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Summary. — Let k and I be integers such that 2<%k <1. Let S), and 8; be two subsets of positive
integers with 8,2 Q, and 8,2 Q,, where Q,, denotes the set of k-free integers. Further suppose
that the characteristic functions of 8, and 8; are multiplicative. Let T(n) denote the number
of representations of n in the form n = a + b, where a €S, and be 8;. In this paper we
establish an asympiotic formula for T(n), when n is sufficiently large; and deduce several
known asymplotic formulae as particular cases.

1. — Imtroduction.

Let k and I be two integers such that 2<k<l. Let S, and S, be two subsets of
positive integers with 8,2 @, and S; 2 @,, where @, denotes the set of k-free integers;
that is, integers which are not divisible by the k-th power of any prime. Let g, denote
the characteristic function of the set @,. Let f, and f; denote the characteristic func-
tions of the sets 8, and 8;; that is, f.(n) = 1 or 0 according as n e S, or n¢ 8,: We
assume throughout that f, and f, are multiplicative. Define

(1.1) gu(m) = dIZ w(d) Fo(m)d) ,
and
(1.2) g,(m) = dlz uld) fr(mjd)

where p denotes the well-known Mobius function. Then by the converse of Mdbius
Inversion formula, we have

(1.3) fu(m) = % gx(d) ,
and
(14) film) = 3 ()

Let T(n) = T(8,; 8,,n) dencte the number of representations of » in the form
n = a + b, where a € 8; and b € §,. Then by (1.3) and (1.4) we have

(1.5) Tm)= > fl@f,d) = 3 gudi)g,(ds).

n=a+b n=d,0,+dy84

(*) Entrata in Redazione il 7 maggio 1979.
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In this paper, we prove the following:

THEOREM 1. — For sufficiently large n, we have

(1.6) T(n) =n-sn) [] {Sﬂgi(p")p""} I1 {1 + (Egz p*’) é‘; gk(pt)p"} +

+ O(ni+1-2/E-1+s)

for every £ > 0, where the 0-constant depends only on %, { and e,
' o] -1 oo -1
@n s =]I {1 + (zog:(pf)p-f) b gk(pt)p-t} X
b J= =
-1 o o]
<1 {1 + (2 gi(p ") 2 060927 3 6i#) (2, p*))p'f} ;

pln i=0
and

(m, b), if (m, b)|(n, b),
(1.8) (m, b) = .
0, otherwise.
THEOREM 2. — Let §, = @, and T(Q,; 8;, n) = T.(8,; n). Then for sufficiently
large n, we have

% 2 m) mA1
1, - Fc

(1.9) Tu(81; ) o) mg ) -+ Fyo(n)

(m,m)eQx
where (k) is the Riemann zeta function defined by [(k 2 nk,
{1.10) Jifm) = m* [[ (1 — p77),

plm

the Jordan totient funection, and for every &> 0,
(1.11) Fy(n) = O@nEHDIETDTe o O(atF)

according as I<k? or I > k2, where the O-estimates depend only on %, ! and e.

TumorREM 3. — When ! < %%, the error term F,,(n) in formula (1.9) has the
better O-estimate given by

(1.12) Fpa(n) = O(nEHIRERD(1gg ) #/ED=10-D11)

where the O-constant depends only on %, 7 and e.

In section 2, we prepare the necessary background for proving Theorems 1, 2
and 3 and in section 4, we give several applications of Theorems 1, 2, 3 and refer
to the results that exist in the literature which are particular cases of these Theorems.
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2. — Preliminaries.

In this section, we prove some lemmas which are needed in our present discus-
sion. Throughout the following » denotes a fixed integer >2.

LemmA 2.1 (cf. [15], Lemma 2.6). ~ Let &, be the multiplicative function defined by

0, iflg<agr—1

(2.3) h(p%) = )
1, if axr.

