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Summary. — The number of nonoscillatory solutions of a forced second order linear differentiol
equation is studied under the hypothesis that the homogeneous equation is oscillatory. The
main technigue involves expressing a general solution of the forced equation in terms of fwo
paramelers, given a pair of independent solutions of the homogeneous equation (see (2.4) below).

1. - Intreduction and preliminary remarks.

We present in this paper some results dealing with the oscillation and nonoscilla-
tion of solutions of the forced second-order linear equation

(1.1) (p®0y) + ety =1), a<i<oo,
under the standing hypothesis that the associated homogeneous equation
(1.2) (p(t)w’)"l‘ g)z=10, a<i<oo,

is oscillatory. The bulk of the paper is devoted to results which limit the collection
of non-oscillatory solutions of (1.1); we conclude, however, with a sufficient condi-
tion for such a solution to exist.

By a non-oscillatory solution of (1.1) we mean, as usual, a solution which is
either ultimately positive, or else ultimately negative as t — co. One can also discuss,
as.in [4], solutions of « Z-type », which have arbitrarily large zeros but ultimately
do not change sign. For want of a better term, let us say that a solution is of
NO-type, if it is either ultimately non-negative, or else ultimately non-positive.

It is a basic observation that, if (1.2) is oscillatory, then the non-oscillatory solu-
tions have the same ultimate sign, and form a convex set. Similarly, solutions of
NC-type are either all ultimately non-negative, or else all ultimately non-positive,
and again form a convex set.

The convexity of these sets of solutions may be realized geometrically by various
maps from the set solutions of (1.1) to the plane. One method will be to associate

(*) Entrata in Redazione il 16 maggio 1979.
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with a solution y of (1.1) its initial data (y(a), y'(a)); a second method is given by
expressing the general solution of (1.1) in terms of two parameters, given a pair
of independent solutions of (1.2).

As an example of the first method, non-oscillatory solutions of

(1.3) y+y=1, >0,

are given by taking (y(0), ¥'(0)) to be in the open unit disc, and the set of NC-type
solutions corresponds in this way to the closed dise. Again,

(1.4) Yhy=t1427, i>1,

has a unique non-oscillatory (or N C-type) solution, corresponding under this map
to the point (1, —1).

In [B], an example was presented where the initial data of the non-oscillatory
solutions formed a line, and other examples can be easily constructed. We refer to
Doran [3] for a more detailed investigation concerning the structure of sets of initial
data for non-oscillatory solutions of (1.1), when (1.2) is either non-oscillatory or
oscillatory.

With such a mapping from non-oscillatory solutions to the plane, we can rec-
ognize the following four possibilities for the convex sets in question, associated
with the non-oscillatory solutions (or alternatively the N (-type) solutions:

(i) the empty set,
(ii) a single peint,
(iii) a segment of a line,
(iv) a set in the plane with non-empty interior.

We shall give mainly conditions ensuring that one of (i), (ii) is the case, or again
that one of (i), (ii) or (iii) is the case. ‘

We agsume throughout that p(¢) is positive, and that p, ¢ and f are continuous;
the latter requirement can often be weakened to measurability. Sign-restrictions
on ¢,f will be made only as and when needed. We often take the case pt) =1,

which may be regarded as covering the case that f di/p(f) = oo, by way of a change
of independent variable. @ :

2. — Variation of parameters.
We introduce the modified Wrenskian

(2.1) W(u, 0)(t) = (upo'— opa')(1),
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and denote by z,, #, a pair of solutions of (1.2) such that
(2.2) ’ Wz, ) =1.

We represent a solution of (1.1) in the form

(2.3) Y=o Wy, 0) — 2. W(y, #1)

and note that, for some constants 4, 4,,
: .
(2.4) Wy, @)= 4,— [f{e)a(s)ds, j=1,2.

We can substitute (2.4) in (2.3), and obtain a mapping from solutions of (1.1) to
points (4;, 4,) in the plane; this mapping will associate convex sets with non-
oscillatory or N(-type solutions and was the second method referred to earlier.

3. — Preliminary results.
Suppose for definiteness that y is a non-oscillatory solution of (1.1), and that
(8.1) yH>0, i>T.

