b and let F = Foy. Now
D= F([O, 1]) is a compact subset of ¥. If does not exist a compact connected set
O c D joining F(0) with F(1), there is a continuous function f: D — {—1,1} that
maps F(0) into {— 1} and F(1) into {1}. But this contradicts Corollary 5.6 since the
w-carrier F: [0,1] — {—1,1} c R defined by F = foF satisfies all the assumptions
of 5.6 and 0 ¢ F(x), Yo e X. ,

Jointly with Theorem 3.1 this gives

COROLLARY 5.8. — Let M, N, L, as in Theorem 3.1, f: M x[0,1] — N be a homo-
topy such that f~(L) is & compact subset of M X[0,1]. Suppos e that i(f,, M, L)70.
Then there exists a compact connected set C C f~1(L) such that M x {0} N C %~ 0 and
Mx{1}n 0 0.

ProoF. — Apply Corollary 5.7 to the w-carrier F(t) = {(m, t): f(m, 1) € L}.

REMARK 5.1. — For fixed point sets of parametrized family of compact mappings
‘between ANR’s the above result is well known ([1]). It was also used by P. Ra-
BINOWITZ in proving the existence of unbounded branches of sclutions for nonlinear
Sturm Liouville problems [20]. In the form stated as in Corollary 5.7 it has been
used by H. SHAW for nonlinear partial differential equations ([21]).

Hence Corollary 5.7 can be viewed as an extension of this connection property
to Lefschetz w-carriers. Actually the same result holds for all w-carriers defined ag
solution sets of equations depending on parameters (see [17]).

We shall give now an example firstly due to Fuller which states a sufficient con-
dition for existence of closed trajectories of vector fields in a full torus.

Let € = B2x 8! be the full 2-torus that is the product of the 2-ball B* with the
circle 8. Let X be a vector field on C pointing inward on the boundary 81X 8* of C,
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This implies that the trajectory of a point is defined for all time ¢>0. Hence, X
generates a semiflow @(c, t) defined in ¢ X B*, The universal covering of C is a cylinder
D = B2xR. The covering map z: D — C is defined by n(z, 6) = (x, ¢°). The an-
gular coordinate ¢’ defines a 1-form w on C such that a*(w) = df where #* is the
induced map on contangent bundle and 0: D — R is given by § (w,0) = 6.

For ¢c C and t € R* let us consider the integral of the form » over ‘the part of
the trajectory going from ¢ to P(e,t), that is '

13
(6, ) = [0(Xoge) 41 -
0

If }lﬂ}, n{e, t) = co uniformly in ¢, then there exists a closed trajectory of the field X.

PROOF. — The vector field X induces a vector field X on D such that the semiflow
&(d,t) covers the semiflow P(c,t) under the covering projection m. If deD, ¢ =
= n(d), t>0, we have that the integral of the form w over the trajectory from ¢ to
®(c, t) coincides with the integral of the form dff = n*w over the path of trajectory
from d to &(d,t). Hence we get 7(c,t) = y(d, t) = 6(D(d, 1)) — 6(D(d, 0)). There-
fore the coordinate 6(P(d, t)) of the trajectory passing by d must go to infinity with ¢.
Lt hy, b, be the imbeddings of the ball B2 in D given by he(x) = (z, 0), hy(2) = (2, 1).
Thus, 8; = hi(B?) = 6-1(3), ¢ = 0,1 are 2-dimensional submanifolds of D.

By the above discussion the set {t: G(Qﬁ(ho(m), t)) =1, # € B*{ is compact. There-
fore, exactly as in example 3.5, the multivalued map t(z) = {t:@(ho(m), 1) e Sl}
is a w-carrier which is acyclic by Remark 4.1. Since 5((5(h0(x),t)) -> 00 a§ ¢ — 0o,
it is not difficult to see that the index i(7) = 1.

For each d € D, let us denote by I'(d) = {@(d, t): >0} the trajectory of the vector
field X passing trough d. Since the multivalued map G(z) = I'(ho(z)) N 8, can be
decomposed as ' ‘

SN

it follows that G is a Lefschetz w-carrier. Since G(B2) c 8, it follows that F = h*o @
is a Lefschetz w-carrier from the ball B? into itself. Furthermore i(F) = i(r) # 0.
Hence by Corollary 5.1 F has a fixed point. But the fixed points of the map F cor-
respond to the closed trajectories of the field X since mh, = mh.