Then > h,(m)m™ converges for any s> 1/r.
m=1

LevMmA 2.2. — We have

(2.2) h(m) = 3 B(9),

do=m

where k, is a multiplicative function such that the series

B! (m)m— is convergent for s> (r 1)1,

T
i

(2.3)

s
1M g

Proo¥. — This is implicit in the proof of lemma 2.8 of [15].

Levma 2.3 (ef. [15], Lemma 2.8). — For #>1,

2 h(m) = O(@")

m<e

where the O-constant depends only on 7.

LeMMA 2.4. — Let m be a fixed positive integer. Then

> he(mn) = O((@m)¥r)

n<T

where the O-constant depends only on 7.

PROOF. — We have

2 h(mm) = 3 h)< 3 k(1) = O((@m)""),

n<e t<am t<am
mlt

by Lemma 2.3.
Hence Lemma 2.4 follows.
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LevyA 2.5. — For each fixed m,

» h,(mn)

= Q(a—Trir.mar)
n>x I

where the O-constant depends only on 7.

ProoF. — Follows from Lemma 2.4 and partial summation.

LevumA 2.6. — For each fixed m,

> h(mn)nt = 0(m*), for every &> 0,

n=1
where the O-constant depends only on e.

Proor. - We have

> h(mn)nt=m > h(t)t"t<m Y h(t
n<® tfnalotm t<em

Smce the series Zh yi-1, converges by Lemma 2.1, it follows that the series
451

Zh (mn)n~! also converges.

n=1

‘We have

b () +‘...} _

n=1 Ny=1 ¥4
(ny,m)=1
1 he(pt) } '
= 1 h.(p* —_— <
1;;”{ +pr+p,ﬂ }w”m{ ) + 2
<H{1+ L, 1 } {1+1+i+ }<c<2)-2w<m>=0(ms)
p’“ B G A T ’

where co( } is the number of distinet prime factors of m.
Hence lemma 2.6 follows.

LuEMMA 2.7. — If g, g, and h, are the multlphcatlve funetions defined in (1.1),
(1.2) and (2.1), then

(2.4) ’gk(m) l < hy(m)
and
(2.5) lgz(m)| <Py (m) ,

for all m.
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Proo¥. — The proof of (2.4) is given in Lemma 2.14 of [15]. (2.5) similarly follows.

LeMMA 2.8 (cf. [9], Lemma 2.1, p. 132). — If a, b, n are positive integers and R(a,
b, n) denotes the numbers of solutions in pogitive integers », y of the Diophantine
equation
ax + by =n,
then
n{a, b)
R(a, b, n) = ab
0, otherwise,

+ 26,, if & 4 b<m, (4, b)in,

where 0, = 0,(a, b, #) is a number absolutely less than 1.
For positive integers ¢ and H, let @, (x; a, H) denote the number of positive inte-
gers n<® with » = o (mod H). As usual, H is called K-full if p*|H for any prime p|H.

LEMMA 2.9. — If (o, H) €@, and H is k-full, then

w_Hk—l
(2.6) Quz; a, H) = m -+ By(z; a, H)
where
2.7) Ey(w; a, H) = O(k* (@ H L H'™)

the O-estimates being uniform in », ¢ and H; J,(H) being given by (1.10).

REMARK 2.1. — K. PRACHAR (ef. [14], p. 175) proved (2.6) under the assumption
(¢, H) = 1, rather than the assumption (e, H)ec @, and H is k-full. However, the
proof in either case is almost identical (cf. [14], §3). Infact, C. POMERENCE and
D. SURYANARAYANA [13] recently made small improvements in the O-estimates of
(2.7) even under less stringent conditions on a and H.

LeMMA 2.10 (ef. [13], corollary). — We have

0((mkw(H))1/k+1) , it z < Hk

(2.8) Byw; a, H) =
O(mI/kH—ll(k+3/2)) , if 2> H* ,
where the implied constants in the O-terms are uniform in #, a and H.
REMARK 2.2. ~ It is clear that Q.(x; a, H) = 0, if (a, H) ¢ Q,. Further, if @} (v;
a, H) denotes the number of positive integers strietly legs than x with # = a (mod H),
then Q.(x; a, H) and QZ(w; a, H) differ by atmost 1 so that

Qs a, H) = Qu(w; a, H) + 0(1).
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3. — Main results.

