On a Characteristic Cauchy Problem (*).

GIOVANNI BASSANELLY

Sunto. — 84 studia un problema di Cauchy caratteristico (per un operatore di cui quello di Klein-
Gordon, in coordinate cono luce, & un modello). Si stabiliscono teoremi di esistenza ed unicita.
8¢ prova che la velocitt, di propagazione & infiniia.

0. — Introduction.

For several problems in quantum field theories it is useful to consider a reference
frame which is, in a certain sense, moving with the speed of the light. Strictly speak-
ing this is impossible: there is not transmission of signals between this system and
the laboratory system, because of course the limit of a Lorentz transformation for
v ~>¢ does not exist. Nevertheless let us assume, for simplicity, ¢ = 1 and con-
sider a reference frame moving in the = direction with speed » ~ 1 = ¢; by means
of Lorentz transformation, ¢ and = axes are rotated anticlockwise of almost m/4,
while the transverse coordinates z, » are unchanged. This induces us to define, from
the ordinary Minkowski coordinates (#, z,%,#) a new reference frame (¢, s, #*)
(=1, 2}, called «infinite momentum frame », by

P = 27¥{+ 2)
=2 Hf{— 2
(0.1) y ( )
=y
=z,

The formulation of quantum field theories in infinite momentum frame is profitable
towards the following subjects: current algebra, quantum field theory and laser
beam (see [9], [3] and [7] respectively.) Such a reformulation involves a study of
the most important equations (Klein-Gordon, Dirac, ete.) and in this connection
the Cauchy problems with data on the { = 0 hyperplane naturally arise. Indeed
R. A. NeviLLE and F. ROHRLICH in [6] consider the Klein-Gordon equation and

(*) Entrata in Redazione il 19 ottobre 1985; versione riveduta I'8 maggio 1986.
Indirizzo dell’A.: Universitd degli Studi di Trento, Dipartimento di Matematica, 38050
Povo (Trento), Italy. ‘
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the characteristic Cauchy problem
(20— A+ mhu =0
02 { 2, - m)
u(0, 8, %) = g(s, %) .

We think that is not devoid of interest to attend to a rigorous study of (0.2).
In this paper we will concerned with a more general operator

Pu= (3 + 3 a2, + 2,8, + o)u
1 1

with coefficients a,, b;, c € 0([0, T] x R x R®) for a suitable T > 0; moreover we
assume that the coefficients are constant for [(s,z)| > 1 and the matrix [a;,] is
selfadjoint definite. We shall show an existence and uniqueness theorem for the
characteristic Cauchy problem

0.3 Py=f in [0, TIxRXR»
(0-3) (0,8, 2) = g(s,2) (s,2)e RXRn.

Since P is characteristic on the set ¢ = 0, # = 0, the usual Cauchy problem makes
no more sense; thus we have only one Cauchy datum. As we shall see in the fol-
lowing this is not yet enough, since it is well known, see e.g. [4] that some addi-
tional growth conditions must be imposed on # in order to get a « well-posed pro-
blem » from an «ill-posed » one.

Let D be a neighborhood of (0, s,, #) in R+X[sy, 4 o), ALINHAC [1] has con-
sidered the following Goursat problem

(a8l -+ b)u = f(t,s)  (t,5)eD
{ u{t, 8g) = u(0,8) =0

where a = a(t, s) € O4D), b = b(t, s) is bounded in D, and f e L*D), proving energy
estimates for » and the existence of a solution in L2(D). Now (0.3) is obviously
related to some sort of pseudodifferential Goursat pb. where the line s = s, goes
to — oo. The last circumstance as well as Alinhac’s results suggests that some
«speed of propagation » along the s-axis should be infinite (see Th. 4.1 below) and
reaffirm the need of some growth condition on data at s = — oo.

We would also like mention the paper [8] by UHLMANN: it is concerned with the
propagation of singularities for an hyperbolic operator with double involutive char-
acteristics, admitting a C~-factorisation and Levi conditions on lower order terms.
The parametrix (or rather its construction) though points out the close link between
this problem and the classical Goursat pb.; no growth condition has to be imposed
however, since Levi conditions are satisfied.
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Let us now describe the plan of the paper. We suppose that the matrix [a;]
is negative definite. In § 1 we introduce an auxiliary operator @ = P — 8,— x0,+af
(o, € R,0 > o > f), for which we establish an energy estimate. Then, in §2, by
means of thig estimate and a functional analysis argument we show an existence
and uniqueness theorem for the problem Qv = h, v(0,s, %) = k(s,#). In §3, we
define suitable Sobolev space H; with weight (see Definition 3.1) and, thanks to the
relation Q{exp [t 4 fs] u) = exp [of + fs]Pu we show the following Theorem (see
Th. 3.2): Let § < 0. Let fe L[0, T]; HY RXR") and g€ Hi(R xR"). There exists
a unique u e C°([0, T]; H; (RXR") such that (0.3) holds.

Moreover we shall prove that if fe () O%([0, T]; Hy *(RXR")) then

k=0

we () CX[0, T]; HF “HRXR™) A 0([0, T); A" ™(RxR") .

k=0

The next sections are devoted to the study of the range of influence for problem (0.3):
by means of a Cauchy problem for *P (see § 5)—as in Holmgren theorem—and an
other energy estimate (§ 6) we can prove (§ 7) that the speed of propagation is in-
finite in the s direction (see Th. 4.1). This result allows us to improve Theorem 3.2:
actually we conclude that (see Th. 8.1) if the data are C* functions with a suitable
behaviour for s —— oo, then there is a unique % solution of (0.3) such that » is 0%
and exp [Bs]u(t, s, #) is bounded for s —— co.

