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Summary. - The number o/ nonoseillatory solutions o/ a /oreed second order linear di]]erential 
equation is studied under the hypothesis that the homogeneous equation is oscillatory. The 
,main technique involves expressing a general solution o] the ]oreed equation in terms o] two 
parameters, given a pair o/independent solutions of the homogeneous eq~tation (see (2.4.) below). 

1. - Introduction and preliminary remarks.  

We present  in this paper  some results dealing with the oscillation and nonoscill~- 
t ion of solutions of the forced second-order linear equation 

(]..1) ( p ( t ) y ' ) ' §  q(t)y : / ( t ) ,  a < t <  c~ ,  

under  the standing hypothesis  tha t  the associated homogeneous equat ion 

(1.'~) (p( t )x ' ) '  + q(t)x = O, a <~ t < ~ , 

is oscillatory. The bulk of the paper  is devoted to results which limit the collection 
of non-oscil latory solutions of (1.1); we conclude, however, with a sufficient condi- 
t ion for such a solution to exist. 

By  a non-oscil latory solution of (1.1) we mean, as usual, a solution which is 
ei ther u l t ima te ly  positive, or else ul t imately  negative as t --~ c~. One can also discuss, 
as i n  [4], solutions of (( Z- type  >>, which have arbi t rar i ly  large zeros bu t  u l t imate ly  
do not  change sign.  For  want  of a be t te r  term,  let us say tha t  a solution is of 
NC-type,  if it is either ul t imately  non-negative, or else ul t imately  non-positive. 

I t  is a basic observation tha t ,  if (1.2) is oscillatory, then  the non-oscillatory solu- 
tions have the same ul t imate  sign, and form a convex set. Similarly, solutions of 
NC- type  are ei ther  all u l t imately  non-negative, or else all u l t imately  non-positive, 
and again form a convex set. 

The convexi ty  of these sets of solutions m ay  be realized geometrically by  various 
maps f rom the set solutions of (1.1) to the plane. One method  will be to associate 

(*) Entrata in Redazione il 16 maggio 1979. 
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with a solution y of (1.1) its initial data  (y(a), y'(a)) ; a second method is given by 
expressing the general solution of (1.1) in terms of two parameters,  given a pair 
of independent solutions of (1.2). 

As an example of the first method, non-oscillatory solutions of 

(1.3) y ~ - F y : l ,  t > O ,  

are given by taking (y(0), y'(0)) to be in the open unit  disc, and the set of NC-type 
solutions corresponds in this way to the closed disc. Again, 

(1.4) y"-i-y= t-l-F 2t -a , t ~ l  , 

has a unique non-oscillatory (or _~C-type) solution, corresponding under this map 
to the point ( 1 , -  1). 

In  [5], an example was presented where the initial data  of the non-oscillatory 
solutions formed a line, and other examples can be easily constructed. We refer to 
DOLAN [3] for a more detailed investigation concerning the structure of sets of initial 
data  for non-oscillatory solutions of (1.1), when (1.2) is either non-oscillatory or 
oscillatory. 

Wi th  such a mapping from non-oscillatory solutions to the plane, we can rec- 
ognize the following four  possibilities for the convex sets in question, associated 
with the non-oscillatory solutions (or alternatively the 2YC-type) solutions: 

(i) the empty set, 

(if) a single point, 

(iii) a segment of a line, 

(iv) a set in the plane with non-empty interior. 

We shall give mainly conditions ensuring tha t  one of (i), (if) is the case, or again 
tha t  one of (i), (if) or (iii) is the case. 

We assume throughout  tha t  p(t) is positive, and tha t  p, q and ] are continuous; 
the latter requirement can often be weakened to measurability. Sign-restrictions 
on q, ] will be made only as and when needed. We often take the case p(t)= 1, 

c o  

which may  be regarded as covering the case tha t  fat/p(t)-= ~ ,  by way of a change 
of independent variable, a 

2. - Var ia t ion  o f  parameters .  

We introduce the modified Wronskian 

(2.1) w(u, v)(t) -- (ups ' -  vpu')(t), 
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and denote by  xl, x~ a pair  of solutions of (1.2) such tha t  

(2.2) W(x~, x~)= 1.  

We represent  a solution of (1.1) iu the form 

(2.3) y = x~ W(y, x 2 ) -  x~W(y, x~) , 

and note  that ,  for some constants A1, A~, 

(2.4) A~--.t /(s)x~(s) ds , j =  1, 2 .  W(y, 20~) 
a 

We can subst i tute  (2.4) in (2.3), and obtain a mapping f rom solutions of (1.1) to 
points (At, A~) in the plane; this mapping will associate convex sets with non- 
oscillatory or NC- type  solutions and was the  second method  referred to earlier. 

3. - Pre l iminary  results .  

Suppose for definiteness tha t  y is a non-oscillatory solution of (1.1), and tha t  

(3.1) y(t) > 0 ,  t >  T .  