In this section we give the proofs of Theorems 1, 2 and 3 stated in the introduc-
tion.

PrROOF OF THEOREM 1. -~ We give the proof of this theorem by combining the

methods due to CARLITZ [2] and PAGE [12]. Let 1 <1, = t,(n) <n, i = 1, 2, be two
functions of n. By (1.5), we have

Tn)y= 3 gldgd)+ 3 gadgd+ T gd)gd).

n=d,0; +dy6s n=d, 0, +dg0y Gy >4
<ty ,da>1s Ay <t 0 <ty n=d,0; +d.0,
Let
)] . /
(3.1) T'm)= 2  guld)g(ds),
1=y d; +daby
A1t da <ty

so that by (2.4) and (2.5), we have

(3.2) |T(n)—T'm)|< 2 hld)lu(de) + 3  hld)luldy) = Tp+ Ty, say.
Tb:‘;lila;jdaag n=o’§1(5>1-;~d262

By Lemma 2.5 (m = 1,7 =1) we have

Ty, Shid) 3 1= 3 hid)rln—dd)=0(w 3h@) 3 1) =

dabp< dy|n—dg0s dads<<n dy<n Sa<nfdy
da>ts d3>ty dg>1p
1+e -1\ __ 142 g—1+1/1
= Ot 3 hdp) ;) = Ot a5t
dy>ty

where in the above, we used that z(n) = O(n°) for every ¢ > 0, 7(n) being the number
of divisors of n.
Similarly 7, = O(n

1+eg-1+1k)  Hence we have

(3.3) T(n) = T'(n) + 0@ ot 1+ O(nt+eer 11y
From (3.1), we have

T'(n) < z z gildy) gz(dz) = Z T*(m) , say.
mln n=d;0;,+dgd, mln
di <ty Aoty
(dyydg) =m
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Now, by lemma 2.8,

’ ! '
(3.4) T*(m) = Z gi(dy) gi(dz) = z gr(aym) ga;m) =
=0y +dg0, nlm=g,01+ a0
G <l 02ty (@1,a,)=1
(dy,ds)=m ay Kby /m,as < ta/m
/
= gr(a,m) gz(“zm){ + 01) =
o ma,a,
G bp/m
(@1,00)=1
=nwm Y gilaym)g(asm)/o;a; 4 0( > h(apm) h,(azm)) .
ay <hi/m ay<ifm
ag<ila/m Ay <lyfm
(a1,0:)=1

By lemma 2.3, the O-term in (3.4) is 0@#;"t"), so that

(3.5) - T*(m)::"m_l Z grla,m )gz Ay m /“1“2+0(t1/kt1/l)

ay<him
ag<txlm
(ay,02)=1
fele)
— — 4 — _
—an S gamart] S gamart+o( 3 am)art)} 06 =
A <lyfm § a,=)1 L ag>tafm
G2,01) = '

—am™ S glaym) Ajfag; myart + (1 3 hulaym)fay) + 04" .

ar<him a1<t1/m
by Lemma 2.5, where
(3.6) Ajla;m) = 3 glagm)a;

a=1
(azasal)=1
Now, by Lemma 2.6,
(3.7) S hlaym)a;t< D Iyfaym) ot = O(m') .
1<t /m =1

Further, we have

Ty= E gk(“xm)A;(%im)“flzz.’lk(%m)A(“u m) &y T
1

1K /m &=

+0( S Byleym A(al,m)a;l).

ay>tilm

Since by Lemma 2.6, 4,(a;;m z ha,m = O(m®), it follows from Lemma 2.5
(r == k) that "z"l
(3.8) Ty= 3 gya,m) Aja;m)ay® + 0@ m! ) .



