# On a Characteristic Cauchy Problem (*). 

Giovanni Bassanelli

Sunto. - Si studia un problema di Cauchy caratteristico (per un operatore di cui quello di Klein-
Gordon, in coordinate cono luce, è un modello). Si stabiliscono teoremi di esistenza ed unicità.
Si prova che la velocità di propagazione è infinita.

## 0. - Introduction.

For several problems in quantum field theories it is useful to consider a reference frame which is, in a certain sense, moving with the speed of the light. Strictly speaking this is impossible: there is not transmission of signals between this system and the laboratory system, because of course the limit of a Lorentz transformation for $v \rightarrow c$ does not exist. Nevertheless let us assume, for simplicity, $c=1$ and consider a reference frame moving in the $x$ direction with speed $v \simeq 1=c$; by means of Lorentz transformation, $t$ and $x$ axes are rotated anticlockwise of almost $\pi / 4$, while the transverse coordinates $y$, $z$ are unchanged. This induces us to define, from the ordinary Minkowski coordinates $(t, x, y, z)$ a new reference frame $\left(t, s, x^{\alpha}\right)$ $(\alpha=1,2)$, called «infinite momentum frame», by

$$
\left\{\begin{array}{l}
t=2^{-\frac{1}{2}}(t+x)  \tag{0.1}\\
s=2^{-\frac{1}{2}}(t-x) \\
x^{1}=y \\
x^{2}=z .
\end{array}\right.
$$

The formulation of quantum field theories in infinite momentum frame is profitable towards the following subjects: current algebra, quantum field theory and laser beam (see [9], [5] and [7] respectively.) Such a reformulation involves a study of the most important equations (Klein-Gordon, Dirac, etc.) and in this connection the Cauchy problems with data on the $t=0$ hyperplane naturally arise. Indeed R. A. Neville and F. Rohrlich in [6] consider the Klein-Gordon equation and

[^0]the characteristic Cauchy problem
\[

\left\{$$
\begin{array}{l}
\left(2 \partial_{t s}^{2}-\Delta_{x^{x}}+m^{2}\right) u=0  \tag{0.2}\\
u\left(0, s, x^{\alpha}\right)=g\left(s, x^{\alpha}\right)
\end{array}
$$\right.
\]

We think that is not devoid of interest to attend to a rigorous study of (0.2). In this paper we will concorned with a more general operator

$$
P u=\left(\partial_{t s}^{2}+\sum_{1}^{n} a_{j k} \partial_{x_{j} x_{k}}^{2}+\sum_{1}^{n} b_{j} \partial_{x_{j}}+o\right) u
$$

with coefficients $a_{j k}, b_{i}, c \in C^{\infty}\left([0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ for a suitable $T>0$; moreover we assume that the coefficients are constant for $\|(s, x)\| \gg 1$ and the matrix [ $a_{j k}$ ] is selfadjoint definite. We shall show an existence and uniqueness theorem for the characteristic Cauchy problem

$$
\begin{cases}\underline{P} u=f & \text { in }[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}  \tag{0.3}\\ u(0, s, x)=g(s, x) & (s, x) \in \boldsymbol{R} \times \boldsymbol{R}^{n}\end{cases}
$$

Since $P$ is characteristic on the set $t=0, x=0$, the usual Cauchy problem makes no more sense; thus we have only one Cauchy datum. As we shall see in the following this is not yet enough, since it is well known, see e.g. [4] that some additional growth conditions must be imposed on $u$ in order to get a «well-posed problem» from an "ill-posed» one.

Let $D$ be a neighborhood of $\left(0, s_{0}, x\right)$ in $\overline{\boldsymbol{R}}^{+} \times\left[s_{0},+\infty\right)$, Alinitac [1] has considered the following Goursat problem

$$
\left\{\begin{array}{l}
\left(a \partial_{t s}^{2}+b\right) u=f(t, s) \quad(t, s) \in \bar{D} \\
u\left(t, s_{0}\right)=u(0, s)=0
\end{array}\right.
$$

where $a=a(t, s) \in C^{1}(\bar{D}), b=b(t, s)$ is bounded in $\bar{D}$, and $f \in L^{2}(\bar{D})$, proving energy estimates for $u$ and the existence of a solution in $L^{2}(\bar{D})$. Now ( 0.3 ) is obviously related to some sort of pseudodifferential Goursat pb. where the line $s=s_{0}$ goes to $-\infty$. The last circumstance as well as Alinhac's results suggests that some «speed of propagation» along the $s$-axis should be infinite (see Th. 4.1 below) and reaffirm the need of some growth condition on data at $s=-\infty$.

We would also like mention the paper [8] by Uhlmann: it is concerned with the propagation of singularities for an hyperbolic operator with double involutive characteristics, admitting a $C^{\infty}$-factorisation and Levi conditions on lower order terms. The parametrix (or rather its construction) though points out the close link between this problem and the classical Goursat pb.; no growth condition has to be imposed however, since Levi conditions are satisfied.

Let us now describe the plan of the paper. We suppose that the matrix [ $a_{j k}$ ] is negative definite. In § 1 we introduce an auxiliary operator $Q=P-\beta_{t}-\alpha \partial_{s}+\alpha \beta$ $(\alpha, \beta \in \boldsymbol{R}, 0>\alpha>\beta)$, for which we establish an energy estimate. Then, in $\S 2$, by means of this estimate and a functional analysis argument we show an existence and uniqueness theorem for the problem $Q v=h, v(0, s, x)=k(s, x)$. In $\S 3$, we define suitable Sobolev space $H_{\beta}^{r}$ with weight (see Definition 3.1) and, thanks to the relation $Q(\exp [\alpha t+\beta s] u)=\exp [\alpha t+\beta s] P u$ we show the following Theorem (see Th. 3.2): Let $\beta<0$. Let $f \in L^{2}\left([0, T] ; H_{\beta}^{r}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right)$ and $g \in H_{\beta}^{r}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$. There exists a unique $u \in C^{0}\left([0, T] ; H_{\beta}^{r+1}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right)$ such that ( 0.3 ) holds.

Moreover we shall prove that if $f \in \bigcap_{k=0}^{m} C^{k}\left([0, T] ; H_{\beta}^{r-k}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right)$ then

$$
u \in \bigcap_{k=0}^{m} C^{k}\left([0, T] ; H_{\beta}^{r+1-k}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right) \cap{C^{m+1}}^{m}\left([0, T] ; H_{\beta}^{r-1-m}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right)
$$

The next sections are devoted to the study of the range of influence for problem (0.3): by means of a Cauchy problem for ${ }^{t} P$ (see §5)-as in Holmgren theorem-and an other energy estimate ( $\S 6$ ) we can prove ( $\S 7$ ) that the speed of propagation is infinite in the $s$ direction (see Th. 4.1). This result allows us to improve Theorem 3.2: actually we conclude that (see Th. 8.1) if the data are $C^{\infty}$ functions with a suitable behaviour for $s \rightarrow-\infty$, then there is a unique $u$ solution of (0.3) such that $u$ is $0^{\infty}$ and $\exp [\beta s] u(t, s, x)$ is bounded for $s \rightarrow-\infty$.

Notations. - We shall write $\partial_{j}, \partial_{j k}^{2}$ instead of $\partial_{x_{j}}, \partial_{x_{j} x_{k}}^{2} ; \nabla$ and $\nabla_{x}$ mean $\left(\partial_{t}, \partial_{s}, \partial_{1}, \ldots, \partial_{n}\right)$ and $\left(\partial_{1}, \ldots, \partial_{n}\right)$ respectively.

If $b=\left(b_{1}, \ldots, b_{n}\right)$ and $e=\left(c_{1}, \ldots, c_{n}\right) \in \boldsymbol{C}^{n}$, then $b \cdot c=\sum b_{i} c_{j}$ and $\langle b, c\rangle=\sum b_{j} \vec{c}_{j}$ : If $H$ is an Hilbert space, then $\langle,\rangle_{B}$ denotes its inner product.

Let $n>0, r \in \boldsymbol{R} ; \boldsymbol{H}^{r}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ is the Sobolev space $\left\{u=u(t, s, x) \in \mathcal{S}^{\prime}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right.$; $\left.\left(1+|\sigma|^{2}+|\xi|^{2}\right)^{r / 2} \hat{u}(\sigma, \xi) \in L^{2}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right\}$ with norm

$$
\|u\|_{H^{r}}^{2}=\iint\left(1+|\sigma|^{2}+|\xi|^{2}\right)^{r}|\hat{u}(\sigma, \xi)|^{2} \mathbf{d} \sigma \mathrm{~d} \xi
$$

We often shall write $H^{r}(s, x)$, or $H^{r}$, instead of $H^{r}\left(\boldsymbol{R} \times \boldsymbol{R}^{r}\right)$.
Finally $B_{m}(y ; \varrho)$ denotes the open ball in $\boldsymbol{R}^{m}$ of center $y \in \boldsymbol{R}^{m}$ and radius $\varrho$.

## 1. - An energy estimate.

In this note we will be concerned with an operator $P$ of the form

$$
\begin{equation*}
P=\partial_{t s}^{2}+\sum_{j k=1}^{n} a_{j k} \partial_{j k}^{2}+\sum_{j=1}^{n} b_{j} \partial_{j}+c \tag{1.1}
\end{equation*}
$$

with, for $T>0$,
(i) $a_{i k}, b_{j}, c \in \mathbb{C}^{\infty}\left([0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ and are constant outside of a compact subset of $[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}$;
(ii) the matrix $A=\left[a_{j k}\right]$ is negative definite, then-by (i)-there exist $\gamma, \delta>0$ such that

$$
\begin{equation*}
-\gamma I_{n} \geqslant A(t, s, x) \geqslant-\delta I_{n} \tag{1,2}
\end{equation*}
$$

for every $(t, s, x) \in[0, I] \times \boldsymbol{R} \times \boldsymbol{R}^{n}$.

We point out that, if $A$ is positive definite, then using the change of variables $s^{\prime}=-s$, we have (1.2.ii).