Let  t', t" be consecutive zeros of x~(t) in [T, c~), and suppose tha t  x~(t) > 0 in (t', t"). 
Then x'~(t') > O, x~(t H) < 0, so that ,  by  (2.2), x~(t') < O, x~(t") > 0. F r o m  (3.1) and (2.3) 
we then  have 

(3.2) 

and so, by  (2.4), 

(3.3) 

W(y, x l ) ( t ' ) > 0 ,  W(y, x l ) (V)<O,  

f /(s)x~(s) as > o . 

This inequal i ty  must  be reversed if (3.1) holds bu t  xl( t )< 0 in (t', t"), or again 
if (3.1) is reversed. Summing up, and allowing for these variations, we have 

I)I~Ol'OSlTI0Z~ 1. - Let (1.1) have a non-oscillatory solution y(t), with y(t) V: 0 /or 
t>~T. Then /or any nondrivial solution x o/ (1.2), there is a sequence of consecutive 
zeros t~, n =  0,1,  ..., to>T, and 

(3.~) 

(3.5) 

(--  1)"x(t) > 0 ,  t ~ < t < t . + ~ ,  

( -  l)-y(T)f/(slx(s) as > O, 
t .  

n-=  O, 1, . . . .  
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I n  partieular, y(t)f(t) mus t  take a positive value somewhere between two conseeutive 
zeros of x in (T, c~). tZurthermore, W(y, x) must have a zero between two consecutive 
zeros of x in (T, cr 

Here  (( between ~> is meant  in the strict sense. 

COrOLLArY 1. -- I f  ](t) is ultimately non-negative, then any non-oscillatory solution 
of (1.1) is ultimately positive. 

This is noted by  KEEZ~]~ [11, Theorem 1], bu t  with additional hypotheses.  

CO~OT.LA~u 2. - Let f(t) change sign on every half-axis, and be such that if ](t) 
changes sign at t', t ~' then every solution of (1.2) has a zero in [t', t"]. Then (1.1) has 
only oscillatory solutions. 

This is essentially Theorem 1 of I~XNKI~ [13], to which we refer for other similar 
results. 

COROLLARY 3. - I f  for some non-trivial solution x(t) of (1.2) and for some sequence 
(ak~ ~1~), k--= 17 2, ..., of consecutive zeros of x we have 

(3.6) Jf(s)x(s) ds : O , k --- 1, 2, . . . ,  

then (1.1) does not have a non-oseilla$ory solution (though it may have one of 2r 

EXA~n'LE 1. -- The equat ion y " + y z  1 - - 3  cos2t has the NC- type  solution 
1 + cos 2t, b a t  no non-oscil latory solution (we take x(t) ~ cos t in this example).  

We now use another  aspect of this argument .  Le t  xl, x~ be a pair  of solutions 
of (1.2), satisfying (2.2), and write 

t 

~v~(t) =jf(s)x~(s) ds,  j = 1, (3.7) 2 .  
a 

Let  Sj denote the set of values of Aj in (2.4), corresponding to non-oscillatory solu- 
tions y of (1.1). Then  S~ is necessarily an interval,  possibly a single point,  unless 
it is empty .  Excluding the fat ter  case, we have 

2~ol"osITIoz~ 2. - .bet the successive zeros of x~ be t~r n-~ 0, 1, ..., starting from a 
point such that x~ ~ 0 in (toj, tlj). Then every point of Sj lies ultimately in the intervals 

(3.8) (F~.(t,.,~.), ~.( t , ,+~, ,)) ,  (~,(t,.+~,~.), F,(t~,+~.~.)), n = o, 1, . . . ,  

where ultimately 

(3.9) 
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For  a corresponding result  for the  wider class of ~YC-type solutions we replace 

(3.8) b y  the  dosed  intervals ,  and  allow equal i ty  in (3.9). 

CO]~OLL~u 4. - I] ]or some solution x of (1.2) we have 

(3.10) f l(s)x(s) as = co (or - -  c~) ,  
a 

then (1.1) does not have a non-oscillatory solution. (ttA~Vr~ET~r [6].) 

Slightly more  generally, we have  

COIr 5. - A necessary condition ]or (1.1) to have a non-oscillatory (or an 

NC-type) solution is that ]or every non-trivial solution x o] (1.2) there be a sequence 

to, t~, ... o/ its successive zeros such that, writing 

t 

(3.11) F(t) =j/(s)x(s)  as , 
g 

we have 

(3.12) l im sup A~(t2n ) < lira inf F(t2n+l ) . 

P~ooF.  - Suppose y(t) is a non-oscil latory solution which is > 0 ( <  0) for t > T .  
Given a solution x(t) of (1.2), let to, t~, ... be a sequence of consecutive zeros of x(t) 

such t h a t  to> T and  x ( t ) >  0 ( <  0) for t E (to, tl). Le t  x~ be a solution of (1.2) such 
t ha t  W(x~, x2) = 1. Repea t ing  the  a rgumen t  Chat led to (3.3), we can actual ly  show 
t h a t  

-F(t2n ) < ~(t2~+1) , for a n y  n and  k .  

The result  follows. 

4. - U n i q u e n e s s  condit ions .  