Let t',¢" be consecutive zeros of #,(¢) in [T, oo), and suppose that z,(t) >0 in (¥, 1").
Then 2,(t') > 0, #(t") < 0, so that, by (2.2), @,(t') < 0, 2,(#") > 0. From (3.1) and (2.3)
we then have

(3.2) W(y, 2)(t")>0, Wy, 2)F") <0,
and so, by (2.4),
e
(3.3) f #()@a(s) ds >0 .
&
This inequality must be reversed if (3.1) holds but #,(f) <0 in (¢, "), or again
if (3.1) is reversed. Summing up, and allowing for these variations, we have

PROPOSITION 1. — Let (1.1) have a non-oscillatory solution y(t), with y(t) % 0 for
t>T. Then for any non-trivial solution x of (1.2), there is a sequence of consecutive
20108 tyy n=0,1,...,%,>1T, and

(3.4) (=)o) >0, t,<t<tn,
tnty

(3.5) (— 1)ﬂy(T)ff(s)m(s) ds>0, n=0,1,...
tﬂ
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In particular, y(£)f(t) must take a positive value somewhere between two consecutive
zeros of x in (T, co). Turthermore, Wy, x) must have a zero between two consecutive
zeros of ® in (T, co).

Here « betweens is meant in the strict sense.

COROLLARY 1. — If f(t) is ultimately non-negative, then any non-oscillatory solution
of (1.1) is ultimately positive.

This is noted by KEENER [11, Theorem 1], but with additional hypotheses.

COROLLARY 2. — Let f(t) change sign on every half-axis, and be such that if f(t)
changes sign at t',t" then every solution of (1.2) has a zero in [t',1"]. Then (1.1) has
only oscillatory solutions.

This is essentially Theorem 1 of RANKIN [13], to which we refer for other similar
resuls.

COROLLARY 3. — If for some non-trivial solution x(f) of (1.2) and for some sequence -
(o, Bu)y k=1,2, ..., of consecutive zeros of x we have

(3.6) jf(s)x(s) ds—0, k=1,2,..,

then (1.1) does mot have a non-oscillatory solution (though it may have one of N C-type).

ExAwpiE 1. — The equation 4"+ y=1—3co82f{ has the NC-type solution
1+ cos2t, but no non-oscillatory solution (we take x(t)= cost in this example).
We now use another aspect of this argument. Let x,, %, be a pair of solutions
of (1.2), satisfying (2.2), and write
i
(3.7) B = [z ds, j=1,2.

a

Let 8, denote the set of values of A4, in (2.4), corresponding to non-oscillatory solu-
tions y of (1.1). Then 8; is necessarily an interval, possibly a single point, unless
it is empty. Excluding the latter case, we have

PROPOSITION 2. — Let the successive zeros of ; be t,;, n=0, 1, ..., starting from a
point such that x,> 0 in (4, ti;). Then every point of 8; lies ultimately in the intervals

(3-8) (Fi(tmz,a‘)’ Fi(t2ﬂ+1,:i>) 3 (Fi(t2n+2,i)7 F:’(t2n+1,a')) 9 h = 05 1? R ]
where ulttmately

(3.9) Fi(ton ) < Fillongr) s Fillanyes) < Fillanya) -
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For a corresponding result for the wider class of N C-type solutions we replace
(3.8) by the closed intervals, and allow equality in (3.9).

COROLLARY 4. — If for some solution x of (1.2) we have
(3.10) ff(s)m(s) ds= oo (or — o0),
‘then (1.1) does not have a mon-oscillatory solution. (HAMMETT [6].)

Slightly more generally, we have

COROLLARY 5. — A necessary condition for (1.1) to have a non-oscillatory (or am
NC-type) solution is that for every non-trivial solution x of (1.2) there be a sequence
Ty, tyy ... Of ils successive zeros such that, writing

i
(3.11) ) = f 1(s)a(s) ds
we have ’
(3.12) lim sup F(ty,) <1Lm inf Fty, ) .

Proor. — Suppose y(f) i8 a non-oscillatory solution which is > 0 (< 0) for i>T.
Given a solution z(t) of (1.2), let 4,, ¢,, ... be a sequence of consecutive zeros of (i)
such that #>7T and x(tf)>0 (<0) for te(t,, ;). Let x, be a solution of (1.2) such
that W(z,, #,) = 1. Repeating the argument that led to (3.3), we can actually show
that

F(ty) < F(lyy,,), for any » and %.