We shall often use the operator

$$
\begin{equation*}
Q=P-\beta \partial_{t}-\alpha \partial_{s}+\alpha \beta \tag{1.3}
\end{equation*}
$$

where $\alpha, \beta$ are constants such that $0>\alpha>\beta$.
Our aim is to study the following characteristic Cauchy problem

$$
\begin{cases}Q v=h & \text { in }[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}  \tag{1.4}\\ v(0, s, x)=k(s, x) & (s, x) \in \boldsymbol{R} \times \boldsymbol{R}^{n}\end{cases}
$$

For this purpose we shall prove, in this section, energy estimates for $Q$ and $Q^{*}$.
To begin with, we calculate $2 \operatorname{Re}\left\langle\left(\partial_{t}+\partial_{s}\right) v(t), Q v(t)\right\rangle_{L^{2}(s, x)}$ for $t \in[0, T]$ and $v \in C_{0}\left([0, T] ; H^{2}(s, x)\right) \cap C^{1}\left([0, T] ; H^{1}(s, x)\right):$
$2 \operatorname{Re}\left[\left(\partial_{t}+\partial_{s}\right) v(t) \cdot \overline{Q v}(t)\right]=$
(A) $=\partial_{t} v(t) \cdot \partial_{t s}^{a_{s}^{4}} \bar{v}(t)+\partial_{t} \bar{v}(t) \cdot \partial_{i s}^{2} v(t)+$
$(B) \quad+\partial_{s} v(t) \cdot \partial_{t s}^{2} \bar{v}(t)+\partial_{s} \bar{v}(t) \cdot \partial_{i s}^{2} v(t)$ -
$-2 \beta\left|\hat{\partial}_{t} v(t)\right|^{2}-2 \alpha\left|\partial_{s} v(t)\right|^{2}-(\alpha+\beta) 2 \operatorname{Re}\left[\partial_{t} v(t) \cdot \partial_{s} \bar{v}(t)\right]+$
$(C)+\partial_{t} v(t) \cdot \sum \bar{a}_{j k}(t) \partial_{j k}^{2} \bar{v} \bar{v}(t)+\partial_{t} \bar{v}(t) \cdot \sum a_{i k}(t) \hat{\partial}_{j k}^{2} v(t)+$
$(D)+\partial_{s} v(t) \cdot \sum \bar{a}_{j k}(t) \partial_{j k} \bar{v}[t)+\partial_{s} \bar{v}(t) \cdot \sum a_{j k}(t){\partial_{j k}^{2} v(t)+}^{2}+$
$+2 \operatorname{Re}\left[\left(\partial_{t}+\partial_{s}\right) v(t) \cdot \sum \bar{b}_{j}(t) \partial_{j} \bar{v}(t)\right]+\partial_{t} v(t) \cdot(\alpha \beta+\bar{c}(t)) \bar{v}(t)+$
$\hat{o}_{t} \bar{v}(t) \cdot(\alpha \beta+c(t)) v(t)+$
$(E) \quad+\partial_{s} v(t) \cdot(\alpha \beta+\bar{c}(t)) \bar{v}(t)+\partial_{s} \bar{v}(t) \cdot(\alpha \beta+e(t)) v(t)$.
In order to integrate on $\boldsymbol{R}_{s} \times \boldsymbol{R}_{x}^{n}$, remark that: (A) Let $\varphi_{n}$ be a sequence of test functions converging to $\partial_{t} v(t)$, then $\iint A d s d x=\lim _{n} \iint \partial_{s}\left|\varphi_{n}\right|^{2} d s d x=0$. (B) From
hypotheses on $v$ it follows $B=\partial_{t}\left|\partial_{s} v(t)\right|^{2}$, hence $\iint B d s d x=d_{t}\left\|\partial_{s} v(t)\right\|_{L^{2}}^{2}$. (C) Approximating by test functions we can integrate by parts; therefore

$$
\begin{aligned}
& \iint C d s d x=-\iint \sum \bar{a}_{j k}(t) \partial_{t}\left[\partial_{j} v(t) \cdot \partial_{k} \bar{v}(t)\right] d s d x-2 \operatorname{Re}\left\langle\partial_{t} v(t), \sum \partial_{j} a_{j k}(t) \cdot \partial_{k} v(t)\right\rangle_{L^{2}}= \\
&=-d_{t} \iint \sum a_{k j}(t) \partial_{j} v(t) \cdot \partial_{k} \bar{v}(t) d s d x+\iint \sum \partial_{t} a_{k j}(t) \cdot \partial_{j} v(t) \cdot \partial_{k} \bar{v}(t) d s d x- \\
&-2 \operatorname{Re}\left\langle\partial_{t} v(t), \sum \partial_{j} a_{j k}(t) \cdot \partial_{k} v(t)\right\rangle_{L^{2}}
\end{aligned}
$$

( $D$ ) Formally we make the same calculation, but we remark that $\iint \partial_{s}\left[a_{k j}(t) \partial_{j} v(t)\right.$. $\left.\cdot \partial_{k} \bar{v}(t)\right] d s d x=0$ as in (A). (E) Again as in (A): $\alpha \beta \iint \partial_{s}|v(t)|^{2} d s d x=0$.

Hence

$$
\begin{align*}
& 2 \operatorname{Re}\left\langle\left(\partial_{t}+\partial_{s}\right) v(t), Q v(t)\right\rangle_{L^{2}}= \\
& =d_{t}\left\|\partial_{s} v(t)\right\|_{L^{2}}^{2}-2 \beta\left\|\partial_{t} v(t)\right\|_{L^{2}}^{2}-2 \alpha\left\|\partial_{s} v(t)\right\|_{L^{2}}^{2}- \\
& \begin{aligned}
&-(\alpha+\beta) 2 \operatorname{Re}\left\langle\partial_{t} v(t), \partial_{s} v(t)\right\rangle_{L^{2}}-d_{t}\left\langle A(t) \nabla_{x} v(t), \nabla_{x} v(t)\right\rangle_{L^{2}}+ \\
&+\left\langle\left[\left(\partial_{t}+\partial_{s}\right) A(t)\right] \nabla_{x} v(t), \nabla_{x} v(t)\right\rangle_{L^{2}}+ \\
&+2 \operatorname{Re}\left\langle\left(\partial_{t}+\partial_{s}\right) v(t),\left[-\nabla_{x} A(t)+b(t)\right] \cdot \nabla_{x} v(t)+c(t) v(t)\right\rangle_{L^{2}}+ \\
& \quad+\alpha \beta d_{t}\|v(t)\|_{L^{2}}^{2}, \quad \text { where } b=\left(b_{1}, \ldots, b_{n}\right) .
\end{aligned}
\end{align*}
$$

Let

$$
\tilde{E}(t)=\alpha \beta\|v(t)\|_{L^{2}(s, x)}^{2}+\left\|\partial_{s} v(t)\right\|_{L^{2}(s, x)}^{2}-\left\langle A(t) \nabla_{x} v(t), \nabla_{x} v(t)\right\rangle_{L^{2}(s, x)}
$$

From (1.5) it follows that

$$
\begin{align*}
& \widetilde{E}^{\prime}(t)=2 \operatorname{Re}\left\langle\left(\partial_{t}+\partial_{s}\right) v(t), Q v(t)+\left[{ }^{t} \nabla_{x} A(t)-b(t)\right] \cdot \nabla_{x} v(t)-c(t) v(t)\right\rangle_{L^{2}}+ \\
& +(\beta-\alpha)\left\|\partial_{t} v(t)\right\|_{L^{2}}^{2}+(\alpha-\beta)\left\|\partial_{s} v(t)\right\|_{L^{2}}^{2}+  \tag{1.6}\\
& \quad+(\alpha+\beta)\left\|\left(\partial_{t}+\partial_{s}\right) v(t)\right\|_{L^{2}}^{2}-\left\langle\left[\left(\partial_{t}+\partial_{s}\right) A(t)\right] \nabla_{x} v(t), \nabla_{x} v(t)\right\rangle_{L^{2}} .
\end{align*}
$$

Thus we are led to the following
1.1. Definition. - We choose as energy the function

$$
\begin{equation*}
E(t)=\alpha \beta\|v(t)\|_{L^{2}(s, x)}^{2}+\left\|\partial_{s} v(t)\right\|_{L^{2}(s, x)}^{2}+\gamma\left\|\nabla_{x} v(t)\right\|_{L^{2}(s, x)}^{2} \tag{1.7}
\end{equation*}
$$

1.2. Lemma. - Let $Q$ be the operator (1.3). There exists $C>0$ such that for every $t \in[0, T]$, for every $v \in C^{0}\left([0, T] ; H^{2}(s ; x)\right) \cap C^{1}\left([0, T] ; H^{1}(s, x)\right)$ :

$$
E(t) \leqslant C\left\{E(0)+\int_{0}^{t}\left[\left\|Q v\left(t^{\prime}\right)\right\|_{L^{2}(s, x)}^{2}+E\left(t^{\prime}\right)\right] d t^{\prime}\right\}
$$

Proof. - We can choose $\varepsilon>0$ such that $\alpha+\beta+\varepsilon^{-1}<0$. From (1.6) and (1.2.i) it follows that there exist constants $O_{j}>0(j=1, \ldots, 4)$, depending only on the coefficients of $Q$, such that:

$$
\begin{aligned}
\tilde{E}^{\prime}(t) & \leqslant \varepsilon^{-1}\left\|\left(\partial_{t}+\partial_{\varepsilon}\right) v(t)\right\|_{L^{2}}^{2}+ \\
& +\varepsilon\left\|Q v(t)+\left[{ }^{t} \nabla_{x} A(t)-b(t)\right] \cdot \nabla_{x} v(t)-c(t) v(t)\right\|_{L^{2}}^{2}+ \\
& +(\alpha-\beta)\left\|\partial_{s} v(t)\right\|_{L^{2}}^{2}+(\alpha+\beta)\left\|\left(\partial_{t}+\partial_{s}\right) v(t)\right\|_{L^{2}}^{2}+C_{1}\left\|\nabla_{x} v(t)\right\|_{L^{2}}^{2} \leqslant \\
& \leqslant\left(\alpha+\beta+\varepsilon^{-1}\right)\left\|\left(\partial_{t}+\partial_{s}\right) v(t)\right\|_{L^{2}}^{2}+3 \varepsilon\|Q v(t)\|_{L^{2}}^{2}+ \\
& +\left(3 \varepsilon C_{2}+C_{1}\right)\left\|\nabla_{x} v(t)\right\|_{L^{2}}^{2}+3 \varepsilon C_{3}\|v(t)\|_{L^{2}}^{2}+(\alpha-\beta)\left\|\partial_{\varepsilon} v(t)\right\|_{L^{2}}^{2} \leqslant \\
& \leqslant C_{4}\left[\|Q v(t)\|_{L^{2}}^{2}+E(t)\right] .
\end{aligned}
$$

By integration over $[0, t]$ we get:

$$
\widetilde{E}(t) \leqslant \tilde{H}(0)+C_{4} \int_{0}^{t}\left[\left\|Q v\left(t^{\prime}\right)\right\|_{x^{2}}^{2}+E\left(t^{\prime}\right)\right] d t^{\prime}
$$

Since $E(t) \leqslant \widetilde{E}(t) \leqslant O_{5} E(t), \quad(t \in[0, T])$, for a suitable $C_{5}>0$, the lemma is proved. Q.E.D.