I f  (1.1) has more  t han  one non-osci l latory solution, and  so a con t inuum of such 
solutions, then  a t  least  one of the sets S; in Proposi t ion 2 would be an  in terva l  ra ther  

t h a n  a point .  We obta in  sufficient conditions for uniqueness b y  negat ing this 
eventual i ty .  

THEOI~EM 1. -- .Let x~, x~ be linearly independent solutions o] (1.2). -Let (~ j ,  fl~) 
be a sequence o] pairs o] successive zeros o] x~, with o~--> c~ as n -+  0% such that 

f lnj  

(4.1) j](s)x~(s) ds -,, o as  n ->  ~ ,  j - 1, 2 .  
OtnJ 

Then (1.1) has at most one non-oscillatory (or NC-type) solution. 
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This follows because if the  lengths of some sequence of the  intervals (3.8) t end  
to 0, then  the  set S~. is at  most  ~ single point.  

COI~OLL~5~u 6. - The conclusion o/ Theorem 1 holds i/ /or every solution x o/ (1.2) 
the improper Riemann integral 

(4.2) 

converges. 

f/( s)x(s)  ds 

This extends Theorems 1 and 2 of [5], and also Theorem 3.2 of WiLLGI~E~ [15]. 

CO~0LL~u 7. - .Let, /or every non-trivial solution x o/ (1.2), 

T 

(4.3) {~(T)}-~.][/(s)x(s)]ds-+o, ~s T - ~  ~ ,  

where N ( T )  denotes the number  of zeros of x in (a, T). Then the conclusion of 
Theorem 1 holds.  

I t  is easily seen tha t  (4.3) implies the hypotheses of Theorem 1. 
We offset these results by  one in the  opposite direction. 

T~EO~E~ 2. - Let, /or some non-trivial solution x o/ (1.2), 

(4.4) 
~n+l 

f [/(slx(sll ds-+ O, 
fn 

where to, tl, ... denote the successive zeros o/ x. Then i/ (1.1) has any non-oseiUatory 
(or NG-type) solutions, the integral (4.2) converges. 

P~ooF. - Suppose the  integral  (4.2) does not  converge. I f  the integral diverges 
to c~ or -- c~, Corollary 4 implies tha t  any  solution eventual ly  oscillates and ac- 
tual ly  assumes positive and negative values. Since we are assuming the existence 
of an NC- type  solution, the integral  (4.2) must  not  diverge to co or --  c~. 

~2n+l 
From (3.11), we have ~(t~+l) = F(t~)  +f/ ( s )x (s )  ds, which means lira sup ~(t~+,) < 

t2n+x $2n 
< l i m  suplV(t2~) + lira supf /x  d s < l i m  supF( t~)  -~ 0, by  (4.4). Using (3.12), we have 

lira sup F(t2~+l) < lim sup E(t~) < lira infF(t~+~+l). Bu t  this implie s l im]( t~)  exists;  call 

it  Z. Whether  L is f ini te or infinite, using (4.4) we can show iv(t) -> L, ~ contradic- 
t ion to ore' original assumptions. This proves the theorem. 

We can check the precision of Corollary 7 by  use of such examples as (1.3)-(1.4), 
which are also covered by  results of the  nex t  section. A less tr ivial  i l lustration is 
given by  the following example,  where p(t) = 1. 



F. V. ATKINSO~ - 1~. C. GI~nUl~E~ - W. T. PATULA: Nonoseillatory~ etc., I I  305 

ExX~eLE 2. - Consider 

(4.5) y" -~ sin~(t �89 y = e -~t ,~ ~ 0 y 

The essence of this example is tha t  we have q~>0, q'-->0, so tha t  solutions of 
the homogeneous equation cannot grow exponentially; ~ relevant investigation is 
given by KAVFF~A~ [10]. Corollary 6 is thus satisfied, with absolute convergence. 

To be more explicit, we note tha t  suitable estimates for solutions of x"~- 
+ sin2(t�89 ~-0 may  be obtained by using 

�89 -{- �89 ~- t -t} 

as a Lyapunov- type  function. Details are left to the reader. 
We conclude tha t  (4.5) has at  most one non-oscillatory solution. I f  2 >  1, it 

m a y  be seen tha t  such a solution exists by  means of a criterion given at  the end of 
this paper. 

We pass to uniqueness conditions derivable from Theorem 1 for special classes 
of equations. 

5. - The case that the homogeneous equation has only bounded solutions. 

Developing" Theorem 1 of [5], we have 

T n ~ o ~ E ~  3. - f~et the solutions of 

x"-~ q(t)x : 0 ,  t > a  , 

Then  

(5.1) 

be al~ bounded. 