The result follows.

4. — Uniqueness conditions.

If (1.1) has more than one non-oscillatory solution, and so a continuum of such
solutions, then at least one of the sets §; in Proposition 2 would be an interval rather
than a point. We obtain sufficient conditions for uniqueness by negating this
eventuality.

THEOREM 1. — Lel »,, 2, be linearly independent solutions of (1.2). Leél (ctn;y fns)
be o sequence of pairs of successive zeros of m;, with e«,,~> co as n — oo, such that

Bng
(4.1) ff(s)m,-(s) ds—>0 a8 m—>o0,j=1,2.

%ns

Then (1.1) has at most one non-oscillatory (or NO-type) solution.
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This follows because if the lengths of some sequence of the intervals (3.8) tend
to 0, then the get §; is at most a single point.

COROLLARY 6. — The conclusion of Theorem 1 holds if for every solution = of (1.2)
the improper Riemann integral

(4.2) f 1(s)2(s) ds
00%@707’933.

This extends Theorems 1 and 2 of [5], and also Theorem 3.2 of WALLGREN [15].

COROLLARY 7. — Let, for every non-trivial solution = of (1.2),
T
(4.3) (N(T)}— f f(s)a(s)|ds -0, as T—> oo,
where N(T) denofes the number of zeros of z in (e, T'). Then the conclusion of
Theorem 1 holds. '
1t is easily seen that (4.3) implies the hypotheses of Theorem 1.
We offset these results by one in the opposite direction.

THEOREM 2. — Let, for some non-trivial solution x of (1.2),

tnsy
(4.4) [&)a@)as—o,

tn

where 1y, 1y, ... denote the successive zeros of x. Then if (1.1) has omy non-oscillatory
(or NC-type) solutions, the integral (4.2) converges.

ProoF. — Suppose the integral (4.2) does not converge. If the integral diverges
t0 oo or — oo, Corollary 4 implies that any solution eventually oscillates and ac-
tually assumes positive and negative values. Since we are assuming the existence
of an NO-type solution, the integral (4.2) must not diverge to oo or — oo.

. . t:"+1
From (3.11), we have F(ty, 1) = F(ty,) -+ f 7(s)x(s) ds, which means lim sup F(fy, ) <
[PERN
< lim sup F(t,,) + lim sup f fx ds <lim sup F(tzn) 40, by (4.4). Using (3.12), we have

ten

lim sup F(fyns) <lim sup F(fy,) <lim inf F(4y,,,). But this implieg lim F(2,) exists; call
it L. Whether L is finite or infinite, using (4.4) we can show F(f) - L, a contradic-
tion to our original assumptions. This proves the theorem.

We can check the precision of Corollary 7 by use of such examples as (1.3)-(1.4),
which are also covered by results of the next section. A less trivial illustration is
given by the following example, where p(t) == 1.
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Exavmpre 2. — Consider
(4.5) y'+sin()y=e¢"*, 1>0.

The essence of this example is that we have ¢>0, ¢'—>0, so that solutions of
the homogeneous equation cannot grow exponentially; a relevant investigation is
given by KAUFFMAN [10]. Corollary 6 is thus satisfied, with absolute convergence.

To be more explicit, we note that suitable estimates for solutions of "
+ sin2(t})2 = 0 may be obtained by using

Lo Tor{sina(tt) 4174

ag a Lyapunov-type function. Details are left to the reader.

We conclude that (4.5) has at most one non-oscillatory solution. If A>1, it
may be seen that such a solution exists by means of a criterion given at the end of
this paper.

We pass to uniqueness conditions derivable from Theorem 1 for special classes
of equations.