Now we are able to obtain an energy estimate for $Q$, which will be used in $\S 2$ in order to prove a uniqueness theorem.
1.3. Theoren. - Let $Q$ be the operator (1.3). For every $r \in \boldsymbol{R}$ there exists $C_{r}>0$ such that for every $t \in[0, T]$ and for every $v \in C_{0}\left([0, T] ; H^{r+2}(s, x)\right) \cap$ $\cap C^{1}\left([0, T] ; H^{r+1}(s, x)\right):$
$(1.8)_{r} \quad \alpha \beta\|v(t)\|_{H^{r}}^{2}+\left\|\partial_{s} v(t)\right\|_{H^{r}}^{2}+\gamma\left\|\nabla_{x} v(t)\right\|_{H^{r}}^{2} \leqslant$

$$
\leqslant C_{v}\left[\alpha \beta\|v(0)\|_{H^{r}}^{2}+\left\|\partial_{s} v(0)\right\|_{H^{r}}^{2}+\gamma\left\|\nabla_{s v} v(0)\right\|_{H^{r}}^{2}+\|Q v\|_{L^{r}\left([0, T] ; H^{r}\right)}^{2}\right]
$$

Proof. - Let $v \in C^{0}\left([0, T] ; H^{r+2}\right) \cap C^{1}\left([0, T] ; H^{r+1}\right)$. Denote by $A_{r}$ the p.d.o. with symbol $\left(1+|\sigma|^{2}+|\xi|^{2}\right)^{x / 2}$. Define

$$
D_{r}(t)=\alpha \beta\|v(t)\|_{H^{r}}^{2}+\left\|\partial_{s} v(t)\right\|_{H^{r}}^{2}+\gamma\left\|\nabla_{x} v(t)\right\|_{H^{r}}^{2}
$$

From Lemma 1.2 it follows:

$$
E_{r}(t) \leqslant C\left\{E_{r}(0)+\int_{0}^{t}\left[\left\|Q A_{r} v\left(t^{\prime}\right)\right\|_{L^{\mathrm{a}}}^{2}+E_{r}\left(t^{\prime}\right)\right] d t^{\prime}\right\} .
$$

In order to estimate $\left\|Q \Lambda_{r} v\left(t^{\prime}\right)\right\|_{L^{2}}$, write: $Q \Lambda_{r} v(t)=\Lambda_{r} Q v(t)+\left(S \Lambda_{r}-\Lambda_{r} S\right) v(t)$, where $S=\sum a_{j k} \partial_{j k}^{2}+\sum b_{j} \partial_{j}+c$. Thus $S \Lambda_{r}-\Lambda_{r} S$ is a p.d.o. of order $r+2-1$ and its
symbol, for every $t \in[0, T]$, does not depend on $(s, x)$ outside of a compact subset of $\boldsymbol{R} \times \boldsymbol{R}^{n}$; then (see IV.11.1 ( $m$ ) in [2]) $S(t) \Lambda_{r}-\Lambda_{r} S(t): H^{r+1}(s, x) \rightarrow H^{0}(s, x)$ is continuous; i.e. $K(t)=\sup _{u \in \bar{B}^{r+1},\|u\|_{=1}}\left\|\left[S(t) \Lambda_{r}-\Lambda_{r} S(t)\right] u\right\|_{\boldsymbol{H}^{0}}<\infty$. By the Banach-Steinhaus theorem: $K=\sup _{i} K(t)<\infty$. Hence

$$
\left\|Q A_{r} v(t)\right\|_{L^{2}} \leqslant\|Q v(t)\|_{\boldsymbol{H}^{r}}+K\|v(t)\|_{\boldsymbol{H}^{r+1}} \leqslant\|Q v(t)\|_{\boldsymbol{H}^{r}}+K_{1} E_{r}(t)^{\frac{1}{2}} .
$$

Now:

$$
E_{r}(t) \leqslant K_{2}\left\{\boldsymbol{E}_{r}(0)+\int_{0}^{t}\left[\left\|\boldsymbol{Q} v\left(t^{\prime}\right)\right\|_{H^{r}}^{2}+E_{r}\left(t^{\prime}\right)\right] d t^{\prime}\right\}
$$

and the theorem follows from Lemma VI.4.4 in [2]. Q.E.D.
We need an energy estimate for $Q^{*}=\partial_{t s}^{2}+\beta \partial_{t}+\alpha \partial_{s}+\sum \partial_{j k}^{2}\left(\bar{\alpha}_{j k} \cdot\right)-\sum \partial_{j}\left(\bar{b}_{j} \cdot\right)+$ $+\alpha \beta+\bar{c}$ too. Such an estimate will be used in $\S 2$ in order to prove an existence theorem.
1.4. Theorem. - Let $Q^{*}$ be as above. For every $r \in \boldsymbol{R}$, there exists $K_{r}>0$ such that for every $t \in[0, T]$ and for every $v \in C^{0}\left([0, T] ; H^{r+2}(s, x)\right) \cap C^{1}([0, T]$; $\left.H^{r-1}(s, x)\right)$ :
$(1.9)_{r} \quad \alpha \beta\|v(t)\|_{H^{r}}^{2}+\left\|\partial_{s} v(t)\right\|_{\mathbb{H}^{r}}^{2}+\gamma\left\|\nabla_{x} v(t)\right\|_{H^{r}}^{2} \leqslant$

$$
\leqslant K_{r}\left[\alpha \beta\|v(T)\|_{H^{r}}^{2}+\left\|\partial_{s} v(T)\right\|_{H^{r}}^{2}+\gamma\left\|\nabla_{x} v(T)\right\|_{H^{r}}^{2}+\left\|Q^{*} v\right\|_{L^{s}\left([0, T] ; \mathbb{H}^{r}\right)}^{2}\right]
$$

Proof. - Let $v \in C^{0}\left([0, T]+H^{2}(s, x)\right) \cap C^{1}\left([0, T] ; H^{1}(s, x)\right)$. By obvious modification in (1.6) we get:

$$
\begin{aligned}
& \tilde{E}^{\prime}(t)=2 \operatorname{Re}\left\langle\left\langle\partial_{t}+\partial_{s}\right) v(t), Q^{*} v(t)+\left[-{ }^{t} \nabla_{x} \bar{A}(t)+\bar{b}(t)\right] \cdot \nabla_{x} v(t)+\right. \\
& \left.+\left[-\sum \partial_{j_{k}}^{2} a_{j_{k}}(t)+\sum \partial_{s} \bar{b}_{j}(t)-\bar{c}(t)\right] v(t)\right\rangle_{J^{2}}+(\alpha-\beta)\left\|\partial_{t} v(t)\right\|_{L^{2}}^{2}+ \\
& +(\beta-\alpha)\left\|\partial_{s} v(t)\right\|_{L^{2}}^{2}-(\alpha+\beta)\left\|\left(\partial_{t}+\partial_{s}\right) v(t)\right\|_{L^{2}}^{2}- \\
& \\
& \quad-\left\langle\left[\left(\partial_{t}+\partial_{s}\right) \bar{A}(t)\right] \nabla_{x} v(t), \nabla_{x} v(t)\right\rangle_{L^{2}} .
\end{aligned}
$$

Arguing as in Lemma 1.2:

$$
\begin{aligned}
& \tilde{E}^{\prime}(t) \geqslant-\left(\alpha+\beta+\varepsilon^{-1}\right)\left\|\left(\partial_{t}+\partial_{s}\right) v(t)\right\|_{L^{2}}^{2}-3 \varepsilon\left\|Q^{*} v(t)\right\|_{L^{2}}^{2}-\left(3 \varepsilon C_{2}+C_{1}\right)\left\|\nabla_{x} v(t)\right\|_{L^{2}}^{2}- \\
&-3 \varepsilon C_{3}\|v(t)\|_{L^{2}}^{2}-(\alpha-\beta)\left\|\partial_{s} v(t)\right\|_{L^{2}}^{2} \geqslant-C_{4}\left[\left\|Q^{*} v(t)\right\|_{L^{2}}^{2}+E(t)\right] .
\end{aligned}
$$

By integration over $[t, T]$ we get

$$
E(t) \leqslant C\left\{E(T)+\int_{i}^{T}\left[\left\|Q^{*} v\left(t^{\prime}\right)\right\|_{L^{2}}^{2}+E\left(t^{\prime}\right)\right] d t^{\prime}\right\}
$$

As in the proof of Theorem 1.3 it follows that there exists $K_{r}>0$ such that for every $v \in C^{0}\left([0, T] ; H^{r+2}(s, x)\right) \cap C^{1}\left([0, T] ; H^{r+1}(s, x)\right)$

$$
E_{r}(t) \leqslant K_{r}\left\{E_{r}(T)+\int_{i}^{T}\left[\left\|Q^{*} v\left(t^{\prime}\right)\right\|_{H^{r}}^{2}+E_{r}\left(t^{\prime}\right)\right] d t^{\prime}\right\} .
$$

To finish our argument it is enough to put $Y(t)=E_{r}(T-t)$ and $\varphi(t)=$ $=\left\|Q^{*} v(T-t)\right\|_{H^{r}}^{2} ;$ so we can apply Lemma VI.4.4 in [2]. Q.E.D.

## 2. - Existence and uniqueness of solution.

By an argument of functional analysis and Theorems 1.3 and 1.4 we shall prove a theorem of existence and uniqueness for the Cauchy problem (1.4).

We begin with
2.1. Proposition. - Let $Q$ be the operator (1.3) and let $r \in \boldsymbol{R}$. If $h \in L^{1}([0, T]$; $\left.H^{r}(s, x)\right)$ and $k \in H^{r}(s, x)$, then there exists $v \in C^{0}\left([0, T] ; H^{r-2}(s, x)\right)$ such that (1.4) holds.

Proof. - Let $E=\left\{\varphi \in C^{\infty}\left([0, T] ; H^{+\infty}(s, x)\right) ; \varphi(T)=0\right\}$. We are going to define an antilinear functional $l: Q^{*} E \rightarrow C$ and we shall show that we can continue it to a continuous functional on $L^{2}\left([0, T] ; H^{-r}(s, x)\right)$. Let

$$
(f, g)=\iint \hat{f}(\sigma, \xi) \overline{\hat{g}(\sigma, \xi)} \mathbb{\mathbb { k }} \sigma \boldsymbol{d} \xi \quad \text { for } f \in \bar{H}^{r}(s, x), \quad g \in H^{-r}(s, x)
$$

define, for $\varphi \in E$,

$$
\begin{equation*}
l\left(Q^{*} \varphi\right)=\int_{0}^{T}(h(t), \varphi(t)) d t+\left(k,-\partial_{s} \varphi(0)-\beta \varphi(0)\right) \tag{2.1}
\end{equation*}
$$

From $\varphi(T)=0$, it follows that $\partial_{s} \varphi(T)=0$ and $\nabla_{x} \varphi(T)=0$. Thus, by $(1.9)_{-r}, l$ is well defined. By $(1.9)_{-r}$ we obtain also:

$$
\begin{aligned}
& \left.\left|l\left(Q^{*} \varphi\right)\right| \leqslant\|\hbar\|_{L^{2}\left([0, T] ; H^{r}\right)} \int_{0}^{T}\|\varphi(t)\|_{H^{-r}}^{2} d t\right]^{\frac{1}{t}}+ \\
& \quad+2^{\frac{1}{2}\|\hbar\|_{H^{r}}\left[\left\|\partial_{\varepsilon} \varphi(0)\right\|_{H^{-r}}^{2}+\beta^{2}\|\varphi(0)\|_{H^{-r}}^{2}\right]^{\frac{1}{2}} \leqslant C\left\|Q^{*} \varphi\right\|_{L^{2}\left([0, T] ; H^{-\tau}\right)}}
\end{aligned}
$$

for a suitable $C>0$, for every $\varphi \in E$. By an application of the Hahn-Banach theorem, there exists $w \in L^{2}\left([0, T] ; H^{-r}(s, x)\right)$ such that $\left\langle w, Q^{*} \varphi\right\rangle_{L^{2}\left([0, T] ; H^{-r}\right)}=l\left(Q^{*} \varphi\right),(\varphi \in E)$.