(5.2) x " §  q( t )x= /(t) , t>~a , 

�9 has at most one non-oscillatory solution if  one el the ]ollowing sets el hypotheses is 

]ul]illed : 

(i) For  every h > 0 there is a sequence {tk}, with tk-+ c~, such that 

t,e + k  

(5.3) fl](sll ds -~ 0,  
t~ 

(ii) q >  O, and ]or every h > 0  there is a sequence {tT~}, with t~--~c% suoh that 

(5.4) m a x  f](s) ds ~ 0 .  
cr 

20  - A n n a l i  d i  M a t e m a t i ~ a  
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(iii) q-*  c~, and for some h >  0 there is a sequence {tk}, t~:-> co, such that the 

function 

t 

(5.5/ g(t) =ff(s)ds 
a 

is uniformly continuous on the union of the intervals [t~, t ~  h]. 

P~ooF. - We recall first t ha t  the boundedness of the solutions of (5.1) implies 
an upper  bound for the  distance between consecutive zeros of non-trivial  solutions, 
by  an argument  of HARTMA~ [7, p. 349]. In  (i), we m ay  therefore suppose h > 0 to 
be such tha t  in any  interval  of length h, every  solution of (5.1) h~s a t  least two 
zeros. The sufficiency of (i) then  follows from Theorem 1. 

Passing to  (ii), we again use Theorem 1. However,  in considering integrals of 
the  form appearing in (4.1), we note  tha t  the interval  between two zeros of x~. falls 
into two parts,  in each of which xj is monotone.  The result  then  follows on use of 

the  second mean-value theorem. 
The case of (iii) is dealt with similarly. We now note  tha t ,  since q--> c~, the 

distance between consecutive zeros tends to 0. 
The hypothesis  (i) has the obvious specializations ](t)-> O, or ] e L ( a ,  c~). More 

generally, it  would be sufficient t ha t  

T 

(5.6) r-,j,f(s)]ds- 0 as 
a 

This could be viewed as special case of Corollary 7. 
F rom case (ii) we have 

COI~OLLAlCY 8. - I f  q ~  O, and solutions of (5.1) are bounded, and the improper 
Riemann integral 

p c  

(5.7) f f(s) ds 
a 

converges, then (5.2) has at most one non-oscillatory solution. 

The hypothesis  tha t  (5.1) have only bounded solutions is of course ensured if q 
is positive and non-decreasing (see e.g., [7, p .  510]). Thus, case (iii) yields 

COI~OLLA~u 9. - I f  q(t)---> ~ ,  q'(t)>O, and ](t) is bounded on an infinite sequence 
of disjoint intervals of fixed length, then (5.2) has at most one non-oscillatory solution. 

The above results apply  equally to solutions of NC-type.  
The boundedness of solutions of (5.1) is also ensured in certain cases in which q(t) 

is periodic. We refer to [5], Corollaries I and 2, and to [12], Theorems 4.4, 4.1 and 2.1. 
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We can use Theorem 2 to l ink conditions similar to those o~ Theorem 3 with 

Corollary 6. 

T~EO~E~ 4. - Eet (5.1) have only bounded solutions, and let for some h ~  0 

t + h  

(5.s) t l / ( s ) ld s -~0  ~s t -+ ~ .  
t 

Then i/ (5.2) has a non-oscillatory solution, the integral 

co 

(5.9) f /(s)x(s) ds 
(t 

must converge~ /or every solution x o/ (5.1); the solution in question is then unique. 

6 .  - T h e  l i m i t . c i r c l e  c a s e .  

The relevance of this to non-oscillation was b rought  out  in Theorem 2 of [5]. 

We prove  here 

Tn-EOICE~ 5. - Let all solutions of (5.1) be in L~(a, oo). Let 

(6.1) 

T 

f ]~(t) dt = 0 ( 5  4 log 5 ) ,  
a 

as T~-)-~.  Then (5.2) has at most one non-oscillatory solution. 

P~ooP.  - We show t h a t  Theorem 1 applies. For  some non-trivial  solution xl 

oi (5.1) we denote its successive zeros b y  to, tl, ..., and claim t h a t  

~n+l 

(6.2) l i m  in~ f ll(t)x~(t) l dt : O . 
tn 

I t  will be sufficient for this to show t h a t  

(6 .3 )  

~ o w  

~2n 

lira inf n-l f ll(t)xl(t) ] dt-~ O . 
I ]  

t~ 

~2n tan t2~ 

{ fr(t)dt}{ fx (t)dt) 
tn tn t~ 
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and since x~EL~(~, ~ ) ,  there will be an infinite sequence of s -va lues  such t h a t  

$2n 

~( t )  at < {logs log logn} -1 . 

tn 

I f  the  above  inequal i ty  is not  t rue  for some sequence of n values then  b y  consider- 
ing the  sequence n ~ 2~, we can show the  r ight  side represents  t e rms  f rom a diver- 

gent  series wi th  respect  to k. This means  x~(t)~Z~(a, c~), a contradiction.  Thus 

for (6.3) it will be sufficient to show t h a t  

tn 

f lu(t) = O(n ~ . dt logs)  
a 

This will follow f rom (6.1) if we show t h a t  t~= O(n). 
Let  now x~ be a solution of (5.1) sat isfying (2.2), with p = 1. B y  H a r t m a n ' s  

me thod  (loe. cir.) we have  
tm+l 

= f atl(~ + x~) , 
t , , ,  

and  so 

Hence 

(6.5) 

Hence  

(t,~+~- t,~)~ < ~ f (x[ + x~) ,~t . 