5. — The case that the homogeneous equation has only bounded solutions.
Developing Theorem 1 of [56], we have
THEOREM 3. — Let the solutions of

(5.1) 4 qtye=0, t=a,

be all bounded. Then

(5.2) v+ qt)e=f1t), i>a,

" has at most one non-oscillatory solution if one of the following sets of hypotheses is
fulfilled:

(i) For every h>0 there is a sequence {1}, with t,— oo, such that

ty+h

(5.3) [irnas o,
17
(ii) >0, and for every h>0 there is a sequence {tk}, with 1, — oo, such that
5 .
(5.4) max ff(s) ds — 0.
t<o<B<lst+h

20 ~ Annali di Matematica
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(iii) ¢~> oo, and for some h>>0 there is a sequence {lp},t,— oo, such that the
funetion

(5.5) gl) = f #(s) ds

is umiformly continuwous on the wmion of the intervals [t,, t,--h].

PrROOF. ~ We recall first that the boundedness of the solutions of (5.1) implies
an upper bound for the distance between consecutive zeros of non-trivial solutions,
by an argument of HARTMAN {7, p. 349]. In (i), we may therefore suppose h> 0 to
be such that in any interval of length h, every solution of (5.1) has at least two
zeros. The sufficiency of (i) then follows from Theorem 1.

Passing to (i), we again use Theorem 1. However, in considering integrals of
the form appearing in (4.1), we note that the interval between two zeros of x; falls
into two parts, in each of which @; is monotone. The result then follows on use of
the second mean-value theorem.

The case of (iii) is dealt with similarly. We now note that, since g->co, the
distance between consecutive zeros tends to 0. '

The hypothesis (i) has the obvious specializations f(f) =0, or fe L(a, o). More
generally, it would be sufficient that

T
(5.6) T—1f|f(s)1ds_>o as T oo

This could be viewed as special case of Corollary 7.
From case (ii) we have

COROLLARY 8. — If ¢> 0, and solutions of (5.1) are bounded, and the improper
Riemann integral

(5.7) f i(s) ds

a
converges, then (5.2) has at most one non-oscillatory solution.
The hypothesis that (5.1) have only bounded solutions is of course ensured if ¢
is positive and non-decreasing (see e.g., [7, p. 510]). Thus, case (iii) yields
COROLLARY 9. — If q(t) —> oo, ¢'(t) >0, and f(t) is bounded on an infinite sequence
of disjoint intervals of fized length, then (5.2) has at most one non-oscillatory solution.

The above results apply equally to solutions of N C-type.
The boundedness of solutions of (5.1) is also ensured in certain cases in which ¢(t)
is periodic. We refer to [5], Corollaries 1 and 2, and to [12], Theorems 4.4, 4.1 and 2.1.
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We can use Theorem 2 to link eonditions similar to those of Theorem 3 with
Corollary 6. .

THEOREM 4. — Let (5.1) have only bounded solutions, and let for some h>0

t+h
(5.8) [ifs)1as—0 a5t co.
. t

Then if (B.2) has a non-oscillatory solution, the integral
(5.9) f 1(s)w(s) ds

must converge, for every solution x of (5.1); the solution in question is then unigue.

6. — The limit-circle case.

The relevance of this to non-oscillation was brought out in Theorem 2 of [5].
We prove here

THEOREM b. — Let all solutions of (5.1) be in L*a, o). Let

T
(6.1) sz(t) d— O(Ttlog T)

a

as T— co. Then (5.2) has at most one non-oscillatory solution.

Proor. — We show that Theorem 1 applies. For some non-trivial solution x,
of (5.1) we denote its successive zeros by ?,, ¢, ..., and claim that

tnay
(6.2) Jim inf f (B 2a(t)| dt =0 .

tn
It will be sufficient for this to show that
tzn

(6.3) lim inf -2 f f(B)a(t) | dt =0 .

tn _
Now

tan tan ten

{ roewia <{ [poa}{ [saoaf,

tn
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and since @& L%(a, oo), there will be an infinite sequence of n-values such that

tan
fwi(t) dt < {lognloglogn}-t .
in
If the above inequality is not true for some sequence of # values then by consider-
ing the sequence n = 2%, we can show the right side represents terms from a diver-
gent series with respect to k. This means ,(¢)¢ L*a, oo), a contradiction. Thus
for (6.3) it will be sufficient to show that

in

f f2(8) dt = O(n*logn) .