Norarions. — We shall write 9, 0;, instead of ¢,,0, .; V and V, mean
(D¢y Ogy Oy oeey 0n) and (01, ..., 0,) Tespectively.

Ifb = (byy ..., b,) and ¢ = (64, ..., ¢,) € C", then b-o = Y b;¢; and <b, ¢) = 3 b;C;:
If H is an Hilbert space, then {, >, denotes its inner product.

Let n>0, re R; H(RxR") is the Sobolev space {u = u(l,s, z)c 8'(RxR");
(1 + lof2+ |£2)"24(0, &) € LA R X R")} with norm

ufd=[[(1 + o + &) |0, O dode .
We often shall write H"(s, ), or H”, instead of H"(R x R").
Finally B,,(y; ¢) denotes the open ball in R” of center y € R and radius g.
1. — An energy estimate.

In this note we will be concerned with an operator P of the form

(1.1) P = atf’{_ Z a’jkay?k_!_ 2 bi8j+ ¢
k=1 i=1
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with, for 7' > 0,
(i) @, b;, 06 C°([0, TIXR xR} and are constant outside of a compact
subset of [0, T1 xR X R»;
(ii) the matrix A4 = [a,,] i3 negative definite, then—by (i)—there exist
1.2
1.2) y, 9 > 0 such that
— I, > A, 8, ) >— 61,
for every (t,s, )€ [0, TIxRXR".
We point out that, if A is positive definite, then using the change of variables

s’ = — g, we have (1.2.ii).
We shall often use the operator

(1.3) Q= P— Bo,— ad, + af

where o, 8 are constants such that 0> a > §.
Our aim is to study the following characteristic Canchy problem

Qv =~ in [0, T]xRxR»
(1.4) v(0, s, ) = ks, #) (s, 2)e RxXR".

For this purpose we shall prove, in this section, energy estimates for @ and Q*.
To begin with, we calculate 2 Re<(J;+ 95)0(t), Qv(¥)>pa( oy Tor 1€ [0, T'] and
ve 0,([0, T1; He(s, #)) N CY[0, T1; H(s, 2)):
2 Re[(d;+ 2,)v(t) Qu(t)] =
(4) = 2,0(t) () + 2.5(1)- Dhw(t) +
(B) + 2,0(2) 05:5(2) + 8.5(2)- 0%0(7) —
— 2B12,0(8)|2 — 2a|8,0(t)|2— (x + )2 Re [0,0(t)- 2,0()] +
(C)  + 3,w(t) 3 Tt YOEB(t) + 8,8(t) - T as(t) 050(f) +
+ 2,0(2) Y @irt) 05 7[F) + 5(1 Z a;(t) S5 u(d) +
L 2 Re[(8,+ 2.)v(t) 3 5,()8,B(H)] + 8.0(t) (B + (t))(
8,8(t) - (af + o(d))o(t) +
(B) 4 2,000 («f + &(1))B() 4 2,5 (af + o(t))v(®) -

<A

Gi

t) -+

In order to integrate on R, x RZ, remark that: (4) Let ¢, be a sequence of test
functions converging to ¢,v(f), then f fA dsdx = lim [ f Os|pn|?dsdw = 0. (B) ¥rom
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hypotheses on v it follows B = 9,|0,v(?)?, hence HBdsdw = d;|2,0(t)|3:. (0) Ap-
proximating by test funetions we can integrate by parts; therefore

[§Cdsdw = — [[> @;(t) 8,[8,0(t) - 0,T(t) 1 ds dw — 2 Re {3,0(t), X, 0, 05(t) - 850(8)),0 ==
= — d [ ay,(t ) & B(t) ds dow + [ [> 0,05,5(1) - 0,0(t) - 3,5(2) ds da —
— 2 Re (9,0(t), 3. 0;a;,(t) - 00() > e -

(D) Formally we make the same calculation, but we remark that {[o [a(t) 8, v(¢)-
"0, 0(t)]dsdr = 0 as in (4). (B) Again as in (4): «ff[o,o(t)|2dsdw = 0.
Hence

2 Re (0, 9,) (1), Qv(t)>L2 =
= @ 0,0(8)] 7. — 28] 0,0(8) |3 — 20| 2,0(2) [ 3. —
— (o + )2 Re 0,(1), 0,0(t)) 0~ di{A(t)Vo(t), Vo (1)), +
15 (@ + 0) ADIVer(), Var(t)y s+
-+ 2 Re (0, 2,)0(t), [— V,A(8) + b(1)]- Voo(t) + o(t)v(t)> .+ _
+ ofdo(t)]%., where b= (b, ..., b,).
Let
E(t) = “ﬁ”v(t) ”%"(s,m) + ” asfu(t) ng(s,m)_ <-A(f’) Vm”“)? va(t)>l,“(s,ac) .
From (1.5) it follows that
E'(t) = 2 Re {(8,+ 3,)0(1), Qu(t) + [*Vod(t) — b()]-Vao(t) — e(t)v(t)),s +
(1.6) 4 (B— )] 0.0()] 3+ (x— B)] 2. 0(0)]5: +
(@A B) [0+ 202 — <3+ 8) AD]Vev(t), Var(®), .
Thus we are led to the following

1.1. DEFINITION. ~ We choose as energy the function
(17) E(t) = “ﬂ[w(t) ”Lzz(s,m)'}“ ” asw(t) “%2(3,1)—'_ YHVm’U(t) ”I?z(s,ac) .