8 D. SURYANARAYANA - V. S1TA RAMAIAH: Generalization of a problem, ete.

Collecting (3.5)-(3.8), we have

o0

T*(m) = wmn™" 3 gi(aym) Ay(ag; m)as" +
a;=1
+ O(t;l+1lkml+6) + O(t2—1+1/l%m8) + O(ti/kt%ﬂ) ,

8o that
=3 Tm =n In 3 o) Afessm)a 4
+ O(tf””k%m”‘) + o(nt;””’% ) + 0" v(n)
It is clear that > m'*°<n'**-7(n) = O(n'**), and m8<;rzst(n) = 0(n*), for every

mln mle
> 0. Hence we have

Tl(n) =n ZH(m) m——l + 0(%1+2et£—1+1/k) + 0(n1+2st2—1+1/l) + O(ti/kt;/l%e:) ,

min

where H(m ng a,m) A;(a,; m)a; . Now by (3.3), it follows that

a;=1

,n) =5 EH(m) m——l _}_ 0(%1+2€t1—-1+1/k) + 0(7’[/1+26t2_1+1ﬂ) _l— O(WIGtilkt;ﬂ) .

m|n

Taking #, = #*¢~V#=1 angd ¢, = 4@~ DW= we see that each of the above O-terms
reduce to O(n*Ti-2W-1+2¢)  Now it can be shown using the Fuler- Infinite Product
theorem that

co

; Hm)m™t= 3 ) (1) §1(@) (a5 @5) (@1 05) 7" =
m|n Gy 0p=
(@y,a2)|m

( oo -1
= S(%)'H{_Eogi(p")p ’}H{l +( g.(p ")p"') t gk(pt)p“},
D 1= D
where S(n) is given by (1.7).
Hence Theorem 1 follows.

g,Ms
138

REMARK 3.1. — We can further simplify the main term in (1.6) so that T'(n) is
also given by

(3.9) T(n)z%ﬂ{igi(p">p‘“’+t2 WP P }H{zgl ' zilg“(pt)p—t}ﬂx

i=0 pln

X {.Z 9P P + tglgk(p’)p—‘/.zog{(p")p—fsn((p",pt)}} + O(nEFI-DIE-D+e)
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PrOOF oF THEOREM 2. — By (1.3), Remark 2.2 and Lemma 2.3, we have

(3.10) TW;n) = 3 f@)ad) = 3 g(d)qd) =

n=a-+b n=ddé+b

= 2 (@)Qkn; 1, &) = 3 (@) Qulon; n, &) + 0 3 1)) =

d<n R4
= Z g:(d) Qu(n; n, d) - 00 .

a<n

Let 1<t =t(n) <mn. Then by Remark 2.2,

(3.11) X g(@) Quln; n, d) = 3 g,(d) q,((dy 2) Quln; n, d) =

a<n a<<n
Mdz gz Qk((d n))Qk(" %, +t z gz d) qk«d ”))Qk n #, ) = T4 + Ts 9 say.
<t <d<n

Since Qn(n; n, d)<2nd-*, it follows from Lemma 2.5 (r =1, m = 1) that

(3.12) [Ts|<2n S h(d)d-* = O(n—r+11)

axi

From (2.5) and (2.1) (r = 1) it follows that g;(p"‘) = 0 for any prime p and 1<a<
<l— 1. Hence we can assume that 4 in the sum 7, is I-full and hence k-full since
I>k. Hence by Lemma 2.9, we have

k—1

(313) T.= 3 gid) (4 w)){c—(,g@f— -+ Ot o g-1) 0<kww>dﬂk>} =

; g’"«d n))dk ' 1k w(d) J—1/k*
% T ™ O(Wd%h‘(d)k P4

k
( g kw(d)dl/k) =Ty + T+ T137 say.