This will follow from (6.1) if we show that 2= O(n).
Let now «, be a solution of (5.1) satisfying (2.2), with p =1. By Hartman’s
method (loc. cit.) we have

tm+y
n=[at@} + o) ,

tm

and so t

(tmga— tm)2<nﬁ;vf +a3) dt .
Hence "
(6.5) S (s t)?< 00 .
Hence

n—1 n—1

(tn—1)" = { ; (tm+1_ tm)}2<’n z (tm+1— tn)?.

0

The desired result that 2= O(n) now follows from (6.5). This completes the proof.
ExaMpLE 3. — Consider, with ¢> 0,
(6.6) Y Py = 2T (i — 1) "2,

which has the non-oscillatory solution y = #». The homogeneous equation has os-
cillatory solutions, with amplitude asymptotic to a multiple of VLA ¢ may be
shown from this that (6.6) has a unique non-oscillatory solution if n<<— }— }e,
but an infinity of them if n>—4— }e. Application of Theorem 5 indicates that
there is at most one non-oscillatory solution if

22 4¢e+n) +1<4,

and so if n<— }— . While this is not precise, it shows, since £> 0 is arbitrary,
that the index 4 in (6.1) cannot be raised.
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7. — Use of asymptotic integration.

If ¢ is sufficiently well-behaved, we can use asymptotic formulae for the solu-
tions of the homogeneous equation to obtain further explicit criteria.

THEOREM 6. — Let q be positive, bounded from zero and in C'[a, co). Let also
q'q"t be of bounded variation over [a, ). Let

(7.1) gif—>0 ast—>oo.

Then (5.2) has at most one non-oscillatory solution.

PrRoOF. — The assumption that ¢'¢~% is of bounded variation implies that
(¢'q % e L'(a, o). This fact and the assumption that ¢ is bounded below by a

positive eonstant imply that ¢'(?) = o(q%(t)). This enables us to apply Corollary 5.3
T

in [7, p. 348] and conelude that 7N(T)~[qi(t)dt as T > co.
0

We can also refer to Theorem 1 in {1] and observe that any solution ax(f)=
= 0(¢"%(t)). We make the assumption

T T
(7.2) [l ai—of [d0ra).

Criterion (7.1) actually represents a simpler special case of (7.2). Then

T T T

[N (1T lef(s)w(S)!ds = ¥ [l ate) o) atias) | [o@ar] | [ew )

a a a

-1

However, we can conclude that the right side of the above equation approaches
zero as T grows large. Thus (4.3) is satisfied and the result follows.
Note that we may apply Theorem 6 to Example 3 to obtain the correct value of n.

8. — The case of a line-segment.

We pass now from condifions for the uniqueness of any non-oscillatory solution,
to conditions which do no more than exclude the case when the initial data of such
solutions form a set with non-empty interior, as in (iv) of § 1. The set of non-oscil-
latory solutions of (1.1) can then be represented in the form

(8.1) y()=yo(t) +om(t), cel,
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where 9, is a particular such solution, #; is a non-trivial solution of (1.2), and the
range I of the parameter ¢ is an interval on the real line. One must admit the
eventualities that I might reduce to a single point, or be empty.

We start with a general test, which will then be simplified.

THEOREM 7. — Let there be a sequence of solutions wu,(t) of (1.2), with

(8.2) [ (@) |2+ Ju (@)t=1, m=1,2,..,

and for each W, @ pair y,, 8, of its consecutive zeros, such that

(8.3) Ve —> 0,
and
am
(8.4) f F(5) t(8) ds =0 .

Ym
Then non-oscillatory solutions of (1.1), if they exist, are given as in (8.1).

PROOF. ~ We suppose the contrary, that the set of initial data (y(a), y'(a)) of
non-oscillatory solutions contains a non-empty open set. Without loss of generality,
we may suppose this set to be generated by convex linear combinations of a finite
number of points of the set, sot that the associated solutions will have the same
fixed sign on a common half-axis [7, co). We may therefore suppose that there
is a non-oscillatory solution y*, and an &> 0 such that any solution of (1.1) sat-
isfying |

(8.5) (@) — y*(@) [ + ly'(@) — y* (@) P <&

is also non-oscillatory, and has fixed sign for ¢> 7.
We consider in particular solutions of the form

(8.6) Y=y + gvm,

where v,, i3 a solution of (1.2) such that

r

(8.7) v,(a) = w,(a)[p(@), v, (a) =~ u,(a)]p(a) .
We then have W(v,, «,)=1, and so, as in § 2,