Let $v(t)=\Lambda_{-2 r} w(t)$, then $v \in L^{2}\left([0, T] ; H^{r}\right)$ and

$$
\int_{0}^{T}\left(v(t), Q^{*} \varphi(t)\right) d t=l\left(Q^{*} \varphi\right) \quad(\varphi \in E)
$$

Let $\left\{\psi_{i}\right\}$ be a $C^{\infty}$ partition of unity of $\boldsymbol{R} \times \boldsymbol{R}^{n}$. We write

$$
\left(v(t), Q^{*} \varphi(t)\right)=\sum_{i}\left(v(t), Q^{*} \psi_{j} \varphi(t)\right)
$$

thus by an integration by parts with respect to $s$ and $x_{j}$, we get

$$
\begin{align*}
l\left(Q^{*} \varphi\right)=\int_{0}^{T}\{- & \left(\left[\partial_{s}-\beta\right] v(t), \partial_{t} \varphi(t)\right)+  \tag{2.2}\\
& \left.\quad+\left(\left[-\alpha \partial_{s}+\sum a_{j k}(t) \partial_{j k}^{2}+\sum b(t) \partial_{j}+\alpha \beta+c(t)\right] v(t), \varphi(t)\right)\right\} d t .
\end{align*}
$$

If, in particular, $\varphi$ is a test function on $(0, T) \times \boldsymbol{R} \times \boldsymbol{R}^{n}$, with an integration by parts, with respect to $t$, we have

$$
l\left(Q^{*} \varphi\right)=\int_{0}^{T}(Q v(t), \varphi(t)) d t
$$

Now, from (2.1), it follows

$$
\int_{0}^{T}(Q v(t), \varphi(t)) d t=\int_{0}^{T}(h(t), \varphi(t)) d t
$$

for every test function $\varphi$ of $(0, T) \times \boldsymbol{R} \times \boldsymbol{R}^{n}$. Hence

$$
Q v=h \quad \text { in } \mathfrak{D}^{\prime}\left((0, T) \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right) .
$$

Then

$$
\partial_{t}\left(\partial_{s}-\beta v\right)=\alpha \partial_{s} v-\sum a_{j k} \hat{\partial}_{j k}^{2} v-\sum b_{j} \partial_{j} v-(\alpha \beta+c) v+h \in L^{2}\left([0, T] ; H^{r-2}\right)
$$

and, due to the Sobolev theorem

$$
\begin{equation*}
\partial_{s} v-\beta v \in C^{0}\left([0, T] ; H^{r-2}\right) \tag{2.3}
\end{equation*}
$$

In general, if $\varphi \in \mathbb{E}$, from an integration by parts with respect to $t$ in (2.2) it follows

$$
l\left(Q^{*} \varphi\right)=\int_{0}^{T}(Q v(t), \varphi(t)) d t+\left(\partial_{s} v(0)-\beta v(0), \varphi(0)\right)
$$

i.e. $\left(k,-\partial_{s} \varphi(0)-\beta \varphi(0)\right)=\left(\partial_{s} v(0)-\beta v(0), \varphi(0)\right)$; it is enough to say that $k=v(0)$.

To finish our argument we must show $v \in \mathbb{C}^{0}\left([0, T] ; H^{r-2}\right)$. Let $t, t^{\prime} \in[0, T]$; since

$$
\left\langle\partial_{3} v(t)-\partial_{s} v\left(t^{\prime}\right), v(t)-v\left(t^{\prime}\right)\right\rangle_{\Psi^{r-2}}=i \iint \sigma\left(1+|\sigma|^{2}+|\xi|^{2}\right)^{r-2} \mid v\left(\left.\widehat{t)-v\left(t^{\prime}\right)}\right|^{2} \mathbb{d} \sigma \mathbb{d}\right.
$$

is pure imaginary, then

$$
\left\|\partial_{s} v(t)-\beta v(t)-\left[\partial_{8} v\left(t^{\prime}\right)-\beta v\left(t^{\prime}\right)\right]\right\|_{H^{r-2}}^{2}=\left\|\partial_{s} v(t)-\partial_{s} v\left(t^{\prime}\right)\right\|_{H^{r-2}}^{2}+\beta^{2}\left\|v(t)-v\left(t^{\prime}\right)\right\|_{H^{v-2}}^{2} .
$$

From (2.3) it follows $\lim _{t^{\rightarrow} \rightarrow t}\left\|v(t)-v\left(t^{\prime}\right)\right\|_{H^{r-2}}^{2}=0$. Q.E.D.
Now we show the uniqueness:
2.2. Proposition. - With the same hypotheses of Proposition 2.1 the solution $v$ is unique in $C^{0}\left([0, T] ; H^{r-2}(s, x)\right)$.

Proof. - Let $w \in O^{0}\left([0, T] ; H^{r-2}\right)$ such that $Q w=0$ and $w(0)=0$. Then

$$
\partial_{t}\left(\partial_{s} w-\beta w\right)=\alpha \partial_{s} w-\sum a_{j k} \partial_{j k}^{2} w-\sum b_{j} \partial_{j} w-(\alpha \beta+c) w \in C^{0}\left([0, T] ; H^{r-4}\right)
$$

Hence by the above argument:

$$
\partial_{t} \beta w \in C^{0}\left([0, T] ; H^{r-4}\right)
$$

i.e. $w \in \mathcal{C}^{1}\left([0, T] ; H^{r-4}\right)$. Thus we can apply $(1.8)_{r-6}$ to see $w=0$. Q.E.D.
2.3. Remark. - If the data are smooth, i.e. $h \in C^{\infty}\left([0, T] ; H^{+\infty}(s, x)\right)$ and $k \in H^{+\infty}(s, x)$, then there exists an unique $v \in C^{0}\left([0, T] ; H^{+\infty}(s, x)\right)$ such that $Q v=h$ and $v(0)=7$. Moreover, since $\partial_{t}\left(\partial_{s}-\beta\right) v \in C^{0}\left([0, T] ; H^{+\infty}\right)$, it follows $v \in C^{1}([0, T]$; $\left.H^{+\infty}\right)$. Thus with a step by a step argument $v \in C^{\infty}\left([0, T] ; H^{+\infty}\right)$.

Using this remark we shall improve Propositions 2.1 and 2.2:
2.4 Theorem. - Let $Q$ be the operator (1.3). If $h \in L^{2}\left([0, T] ; H^{r}\right)$ and $k \in H^{r+1}$, then there exists a unique $v \in C^{0}\left([0, T] ; H^{r+1}\right)$ such that (1.4) holds. Moreover $v$ satisfied (1.8) $)_{r}$ :

Proof. - Let $\left(h_{n}\right)$ be a sequence in $C_{0}^{\infty}\left([0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ converging to $h$ in $L^{2}\left([0, T] ; H^{r}\right)$ and let $\left(k_{n}\right)$ be a sequence of test functions in $\boldsymbol{R} \times \boldsymbol{R}^{n}$ converging to $k$ in $H^{r+1}(s, x)$. By previous Remark 2.3, for every $n \in \mathbb{N}$ there exists a unique $v_{n} \in C^{\infty}\left([0, T] ; H^{+\infty}\right)$ such that $Q v_{n}=h_{n}$ and $v_{n}(0)=k_{n}$. To see that the sequences $v_{n}, \partial_{s} v_{n}, \partial_{j} v_{n}(j=1, \ldots, n)$ are Cauchy sequence in $C^{0}\left([0, T] ; H^{r}\right)$ it is enough to apply (1.8) to $v_{n}-v_{n}$; thus there exists $v$ such that $v_{n}$ converges to $v$ in $\mathcal{O}^{0}\left([0, T] ; H^{r+1}\right)$. Then $v(0)=\pi$. Moreover

$$
\partial_{t}\left(\partial_{s}-\beta\right) v_{n}=\left(\alpha \partial_{s}-\sum a_{i k} \partial_{j k}^{2}-\sum b_{j} \partial_{i}-\alpha \beta-c\right) v_{n}+h_{n}
$$

is a Cauchy sequence in $L^{2}\left([0, T] ; H^{r-1}\right)$; hence $Q v=h$.
Since $v_{n} \rightarrow v$, we see that $v$ satisfied (1.8) : Q.E.D.
Moreover we shall show that there is a relation between the regularity of the data and the regularity of the solution.
2.5. Corollary. - With the same hyptheses of Theorem 2.4, for every $m \in N$ :
$\left(A_{m}\right)$ If $h \in \bigcap_{k=0}^{m} H^{k}\left([0, T] ; H^{r-k}(s, x)\right)$ then

$$
v \in \bigcap_{k=0}^{m} C^{k}\left([0, T] ; H^{r-k+1}(s, x)\right) \cap H^{n+1}\left([0, T] ; H^{r-m-1}(s, x)\right)
$$

$\left(B_{m}\right)$ If $h \in \bigcap_{k=0}^{m} O^{k}\left([0, T] ; H^{r-k}(s, x)\right)$ then

$$
v \in \bigcap_{k=0}^{m} C^{k}\left([0, T] ; H^{r-k+1}(s, x)\right) \cap C^{m+1}\left([0, T] ; H^{r-m-1}(s, x)\right)
$$

Proof. - We shall write $H^{k}(q), C^{k}(q)$ instead of $H^{k}\left([0, T] ; H^{q}\right), C^{k}\left([0, T] ; H^{q}\right)$ respectively.