1.2. LEMMA. — Let @ be the operator (1.3). There exists ¢ > 0 such that for
every te [0, T, for every ve C°([0, T1; H(s; z)) N OY[0, T]; HY(s, x)):

3
1) < O{B(0) + [T1Qu(t) )+ B at}
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Proor. -~ We can choose ¢ >0 such that o 4§+ &< 0. From (1.6) and
(1.2.1) it follows that there exist constants C, >0 (j = 1, ..., 4), depending only on
the coefficients of @, such that:

Bty<e (8, + 8,)v(t))2 +
+ &|Qut) + VoAl — 8(1)]- Voo(t) — e(t)v(t)] 7.+
+ (e — )i 0,07 + (@ + A (@, + 8)v(0) |5+ C, [V, o0)]2<
<{o 4 B+ (8 + 2.)0(®)]7: + 3e|@Qu®)]7:+
+ (30, + O)[[Var(®)]5: + 360, 0(t) % + (x— )| 8.0 %<
< Oy[|Qut)]7:+ B(®)] .

By integration over {0, ] we get:
11
B <B(0) + 0 [1Que) %+ B@)] at' .
0

Since E(t)<H(1)< C,E(1), (¢€[0,T]), for a suitable C,>0, the lemma is
proved. Q.E.D.

Now we are able to obtain an energy estimate for ¢, which will be used in § 2
in order to prove a uniqueness theorem.

1.3. TueorgM. — Let @ be the operator (1.3). For every rec R fthere exists
0,> 0 such that for every te[0,T] and for every ve Oo[0, T]; Hr+(s, x)) N
N CY[0, T7; Hr+'(s, x)):
(1.8)r  aflv®) |z + (00 7+ 7| Voo () |7 <
< C,[aplo(0)|F+ [8,0(0)|F -+ 7 [Va0(0) 7+ 1990 20,3 0] -

PrOOF. — Let v e C°([0, T']; H™+*) N CY([0, T']; H+'). Denote by A, the p.d.o.
with symbol (1 + |o]*+ |£]?)72. Define

t) = af o) |5+ 18,000 |5+ y V.00 |5
From Lemma 1.2 it follows:

7)< o{B,0 +f[||QAv )13+ B]ar) .

In order to estimatbe |QA,v(#)|,., write: Q4,v(f) = A,Qu(t) 4 (84, — A,8)v(f), where
8= a;0%+ 2b;0,+c Thus 84,— 4,8 is a p.d.o. of order r4+2—1 and its
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symbol, for every e [0, T'], does not depend on (s, z) outside of a compact subset
of RxR”; then (see IV.11.1 (m) in [2])8(8)A,— A,8(¢): H*i(s, x) — Hs, )"s
continuous; i.e. K(#) = sup [[8(f)A, — A,8(¢)]u]|z< co. By the Banach- Stemhaus

ueH™1, Jul| =1
theorem: K == sup K(t) << oo. Hence

194,0(8) | < [Qu()) | g + K[o(t) |ger < |Q0(t) g+ K B, (1) .

Now:

E()<K{ -}—f[HQ'v )% - B, t’]dt}

and the theorem follows from Lemma VI.4.4 in[2]. Q.E.D.

We need an energy estimate for @* = 94,4 $0, + ad,+ > 0%(@;-) — 38, () +
~+ af +- ¢ too. Such an estimate will be used in § 2 in order to prove an existence
theorem.

1.4. THEOREM. — Let @* be as above. For every r € R, there exists K, > 0 such
that for every ¢e[0,T] and for every wve C°([0,T]; Hr+¥(s, x)) N CY([0, T1;
Hr=(s, x)):

(1.9).  aflo(®) |z + [3,2()5 + ¥ Vao(t) | F <
<E[a]o(T)z + [ 22(T) g+ 71V 0 D) | 3 4 19%0 )20, 2; 2] -

Proor. ~ Let ve ([0, T]-+ H?(s, #)) N CY([0, T1; Hi(s, x)). By obvious modi-
fication in (1.6) we get:

E'(t) = 2Re (3, + d.)u(t), Q*o(t) + [— *V, A(t) + Bm]-v olt) +
+ [= 2 Oean(®) + 3 8,5,(6) — 80 ]0(0)),n+ (e — )] 0,0(8) ]2 +
+ (8= @[8,00) |3 — (2 + B2, + 2,) nL»
— 3+ 3,) AB)IVar(t), Voo () -

Arguing as in Lemma 1.2:
B'(1)>— (a+ B + e84+ 0,)0(8) |3 — 3e]@*0(t) % — (360, + )| Van(t)|2a—
— 380, [o(t) [ — (2 — B)]2,0(0)]% > — O,[[Q* (% + B()] .

By integration over [t, T] we get

B(t)< O{B(T) +fT[uQ* O+ By lar} .
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As in the proof of Theorem 1.3 it follows that there exists K, > 0 such that for
every ve 0°([0, T]; Hr+(s, 2)) N CY[0, T']; Hr+Y(s, x))

r
B,(0) < KABAD) +[[10*0) [ + B)]ar}
i

To finish our argument it is enough to put Y(@) = E(T—1) and ¢(t) =
= |@*v(T — t)|z; so we can apply Lemma VI4.4 in[2]. QE.D.