(8.8) Y* = 00 W, ) — 4 W(5*, ) .
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Now solutions of the form (8.6) will satisfy (8.5) if |o|<ep(a)=¢,, say. It thus
follows that

@m{W(?/*: Wim) '_'Eal} — U W(Y*, v)

will have the same fixed sign for > 7. Arguing as in § 3, and supposing m so large
that y,> T, we have that W(y* u,) 4 & have the same sign at t= y,,, while they
have the same (but opposite) sign at t=4d,. It follows that

(W™ 4n)(0n) — W(H*, %a)(ym)|>261

for large m. This contradicts (8.4). The theorem is thus proved.
In particular, the solutions u,, could be all the same. We give a fuller result for
this case.

THEOREM 8. — Let there be a non-trivial solution », of (1.2) and a sequence oy, [y
of pairs of successive zeros of w®,, with c,—> oo, such that

Ji
(8.9) ff(s)wl(s) ds —0 .

273

Then the set of solutions y of (1.1) such that, for all large k,
(8.10) Y(ou)y(B) >0

has the form (8.1), where y, is some solution with this property, if one exists, and ¢ has
any real value.

The proof is the same as that of Theorem 1; we argue now that §, reduces to a
single point A,.
The set of solutions in question will of course include all non-oscillatory solutions.

COROLLARY 9. — Let @, be a non-trivial solution of (1.2), and let 4, t;, ... be a se-
quence of its successive zeros. Let

bnsy
(8.11) f F(8)@y(s) ds =0 .

ta

Then the set of non-oseillatory solutions of (1.1) has the form (8.1). If y is a solution
of (1.1) which is not of the form ¥y, -+ cwy, where y, is a non-oscillatory solution of (1.1),
then beyond some point between two successive zeros of x, there lies a zero of y.

More specially, if f f(s)a,(s) ds converges, then the last statement can be reversed;
173



312 F. V. ATrINgSON - R. C. GRIMMER - W. T. PATULA: Nonoscillatory, ete., II

between two successive zeros of y there lies a zero of #,. We deduce this easily once
we have shown that W(y, x,) tends to a non-zero limit, which we show as follows.

1
First, W(y, x,)() = W(y, wl)(a)—ff(s)wl(s) ds. Thus W(y, #;)() has a limit as

t— co. We must show it is nonzero. If y is not of the form y,--ex,, we may
agsume y has the form y = y,-+ cw;, for some ¢~ 0, where ; is a solution of (1.2)
which is linearly independent from a,. Then

(8.12) Wy, @) = W(yo -+ cxs, @) = W(¥o, 1) + W (25, @) .

Since g, is nonoscillatory, W(y,, #,)(f) has a sequence of zeros {f,} where t,— co as
k— co. See [5, Lemma 2] or the remarks following (3.5). Since W(y, #;)(t) has a
limit, (8.12) implies that W(y, 2,)(t) - eW{zs, ,) 4 0, a8 { — co. This means that
for ¢ large enough, say t>17, y(t) and x,(f) cannot have any common zeros.

Suppose t,>T1 and £,>t, are two consecutive zeros of . If x,(f) did not have a
zero in (4, t,), Rolle’s Theorem applied to (y/x,) would imply that W(y, ,)(f) has a
zero in (4, %), a contradiction. This establishes the separation of zeros between y
and 2.

For other results on separation, see [14].

9. — Some special line-segment conditions.

In Theorem 6 we gave conditions based on methods of asymptotic integration,
which limited non-oscillatory solutions to, at most, a single solution. We give now
some similar arguments, with less demanding hypotheses, which limit the set of
non-oscillatory solutions to, at most, a set with initial data forming a line-segment.

THEOREM 9. — Let g be positive and locally L' on (0, o), and let f be locally L.
Let for some T > a and some A €[0,2/(me)],

.

9.1) Ing(t') — Ing(t')>— qu&(s) ds, T<i<t'< oo,
3

and let

(9.2) g i) >0 as t—oo.

Then non-oscillatory solutions of (5.1), if more than one exists, are given in the form (8.1).