First we prove $\left(A_{0}\right)$ : let $h \in H^{0}(r)$; by Theorem 2.4, $v \in C^{0}(r+1)$; then $\partial_{t}\left(\partial_{s}-\beta\right) v \in H^{0}(r-1)$, and, by the same argument used beiore in the proof of 2.1, we get $\partial_{t} v \in H^{0}(r-1)$, i.e. $v \in H^{1}(r-1)$. Let $\left(A_{m}\right)$ holds. Let $h \in \bigcap_{k=0}^{m+1} H^{k}(r-k)$.
From $Q v=h$ we obtain

$$
Q \partial_{t}^{m+1} v=Q_{m+1} v+\partial_{t}^{m+1} h
$$

where $Q_{m+1}$ is a differential operator of order $m$ in $t$ and order 2 in $(s, x)$. Since, by $\left(A_{m}\right)$, $v \in C^{m}(r+1-m)$, then

$$
Q \partial_{t}^{m+1} v \in C^{0}(r-1-m) \cap H^{0}(r-1-m)
$$

Finally, by $\left(A_{0}\right), \partial_{t}^{m+1} v \in C^{0}(r-m) \cap H^{1}(r-2-m)$. This proves $\left(A_{m+1}\right)$. A similar argument proves $\left(B_{m}\right)$. Q.E.D.

## 3. - Conclusions about the operator $P$.

Consider the operator $P$ in (1.1). We shall show that the characteristic Cauchy problem (0.3) is well posed if the data $f$ and $g$ belong to suitable spaces defined as follows:
3.1. Definition. - $r, \beta \in \boldsymbol{R}$. Define

$$
\boldsymbol{H}_{\beta}^{r}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)=\left\{\varphi \in \mathfrak{D}^{\prime}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right) ; \exp [\beta s] \varphi(s, x) \in H^{r}(s, x)\right\},
$$

and $\|\varphi\|_{H_{\beta}^{r}}=\|\exp [\beta s] \varphi\|_{H^{r}}$.
3.2. Theorem. - Let $P$ be the operator (1.1). Let $\beta<0, f \in I^{2}\left([0, T] ; H_{\beta}^{r}(s, x)\right)$ and $g \in H_{\beta}^{r+1}(s, x)$. Then there exists a unique $u \in C^{0}\left([0, T] ; H_{\beta}^{r+1}(s, x)\right)$ such that

$$
\begin{cases}P u=f & \text { in }[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n} \\ u(0, s, x)=g(s, x) & (s, x) \in \boldsymbol{R} \times \boldsymbol{R}^{n}\end{cases}
$$

Moreover if $f \in \bigcap_{k=0}^{m} H^{k}\left([0, T] ; B_{\beta}^{r-k}(s, x)\right)$, then

$$
u \in \bigcap_{k=0}^{m} C^{k}\left([0, T] ; B_{\beta}^{r+1-k}(s, x)\right) \cap H^{m+1}\left([0, T] ; H_{\beta}^{r-1-m}(s, x)\right) ;
$$

if $f \in \bigcap_{k=0}^{m} O^{k}\left([0, T] ; H_{\beta}^{r-k}(s, x)\right)$, then

$$
u \in \bigcap_{k=0}^{m} C^{k}\left([0, T] ; H_{\beta}^{r+1-k}(s, x)\right) \cap C^{m+1}\left(\left[0, T^{\prime}\right] ; H_{\beta}^{r-1-m}(s, x)\right)
$$

Proof. - Since $\beta<0$, we can choose $\alpha$ such that $0>\alpha>\beta$. Let $h=\exp [\alpha c t+\beta s] f$ and $k=\exp [\beta s] g ;$ by Theorem 2.4 there exists a unique $v \in C^{0}\left([0, T] ; H^{r+1}\right)$ such that $Q v=h$ and $v(0)=k$.

To finish it is enough to put $u=\exp [-\alpha t-\beta s] v$, and remark that

$$
Q(\exp [a t+\beta s] u)=\exp [\alpha t+\beta s] P u . \quad \text { Q.E.D. }
$$

## 4. - Range of influence: the statement.

We will study the range of influence of the operator $P$ (1.1), with reference to the Cauchy problem (0.3).

Let $\left(t_{0}, s_{0}, x_{0}\right) \in[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}$ and consider the cone

$$
\begin{equation*}
\mathcal{C}=\left\{(t, s, x) \in \boldsymbol{R} \times \boldsymbol{R} \times \boldsymbol{R}^{n} ; 4 \delta\left(t_{0}-t\right)\left(s_{0}-s\right)-\left\|x-x_{0}\right\|^{2}>0 \text { and } 0 \leqslant t<t_{0}\right\} \tag{4.1}
\end{equation*}
$$

with $\delta$ is as in (1.2.ii).
Now we state that the speed of propagation is infinite; in fact we shall prove in section 7 the following
4.1. Theorem. - Let $P$ be the operator (1.1). If $u=u(t, s, x)$ satisfies the following conditions
(i) $u \in C^{2}(\mathcal{C})$;
(ii) there exists $\beta<0$ such that $\exp [\beta s] u(t, s, x)$ is bounded in $\mathcal{C}$;
(iii) $\left\{\begin{array}{l}P u=0 \quad \text { in } \mathbb{C} \\ u(0, s, x)=0 \text { for every }(s, x) \text { such that }(0, s, x) \in \mathrm{C}\end{array}\right.$
then $u(t, s, x)=0$ in $\mathcal{C}$.

## 5. - An auxiliary Cauchy problem.

5.1. Definition. - Let $\left(t_{1}, s_{1}, x_{1}\right) \in C$, and $\alpha_{1}=4 \delta\left(t_{0}-t_{1}\right)\left(s_{0}-s_{1}\right)-\left\|x_{1}-x_{0}\right\|^{2}>0$. Define

$$
\mathscr{T}_{1}=\left\{(t, s, x) ; 4 \delta\left(t_{0}-t\right)\left(s_{0}-s\right)-\left\|x-x_{0}\right\|^{2} \geqslant \alpha_{1} \text { and } t<t_{0}\right\}
$$

In this section we prove the existence of a solution of the equation: ${ }^{t} P w=0$ in $\mathscr{J}_{1}$, when the Cauchy data are assigned on the hyperboloid $\partial \mathscr{S}_{1}$. To this end we define coordinates $(p, q, x)$ by means of

$$
\left\{\begin{array}{l}
p=t+s  \tag{5.1}\\
q=t-s \\
x_{j}=x_{j} \quad(j=1, \ldots, n)
\end{array}\right.
$$

Let ( $p_{0}, q_{0}, x_{0}$ ) be the coordinates, in the frame (5.1), of the point $\left(t_{0}, s_{0}, x_{0}\right)$. We introduce also coordinates ( $\tilde{p}, \tilde{q}, \tilde{x}$ ) by means of

$$
\left\{\begin{array}{l}
\tilde{p}=p_{0}-p-\theta  \tag{5.2}\\
\tilde{q}=q-q_{0} \\
\tilde{x}_{j}=x_{j}-x_{\theta j} \quad(j=1, \ldots, n)
\end{array}\right.
$$

where

$$
\theta=\theta(q, x)=\left[\alpha_{1} \delta^{-1}+\left(q-q_{0}\right)^{2}+\left\|x-x_{0}\right\|^{2} \delta^{-1}\right]^{\frac{1}{2}}=\left(\alpha_{1} \delta^{-1}+\tilde{q}^{2}+\|\tilde{x}\|^{2} \delta^{-1}\right)^{\frac{1}{2}}
$$

It is straightforward to check that $(t, s, x) \rightarrow(\tilde{p}, \tilde{q}, \tilde{x})$ is a $C^{\infty}$ one-to-one transformation of $\boldsymbol{R} \times \boldsymbol{R} \times \boldsymbol{R}^{n}$ onto itself. Moreover if $\tilde{\mathscr{S}}_{1}$ corresponds to $\mathscr{T}_{1}$ by means of above change of coordinates, then $\tilde{\mathfrak{T}}_{1}=\{\tilde{p} \geqslant 0\}$.
5.2. Lemara. - Let $\delta_{1}>\delta$. There exist $a_{j k}^{\prime}, b_{i}^{\prime}, c^{\prime} \in C^{\infty}\left((-\infty, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ such that they extend the coefficients $a_{j k}, b_{i}, c \in C^{\infty}\left([0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ of the operator $P$ (1.1) and

$$
0>A^{\prime}(t, s, x)=\left[a_{j k}^{\prime}(t, s, x)\right] \geqslant-\delta_{1} I_{n}
$$

for every $(t, s, x) \in(-\infty, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}$.
5.3. Lenma. - Let $\delta_{1}>\delta$. Let $R=\hat{\partial}_{t s}^{2}+\sum_{j k=1}^{n} b_{j k} \partial_{j k}^{2}+\sum_{j=1}^{n} c_{j} \partial_{j}+r$ be an operator with coefficients $b_{j k}, c_{j}, r$ belonging to $C^{\infty}\left(\mathscr{S}_{1}\right)$, and let $B=\left[b_{j k}\right]$ be selfadjoint definite such that $0>B \geqslant-\delta_{1} I_{n}$ in $\mathscr{T}_{1}$. Denote by $\tilde{R}$ the operator that corresponds to $R$
in the $(\tilde{p}, \tilde{q}, \tilde{x})$ coordinates (5.2). Then
$(5.3) \quad \tilde{R}=\tilde{\psi}(\tilde{p}, \tilde{q}, \tilde{x}) \partial_{\tilde{p}}^{2}+\tilde{R}_{1}\left(\tilde{p}, \tilde{q}, \tilde{x} ; \partial_{\tilde{q}}, \partial_{\tilde{x}_{1}}, \ldots, \partial_{\tilde{x}_{n}}\right) \partial_{\tilde{p}}+\tilde{R}_{2}\left(\tilde{p}, \tilde{q}, \tilde{x} ; \partial_{\tilde{q}}, \partial_{\tilde{x}_{1}}, \ldots, \partial_{\tilde{x}_{n}}\right)$
where: $\tilde{R}_{j}(j=1,2)$ is a linear differential operator of order $j$, with coefficients belonging to $C^{\infty}\left(\left(\boldsymbol{R}^{+} \cup\{0\}\right) \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$; $\tilde{y}$ is a smooth function such that $\tilde{\psi}>0$ if $\|\tilde{x}\|<\left[\delta \alpha_{1}\left(\delta_{1}-\delta\right)^{-1}\right]^{\frac{1}{2}} ; \tilde{R}$ is strictly byperbolic in the direction $d \tilde{p}$, on the domain

$$
\left(\boldsymbol{R}^{+} \cup\{0\}\right) \times \boldsymbol{R} \times B_{n}\left(0 ;\left[\delta \alpha_{1}\left(\delta_{1}-\delta\right)^{-1}\right]^{\frac{1}{2}}\right)
$$