2. — Existence and uniqueness of solution.

By an argument of functional analysis and Theorems 1.3 and 1.4 we shall prove
a theorem of existence and uniqueness for the Cauchy problem (1.4).
‘We begin with

2.1. PROPOSITION. — Let @ be the operator (1.3) and let re R. If he LY([0, T1;
Hr(s, »)) and ke Hr(s, »), then there exists »e C°([0, T']; H (s, #)) such that (1.4)
holds.

Proo¥. ~ Let B = {p e ([0, T]; H**(s, #)); p(T) = 0}. We are going to de-
fine an antilinear functional I: Q*F — C and we shall show that we can continue
it to a continuous funectional on IL2([0, T']; H-(s, z)). Let

,9) =[[f0, 0050, 8 dods  tor fe Hr(s,0), geH(5,2);
define, for p e %,
T
(2.1) U@ g) = [ (1), ¢(0)) @t + (b, — 2u9(0) — B(0))
0

From ¢(T) = 0, it follows that 0,p(T) = 0 and V,p(T) = 0. Thus, by (1.9)_., I is
well defined. By (1.9)_, we obtfain also:
T
% 4y, | ¥
UQ*@) <] 2o, m1; 51 [f“‘l’(t) U%z-rdt] +
0
+ 23 Bl 8,90(0) 7+ ﬂzi‘¢(0)“12ir~r]%< ClQ* @l 20, m1: 7-0)

for & suitable ¢ > 0, for every ¢ € E. By an application of the Hahn-Banach theorem,
there exists w e L*([0, T1; H~(s, @)) such that <{w, Q*@>pqo,m;z-n= UQ*¢), (p € E).
Let o(t) = A_,,w(t), then v e L¥[0, T]; H7) and

T
Jow, e 90)at = 1@*e)  (pem).
0
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Let {y,} be a O partition of unity of RxR». We write

(v(t), @* (1)) = Z(o(t), Q*y;p(t));

i

thus by an integration by parts with respect to s and z;, we get

T

22)  UQ*p) = [ {= (12— 1o, iplt) +
+([”‘ %0, -+ zaﬂc( —I‘Zb 1) 0; -+ of + ¢ }dt

If, in particular, ¢ is a test function on (0, T') X R X R, with an integration by parts,

with respect to ¢, we have
T
1Q*9) =[(Qo), pt0) @t

1]

Now, from (2.1), it follows

T T
[(@oto), pte)) s = [ (nat), pta)) a

for every test funetion ¢ of (0, 7) X RxR». Hence

Qu="h in D'((0,T)xRxR").

0,0, — Pv) = a0 — > 4,050 — ¥ b; 8,9 — (af + ¢)v + b e L¥[0, T]; H™-2);
and, due to the Sobolev theorem

(2.3) 3,0 — Bv e C°([0, T]; H-2) .

In general, if ¢ € B, from an integration by parts with respect to £ in (2.2) it follows

T

f(Qv 8)) dt + (2,0(0) — Bv(0), p(0));

0

e. (k,— 0,(0) — Bp(0)) = (8,9(0) — Bv(0), @(0)); it is enough to say that &k = v(0).
To finish our argument we must show ve C°([0, T]; H-2). Let ¢,¢ [0, T];
since

—
{0, 0(8) — 0,0(8'), v(8) — V() g2 =4 fo’(l + o2 4 |E]2)2 [o(t) — o(t')|* do d&
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is pure imaginary, then
|850(8) — Bo(t) — [8,0(8") — Bo@)]|r-2== ]9,0(8) — 3,0(t") |zrs + B2[0() — 0(¢') | -

From (2.3) it follows lim [o(f) — v(t')|fe== 0. Q.E.D.
Now we show the uniqueness:

2.2. PROPOSITION. — With the same hypotheses of Proposition 2.1 the solution »
is unique in C°([0, T]; H"=%(s, »)).

PRrOOF. ~ Let we 0°([0, T]; H™2) such that Qw = 0 and w(0) = 0. Then
00w — fw) = ad,w— Y ;05w — > b;0,w— (af + c)w & C°([0, T]; H).
Hence by the above argument:
0.pw e O°([0, T']; H*);
i.e. we 0Y([0, T]; H—*). Thus we can apply (1.8),— to see w =0. Q.E.D.

2.3. REMARK. - If the data are smooth, ie. ke O°([0, T]; H+ (s, »)) and
k € H*®(s, ), then there exists an unique v € 0°([0, T']; H*"(s, w)) such that Qv = A
and v(0) = k. Moreover, since 9,(6,— B)v e 0°([0, T]; H+?), it follows v e C*([0, T;
H**). Thus with a step by a step argument o C=([0, T]; H*").

Using this remark we shall improve Propositions 2.1 and 2.2:

2.4 THEOREM. ~ Let @ be the operator (1.3). If ke L¥[0, T]; H") and ke H™,
then there exists a unique v € C°([0, T']; H*') such that (1.4) holds. Moreover v
satisfied (1.8),.