6. — Proof of the main theorem.
We start with some auxiliary propositions.
Let U, V be open subsets of X such that Uc V. We say that U is banal in V

if the homomorphism JE,(U) e 3,(V) induced in homology by the inclusion ¢: U -V
is equal to zero Yg>1.
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PROPOSITION 6.1. — Lei X be a compact polyhedron, let ¥ be a metric ANR and
let F: X — Y be an acyclic w-carrier. Then for any &> 0 there exists 6 > 0, d < ¢,
such that SF(dx) is banal in eF(ex), Vo € X.

ProOF. — Since Vo e X, J%E(F(m)) = 0, Yg >0, by the construction of &, we have
that there exists e,, 0<e,<e, such that 2¢,F(x) is banal in &F(z), Yz e X.

By the uppersemicontinuity of F, Y there exists d,<e, such that F(d,x) C &, F(x).
Let § be the Lebesgue number of the covering {} 6,4},.x. Then for every x € X there
exists e X such that éxc d,, 2’ and hence F(dx)C e, F(z'). Since 0<J,. <&, We
have that 6F(dx) C 2¢,F(x') C eF(x'). Moreover, since o' € ex, we get that 6F(dx)c
CeF (') c eF(em).

The banality of 6F(dx) in eF(ex) follows now from the commutativity of the
diagram

Jea( 26, P(@')) ——> B (eF(a")

T

Ro(OF(0z)) ——> Je,(eF(ex))

PROPOSITION 6.2, — Let Y be as in Theorem 4.1. A w-map ¢:{0,1} — ¥ can be
extended to whole of [0,1] if and only if for any component C of Y we have that

(0, p(1)) = #(C, (0)) .

Proor. — That this condition is neeessary follows from b) of Definition 1.1.

To show that it is also sufficient, let us notice that ¢(0), (1) are singular 0-chains
that can be decomposed in a sum of 0-chains with support in each connected com-
ponent. Thus we can assume that ¥ = C is connected. Since i(C, ¢(0) — ¢(1)) = 0,
the singular chain ¢(0) — ¢(1) is a reduced singular 0-cycle. Hence it is a boundary
of some singular 1-chain » 7,0;.

The w-map y(x) = Y 4;0,(x) is the desired extension.

PROPOSITION 6.3. — Let Uc V be an open subset of Y such that U is banal in V.
Any w-map ¢ from the g-sphere 8¢ into U can be extended to a w-map p from the q—++1-ball
Bett jnto V, g>1.

PROOF. —~ Let us denote with o[8¢; Y] the R-module of all s-homotopy classes o:
w-mappings from 8¢ into ¥ with index 0. .

By Theorem 3.5 of [16] we have that, if j e J6,(S%) is a generator of (89 ~ R
and Y has the homotopy type of 4 OW-complex, then the Hurewicz map h: o[8¢; Y] —
—» X, (Y) given by h(g) = @4(j) is an isomorphism for every g. From this, by the
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commutativity of the diagram
it
o[8% U] —— o[84; V]

| b

’T)  2=2 57

it follows that if = 0. Thus, any w-map of index 0 from 8¢ into U considered ag
w-map into V is null homotopic. Therefore, it can be extended to B¢+, When P
has arbitrary index the problem can be reduced to the above one taking p=1yp—
—i(p)y with y € U. This achieves the proof.

PROOF OF THEOREM 4.1. — Suppose that dim (X\X,) = #. Using Proposition 6.1
we shall construct a sequence {¢;};,, £:> 0 V,, in the following way.

Let o(e) = sup {3: 6 <&, 6F(dw) is banal in :F(ex) Yo e X, Vg> 0}. We take
g = ¢ and define &, = }o(}e,_y).

Clearly, we have

1) des<eiq, O<i<n—1;

2) 2¢;P(2¢;2) is banal in i, Plhea ), Yoe X.

Since F' is uppersemicontinuous, for every z € X , there exists an open neighborhood
U, with diam U, < ¢ such that F(U,)c & F(z), Yo e X.

Let (K, L) be a triangulation of (X X,) with mesh less than the Lebesgue number
of the covering {U_} ...

To prove our theorem it is enough to show that any e, approximation ¢: L - Y
of the w-carrier F restricted to I can be extended to an e-approximation ¢: KM U
UL —>Y of Flpny, (where K denotes the r-skeleton of the simplicial complex K).

Let us choose for each simplex ¢ of K not in L a point @, such that o c U,, (this
is always possible by the above construction). Also there are not restrlctlons in
assuming that if ¢ is actually a vertex » of K not in L then z, = .

We extended now ¢ from L to K‘“'U L in the following way.