Proof. - Let $\tilde{r}_{2}$ and $r_{a}$ be the principal symbols of the operators $\tilde{R}$ and $R$ respectively, then they are connected by

$$
\tilde{r}_{2}(\tilde{p}, \tilde{q}, \tilde{x} ; \pi, \chi, \zeta)=r_{2}\left(t, s, x ; \frac{{ }^{t}(p, q, x)}{\partial(t, s, x)}\left(\begin{array}{c}
\pi \\
\chi \\
\zeta
\end{array}\right)\right) .
$$

Therefore, it follows

$$
\begin{aligned}
\tilde{r}_{2}(\tilde{p}, \tilde{q}, \tilde{x} ; \pi, \chi, \zeta) & = \\
& =\pi^{2} \tilde{\psi}(\tilde{p}, \tilde{q}, \tilde{x})+\pi\left[2 \tilde{q} \theta^{-1} \chi-\delta^{-1} \theta^{-1}(\langle B \zeta, \tilde{x}\rangle+\langle B \tilde{x}, \zeta\rangle)\right]+\langle B \zeta, \zeta\rangle-\chi^{2}
\end{aligned}
$$

where

$$
\begin{equation*}
\tilde{\psi}(\tilde{p}, \tilde{q}, \tilde{x})=\frac{\delta^{2} \theta^{2}-\delta^{2} \tilde{q}^{2}+\langle B \tilde{x}, \tilde{x}\rangle}{\delta^{2} \theta^{2}} \geqslant \frac{\delta \alpha_{1}+\left(\delta-\delta_{1}\right)\|\tilde{x}\|^{2}}{\delta^{2} \theta^{2}} \tag{5.4}
\end{equation*}
$$

Hence $\tilde{\psi}>0$, for $\|x\|^{2}<\delta \alpha_{1}\left(\delta_{1}-\delta\right)^{-1}$.
Since $\chi^{2}-\langle B \zeta, \zeta\rangle>0$ we can see that $\tilde{R}$ is strictly byperbolic in the direction $d \tilde{p}$ on the domain $\{\tilde{\psi}>0\}$. Q.E.D.
5.4. Definition. - Let $s_{2}<s_{0}$. Define

$$
\Omega_{s_{\mathrm{a}}}=\left\{(t, s, x) \in \mathscr{J}_{1} ; s \geqslant s_{2}\right\}
$$

5.5. Remark. - Let

$$
\begin{aligned}
& t_{s_{2}}=t_{0}-\frac{\alpha_{1}}{4 \delta\left(s_{0}-s_{2}\right)} \\
& r_{s_{2}}(t)=r(t)=\left[4 \delta\left(t_{0}-t\right)\left(s_{0}-s_{2}\right)-\alpha_{1}\right]^{\frac{1}{2}} \\
& s_{s_{2}}(t, x)=s(t, x)=s_{0}-\frac{\alpha_{1}+\left\|x-x_{0}\right\|^{2}}{4 \delta\left(t_{0}-t\right)}
\end{aligned}
$$

Then $(t, s, x) \in \Omega_{s_{2}}$ if only if

$$
\left\{\begin{array}{l}
t \in\left[0, t_{s_{2}}\right] \\
x \in B_{n}\left(x_{0} ; r(t)\right) \\
s \in\left[s_{2}, s(t, x)\right]
\end{array}\right.
$$

therefore $\partial \Omega_{s_{2}}=A_{s_{z}} \cup B_{s_{2}} \cup O_{s_{2}}$, with

$$
\begin{aligned}
& \left.\left.A_{s_{3}}=\right\}\left(t, s_{2}, x\right) ; t \in\left[0, t_{s_{2}}\right], x \in B_{n}\left(x_{0} ; r(t)\right)\right\} \\
& B_{s_{3}}=\left\{(0, s, x) ; x \in B_{n}\left(x_{0} ; r(0)\right), s \in\left[s_{2}, s(0, x)\right]\right\} \\
& C_{\varepsilon_{2}}=\left\{(t, s(t, x), x) ; t \in\left[0, t_{s_{2}}\right], x \in B_{n}\left(x_{0} ; r(t)\right)\right\}
\end{aligned}
$$

Finally we can prove the following
5.6. Theorem. - Let $P$ be the operator (1.1) and $\varphi \in C_{0}^{\infty}\left(\partial \mathscr{S}_{1}\right)$. For every $s_{2}<s_{0}$ there exists $w \in C^{\infty}\left(\Omega_{s_{2}}\right)$ such that

$$
\begin{cases}{ }^{t} P w=0 & \text { in } \Omega_{s_{2}}  \tag{5.5}\\ w=0 & \text { in } C_{s_{2}} \\ \partial_{n} w=\varphi & \text { in } C_{s_{2}}\end{cases}
$$

where $n$ is the unit normal vector, directed outside $\Omega_{s_{2}}$ :
Proof. - Let $s_{2}<s_{0}$ : Since $r_{2}(t) \leqslant\left[4 \delta t_{0}\left(s_{0}-s_{2}\right)-\alpha\right]^{\frac{1}{2}}$ and $s_{2}(t, x) \leqslant s_{0}, \Omega_{s_{2}}$ is bounded. Let $\tilde{\Omega}_{s_{2}}$ be the domain which corresponds to $\Omega_{s_{2}}$ in the $(\tilde{p}, \tilde{q}, \tilde{x})$ coordinates; then $\tilde{\Omega}_{s_{1}}$ is bounded, hence there exists $\delta_{1}, \delta_{1}>\delta$, such that

$$
B=B_{2+n}\left(0 ; \frac{1}{2}\left[\delta \alpha_{1}\left(\delta_{1}-\delta\right)^{-1}\right]^{\frac{1}{2}}\right) \supset \tilde{\Omega}_{\varepsilon_{2}} .
$$

From Lemma 5.2 it follows that there exists an extension $P^{\prime}$, of $P$, to $(-\infty, T] \times$ $\times \boldsymbol{R} \times \boldsymbol{R}^{n} \supset \mathscr{T}_{1}$, such that $0>A^{\prime} \geqslant-\delta_{1} I_{n}$ : By Lemma 5.3 the operator ${ }^{t} \tilde{P}^{\prime}$ is of the form (5.3), strictly hyperbolic in the direction $d \tilde{p}$, on $2 B$. Keeping into account Lemma VI.4.12 in [2] there exists an operator $\tilde{L}$ with coefficients belonging to $C^{\infty}\left(\left(\boldsymbol{R}^{+} \cup\{0\}\right) \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$, constant out of $2 B$, of the same form as ${ }^{\imath} \tilde{P}^{\prime}$ and such that $\tilde{L}={ }^{t} \tilde{P}^{\prime}$ in $B$, strictly hyperbolic in the direction $d \tilde{p}$, on $\left(\boldsymbol{R}^{+} \cup\{0\}\right) \times \boldsymbol{R} \times \boldsymbol{R}^{n}$.
 such that

$$
\begin{cases}\tilde{L} w=0 & \text { in }[0, U] \times \boldsymbol{R} \times \boldsymbol{R}^{n} \\ \tilde{w}(0, \tilde{q}, \tilde{x})=0 & \text { in } \boldsymbol{R} \times \boldsymbol{R}^{n} \\ \partial_{\tilde{p}} \tilde{w}(0, \tilde{q}, \tilde{x})=\tilde{\chi}(\tilde{q}, \tilde{x}) & \text { in } \boldsymbol{R} \times \boldsymbol{R}^{n}\end{cases}
$$

Put $w(t, s, x)=\tilde{w}(\tilde{p}, \tilde{q}, \tilde{x})$. Since $\tilde{T}_{1}=\{\tilde{p} \geqslant 0\}$ and $C_{s_{1}} \subset \partial \mathscr{T}_{1}$, thus $n=-\nabla \tilde{p}\|\nabla \tilde{p}\|^{-1}$ and, in $O_{s_{\mathrm{a}}}$,

$$
\nabla w=\frac{i \partial(\tilde{p}, \tilde{q}, \tilde{x})}{\partial(t, s, x)} \tilde{\nabla} \tilde{w}=\left(\partial_{\tilde{p}} \tilde{w}\right) \nabla \tilde{p} \quad \text { holds }
$$

therefore $\partial_{n} w=-\nabla w \cdot \nabla \tilde{p}\|\nabla \tilde{p}\|^{-1}=-\tilde{\chi}\|\nabla \tilde{p}\|=\varphi$. To finish it is enough to remark that $\tilde{L}={ }^{t} \tilde{P}^{\prime}={ }^{t} \tilde{P}$ in $\tilde{\Omega}_{s_{2}} \subset B \subset[0, U] \times \boldsymbol{R} \times \boldsymbol{R}^{n}$. Q.E.D.

## 6. - A Stokes-energy inequality.

To prove Theorem 4.1 we need an estimate of a solution of (5.5).
6.1. Definition. - Let $P$ be the operator (1.1) and $\alpha, \beta \in \boldsymbol{R}$ such that $0>\alpha>\beta$. If $w$ is a solation of $t P w=0$ in an open subset of $[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}$, define

$$
\begin{equation*}
v(t, s, x)=\exp [-\alpha t-\beta s] w(t, s, x) \tag{6.1}
\end{equation*}
$$

and

$$
\begin{aligned}
& E(t, s, x)=\alpha \beta|v|^{2}+\left|\partial_{s} v\right|^{2}+\gamma\left\|\nabla_{x} v\right\|^{2} ; \\
& \tilde{E}(t, s, x)=\alpha \beta|v|^{2}+\left|\partial_{s} v\right|^{2}-\left\langle A \nabla_{x} v, \nabla_{x} v\right\rangle ; \\
& F(t, s, x)=\alpha \beta|v|^{2}+\left|\partial_{t} v\right|^{2}-\left\langle A \nabla_{x} v, \nabla_{x} v\right\rangle ; \\
& G(t, s, x)=2 \operatorname{Re}\left[\left(\partial_{t}+\partial_{s}\right) \bar{v} \cdot A \nabla_{x} v\right] .
\end{aligned}
$$

6.2. Lemma. - There exists a constant $K>0$ (depending only on $P, \alpha, \beta$ ) such that, for every $O^{\infty}$ solution $w$ of $t P w=0$ in a neighbourhood of $(t, s, x)$ in $[0, T] \times$ $\times \boldsymbol{R} \times \boldsymbol{R}^{n}$,

$$
\begin{equation*}
\partial_{t} \tilde{E}(t, s, x)+\partial_{s} F(t, s, x)+\nabla_{x} \cdot G(t, s, x) \geqslant-K E(t, s, x) . \tag{6.2}
\end{equation*}
$$