Proor. — Let i, 1, ... denote successive zeros of some non-trivial solution of
(6.1) in (T, oo). We claim that for some Be(0,1), we have '

(9.3) Q(t) > BQ(tn) ’ L, <t<< tn—g.l .



F. V. ATINsON - R. C. GRIMMER - W. T. PATULA: Nonoscillatory, ete., I1 313

Supposing this false for some B, we choose " as the first value in (t,, ¢,,,) for which
q(t")= Bq(t,), and ' as the last value in [¢,,?’) for which ¢(#') = ¢(,). Then (9.1)
yields

o

f gi(t) dt> A In B-1 .

o
Now in (¢/,t") we have

q(t") < q(t) < g(t) = q(t) = B1q(#")

and so we deduce that

(9.4) (" — ') gHt") > A-*B+In B! .

With 4 restricted as above, we can choose B so that the right of (9.4) is not less

than z. The Sturm comparison theorem then shows that a solution of (5.1) must

have a zero in (¢,%"]. This gives a contradiction, so that (9.3) is established.
Using the Sturm comparison theorem again, we then have

(9.5) (tnya— to) {Bg(ta)} <.

Since the zeros have no finite limit-point, it follows that
2 et} = oo

We deduce that we must have

(9.6) Q(tnr2) <2q(t)

for an infinite sequence of n-values.
We now apply Theorem 7. We consider the set of solutions of (8.1} such that

9.7 z¥a) +22(a) <] .

We note that the area in the (#, #')-plane in this case will be the same as thay
described by the set of initial data given by :

(9.8) Q) @*(ta) + g H ()22 (t) <1 .

Since the map (w(a), 2'(a)) &> (2(t.), #'(f,)) has unit Jacobian (see e.g.[7, p. 96]
or [16, p. 88]), we deduce that there must be a point of the boundary of (9.7) which
is mapped into a point of the boundary of (9.8). In other words, there is a solu-
tion w, say of (5.1) which satisfies (9.7)(9.8) with equality in both cases. We restrict
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attention to n for whieh (9.6) holds, and denote by w,, 5, the first two zeros of x,
in [tn, faye). We claim that, in fulfillment of (8.4),

Bn
(9.9) f 1(8)#a(5) ds — 0

&n

as % —> oo, subject to (9.6). This will follow from the results

(9.10) an(t) = O{(g(tn)) ¥}, ta<t<taja,
and
(9.11) B = O{(q(t))"1},

together with (9.2).
‘We first note that, by two applications of (9.3),

(9.12) 40> B (t) ,  Ea<t<Pnys-

We have also, by an interchange of the roles of ¢, ¢, in (9.3),
q(tn+1)>Bq(t) y Ia<t<tayy,

and so by using the above inequality twice and (9.6)

(9.13) <2B2q(t.), ta<i<lpnys-
q +

We thus get (9.11) with the aid of (9.12) and the Sturm theorem.
To establish (9.10) we note that (9.1) implies that the function

¢
a(t) exp {4 [qi(s) s}
is non-decreasing. in [7, o). It.is then seen that the function
13
@) + 2" 0)a(0} exp {— A[ (o) ds}
iIs non-inereasing in [T, o), if @ is a solution of (5.1). If

. t
ha(t) = (a3) + o2(0)a(®) exp (— 4 [g(s) ds)
in
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then h,(t) <h(t.) for te[i,, f.s]. It follows now from (9.8) that
11
A <q"*'(tn){eXp A f q*(s) dS} y o a<I<tupa .
173

Here the last factor is bounded, by a further use of (9.12)-(9.13) and the Sturm
comparison theorem. This proves (9.10), and completes the proof of Theorem 9.
One gpecial case will be that in which ¢ is positive and non-decreasing, so that
(9.1) is trivially satisfied. In another, we assume ¢ locally absolutely continuous,
with ¢'q~#>— 2/(zme) almost everywhere. This covers the situation of Theorem 6,
since if ¢'q~% is of bounded variation and so tends to a limit, this limit must be 0;
however, the conclusion of Theorem 9 is weaker, along with the assumptions.

10. — A remark on the two-dimensional case.

We refer to case (iv) of § 1, in which the set of initial data (y(a), y'(a)) of non-
oscillatory solutions has non-empty interior. Let us suppose that it is also bounded
and so, being convex, has an area J, say. In the notation of §§ 2, 3 we write for a
non-oscillatory solution

Y= ml(Az“' Fy) — wy(A,— Fy) .