Proor. — Let (h,) be a sequence in OF ([0, T]x R xR} converging to k in
Lx([0, T7; Hr) and let (k,) be a sequence of test functions in R X R» converging to &
in H™(s,w). By previous Remark 2.3, for every #cIN there exists a unique
v, € C°([0, T]; H*°) such that Quv,==h, and v,(0) = k,. To see that the sequences
Vny 0y¥ny 0;0, (j =1, ...,n) are Cauchy sequence in C°([0, T]; Hr) it is enough to
apply (1.8), to v,— v,,; thus there exists v such that », converges fto v in
0°([0, T]; Hr*). Then v(0) = k. Moreover

00— P)0u= (2B — 3 @305 — 2 b0, — off — ¢)va+ by

is a Cauchy sequence in L2([0, 7']; H™'}; hence Qv = h.
Since v, — v, we see that v satisfied (1.8),. Q.E.D.

Moreover we shall show that there is a relation between the regularity of the data
and the regularity of the solution.
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2.5. COROLLARY. — With the same hyptheses of Theorem 2.4, for every m e IV:

(4,) If he [’m] H*[0, T]; H*(s, #)) then

=0

=

ve () O[0, T']; Hr++(s, wv)) N H1([0, T1; HY(s, x));

1]

T s

(B,) It he ﬁ 0%([0, T]; Hr*(s, 4)) then

k=0

veE ﬁ 0%([0, T1; Hr-*+(s, 4)) N C™+([0, T]; H—" s, x)) .
k

0

PrROOF. — We shall write H*(g), C*(q) instead of H*([0, T]; H*), C*[0, T']; H*)
respectively.
First we prove (4,): let he H°(r); by Theorem 2.4, ve C°r 4 1); then
0,(0,— B)ve H%r—1), and, by the same argument used before in the proof of 2.1,
m+1

we get o,ve H(r—1), i.e. ve HY(r—1). Let (4,) holds. Let he() H*r— k).
From Qv = b we obtain k=0

QP = Q10+ PR

where Q..+, is a differential operator of order m in ¢ and order 2 in (s, #). Since, by (4..),
ve Om(r +-1— m), then

Qortloe Cr—1—m)N H(r—1— m).
Finally, by (4,), 8" 've C%r— m) N H'(r — 2 — m). This proves (4,,). A similar
argument proves (B,). Q.E.D.
3. — Conclusions about the operator P.

Consider the operator P in (1.1). We shall show that the characteristic Cauchy
problem (0.3) is well posed if the data f and g belong to suitable spaces defined as
follows:

3.1. DEFINITION. — 7, f € R. Define

Hy(RXR") = {pe D'(RxR"); exp [fslp(s, @) € H'(s, v},

and |@|a; = |exp [Bs]e|n-
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3.2. TurOREM. — Let P be the operator (1.1). Let § <0, fe L*([0, T]; Hi(s, x))
and g € Hy"™(s, #). Then there exists a unique » e C°([0, T1; H}*(s, #)) such that

Py = f in [0, T]xR x R
u(0,8,2) = ¢g(s,2) (s,2)e RxR=.

K

Moreover if fe [ H*[0, T]; Hy *(s, w)), then

k=0

U Ekﬂ Ck([O, V4H H,@“‘k(s, 2)) N Hm“([o, VA Hg‘l_m(s, z));
=0

it fe () C¥[0, T]; Hy *(s, »)), then
k=0

we [} OX[0, T]; Hy " Xs, @) N C"[0, TT; Hy ' ~"(s, @) .
k=0

ProorF. ~ Since § < 0, we can choose « such that 0 > « > . Let h= exp [at | fs]f
and % = exp [Bs]g; by Theorem 2.4 there exists a unique v e C°([0, T]; H™*') such
that Qv = k and »(0) = k.

To finish it is enough to put w = exp[— at — fs]v, and remark that

Q(exp [at + fs]u) = exp [at + fs]Pu. QE.D.

4. — Range of influence: the statement.

We will study the range of influence of the operator P (1.1), with reference to
the Cauchy problem (0.3).
Leb (g, 80, %) €10, 71X R X R* and consider the cone

(4.1) C = {(t, s, ) € RXRXR"; 48(ty— 1)(8o— §) — |@ — o[2> 0 and 0<t < 1o}

with § is as in (1.2.ii).
Now we state that the speed of propagation is infinite; in fact we shall prove in
section 7 the following

4.1, TurEOREM. — Let P be the operator (1.1). If 4 = u(t, s, x) satisfies the fol-
lowing conditions
(i) we CC);
(ii) there exists 8 < 0 such that exp [fs]u(t, s, #) is bounded in C;
(4-2) (iii) { Py=0 in C

(0, s, #) = 0 for every (s, #) such that (0, s, x)e C

then w(t, s,#) = 0 in C.
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5. ~ An auxiliary Cauchy problem.

5.1. DEFINITION. — Let (4, 8;, #,) € 0, and o, = 48(fy— ;) (So— &) — |21 — @[|2> 0.
Define

Fy={(t, 8, ®); 48(ts— 8)(so— 8) — & — @,]2> 0, and t <y} .

In this section we prove the existence of a solution of the equation: *Pw = 0 in 7y,
when the Cauchy data are assigned on the hyperboloid F,. To this end we define
coordinates (p, ¢, %) by means of

p=t-|s
(5.1) g =1t—3s
0‘/‘3-: w]' (j:]., ...,1’&).