Proof. - Let $Q$ be the operator (1.3). Then by (6.1) ${ }^{t} Q v=\exp [-\alpha t-\beta s]^{t} P_{w}=0$, thus $0=2 \operatorname{Re}\left[\left(\partial_{t}+\partial_{s}\right) \bar{v} \cdot t Q v\right]$. Since

$$
{ }^{t} Q v=\partial_{t s}^{2} v+\beta \partial_{t} v+\alpha \partial_{s} v+\sum a_{j k} \partial_{j k}^{2} v+\sum l_{j} \partial_{j} v+\alpha \beta v+r v
$$

where $l_{j}=\sum \partial_{k d}\left(a_{j k}+a_{k j}\right)-b_{i},(j=1, \ldots, n) ;$ and $r=\sum \partial_{j k}^{2} a_{j k}-\sum \partial_{j} b_{j}+c$, by a straightforward calculation we have

$$
\begin{aligned}
& 0=2 \operatorname{Re}\left[\left(\partial_{t}+\partial_{s}\right) \bar{v} \cdot{ }^{*} Q v\right]=\partial_{s}\left|\partial_{t} v\right|^{2}+\partial_{t}\left|\partial_{s} v\right|^{2}+2 \beta\left|\partial_{t} v\right|^{2}+2 \operatorname{Re}(\alpha+\beta) \partial_{t} v \cdot \partial_{s} \bar{v}+ \\
& +2 \alpha\left|\partial_{s} v\right|^{2}+\nabla_{x} 2 \operatorname{Re}\left[\partial_{t} \bar{v} \cdot A \nabla_{x} v\right]-\partial_{t}\left\langle A \nabla_{x} v, \nabla_{x} v\right\rangle+\left\langle\left(\partial_{t} A\right) \nabla_{x} v, \nabla_{x} v\right\rangle- \\
& -2 \operatorname{Re}\left[\partial_{t} \bar{v} \cdot\left({ }^{t} \nabla_{x} A\right) \nabla_{x} v\right]+\nabla_{x} 2 \operatorname{Re}\left[\partial_{s} \bar{v} \cdot A \nabla_{x} v\right]-\partial_{s}\left\langle A \nabla_{x} v, \nabla_{x} v\right\rangle+\left\langle\left(\partial_{s} A\right) \nabla_{x} v, \nabla_{x} v\right\rangle- \\
& \quad-2 \operatorname{Re}\left[\partial_{s} \bar{v} \cdot\left({ }^{t} \nabla_{x} A\right) \nabla_{x} v\right]+2 \operatorname{Re}\left[\left(\partial_{t}+\partial_{s}\right) \bar{v} \cdot\left(l \cdot \nabla_{x} v+r v\right)\right]+\alpha \beta \partial_{t}|v|^{2}+\alpha \beta \partial_{s}|v|^{2},
\end{aligned}
$$

where $l=\left(l_{1}, \ldots, l_{n}\right)$.

It follows:

$$
\begin{aligned}
& \partial_{t} \tilde{E}+\partial_{s} F+\nabla_{x} \cdot G=-(\alpha+\beta)\left|\left(\partial_{t}+\partial_{s}\right) v\right|^{2}+(\alpha-\beta)\left|\partial_{t} v\right|^{2}+(\beta-\alpha)\left|\partial_{s} v\right|^{2}+ \\
&+2 \operatorname{Re}\left\{\left(\partial_{t}+\partial_{s}\right) \widetilde{v} \cdot\left[\left(\nabla_{x} A-l\right) \cdot \nabla_{x} v-r v\right]\right\}-\left\langle\left[\left(\partial_{t}+\partial_{s}\right) A\right] \nabla_{x} v, \nabla_{x} v\right\rangle
\end{aligned}
$$

Since $0>\alpha>\beta$, there exists $\varepsilon>0$ such that $\varepsilon^{-1}+\alpha+\beta<0$, therefore

$$
\begin{aligned}
\nabla(\widetilde{E}, F, G) \geqslant-\left(\varepsilon^{-1}+\alpha+\beta\right) \mid\left(\partial_{t}\right. & \left.+\partial_{s}\right)\left.v\right|^{2}-(\alpha-\beta)\left|\partial_{s} v\right|^{2}- \\
& \quad-\varepsilon\left|\left(\nabla_{x} A-l\right) \nabla_{x} v-r v\right|^{2}-\left\|\left(\partial_{t}+\partial_{s}\right) A\right\|\left\|\nabla_{x} v\right\|^{2} \geqslant-K E
\end{aligned}
$$

for a suitable $K \gg$, because $A$ and $l$ are constant for $\|(s, x)\| \gg$.
Q.E.D.

Now we can prove the required inequality:
6.3. Theorem. - Let $\varphi \in C_{0}^{\infty}\left(\partial \mathscr{T}_{1}\right)$. There exists a constant $M>0$ (depending only on $P, \alpha, \beta$ and $\varphi$ ) such that for every $s_{2}<s_{0}$, for every solution $w \in C^{\infty}\left(\Omega_{s_{2}}\right)$ of (5.5):

$$
\iint_{A s_{s}} F(t, s, x) d t d x \leqslant M
$$

Proof. - Let $s_{2}<s_{0}$. Put $\Omega_{s_{2}}(t)=\left\{\left(t^{\prime}, s, x\right) \in \Omega_{s_{2}} ; t^{\prime} \geqslant t\right\}, t \in\left[0, t_{s_{2}}\right]$. It follows that $\partial \Omega_{s_{2}}(t)=A_{s_{2}}(t) \cup B_{s_{2}}(t) \cup C_{s_{2}}(t)$ with

$$
\begin{aligned}
& A_{s_{2}}(t)=\left\{\left(t^{\prime}, s_{2}, x\right) ; t^{\prime} \in\left[t, t_{s_{2}}\right], x \in B_{n}\left(x_{0} ; r\left(t^{\prime}\right)\right)\right\} \\
& B_{s_{2}}(t)=\left\{(t, s, x) ; x \in B_{n}\left(x_{0} ; r(t)\right), s \in\left[s_{2}, s(t, x)\right]\right\} \\
& C_{s_{2}}(t)=\left\{\left(t^{\prime}, s\left(t^{\prime}, x\right) x\right) ; t^{\prime} \in\left[t, t_{s_{2}}\right], x \in B_{n}\left(x_{0}, r\left(t^{\prime}\right)\right)\right\} .
\end{aligned}
$$

Applying Stokes theorem to (6.2):
$-\iint_{B_{s_{2}}(t)} \widetilde{B}(t, s, x) d s d x-\iint_{A_{s_{2}}(t)} F\left(t^{\prime}, s_{2}, x\right) d t^{\prime} d x+\iint_{C_{s_{2}}(t)}(\widetilde{E}, F, G) \cdot n d S \geqslant$ $\geqslant-K \iiint_{\Omega_{a_{2}}(i)} E\left(t^{\prime}, s, x\right) d t^{\prime} d s d x$.
But, for (1.2.ii), $E \leqslant \tilde{E}$, thus

$$
\begin{equation*}
\iint_{s_{s_{2}}(t)} E d s d x \leqslant \iint_{C_{s_{2}}(t)}(\tilde{E}, F, G) \cdot n d S-\iint_{A_{s_{2}}(t)} F d t^{\prime} d x+K \iiint_{\Omega_{s_{2}}(t)} E d t^{\prime} d s d x \tag{6.3}
\end{equation*}
$$

Now we are going to calculate $(\tilde{E}, F, G) \cdot n$ in $C_{s_{2}}$. From $w=0, \partial_{n} w=\varphi$ in $C_{s_{2}}$, it follows $\nabla w=\varphi n$; therefore, in $C_{s_{2}}, v=0$ and $\nabla v=\exp [-\alpha t-\beta s] n$. Hence

$$
(\tilde{E}, F, G)=|\exp [-\alpha t-\beta s] \varphi|^{2}\left(\left|n_{s}\right|^{2}-\left\langle A n_{x}, n_{x}\right\rangle,\left|n_{t}\right|^{2}-\left\langle A n_{x}, n_{x}\right\rangle,\left(n_{t}+n_{s}\right) 2 A n_{x}\right)
$$

in $O_{s_{2}}$, where $n=\left(n_{t}, n_{s}, n_{x}\right)$. Since $n=-\nabla \tilde{p}\|\nabla \tilde{p}\|^{-1}$, hence

$$
\begin{aligned}
(\tilde{\mathbb{L}}, \tilde{F}, G) \cdot n=-\mid \exp [-\alpha t & -\beta s]\left.\varphi\right|^{2}\left(n_{s}^{2} n_{t}+n_{t}^{2} n_{s}+\left(n_{t}+n_{s}\right)\left\langle A n_{x}, n_{x}\right\rangle\right)= \\
& =|\exp [-\alpha t-\beta s] \varphi|^{2} 2\|\nabla \tilde{p}\|-3\left(1-\tilde{q} \theta^{-2}+\delta^{-2} \theta^{-2}\langle A \tilde{x}, \tilde{x}\rangle\right)
\end{aligned}
$$

By comparison with (5.4) we see that $(\tilde{E}, F, G) \cdot n=h \in C_{0}^{\infty}\left(\partial \mathscr{I}_{1}\right)$, with $h \geqslant 0, \operatorname{supp} h=$ $=\operatorname{supp} \varphi$. Therefore there exists a constant $K_{1}=K_{1}(P, \alpha, \beta, \varphi)>0$ such that

$$
\begin{equation*}
\iint_{\tilde{S}_{2}}(\tilde{E}, F, G) \cdot n d S \leqslant \iint_{\text {supp } h} h d S \leqslant K_{1}: \tag{6.4}
\end{equation*}
$$

Put $y(t)=\iint_{B_{s}(t)} E(t, s, x) d s d x$ and $g(t)=\iint_{B_{n}\left(x_{0} ; r(t)\right)} F\left(t, s_{2}, x\right) d x$, for $t \in\left[0, t_{s_{8}}\right]$. Then $\int_{t_{s_{s}}}^{t_{s_{2}}} y\left(t^{\prime}\right) d t^{\prime}=$ $=\iint_{\Omega_{s_{3}}(t)} E d t^{B_{s}(t)} d s d x$ and $\int_{i}^{t_{s}} g\left(t^{\prime}\right) d t^{\prime}=\iint_{t_{s_{2}}}^{B_{t_{2}}\left(x_{0} ; r(t)\right)} d t^{\prime} d x$. Therefore, from (6.3) and (6.4), it fol-
 $\leqslant \exp \left[K\left(t_{s_{3}}-t\right)\right] K_{1}-\int_{t}^{t_{s_{2}}} \exp \left[\bar{K}\left(t^{\prime}-t\right)\right] g\left(t^{\prime}\right) d t^{\prime}$. Since $E, F \geqslant 0$, hence $y, g \geqslant 0$; therefore
$\iint_{A_{s_{2}}} F d t d x=\int_{0}^{i_{s_{2}}} g\left(t^{\prime}\right) d t^{\prime} \leqslant \int_{0}^{t_{s_{2}}} \exp \left[K t^{\prime}\right] g\left(t^{\prime}\right) d t^{\prime}+y(0) \leqslant \exp \left[K t_{s_{2}}\right] K_{1} \leqslant \exp \left[K t_{0}\right] K_{1} . \quad$ Q.E.D.