The series > g,(d) g.((d, n))d*1/J,(d) converges absolutely by (2.5), the fact that
d=1

d*[J (d) is bounded for all d and Lemma 2.1. Further by (2.5) and Lemma 2.5 (m = 1,
¥ = l)7

3 0@ gi(d ) #=217(@) = 0 3 u(d)d-1) = O(r+h),
d>1 a>t

so that

(8.14) Ty = n{l(k)) Zgl ) ul(dy ) d+=1)T () -+ O(mt=1+111)

By Lemmas 2.1 and 2.3, and the fact that ¥*® = 0(d®) for every ¢ > 0 and partial
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summation, we have
O(n'™, if 1> k?

It i WS 3 P T

M
l

(3.15)

12 —

Also, by Lemma 2.3,

(3.16) ‘ Ty= 0(,;1/%LE 3 h,(d)) — Qs

a<it

Collecting now the results (3.10)-(3.16) we obtain,

(85 m) = n(C(k) ™" 3 g,(d) 0(d, n) & [ild) A+ Fym)

where
0(_n1/k) , if l> kz
Fyyn) = 0@y 4 O(ut™ 4 - 0@+ 4 e
IO A L W S P L

Taking t = n*%*? we obtain Theorem 2.

Proor or THEOREM 3. — From (3.11), we have

B17)  T,= 3 g(d) g:((d, n) Qu(n; n, d) =

a<i

= n(Z(®)" 3 () & qul(dy m)ITu(d) -+ 3 0,(d) qil(d, m) Buln; m, d) +

a<t d<nlle

+ 3 g(d) g(@ n) Bun; n, d) =

nlELd<t

= Tn + T;2‘|' Tis

where E,(#; a, H) is the error term in the formula (2.6).
By (2.5), Lemma 2.10, Lemmas 2.1 and 2.3, and partial summation,

0(n'"), it 1% 2
(3.18) T;z = ()(%1/76 2 h(d) d—ll(k+3/2)) —
d<ntle 4 0(n1/k-i—1/kl—1/k(k+3/2)), it 1<k 2.
— O(H(k+l)/l(k+1)) ) ‘ .

Again by (2.5) and lemma 2.10, we have

-T:,ls — 0( z hl(d)(%kw(d)>ll(k+1))

d<t

— 0(%1/(70—(-1) s hl(d)('kw(d))l/(kﬂ)) )

a<ti
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Now by (2.2) and (2.3),

z hl(m)(kw(m))lI(k+1)< Z h’l“(a)(kw(a))ll(k+l) (ka)(d))ll(k—}-l)

m<it abet
=3 BE(8) (RO L+ D S (o d))logikqm,,
<t a<(tont

_ O(tlll(log %)(kll(k+1)—-1) Z h’;(a) 6—l/l(kw((§))ll(k+l))

o<t

= O(t"Y(log n)(kl'(k“’"”) ,
where we use a formula of Ramanujan (see WiLsoN [19], eq. (2.39)). Hence we have
(3.19) Ty5 = O(nMEHV i 1og 5) B EH=1)
Collecting now the results (3.10)-(3.12), (3.14) and (3.16)—(3.18), we obtain
Fk,l(n) — 0(m—1+1/l) + 0(%(lc+l)/l(lc+1)) + 0(%1/(k+1)t1/l(10g n)(k1/<'=+1>—1)) .

).__(kll(k+l)—1)

Taking t = n** Vlogn , we obtain Theorem 3.

4. — Applications.