Let (po, g0, @) be the coordinates, in the frame (5.1), of the point (#,, s,, #,). We
introduce also coordinates (@, §, # by means of

p=po—p—0
(5.2) 7=49—%

i=w,—2; (J=1,..,n)
where

0=00,0) = [0 + (4= G + Jo— au*-T = (61 32 4 [3]2672)¢

It is straightforward to check that (¢, s, ) — (P, §, #) is a C* one-to-one transforma-
tion of RXRXR" onto itself. Moreover if §, corresponds to 7, by means of above
change of coordinates, then &= {#>0}.

5.2. LEMMA. ~ Let ¢,> d. There exist a;k,b;,c’e C°((— oo, TIX R X R*) such
that they extend the coefficients ay,b,, c€ C°([0, TIx RxR") of the operator P
(1.1) and

0> A4'(t,s,m) = [“;k(t) 8, 2)|>— 0,1,
for every (1,s,x) € (— oo, T] X Rx R~

n n
5.3. LemMMA. — Let 6,> 0. Let R = 83, + > b0+ D ¢;2;- r be an operator
k=1 i=1

with coefficients b,,, ¢;, » belonging to C=(9,), and let B = [b;,] be selfadjoint definite
such that 0 > B>— 6,1, in ;. Denote by B the operator that corresponds to R
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(5-3) B= ¢(ﬁ7 57 ‘%) 8% + Rl(f’a q’ 37"3 a’;& O g0y a;”) a;+ Ez(ﬁy q’ﬁ; a;y a‘"lr sy 3;,,)

where: B, (j=1,2) is a linear differential operator of order j, with coefficients
belonging to C""({IFU {o}) XRXR“); ¢ is & smooth funetion such that ¢ > 0 if
|&] < [ay(d,— 8)~1)}; R is strictly hyperbolic in the direction df, on the domain

(R+ U {0}) X RX B,(0; [dey (6, — 6)~1]¢) .

Proor. — Let 7, and r, be the principal symbols of the operators Eand B respect-
ively, then they are connected by

e ( x) [
75Dy §, &5 7,y 1y C):Tz(ta 3)‘%‘;%}(%))-

Therefore, it follows

oDy G, &5 7y 4, §) =
= 7 P(P, §, &) + #[2G0-1 y — 670<KBE, > + (BE, )] + B, O — 2
where

. 352 - (BE, & oy (0— 0y)]F]
(5.4) P, 3 & = il 1 UL

Hence ¢ >0, for |o|?<< doy{d,— 0)™% B
Since y*— <(BL, > > 0 we can see that £ is strietly hyperbolic in the direction
dp on the domain {§>0}. Q.E.D.

5.4. DmrpINITION. — Let s, <<s,. Define
Q, = {(t,s,x) € T1; s> 5} .

5.5. REMARK. — Let

%y

¥ TP

ro,(t) = r(t) = [48{t; — 1)(80 — 85) — s ]*

_at e —m|?
40(t, — 1)

85,(0 @) = 8(t, &) = 8
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Then (¢, s, x) € £, if only if
t [0, ]
# € B,(wo; (1))

8 € [y, 8(t, 2)];
therefore 002, = 4, U B, U C, , with

A, ——}tsz, ;1€ [0,1,]1, @ € Bu(@o; r(1))}
Bsg: { 07 8, @ .CDEB ('7707 ( ))786[3273(0750)]}
C,, = {(t s(t, ), m); 1€ [0,4,], @ € B,(wo; 7(1))} .

Finally we can prove the following

5.6. THEOREM. — Let P be the operator (1.1) and ¢e C7(6F,). For every
83 < 8o there exists we C°(£2,) such that

tPw=10 in Q,
(5.5) w =0 ind,

0w =¢ in O’sz
where n is the unit normal vector, directed outside 9522

PROOF. — Let s,<<s,: Since 7,(t)<[40%0(s,— 82) — « ]t and s,(¢, ) <3, 2, is
bounded. Let Qsz be the domain which corresponds to £, in the (, §, #) coordinates;
then !552 is bounded, hence there exists d,, 4, > &, such that

B = B,1,(0; $[80(8,— 6)11%) 2 O,

From Lemma 5.2 it follows that there exists an extension P’, of P, to (— oo, T} X
XRxR"> §y, such that 0> A’>— 6,I,. By Lemma 5.3 the operator tP’ is of
the form (5.3), strictly hyperbolic in the direction d@, on 2B. Keeping into aecount
Lemma VI.4.12 in[2] there exists an operator I with coefficients belonging to
O°°((R+ U {0}) x Rx R%), constant out of 2B, of the same form as ‘P’ and such that
L = 'P' in B, strictly hyperbolic in the direction dp, on (R+U {06})x RxR".

%ﬁ Let 3 = — @|VP[~1, U> 4[da,(6,— 6)"']t. There exists & e C=([0, U]xRXR")
such that

Lw=0 in [0, UJxRXR»
B(0, §, &) = 0 in RxR»

8-(0,§,#) = 7(,%) in RxR-.
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Put w(i, s, 7) = B(P, §, &). Since §,— {f>0} and O, c 8F;, thus n = — V§|Vp|-
and, in O,

__taip7%'%)~~_ o ~ s
Vi = ) Vi = (05@) VP holds;

therefore 2,w = — Vw -V§|Vp|~-t= — %|VP| = ¢. To finish it is enough to remark
that [ = tP'=*P in O, c Bc[0, UxRxR* QED.

6. — A Stokes-energy inequality.

To prove Theorem 4.1 we need an estimate of a solution of (5.5).