(t~+~-- t.~)~< oo. 

- -  [ o 
2 0 ( n )  now follows f rom (6.5). This completes the  proof. The desired result  t ha t  t~--  

EXAlVI:PZE 3. - Consider, wi th  s >  07 

(6.6) y" ~ t~ +~ y -~ t 2 +~+n q- n ( n - -  1) p-2,  

which has the  non-osci l latory solution y ~ t ~. The homogeneous equat ion has os- 
cil latory solutions, wi th  ampl i tude  a sympto t i c  to a mult iple  of t -�89 I t  m a y  be 

shown f rom this t h a t  (6.6) has a unique non-oscil latory solution if n < - - � 8 9  
bu t  an  infinity of t h e m  if n > - - � 8 9  Applicat ion of Theorem 5 indicates t h a t  

there  is a t  most  one non-oscil latory solutio~ if 

2(2+~+n)+i<r 

and  so if n < - - � 8 9  While this is not  precise, i t  shows, since s >  0 is a rb i t rary ,  
t ha t  the  index 4 in (6.1) cannot  be raised. 
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7. - U s e  o f  a s y m p t o t i c  i n t e g r a t i o n .  

If q is sufficiently well-behaved, we can use asymptot ic  formulae for the solu- 
tions of the homogeneous equat ion to obtain fur ther  explicit  criteria. 

TIIEOI~EI~I 6. -- .Let q be positive, bounded /rom zero and in C"[a, oo). Let also 
q'q-~ be o/ bounded variation over [a, oo). I~et 

(7.1) q - S / ~  0 as t -+ oo. 

Then (5.2) has at most one non-oscillatory solution. 

P~oo~. - The assumption tha t  q'q-~ is of bounded variat ion implies tha t  
(q'q-i) 'eI~l(a, oo). This fact  and the assumption tha t  q is bounded below by  a 
positive constant  imply tha t  q ' ( t )= o(q~(t)). This enables us to apply  Corollary 5.3 

T 

in [7, p. 348] and conclude tha t  ~N(m),-~fr as m-> oo. 
0 

We can also refer to Theorem 1 in [1] and observe tha t  any  solution x ( t ) =  
= O(q-t(t)) .  We make the assumption 

(7.2) 
T T 

fia-*It)sIt)l 
a 

Criterion (7.1) actually represents a simpler special case of (7.2). Then 

T 

 (s)Ids 
a 

T T T 

= [ [ 
a a a 

However ,  we can conclude tha t  the right side of the above equation approaches 
zero as T grows large. Thus (4.3) is satisfied and the result follows. 

lgote tha t  we may  apply Theorem 6 to Example  3 to obtain the correct value of n. 

8.  - The  ease  o f  a l i n e - s e g m e n t .  

We pass now from conditions for the uniqueness  of any non-oscillatory solution, 
to conditions which do no more than  exclude the ease when the initial data  of such 
solutions form a set with non-empty  interior, as in (iv) of w I .  The set of non-oscil- 
la tory  solutions of (1.1) can then  be represented in the form 

(8.1) y(t) = yo(t) ~- cxl(t), c ~ I ,  



310 F . V .  ATXZESO~ - 1~. C. G~DXM~ - W. T. PA~ULA: 2q'onoscillatory, etc., I I  

where Y0 is a par t icular  such solution, x~ is a non-tr ivial  solution of (1.2), and  the  
range I of the p a r a m e t e r  c is an in terva l  on the  real  line. One mus t  admi t  the 
eventuali t ies t h a t  I might  reduce to a single point ,  or be empty .  

We  s ta r t  with a general  test ,  which will t hen  be simplified. 

TnEO:~E~ 7. - Zet there be a sequence o/ solutions u,+(t) o/ (1.2), with 

(8.2) I+,~(a)l++ I+,~(a)l = 1 + =  1,  2 ,  

and /or each u~ a pair  ~ ,  Or+ o/ its consecutive zeros, such that 

(8.3) ~,~--> c~ , 

and 

(8.4) f ](s) u~(s) ds -> O . 
Ym 

Then non-oscillatory solutions el (1.1), i/ they exist, are given as in (8.1). 

P~ooF. - We suppose the  contrary ,  t h a t  the  set of initial da ta  (y(a), y'(a)) of 
non-oscil latory solutions contains a non -empty  open set. Wi thou t  loss of generali ty,  
we m a y  suppose this sot to be genera ted b y  convex linear combinat ions  of a finite 

n u m b e r  of points  of the  set, sot t ha t  the  associated solutions will have  the  same 
fixed sign on a common  half-axis [T, c~). We m a y  therefore suppose t h a t  there  

is a non-oscil latory solution y*, and  an  e >  0 such t h a t  any  solution of (1.1) sat- 
isfying 

(8.5) ] y ( a ) -  y*(a)[~ + ] y ' ( a ) -  y*'(a)p<~e 2 

is also non-oscillatory, and  has fixed sign for t > T .  
We consider in par t icular  solutions of the fo rm 

(8.6) y = y* A- ~v~, 

where v,~ is a solution of (1.2) such t ha t  

(8.7) v (a) = ~'~(a)/p(a) , v'~(a)-~ u~(a)/p(a) . 