Throughout the following », and », denote integers with 2<r <7, and %, and k,
denote integers with k, > #, and k, > r,. A positive integer m is called Semi-k-free [18]
if in the canonical factorization of m, no exponent is equal to k. A positive integer m
is called unitarily k-free [3] if no exponent in the canonical factorization of m is
a multiple of k¥ and m is called a k-skew integer of rank ¢, where ¢ is any positive integer,
if in the canonical factorization of m, no exponent is equal to jk, for 1<j<¢. For
convenience, we shall call these integers (k-skew integers of rank ¢) as unitarily k—i-
integers. Clearly the unitarily k — 1-integers are the semi-k-free integers and the
unitarily k— oco-integers are the unitarily k-free integers. Let » be an integer with
2<r<k. A positive integer m is called a (k, r)-free integer if no exponent in the
canonical factorization of m belongs to the interval [, k — 1]. This definition includes
as special cases the r-free integers (k = co) and the Semi-r-free integers (k = » 1+ 1).
A positive integer m is called a (k, r)-integer if m can be represented as m = m¥m,
where m, is a positive integer and m, is an r-free integer. These integers include as
a special case the r-free integers (k = oo). The concept of a (£, r)-integer has been
introduced independently (without using this name) by E. ComEN [5] and M. V.
SuBBA Ra0 - V. C. HaRRis [16]. Let §; denote the set of all integers m in whose
canonical faetorization each exponent is just 1 or . We also include the integer 1
in the set S7. These integers have been introduced by E. CoHEN (cf. [4], . 78).
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Let Q}:,“ Qu.»y and @, respectively denote the set of all unitarily & — ¢, (%, 7)-free
and (k, r)-integers. Let (Z;,n 9, and ¢, , denote the characteristic functions of the
sets Qz,t, Qx,n and @ ,: First we have

COROLLARY 4.1. — Let Ty, ,x,r)(n) denote the number of ordered pairs (a, ) €
€ Qy v, XQp, o, With # = a + b. Then for sufficiently large n, we have

L(ks) ( 1—p 10*"1—10‘“)
4.1 Tty ) gy} (M) = 0 1 A(n) 4
( ) ey ) (% )( ) C(/,-Z) ];.[ + p—fz 1 _.p_ﬁ ( ) _I—

+ 0(%(7’1'1'72_2)/(71“"1)‘}'3) ,

for every ¢ > 0, where the O-constant is independent of %,, k, and n:

4.2)  A() = 1‘[{1 4 p_k”( S poi S [En((l”""*a ph)  eaf(prrms, P“’“‘))] _

o P o pmkz prz+mk,
o B e pmk2 pr1+uk1 & pra—}-mkg Ty -+ pkey
_Mgop (n+n7c1)§: [ o p,m 2 ))_ f( prﬁ’ml; ))])} %

1_p—7u2 P k1_._p—71 -1
(1 i 1—p . 1—p~h ] °

PROOF. — Tt has been shown by M. V. Subba Rao and V. C. Harris (cf. [16], Theo-
rem 3) that

Qka zzkr

dlm
where 7, , is the multiplicative function defined by
1, if =0 (mod#k)
(4.3) ™) = | —1, a=r(modk)

0, otherwise.

Now we take S, = @, ., S;ﬂ = Qp,ro» & =1, and I = 7, in Theorem 1. Noting that
in this case g, = ¢, = A, ,,, and g = g;z = Mg,y We Obtain corollary 4.1 from (4.3)
and Theorem 1.

REMARK 4.1. — It has been established by B. Brixirzer (cf. [1], Satz 2) that

§(ky) L l—pTh pTh—pn
(44)  Tlormm(n) =n %= H(l 1 —pn T1—ph B(n) +

- Omiirtvn=1nnl (I ) C (R 1))



D. SURYANARAYANA - V. S17A RAMAIAH: Generalization of a problem, ele. 13

where
. ) 1 p ke[ oo _ (pmkg p/.akl) (p’rg',"?nkg p/ﬂcl)
(43)  Bm) = M(H {Zp ”’“lmzo[ i T g |
mkg T+ ks o -+ mk ry+ gk — mn—k —k 1\ —1
) 1 ) (prat s, protiks) 1—p™* p~h—pn
—'ﬂgop (mﬂk)z[ prE iR ]}) (1+ —pT" 1—ph)] 7

We remark here that the main term in (4.4) with B(n) given by (4.5) is incorrect.
We get the correct result only if we replace each bracket (,) by e(, ) in the defi-
nition of B(n) given in (4.5) and then it is clear that the main terms in (4.1) and (4.4)
coincide. Further, the error term we obtain from (4.1) is better than the one obtained
by E. BRINITZER (cf. [1], Satz 2). It may be mentioned here that M. V. SUBBA RA0
and Y. K. F'ENG [17] established an asymptotic formula for T, ) tsry(®) in the parti-
cular case when (k;,r,) = s,> 1 for ¢ = 1, 2 with a O-estimate for the error term
weaker than that of E. BrINITZER [1].