As t increases the radius vector (z;, #,) will execute complete revolutions, roughly
speaking once for every two zeros of z; or x,. The radius vector (F,— A, F,— A4,)
will do the same (with an error of absolute value <z). We thus get

T
N(D) T <3[|(Fy— 4) AP, — (F,— 4) dFy| + 0(1)

a

T
1P, — A fo, — (B, — 40 fwldt + O()

a

L]

= §|lfyldt + O(1) .

Thus

N T
(10.1) J <lim inf {N ()}~ f Ify| dt .

For example, in the case "4y =1, we can have y = 1, with /=1, and N(T)~
~ T'{z. This gives J<z. Since J is the unit disc (with parts of the boundary), (10.1)
is here precise.

Of course, the positivity of the right of (10.1) is a necessary condition for case (iv)
of § 1 to occur.
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11. - Sufficient conditions for the existence of non-oscillatory solutions.

In previous sections of this paper, we studied the question of uniqueness of the
nonoscillatory solution of (1.1) or (5.2). In this part, we briefly indicate some known
results on existence. We will assume p(f) = 1.

In ATxINgON [2], the following theorem was proven.

THEOREM 10 [2, Lemma 2]. — Consider (5.2) on some t interval, t>>1,. Let g(t)>0
and let h(l) be a bounded positive function such that h'(t)= f(¢). Swuppose k(>
f dufq 8)ds, t>1t,. Then (b.2) has & solution y(1) satisfying 0 < y(t) < h(t), t > 1,:

As a corollary to Theorem 10, we would like o point out the following result,
which sometimes might be easier to apply.

8

CoROLLARY 10. — Suppose f(t) and g(t) are positive and f(t) > q(t)|(s— 1) f(s) ds.

Then (6) has a nonoscillatory solution y(t) which satisfies 0 << y(t <f (s — 1) f(s) ds.

n%

Proo¥. — Define h(f) = f (s—t)f(s)ds. It is straight-forward to show that ()
i

satisfies the conditions of Theorem 10.

We remark that it can be shown that Corollary 10 is actually equivalent to
Theorem 10.

As an example of Corollary 10, consider the equation

(11.1) ¥+ 1)y = (1 +sint)et, i>4.

We note that

(1+ sin®t)e~> 0~ > (2]f) et = (2/1) f (s— tye—+ds> (1]0) f (s — )(1 = sins)e—> ds.
12 t

Thus Corollary 10 implies that a nonoscillatory solution of (11.1) exists.

We also point out that a combination of Theorem 10 or Corollary 10 with any
uniqueness result, for example Corollaries 6, 7 and 8 or Theorems 3, 5 and 6 in this
paper or Theorem 3 and Corollaries 2, 3 and 4 in [5], yields the existence of a unique
nonoscillatory solution of (5.2). .

For instance in the preceding example, equation (11.1), ¢(¢) = 1/t>0 and ¢'(t) -0
a8 ¢ — oco. Therefore by the previously mentioned result of KAUFFMAN [10] no

solution of the homogeneous equation can grow exponentially. Thus fsc(t)f(t) dt
exists, where f(¢) = (1 + sin®¢)e~t and x(¢) is any solution of the homogeneous equa-
tion. Thus Corollaries 10 and 6 together imply that (11.1) has a unigue nonoseil-
latory solution.
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Another theorem which yields existence and uniqueness is the following known
result of Hartman.

THEOREM 11 [8, p. 433]. — Suppose q(t) and f(t) >0, ¢'(t) >0, f'(f) <0, and f(t) -0
as t — co. Then (5.2) has ¢ wnique nonoscillatory solution.

To prove this theorem, let x,(¢) and w,(f) be linearly independent solutions of
(5.1) such that W(w,, 2,)(t) = 1. Define y(t) as follows;

oo

y(t) = [ (@) 2a(0) — wuls)23(0)) (6) ds
i

Then it can be shown that y(¢) is the unique nonoscillatory solution. See [8, p. 450]
for the details.
For a result similar to Theorem 11, see JONES [9, Theorem 6].
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