We then have  W(v~, u,~)-=-1, and so, as in w 2, 

(8.8) y * =  v,~ W(y* ,  ~+) - u+ W(y* ,  v~) . 
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Now solutions of the form (8.6) will satisfy (8.5) if IQl<<.ep(a)= e~, say. 

follows tha t  

v~(W(y*, u~)4-e~}-  umW(y*, v~) 

I t  thus 

will have  the same fixed sign for t ~> T. Arguing as in w 3~ and supposing m so large 
tha t  7 ~  T~ we have tha t  W(y*, u~) 4- s~ have the same sign at  t---- ~ ,  while they  
have the same (but opposite) sign at  t ~ ~ .  I t  follows tha t  

[W(y*, u ~ ) ( ( ~ ) -  W(y*, um)(7,~)[>~2e~ , 

for large m. This contradicts (8.4). The theorem is thus proved. 
In  particular,  the  solutions u~ could be all the  same. We give a fuller result  for  

this ease. 

THEO~E~ 8. - Let there be a non-trivial solution xl o] (1.2) and a sequence ~ ,  fik 
o/ pairs of successive zeros o] x~, with ~k-~ ~ ,  such that 

(8.9) 
file 

f /(s)x~(s) ds -+ 0 .  

Then the set of solutions y of (1.1) such that , ]or all large k, 

(8.10) y(o~)y(fl~) >~ 0 

has the ]orm (8.1), where Yo is some solution with this property, i] one exists~ and c has 

any real value. 

The proof is the same as tha t  of Theorem 1; we argue now tha t  S~ reduces to a 
single point  A~. 

The set of solutions in question will of com~se include all non-oscillatory solutions. 

COROLL)~I~u 9. - .Let x~ be a non-trivial solution of (1.2), and let to, t~, ... be a se- 
quence o] its successive zeros. Let 

~n+l 

(8.11) f /(s)x~(s) ds -+ 0 .  
tn 

Then the set o] non-oscillatory solutions o] (1.1) has the form (8.1). 11 y is a solution 

o] (1.1) which is not of the form Yo + cXl~ where Yo is a non-oscillatory solution of (1.1), 
then beyond some point between two successive zeros of xl there lies a zero o] y. 

co 

More specially, if f](s)xl(s) ds converges, then  the last s ta tement  co~n be reversed; 
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be tween  two successive zeros of y there  lies a zero of x~. W e  deduce  ~his easi ly once 

we h a v e  shown t h a t  W(y, xl) t ends  Co a non-zero  limit,  which  we show as follows. 
t 

Firs t ,  W(y, x~)(t) = W(y, xl)(a) --ff(s)x~(s) ds. Thus  W(y, x~)(t) has  a l imit  as  
a 

t - +  c~. W e  m u s t  show it is nonzero .  I f  y is no t  of t he  f o r m  yo+CX~, we m a y  

assume y has  the  f o r m  y =  yo+CX3, for  some eve 0, where  x3 is a solut ion of (1.2) 

which  is l inear ly  i ndependen t  f r o m  x~. Then  

(8.12) W(y, x~) = W(yo § cx~, x~)= W(yo, x~) § cW(x~, x~) . 

Since Yo is nonosci l la tory ,  W(yo, xx)(t) has  a sequence of zeros {tk} where  t~-+ c~ as 

k - +  ~ .  See [5, Z e m m a  2] or the  r emarks  fol lowing (3.5). Since W(y, x~)(t) has  

limit,  (8.12) i m p l i e s  t h a t  W(y, xl)(t) -+cW(x3, x~) ~ O, as t-+ c~. This means  tha~ 

for t large enough,  say  t > T ,  y(t) a n d  x~(t) canno t  have  a n y  c o m m o n  zeros. 

Suppose  t~> T a nd  t2>  t~ are  two consecut ive  zeros of y. I f  x~(t) did no t  h a v e  a 

zero in (tl, t2), l~olle's T he o re m  appl ied to  (y/x~) would  imp ly  t h a t  W(y, xl)(t) has  a 

zero in (t~, t~), a cont rad ic t ion .  This establishes the  separa t ion  of zeros be tween  y 

and  x~. 

F o r  o ther  results  on separa t ion  , see [14]. 

9. - S o m e  special  line-se~oTnent condit ions .  

I n  T he o re m  6 we gave  condi t ions  based  on me thods  of a s y m p t o t i c  in tegra t ion ,  

which  l imi ted  non-osc i l l a to ry  solut ions to, a t  most ,  a single solution.  W e  give now 

some similar a rgumen t s ,  wi th  less d e m a n d i n g  hypo theses ,  which  l imit  t he  set of  

non-osc i l la tory  solut ions to, a t  mos t ,  ~ set wi th  init ial  da t a  fo rming  a l ine-segment .  