6.1. DEFINITION. — Let P be the operator (1.1) and «, § € R such that 0 > « > §.
If w is a solution of *Pw = 0 in an open subset of [0, T]x R X R", define

(6.1) v(t, 8, #) = exp[— ot — Pslw(t, s, »),
and
B, 3, @) = aflo]t -+ 3,0+ p]Vao]?;
B, s, m) = aflv]t+ 3,02 — (AV,v, V,0);
F(t, s, m) = aff|v]? -+ [0,0]2— {4V, V,0);
G, 8, 2) = 2 Re[(3,+ 0,)v-4V,v].

6.2. LEMMA. — There exists a constant K > 0 (depending only on P, «, ) such
that, for every C* solution w of ‘Pw = 0 in a neighbourhood of (¢, s, #) in [0, T'] X
X Rx R~

(6.2) 3.5ty s, ®) + 0, (1, 8, 8) + Vo G(3, 8, 0) >— KE(t, s, 5) .

ProOF. — Let Q be the operator (1.3). Then by (6.1) Qv = exp [— af — fs] "Pw = 0,
thus 0 = 2 Re[(2; -+ 2,)v-'Qv]. Since
Qv = 0%, - f,0 + ad,0 + D 4,050 + D 1; 00 4 afv + 10,
where ;= 3 Outtx+ ;) — bsy (f=1,...,m); and r = S oha— 2, ;b + ¢, by a

straightforward caleulation we have
0 =2 Re[(3;+ 9,7 1Quv] = 5,]8,0]2+ 8,[8,]* + 26]8,v]* + 2 Re (« + f)0,v- 9,7 +
+ 2¢|0,v[* 4 V.2 Re [2,7- AV, 0] — 8,(AV,w, V1> + (0,4)V,0, Vo0) —
— 2 Re[3,5(tV, A)V,0] + V.2 Re [8,5-AV,0] — 3,(AV,, Vo0) + {(0,4) Vo, Vov) —
— 2 Re [3,5* (*V,4)V,v] + 2 Re [(8, + 2.)F* (I Vo 4 10)] -+ afdsfo]* 4 fid,v]*,

where 1= ({;,..., %,).
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It follows:

8l 0,F + Vur @ = — (a4 B|(3: 4 20+ (a— B) [2,0] + (B — @)|B,0) +
+ 2 Re {(3,+ 3)5-[(Vod — 1)-Voo — 101} — <[(3,+ 8,)AIV,2, V,0) .

Since 0 > « > B, there exists £ > 0 sueh that e+ o + § <0, therefore -

V@, F, @)>—(e+ a + B)|(2.+ 20— (e — )]o,0f —
— 6|(*"V, A — )V,0 — ro]— [(3,+ 8,)4[|V.v|*>— KB

for a suitable K >, because 4 and ! are constant for [(s, #)]| >. Q.ED.
Now we can prove the required inequality:

6.3. THEOREM. — Let p e C5(97,). There exists a constant M > 0 (depending
only on P,«, § and ¢) such that for every s, <s,, for every solution we C*(£2,)
f (5.5):

”F(t, s, o) dtdw< M .

PROOF. — Let s, <s8,. Put Q, (1) = {(t',8,2)e Q,;'>1}, te[0,1,]. It follows
that 82, (f) = 4, (t) U B, () U O, ) wmh

A, (8) = {(t', 8, 8); t' €[4, 8, ], € Bu(wo ()}

B,,(t) = {(ta 8, &); B E Bn(‘”o? T(t))y § € [82, s(t, .'I})]} ’

0.,(t) = {(t, s(t', ®)m); ¥’ € [t, 8, ], @ € Bu(,, ()} .
Applying Stokes theorem to (6.2):

— [[ Bty 5,0 dsdm-—UF(t' %, @)t do + [ (B, P, 6)-nds>

Bs, (1) Oual® > Kf_UE (8, x)dt dsdz .

Qe,(8)

But, for (1.2.ii), E<Z#, thus

(6.3) ”Edsdm<ff(lf7 F, @) a@ds—ffpdt'dm+KfffEdt ds dw .

B, Cay(®) 4,0 2e,(8)

Now we are going to calculate (&, F, @) n in C,,. From w=0, ¢,w=¢ inC,,
it follows Vw = gn; therefore, in 0, , v = 0 and Vv = exp[— af — fs]n. Hence

(B, F, G) = lexp[— ot — Bs1gp|?([ms|? — (A, Moy, [Ri]2— ANy 1), (1, -+ m,)24n,,)
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in O, , where n = (n, n;, n,). Since n = — VH|VH|-1, hence

(Ey B, G)n =~ lexp [— ot — ,53](P|2(77’§”t + niw,+ (n, 4 1) {An,, nac>) =
= [exp [— ot — fs]g|* 2[VP|-*(1 — G- + 0-26-CAZ, 7)) .