Let v be a vertex of K notin L. Since F(v)is compact it meets only a finite number
of components of the open set ¢, F (20v), say Cj, ..., C,. Let us choose a point y,
in each component ;. ‘We define ¢ by

2 (Ciy, F(v))y

Clearly, ¢ is an e,-approximation of Flroop-
We extend now ¢ to KO UL. Let ¢ = {0y, v;> be a 1-gimplex of K not in L.
Sinceo c U, and diam U, . < &, We have that

3) & Ce0C2ea,.
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- Let W= 260 F'(2¢4,). Since ¢ is an s-approximation of F|gw,; we have that
() C &g F(ge0;) C 8o F(2¢4,) C W by 3).
We will extend ¢: 86 — W to whole of ¢. By Proposition 6.2 it sufficies to prove
that #(C, p(v)) = #(C, ¢(v,)) for each component € of W. In fact, if € is any such
component we have that

C;=0NgF(ev;) are pieces of & Flgv), t=1,2.
By excision and since ¢ is an g-approximation of F|,, we obtain
5(0, 99(7}1)) == 7";’(0“ (p(@l)) = 'E’(Oi, F(/Uz)) == %(0, F(’l}z)) ?« = 0, 1 .

But F:o-—- W is a w-carrier; therefore by connectedness of ¢ we have that
(0, F(vy)) = 1(C, F(vy)). Hence i(C, p(v,)) = 1(C, p(vy)).

Let ¢: 0 — W be any extension of ¢: 00 — W. We will see that ¢ is actually
an g-approximation of F|,.

From 1) it follows that 2e,,C &2, Yo € 0. Hence,

4) W =2¢F(2¢1,) C &, F(e,2), Vo 0.

Thus, we obtain that ¢(o) C &, F(e1#), Yo € 0. This shows i) of Definition 4.2.

In order to prove ii), let us observe that by 4) if € is any piece of & F(e;2) then
0, = 0N W is a piece of W. Since ¢(d) c W, F(s) c W, by b) of Definition 1.1 we
have that

7N:'(O'u 99(?70)) = ’Z(Ou (P(w)) ; 77(01’ F(”o)) = %(017 F(w)) y Vreo.
Hence by excision
0, glo)) = i(Cy, p(2)) = (Ca, p(ve)) = §(C, F(vg) = (Cy, F(a)) = #(C, F(a)) .

This proves ii). v

By glueing together each approximation ¢ : ¢ — ¥ with those defined on sim-
plexes that meet o, we get an g-approximation ¢ of F restricted to KV L.

Suppose that ¢: K»U L — Y is an e-approximation of F restricted to KU L.
Let o be a (r + 1)-simplex of K not in L. We have that ¢ is defined on the boundary
o¢ of ¢ and Vze 0o, p(@)Ce, F (¢2). Since ocCeyw,Ce,x, we have that ¢(do)C
Ce F(2¢,,) C 26, F(2¢,,).

Let W=4}e,,..F(3e,12,). By 2) we have that 2¢,F(2¢,,) is banal in W. Thus
by Proposition 6.3 we can extend ¢ to a w-map ¢: ¢ — W.

In order to show that ¢ is an e, -approximation of F|, let us observe that
Yé,1,Cée, 12, Yo eo. This implies that W Ce,., F(e,.12) Yo € 0. Since g(o) c W it
follows that i) holds. \

a?
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In oder to prove ii) let C be a piece of &, F (s, 2). Let (= C N W. By the
above argument C! is a piece of W. Take some x, belonging to the boundary do.
Since F': ¢ —> W is a w-carrier, by the connectedness of o we get for every z € o

5O, pl@)) = 1(0%, pla) = 1(C", play) = §(C%, F(ay) = 3(C", F(a) =(C, F(@)) .

This achieves the proof of the theorem.

7. - Appendix.

We shall give here a sketeh of the construction of the intersection index of Sec-
tion 3.

We shall use the singular homology theory.

Let M be a topological n-manifold oriented over a ring R and let K be a compact
subset of M. We denote by O, € H (M, M — K) the orientation class of M around
K [7]. This class is caracterized as follows: Yge K if 7,: (M, M — K) — (M, M — q)
is the inclusion of pairs, we have that 7,.(0,) € H, (M, M — ¢) is just the orientation
clags O, of M at gq.

If U is an open set admigsible for K we denote with O, ,€ H, (U, U— U N K)
the image of O, by the composition

exelision
———H,

H (M, M —K)~2>H M, M —EN T (U, U—ENT).