THEOt~E~ 9. - Let q be positive and locally Z1 on (O, c~), and let ] be locally Z ~. 
.Let ]or some T > a and some A e [O, 2/(~e)], 

t ~ 

(9.1) In q ( t " ) -  in q(t() > - -  Afq~(s) ds,  T < t ' ~ t " <  c~, 
t '  

and let 

(9.2) q-~(t)](t) -->O as t - .  c~. 

Then non-oscillatory solutions el (5.1), i] more than one exists, are given in the ]orm (8.1). 

P~ooF.  - L e t  to, tli ... denote  successive zeros of some non- t r iv ia l  solut ion of 

(5.1) in (T, ~) .  W e  claim t h a t  for some B 6 (0, 1), we have  

(9.3) q(t) > Bq(t~), t~<t < t~+l. 
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Supposing this false for some B, we choose t" as the first value in (t~, t.+~) for which 
q(t '~) = Bq(t~), and t' as the last value in [t~, t") for which q(f ) -= q(t~). Then (9.1) 
yields 

fq +(t) dt A - ~ l n B  -~ m 

lgow in (t', V) we have 

and so we deduce tha t  

(9.4) 

q(t") < q(t) < q(t') = q(t.) -~ B-lq(t") , 

( t '~-  t') q~(t") > A-~ B ~ i n  B - ~  . 

With  A restr icted as above, we can choose B so tha t  the r ight  of (9.4) is not  less 
t ha n  ~. The Sturm comparison theorem then  shows tha t  a solution of (5.1) must  
have a zero in (t', t"]. This gives a contradiction,  so tha t  (9.3) is established. 

Using the S turm comparison theorem again, we then  have 

(9.5) (t.+~-- t.)(Bq(t,)} �89 < ~r. 

Since the zeros have no finite limit-point, i t  follows tha t  

We deduce tha t  we must  have 

(9.6) 

Z {q(t.)}-~= ~ .  

q(t.+~) < 2q(t.) 

for an infinite sequence of n-values. 

We now apply  Theorem 7. We consider the set of solutions of (5.1) such tha t  

(9.7) x~(a) ~ x'~(a) <~1 . 

We note  tha t  the area in the (x, x ')-plane in this case will be the same as tha t  
described by  the  set of initial da ta  given by  

(9.8) qt(t~)x~($~) -~ q-�89 < 1 .  

Since the map (x(a), x'(a)) ~-> (x(t~), x'(t~)) has uni t  Jacobisn  (see e,g. [7, p. 96] 
or [16, 1 o, 88])~ we deduce tha t  there must  be a point  of the boundary  of (9.7) which 
is mapped  into a point  of the boundary  of (9.8). In  other words, there is a solu- 
t ion x,  say of (5.1) which satisfies (9.7)(9.8) with equali ty in bo th  eases. We restrict  
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at tent ion to n for which (9:6) holds, and denote by ~ ,  fin the first two zeros ofx,~ 
in [t,, t,+~). We claim thar in fulfillment of (8,4), 

(9.9) 

us n--> ~ ,  subject to (9.6). 

fin 

f ](s)x.(s) as -+ o 
r162 

This will follow from the results 

(9.10) x . ( t )  -= O{(q( t . ) ) - i }  , t .  <~t<t.+~ , 

and 

(9.11) , 

together with (9.2). 
We first note that ,  by  two applications of (9.3), 

(9.12) q ( t )> B~q( t . )  , t .< t<~t .+~.  

We have ~lso, by  an interchange of the roles of t, t~ in (9.3), 

q( t.+ l) >~ Bq(  t ) , t .  <~ t <~ tn+ ~ , 

and so by using the above inequality twice and (9.6) 

(9.13) q ( t ) ~ 2 B - 2 q ( t ~ )  , t . < t < t ~ + 2  . 

We thus get (9.11) with the aid of (9.12) and the Sturm theorem. 
To establish (9.10) we note tha t  (9.1) implies tha t  the function 

t 

is non-decreasing in  [2', ~) .  I t .  is then seen tha t  the function 

t 

a 

is non-increasing in [T, ~ ) ,  if x is a solution of (5.1). I f  

t 

tn 
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then  h,(t)<h,(t.) for t e[ t . ,  t~+:]. I t  follows now from (9.8) tha t  

t 

t~ 

, t . < . t < t ~ + ~  . 

Here  the  last factor  is bounded,  by  a fur ther  use of (9.12)-(9.13) and the Sturm 
comparison theorem. This proves (9.10), and completes the proof of Theorem 9. 

One special case will be tha t  in which q is positive and non-decreasing, so tha t  
(9.11 is t r ivial ly satisfied. In  another ,  we assume q locally absolutely continuous, 
with q'q-~>--2/(~e) almost everywhere.  This covers the si tuation of Theorem 6, 
since if q'q-~ is of bounded var ia t ion and so tends to a limit, this limit must  be 0; 
however,  the conclusion of Theorem 9 is weaker, along with the assumptions. 

10 .  - A r e m a r k  o n  t h e  t w o - d i m e n s i o n a l  c a s e .  