## 7. - Proof of Theorem 4.1.

In this section we show
Theorem. - Let $u$ be such that (4.2) holds. Then $u=0$ in $\mathcal{C}$.
Proof. - Let $\left(t_{1}, s_{1}, x_{1}\right) \in \mathcal{C},\left(t_{1}>0\right)$ and $\varphi \in C_{0}^{\infty}\left(\partial \mathscr{S}_{1}\right)$ with $\varphi \geqslant 0, \varphi=1$ near the point $\left(t_{1}, s_{1}, x_{1}\right)$. Let $s_{2}<s_{0}$ and $w \in O^{\infty}\left(\Omega_{s_{3}}\right)$ be a solution of (5.5). By a straightforward calculation we get $0=w P u-u^{t} P w=\nabla \cdot H$, where

$$
H=\left(w \partial_{s} u,-u \partial_{t} w, w A \nabla_{x} u-u w^{t} \nabla_{x} A-u\left(^{t} \nabla_{x} w\right) A+u w b\right)
$$

with $b=\left(b_{1}, \ldots, b_{n}\right)$. Therefore, by Stockes theorem we get

$$
\begin{equation*}
0=\iint_{\Omega_{s_{2}}} \int\left(w P u-u^{t} P w\right) d t d s d x=\iint_{A_{s_{2}}} u \partial_{t} w d t d x-\iint_{B_{s_{2}}} w \partial_{s} u d s d x+\iint_{O_{s_{2}}} H \cdot n d S \tag{7.1}
\end{equation*}
$$

Let us calculate $H \cdot n$ in $C_{s_{3}}$. From $w=0$ in $C_{s_{2}}$, it follows $\nabla w=\varphi n$ in $C_{s_{2}}$; thus it becomes $H \cdot n=\left(0,-u \varphi n_{t},-u \varphi^{t} n_{x} A\right) \cdot n=-u \varphi\left(n_{t} n_{s}+\left\langle A n_{x}, n_{x}\right\rangle\right.$ ), and (by comparison with (5.4)) $H \cdot n=-u \varphi \psi$ for a suitable function $\psi>0$. But $\partial_{s} u=0$ in $B_{s_{2}}$,
then, from (7.1), we obtain

$$
\begin{equation*}
\left|\iint_{\sigma_{s_{2}}} u \varphi \psi d S\right| \leqslant \iint_{A_{s_{2}}}\left|u \partial_{t} w\right| d t d x \tag{7.2}
\end{equation*}
$$

By hypothesis (4.2.ii) there exist constants $\beta_{1}<0$ and $C_{1}>0$ such that $\left|\exp \left[\beta_{1} s\right] u(t, s, x)\right| \leqslant C_{1},(t, s, x) \in \mathbb{C}$. Let us choose $\beta \in\left(\beta_{1}, 0\right)$, then

$$
\begin{equation*}
\iint_{A_{s_{2}}}\left|w \partial_{t} w\right| d t d x \leqslant C_{1} \exp \left[\left(\beta-\beta_{1}\right) s_{2}\right]\left(\operatorname{mis} A_{s_{2}}\right)^{\frac{1}{2}}\left(\iint_{A_{s_{2}}}\left|\exp [-\beta s] \partial_{t} w\right|^{2}\right)^{\frac{1}{2}} \tag{7.3}
\end{equation*}
$$

Let us take $\alpha \in(\beta, 0)$; from (6.1) it follows that $\exp [-\alpha t-\beta s] \partial_{t} w=\partial_{t} v+\alpha v$; hence, for every $t \geqslant 0,\left.\quad \exp [-\beta s] \partial_{t} w\right|^{2} \leqslant 2\left(\alpha^{2}|v|^{2}+\left|\partial_{t} v\right|^{2}\right) \leqslant 2 F(t, s, x)$. Applying Theorem 6.3 we get

$$
\begin{equation*}
\left(\iint_{A_{s_{2}}}\left|\exp [-\beta s] \partial_{s} w\right|^{2} d t d x\right)^{\frac{1}{2}} \leqslant 2^{\frac{1}{2}} M^{\frac{1}{2}} \tag{7.4}
\end{equation*}
$$

Finally there exists a constant $C_{2}>0$ such that mis $A_{s_{2}} \leqslant C_{2}\left|s_{s}\right|^{n / 2}$ for every $s_{2} \ll$. Hence from (7.2), (7.3) and (7.4) it follows

$$
\left|\iint_{C_{s_{2}}} u \varphi \psi d S\right| \leqslant C_{1} C_{2}^{\frac{1}{2}} M^{\frac{1}{2}} \exp \left[\left(\beta-\beta_{1}\right) s_{2}\right]\left|s_{2}\right|^{n / 2} \xrightarrow[s \rightarrow-\infty]{ } 0
$$

We conclude that $u=0$ in $\operatorname{supp} \varphi$ and, in particular, $u\left(t_{1}, s_{1}, x_{1}\right)=0$. Q.E.D.

## 8. - Conclusion.

By Theorem 4.1 we can improve Theorem 3.2. Namely we show
8.1. Theorem. - Let $\varphi=\varphi(s) \in C^{\infty}(\boldsymbol{R})$ satisfying the following conditions:
(i) there exists $\beta<0$ such that $\varphi(s)=\exp [\beta s]$ for $s \ll 0$;
(ii) $\varphi(s)=0$ for $s \gg 0$.

If $f \in C^{\infty}\left([0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ and $g \in C^{\infty}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ are such that $\varphi(s) f(t, s, x)$ (for every $t \in[0, T])$, and $\varphi(s) g(s, x)$ belong to $H^{+\infty}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$, then there exists a unique solution $u$ of

$$
\begin{cases}P u=f & \text { in }[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}  \tag{0.3}\\ u(0, s, x)=g(s, x) & (s, x) \in \boldsymbol{R} \times \boldsymbol{R}^{n}\end{cases}
$$

such that $u \in C^{\infty}\left([0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ and $\varphi(s) u(t, s, x)$ is bounded in $[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}$.

Actually it is of importance the behaviour of $f$ and $g$ in the $s<0$ half-space only.
Proof. - Let $Q_{n}=\left\{(s, x) \in \boldsymbol{R} \times \boldsymbol{R}^{n} ;(s-n)^{2}-\|x\|^{2} \geqslant 1\right.$ and $\left.s \leqslant n-1\right\}, n \in \mathbb{N}$.
Since the distance between $\partial \mathcal{Q}_{n}$ and $\partial \mathcal{Q}_{n+1}$ is greater than a positive constant, we can find $\chi_{n} \in \mathbb{C}^{\infty}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ such that $\chi_{n}=1$ in $\mathcal{Q}_{n}, \chi_{n}=0$ in $\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)-\mathcal{Q}_{n+1}$, and $\partial^{\alpha} \chi_{n}$ is bounded for every $\alpha \in N^{n+1}$.

Define

$$
f_{n}(t, s, x)=\chi_{n}(s, x) f(t, s, x) \quad \text { and } g_{n}(s, x)=\chi_{n}(s, x) g(s, x)
$$

Then $f \in \mathcal{O}^{\infty}\left([0, T] ; H_{\beta}^{+\infty}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right.$ and $g_{n} \in H_{\beta}^{+\infty}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)$, therefore-by Theorem 3.2there exists a unique $u_{n} \in C^{\infty}\left([0, T] ; H_{\beta}^{+\infty}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right)$ such that

$$
\begin{cases}P u_{n}=f_{n} & \text { in }[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n} \\ u_{n}(0)=g_{n} & \text { in } \boldsymbol{R} \times \boldsymbol{R}^{n}\end{cases}
$$

Let $\mathcal{C}_{s_{0}}$ be the cone defined by the point ( $T, s_{0}, 0$ ) through (4.1). If $K$ is a compact subset of $[0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{3}$ surely there exist $s_{0} \in \boldsymbol{R}$ and $n_{0} \in \boldsymbol{N}$ such that $K \subset \overline{\mathrm{C}}_{s_{0}} \subset \mathcal{Q}_{n}$, for every $n \geqslant n_{0}$. Since $\left(u_{n}-u_{m}\right)(0)=0$ in $\mathcal{Q}_{n \mathbb{A} m}$ and $P u_{n}-P u_{m}=0$ in $[0, T] \times \mathcal{Q}_{n \mathbb{A} m}$, by Theorem 4.1, we have $u_{n}-u_{m}=0$ in $\overline{\mathrm{C}}_{s_{0}}$.

Therefore the sequence $u_{n}$ converges in $C^{\infty}\left([0, T] \times \boldsymbol{R} \times \boldsymbol{R}^{n}\right)$ to a $C^{\infty}$ function $u$ which satisfy (0.3). Moreover from $u_{n} \in O\left([0, T] ; H_{\beta}^{+\infty}\left(\boldsymbol{R} \times \boldsymbol{R}^{n}\right)\right)$ and $u_{n}=u$ in $\overline{\mathrm{C}}_{s_{0}}$ (for $n \gg$ ), it follows that $\varphi(s) u(t, s, x)$ is bounded in $\overline{\mathrm{C}}_{s_{0}}$.

Uniqueness follows from Theorem 4.1. Q.E.D.

## REFERENCES

[1] S. Alinhac, Le problème de Goursat hyperbolique en dimension deux, Comm. part. diff. eq., 1 (3), 231 (1976).
[2] J. Chazarain - A. Piriou, Introduction à la théorie des equations aux dérivées partielles I linéaires, Gauthiers-Villars, Paris, 1981.
[3] P. R. Garabedran, Partial differential equations, John Wiley \& Sons, New York, 1964.
[4] L. Hörmander, The analysis of linear partial differential operators, II, Springer, 1983.
[5] J. B. Kogut - D. E. Soper, Quantum electrodynamics in the infinite momentum frame, Phys. Rev. D, 1 (1970), p. 2901.
[6] B. A. Neyinte - F. Rohrlich, Quantum field theory off null planes, Nuovo Cimento A, 1 (1971), p. 625.
[7] B. A. Neville - F. Rohrlich, Quantum electrodynamics on null planes and applications to laser, Phys. Rev. D, 3 (1976), p. 1962.
[8] G. A. Uhlmann, Pseudo differential operators with involutive double characteristics, Comm. part. diff. eq., 2 (7) (1977), p. 713.
[9] S. Weinberg, Dynamics at infinite momentum, Phys. Rev., 150 (1966), p. 1313.


[^0]:    (*) Entrata in Redazione il 19 ottobre 1985; versione riveduta l's maggio 1986.
    Indirizzo dell'A.: Università degli Studi di Trento, Dipartimento di Matematica, 38050 Povo (Trento), Italy.