By comparison with (5.4) we see that (£, F, @)-n = h e OF(89,), with k>0, supp h =
= supp . Therefore there exists a constant K, = K,(P, «, 8, ¢) > 0 such that

(6.4) ”(E, 7, G):nd8<ﬂhd8<K1:

8y supp A

Put y(t) _‘fEt 8, )dsdw and ¢(t) ”Ft 825 @) d, for £€[0,1,]. Then fJ )dt’ =
Bn(aoo 7(t))
=[f fEdt dsdm and j g(t dt’ f fﬁdt'dm Therefore, from (6.3) and (6 4), it fol-
25, (8)

lows Y1) < K, fg dt’+ Kfy t’ dt’ Arguing as in VI4.4[2] we get ()<
<exp [K(t, — 1 }K fexp [K ' — §)]g(t')dt'. Since B, F>0, hence y, g>0; therefore

i Sy
ffF dtdwz ——jﬂ ) dit’ <fexp [Ki']g(t')dt’ + y(0)<exp [Kt, K, <exp [Ki,]K,. Q.E.D.
2

4g,

7. — Proof of Theorem 4.1.

In this section we show
THEOREM. — Let # be such that (4.2) holds. Then # = 0 in C.

PROOF. — Let (4, 81, %) € C, (), > 0) and ¢ € 07 (¢F,) with ¢ >0, ¢ = 1 near the
point (t;, 8;, ). Let s, <s, and we 0°(£,) be a solution of (5.5). By a straight-
forward caleculation we get 0 = wPy — « 'Pw = V-H, where

H = (wo,u, — ud,w, WAV, u — ww ‘V,4 — u(*V,w) 4 -+ wwb)
with b = (b, ..., b,). Therefore, by Stockes theorem we get

7.1 0 :.Uf(wPu—- u Pw) dt ds d :ffuatwdtdm—ﬂwasudsdm +Hﬂ-nds.

sy LA 25 sq

Let us calculate H-n in €, . From w = 0 in C, , it follows Vw = ¢n in O, ; thus it
becomes H-n = (0, — ugn,, — up'n,A) n = — up(n,n, -+ {An,, n,>), and (by com-
parison with (5.4)) H-n = — ugpy for a suitable function y > 0. But 6,4 = 0 in B,
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then, from (7.1), we obtain

(7.2) Ufucpzp d8’<ff|u8tw|dtdm.
C., A,

By bypothesis (4.2.ii) there exist constants [, <0 and ¢, >0 such that
lexp [B; s]u(t, s, @)} < Cy, (I, s, )€ C. Let us choose fe(f;,0), then

(7.8) ff lud, w|dt de < 0y exp [(f — B1) 5,1 {(mis 4,,)} (J‘f lexp [~ fs] Btwlz)% .
Asz Asz

Let us take «e(f,0); from (6.1) it follows that exp[— af — fs]0.w = 0,9 + av;
hence, for every i>0, [exp[— fs]12,w|*<2(e?v]*+ [2,9]2)<2F(t, s, ). Applying
Theorem 6.3 we get

(7.4) (ff|exp [— ﬂs]aswlzdtdw)% <2t M3,
As2

Finally there exists a constant C,> 0 such that mis A32<02{ss]"/2 for every s, <.
Hence from (7.2), (7.3) and (7.4) it follows

U f “‘PWSJ <CLO3 M exp [(B— By)sa]lsal® 55— 0 .

&3

We conclude that 4 = 0 in supp ¢ and, in particular, u(t,, s, #,) == 0. Q.E.D.

8. — Conclusion.

By Theorem 4.1 we can improve Theorem 3.2. Namely we show

8.1. THEOREM. — Let ¢ == p(s) € O°(R) satisfying the following conditions:
(i) there exists § < 0 such that ¢(s) = exp [fs] for s € 0;
(ii) @(s) = 0 for s>0.
If fe 0°([0, TIXRXR*) and ge C°(RxRr) are such that ¢(s)f(t, s, x) (for

every t € [0, T]), and ¢(s)g(s, ») belong to H+*(RxR"), then there exists a unique
solution % of

03 { Py = f in [0, TIXRxR"

w(0,8,2) = g(s,x) (s,2)e RxRr

such that ue C°([0, T] xR xR~) and ¢(s)u(t, s, #) is bounded in [0, T]x R xRx.
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Actually it is of importance the behaviour of f and ¢ in the s < 0 half-space only.

PrROOF. ~ Let Q,= {(s,2) e RxR"; (s— n)*— |2[*>1 and s<n—1}, ne N.

Since the distance between ¢Q, and ©Q,., is greater than a positive constant,
we can find y,€ O°(RXR") such that y,=1 in Q,, y,=0 in (RXxR")~-Q,+, and
8% % i8 bounded for every «e N*,

Define

fulty 8, @) = xuls, @) (t, s, @) and g,(s, ) = Zn(sy x)g(s, @) .

Then fe 0=([0, T]; H;*(RXR") and g, H;” (R x R"), therefore—by Theorem 3.2—
there exists a unique u,€ C*([0, T1; H;”(R x R")) such that

Pu, = {1, in [0, TIxRXR»
u,{0) = ¢, In RxXR»,

Let C,, be the cone defined by the point (7, sy, 0) through (4.1). If K is a compact
subset of [0, 71 x R x R» surely there exist s, € R and n, €N such that Kc _C—%CQM,
for every n>mn,. Since (4, — %,)(0) = 0in Q,,,, and Pu,— Pu, = 0in [0, T]XQ, 4.,

by Theorem 4.1, we have u,— %, = 0 in C, -
Therefore the sequence u, converges in C°([0, T]xRXRr) to a 0% function
which satisty (0.3). Moreover from u, e O([0, T1; H;‘”(RXR”)) and #,= u in @sa

{(for n>>), it follows that ¢(s)u(t, s, ) is bounded in C, .
Uniqueness follows from Theorem 4.1. Q.E.D.
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