COROLLARY 4.2. ~ Let T(’kl,r,)(ka,m(”) denote the number of representations of »
a8 the sum of a (k,, ,)-free and (k,, 7,)-free integers. Then we have

(6) Thoy s (%) = - Om) T (L—p™" — p™"f- prcp p) O te)

»

for every ¢> 0, where the O-constant is independent of k,, k, and n; C(n) being
given by

(47)  On) = I_I[ Q—p™—p - p Tl pTR)T! x
TN
X(l _— p—Tz + p—ke___ sn((pkz’ p"’l))p—(kz‘i'h) _I_ en«pka’ pk1))p‘“(k1+kz)) .

PROOF. ~ First we note that for each prime p,

—1, fa=r
(4.8) Foen( @) = Q@) — Q@™ ™) = 1, Ha=k
0, otherwige
Now, we take k = 1y, | = 1y, 8 = Qg ,,, and 8; = Qig,ry)» Taking k = r, and I = r,

n (1.1) and (1.2), from (4.8) it is clear that g, = Ir. = Foy ry a0d g; = g;z = Fltare)*
Now, corollary 4.2 can be deduced from (3.9) with the aid of (4.8).

REMARK 4.2. ~ Formula (4.6) has been established by G. E. HARDY [10] with
error term O(n'~°) where

0=Min{l—1/r,—er,—1),1—1/r,— 1jr,+ ¢}, and O0<e<l/r,.
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It is clear that 1 — d>1/r, + 1/r,— 1/ry7, with equality if and only if ¢ = 1/r,7,.

Thus the best O-estimate of the error term that can be obtained from G. E. Hardy’s

vegult is O(nYm1n=1n") which is clearly weaker than the one obtained by us in (4.6).
Letting %,, ky — oo in Corollaries 4.1 or 4.2, we obtain the important

COROLLARY 4.3. — Let T, , (n) denote the number of ordered pairs (a, b) € 9, X0,
with ¢ -~ b = n. Then for sufficiently large =,

49) T,,m=n]]0—p"—p7") q 14 @"—p" "+ 17 +

4 0(n(1'1+n—2)l(m‘2—1)+8) ,

or every e> 0.

REMARK 4.3. — Formula (4.9) is due to A. Pacgr [12]. E. ComeN and R. L. Ro-
BINSON (cf. [7], Corollary 2, p. 291) established the asymptotic formula (4.9) without
O-term. In case r, = 7y, (4.9) reduces to a formula established originally by C. J. A.
Everyn and E. H. Linroor [9].

COROLLARY 4.4. — Let B, ,(n) denote the error term in the formula (4.9). Then
we have the following better O-estimates than in (4.9):

Eh,r.(”) — 0(%(n+r,)/ra(n+1)(10g n)(f}/(rﬁl)——l)(h—-1)/?‘;) or 0<n1/r1) ,

according as r,<7> or 7, > 75.
Proor. — Taking | = r, and S; = Q“ in Theorems 2 and 3, we obtain Corollary 4.4.

REMARK 4.4. — The result in corollary 4.4 has been recently established by C. Po-
MERENCE and D. SURYANARAYANA [13]. Taking r, = 7, = 2 in corollary 4.4, we
obtain that B, ,(n) = E(n) = O(n**(log n)®" 72} which is an improvement over the
result H(n) = O(n¥3 log® »), established by E. CoHEN [6].