We refer to case (iv) of w 1, in which the set of initial  da ta  (y(a), y'(a)) of non- 
oscillatory solutions has non-empty  interior. Let  us suppose tha t  it  is also bounded 
and so, being convex, has an area J ,  say. In  the  no ta t ion  of w167 2, 3 we write for a 
non-oscillatory solution 

y = xdA~-- ~'~)- x~(A~-- 2'1). 

As t increases the radius vector  (xl, x~) will execute complete revolutions,  roughly 
speaking once for every  two zeros of xl or x2. The radius vector  (F1-- A 1 , / ~ - -  As) 
will do the same (with an error of absolute value < ~). We thus get 

T 

�89 N(r) J< �89 At) aF.-- (G-- A,) dGI + o(11 
a 

T 

= � 8 9  A~l/x2-- (G-- A,l/x~la* + 0(11 
a 

T 

= + o ( 1 1 .  
a 

Thus 

(10.11 
T 

J<lim inf {N(T)}-~f I/y[ at.  
o 

For  example,  in the case y'~q-y---- I, we can have y----- 1, with ] -~  1, and hr(T),-- 
,-~ T/~r. This gives J<z r .  Since J is the uni t  disc (with parts  of the boundary) ,  (10.1) 
is here precise. 

Of course, the posi t ivi ty of the r ight  of (10.11 is a necessary condition for case (iv) 
of w 1 to occur. 
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11. - Sufficient condit ions for the existence o f  non-osci l latory solutions.  

In  previous sections of this paper, we studied the question of uniqueness of the  
nonoscil latory solution of (1.1) or (5.2). In  this par t ,  we briefly indicate some known 
results on existence. We will assume p(t) ~ 1. 

In  A T ~ S O N  [2], the following theorem was proven.  

Tm~o~E~ 10 [2, Lemma 2]. - Consider (5.2) on some t interval, t>~to. Let q(t) ~ 0 
and let h(t) be a bounded positive Junction such that h"(t)= ](t). Suppose h(t~ > 
c o  o o  

fdufq(s) h(s) ds, t > to. Then (5.2) has a solution y(t) satisJying 0 < y(t) < h(t), t > to. 
t u 

As a corollary to Theorem 10, we would like to point  out  the following result, 
which sometimes might  be easier to apply.  

co~o~La~,z lo.  - Suppose ](t) and q(t) are positive and ](t)> q( t ) f (s-- t ) / (s)ds .  

~ --~t) Then (6) has a nonoseillatory solution y(t) which satis/ies 0 < y(t) < f (s /(s) ds. 

P~ooF. - Define h( t )= f ( s - - t ) / ( s )d s .  I t  is straight-forward to  show tha t  h(t) 
t 

satisfies the  conditions oi Theorem 10. 
We remark  tha t  it  can be shown tha t  Corollary 10 is actually equivalent  to 

Theorem 10. 
As an example of Corollary 1!) , consider the equation 

(11.1) y"~- (1/t)y ~- (1 -~ sin2t)e -t  , t > 4 .  

We note  tha t  
oo c ~  

(1 + sin s t) e - ' >  e -t > (2/t) e- t= (2/t)~(s-, t) e-" ds > (1/t)~(s -- t)(1 -~- sin s s) e-~ ds. 
t t 

Thus Corollary 10 implies tha t  a nonoseillatory solution of (11.1) exists. 
We also point  out  tha t  a combination of Theorem 10 or Corollary 10 with any  

uniqueness result,  for example Corollaries 6, 7 and 8 or Theorems 3, 5 and 6 in this 
paper  or Theorem 3 and Corollaries 2, 3 and 4 in [5], yields the existence of a unique 
nonoscil latory solution of (5.2). 

For  instance in the preceding example, equat ion (11.1), q(t)= 1/t> 0 and q'(t) -~ 0 
as t--~ zr Therefore by  the previously ment ioned result  of ~AUFF~AN [10] no 

solution of the  homogeneous equat ion can grow exponentially.  Thus fx(t)/(t)dt 
exists, where ]( t)= (1-~-sin~t)e -t and x(t) is any  solution of the homogeneous equa- 
tion. Thus Corollaries 10 and 6 together  imply tha t  (11.1) has a unique nonoscil- 
la tory solution. 
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Another  theorem which yields existence ~nd uniqueness is the following known 

result of I t a r tman .  

T~two~,z~ 11 [8, p. 433]. - Suppose q(t) and/ ( t )  > O, q'(t)>~O, ]'(t)<~ O~ and ](t) -+0 
as t --> c~. Then (5.2) has a unique nonoscillatory solution. 

To prove this theorem, let xl(t) ~nd x~(t) be linearly independent solutions of 

(5.1) such tha t  W(x~, x~)(t) ~ 1. Define y(t) as follows; 

c o  

= f (x~(s)x~(t)- x~(s)x~(t) ) /(s) as.  y(t) 
t 

Then it can be shown tha t  y(t) is the unique nonoscillatory solution. See [8, p. 450] 

for the details. 
For  a result similar to Theorem 11, see JONES [9, Theorem 6]. 
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