~

From the above characterization of orientation classes it follows that O, is
just the orientation class of the submanifold U of M around the compact set £ N U.
For this reason we shall call Oy, , the orientation class around K in U. Notice also
that Op,y = O,y Where K'= KN U.

LeMMA 7.1. — Let U be a disjoint union of a family {U,} of admissible open sets.
Let i*: (U,, U,— K N U,) - (U, U— U N K) be the inclusion of pairs. We have

OK/\U = ; ii(OK/\ i) s

the latter sum being finite since K N U, = 0 for all but a finite number of A — s.

Proor. — Consider the composition
{i4} ot
hPHLU,, U,—U,NK)—>H,(U, U—K)———H,(U, U—gq)
7
where g€ K N U. Now, h sends all components of (O ,,,} into zero except those

22 -~ Annali di Malemalica
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4, one for which ¢e KN U, . The last one goes into O,, . Therefore,
Jl{i Oz pv )] =Opys Vi€ENT.
Hence, by the characterization of the orientation class, we get

}.2 ii(ox/\ Ua) = {@i} ({OK/\UA}) = Ox/\v .

LeMMA 7.2. ~ Assume that K cQ are compact, W c U are open sets such that
T—-WMNQ=0, If i H(W. W—QNW)—H, (U, U—K N U) is the excision
of pairs (W, W —Q N W) — (U, U— K n U) we have that

tx(Ogrw) = Ogpv -

In particular if
a) K =@ then ix(Ogpp) =O0gpry, WcCU,
b) W="U then ix(Ogpy) = Ogpy, KCQ.

Proor. —~ Notice that KN U =KnN WcQ n W. Now, for Vge K N U consider
the following diagram ‘

. W .
H(W, W— QW) —2" o H(W, W— )
\
s J Hy(M, M~ g)|
/
H(U, U~ENT) —— > BT, U g)
Jar

Since jy sends O, into 0,,, we get that Yge KN U
jg‘(i*(oa/\w)) = O4pv»
hence, by the definition of orientation class, we have that

i*(oa/\w) = OK/\U .

Let us consider an oriented (n - k)-manifold N.
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Let L be a cloged connected oriented submanifold of ¥ with dim L = k. Let
n € Ho(N, N — L) be its transverse class in N which is a generator of H (N, N — L)
(see [7]). Let f: M — N be a continuous map such that K = j~}(L) is a compact
set. For any admissible set U we denote by fU the restriction of f to U viewed as a
map of pairs fU: (U, U — K) — (N, N — L).

The intersection index of f with L in U is defined as the unique » = i(f, L, U) e R
such that

20gpp) =7y in H(N,N—1L).

We will see that the intersection index satisfies all the properties of 2.1.

1) Additivity. By Lemma 7.1 we have
1Ox00) =17 (S840x5)) = S I #0xn0) = 31500
Then by definition of i(f, L, U) we get
i, L, U) = gg(f, L, ?a)-

2) Excision. 1t Wc U and U — W N K = ¢ then by Lemma 7.2 with @ = K
g H(W, W—KnNW)—->H,(U,U—KnN U) sends the orientation class 0O

EAW
mto Og,,. Thus we have

ff(OK/\U) = fSOi*(OK/\W) = f:V(OK/\W)
and hence
;(L La U) = i(fa L7 W) .

3) Homotopy property. Let h: M XI — N be such that @ = {xe U: h(z,t) e L
for some t} is a compact subset of U.

Let Ky={xe U: h(z,0)e L}, K, = {we U: k=, 1)e L}.
Then K,, K, are compact sets contained in ¢. Applying Lemma 7.2 with U = W
to the pairs i (U, U—@Q) — (U, U—K,); : (U, U—¢@) - (U, U—K,) we get
i(Ogpv) = Og,p v 1,(Ogpv) = Og, r v

Since A: (U, U—Q)xI — (N, N— L) is a homotopy of pairs we have that

B =h:H,(U, U—Q)—>H(N,N—1L).
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The above relation, jointly with the commutativity of the diagram

,£0
H(U, U— Q) : > H,(U, U— K,)
id ~1/' H,(N, N— L) , H,(U)
* hi /
H(U, U— Q) - = H,(U, U— K,
Tk

implies that

h:(om/\v) = hi(iz(oa/\v)) = ﬁ:(oa/\v) ’
W (Og,pv) = Py (iy(Ogpp)) = ﬁi(oe/\v) .

Therefore h(Og, py) = M(Og, \y) Which achieves the proof;
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