REMARK 4.5. — Taking %k, = r, -+ 1 and k, = r, -+ 1 in (4.6) we obtain an asymp-
totic formula for T¢,(n), where T° ,(n) is the number of representations of =

T1y7s T1573

as the sum of a Semi-r-free and a Semi-r,-free integer.

COROLLARY 4.5. — Let T{, , 4, 1)(®) denote the number of ordered pairs (a, b) €
€ Q.1 X9, ,, With n = a - b. Then for sufficiently large » we have

s : (p—1)( pht—1 pret—1
4.10 T S —_
( ) (kntx)(ka’tz)(%) 3 1;_[ (1 P pkltl(ph — 1) + pkztz(pkz_ 1) X

— by Fata__ -
»in

P pkxtl(pkx —_ ]_) pkztz(pkz___l
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for every &> 0, where the O-constant is independent of t,, #, and n; H '(n) being
given by

! _ (p - 1) _pk‘tl— 1 pkata —1
(4.11) H'(n) = l];! {1 — P (pkltl(pkl —1) + PR = 1))_._

_élp_mg [ :E (Sn((P”“% P ea(p p"’“l)))] _

1
“~ pitt1 pits

_éilp —(thy+1) Ltz;l (6"((ptk’+l’ platl)) _ enl(p™s p“‘»}]} )

pfk1+1 pikl

ProoOF. ~ It can be shown that
l -1, if a=jk 1<j<t
(4.12) [l ) = Godt) — g™ N =1 1, it a=jk 41, 1<j<t
l 0, otherwise.
Now we take k = by, | = ko, 8, = @, , and 8, = @} ,. Then it is clear that 9, =

= f;:,_,tl and g, = f:c:,tg'
Now, Corollary 4.5 can be deduced from (3.9) with the aid of (4.12).

REMARK 4.6. - Letting #,, ¢, — oo in (4.10) we obtain an asymptotic formula
for Tzl,k,(n), where TZ,,ka(”) denotes the number of representations of »n as the sum
of a unitarily k,-free integer and a unitarily k,-free integer.

COROLLARY 4.6. — Let T;,,t,,)r,(%) denote the number of ordered pairs (a,d)e
eQ:,tﬂth with # = a 4 b. Then for sufficiently large » we have

" 1 1 rabe. 1
(4.13) TG, () = 0 H {1 o —’1—])—MF1 (%”—_—1 )} %

prTiTnA(p — 1) (pnh—1)
x T]{1—
mlln( (pn—1)(p=—1)

-1
)"+ B,
where

E(ts) (,n) — O(n("'x‘l"'z)lra(?“l‘*'l)(log ,n)("y(“'*'l)—1)("'2_1)/72) or O(nlh‘l) ,

F1s72
according as r,<r7 or r, > #%; the O-estimates being independent of ¢, and #.

PROOF. — Taking k = r,, | = 1,, S,’ = sz’h in Theorems 2 and 3, and using (4.12)
(k =1, t = 1,) we obtain Corollary 4.6.

Let >3 and S:‘ denote the set introduced in the beginning of section 4. Now,
we have

COROLLARY 4.7. — Let T;(n) denote the number of ordered pairs (a, b) e 8 XQ,
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with # = @ + b. Then for sufficienfly large =,
(4.14) Ti(n) =mn H (L—2p~2% 4 p~t—p—0iD) .
?

2 —1
. 1—[ (1 € pzp 1 (p—t_ p——(t—{-l) __p~2)) 4 0(%2/3(10g n)(zlls_l)lz) ,
E[n -

where the (O-estimate is independent of ¢ and =.

Proor. — Since @, C Sf , taking k =1=2 and §, = Sf in Theorem 3, we obtain
(4.14).

Added in proof. — We note that Theorem 1 of this paper enables us to obtain an asymp-
totic formula for To(n), where Ty(n) denotes the number of representations of n in the form
n =@a + b, where a is a K,-void integer and b is a K,-void integer. For the definition of
K-void integers we refer to Gr. J. RIEGER (J. reine angew. Math., 262/263 (1973), pp. 189-193).
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