Propagaiion of Singularities for Operators with Constant Coefficient

Hyperbolic-Elliptic Principal Part (%)

M. CrcoeNANI - A. CORLI

Summary. - In this paper we consider partial differential operators of the type P(x, D) =
= P, (D) + Q(=, D), where the constant coefficient principal part P, is supposed to be hyper-
bolic-elliptic. We study the propagation of Gevrey singularities for solutions w of the equation
P(w, Dyu = [, for ultradistributions f, finding exactly to which spaces of uliradistributions u
microlocally belongs. The results are obtained by constructing a fundamental solution for P
when the lower order part @ is with constant coefficients, and a parameiriz otherwise.

0. — Introduction.

The study of operators splitting into hyperbolic or elliptic factors leads to define
a subclass of the set of loeally hyperbolic polynomials, which has been studied by
FEHRMAN in [2]. The polynomials P of such a subeclass, named hyperbolic-elliptic,
are characterized algebraically by the following property: P is hyperbolic-elliptic
with respect to the direction 6 if P,(0) 5= 0 and there exist positive numbers ¢,, ¢,
such that

P(§—ith) =« 0 when ¢, <t< ¢, &t real;

here P,, denotes the principal part of P.

For these polynomials the theory parallels, under many aspects, that of hyper-
bolicity; but while hyperbolic operators have fundamental solutions with support
in a convex cone, for the hyperbolic-elliptic ones we can only say that such a ccne
contains the analytic singularities of their fondamental solutions. This notable
difference does not permit to consider the Cauchy problem for these operators,
unless to add further hypotheses as it is done by KumaNo-go in [9].

In this paper we study operators of the type

*) P(w, D) = P,(D) 4 Q(z, D)

D;= — iofow;, D*= Dj* ... Di=, where P, is supposed with constant coefficients
and @ is the lower order part; P, is always assumed to be hyperbolic-elliptic. Con-
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sidering the principal part with constant coefficients is owed to the remark that,
when this is also the case for ¢, it is possible to construct a fundamental solution

for P(D) by the fundamental solutions for the iterates of P,(D), [1],[2], that is
EP) = ¥ (- 1)'QDyYEP).
k=0

In particular we are interested in the Gevrey singularities for such (ultra) distri-
butions, and the reason of this choice lies in Ivrii’s result [6], for which, although
the Cauchy problem is not in general C*-well posed for operators with hyperbolic
principal part, this comes frue in some Gevrey classes. A microlocal study of this
problem has been carried out by WAKABAYASHI in [13] and [14] for operators with
constant coefficient hyperbolic principal part, and the techniques we use here have
been inspired by those papers.

In the first chapter we briefly recall the definitions and some results about
hyperbolic-elliptic polynomials, following [2]; we introduce then Gevrey classes
and ultradistributions, as well as the relative wave front sets. For more informations
about this second part we refer to [5], [7], [8], [13], [14].

In the second chapter we consider constant coefficient operators with hyperbolic-
elliptic principal part: at first, by means of a precise study of the zeros of the
polynomials, we find a result (Theorem 2.1.7) which extends Svensson-Fehrman
theorem [12], [2] (see also [10]). Then, through the choice of a suitable integration
path, we construct a fundamental solution in a class of ultradistributions depending
on the polynomial, improving a result by ZAMPIERT [15] (see also MARI [11]). Further-
more we show that this fundamental solution is analytic outside a convex cone and
give outer estimates for the wave front sets of it and of the solutions u of the
equation P(D)u = f, for ultradistributions f (Theorem 2.3.3).

In the third chapter we apply to variable coefficient operators the techniques
before employed, retaining however the hypothesis that the principal part is with
constant coefficients; we obtain then results of propagation of singularities, similar
to those of the previous chapter, by constructing a left parametrix for the operator
P(z, D) (Theorem 3.2.1). On the other hand, by using a right parametrix, we give
a result of semiglobal solvability for the equation P(z, D)u = f, modulo analytic
functions (Theorem 3.3.1), and finally supply some examples, calculating explicitly
the degree of regularity of the solutions.

1. — Preliminaries.

1.1. Hyperbolic-elliptic polynomials.

Lot P(£) = Y a«&* be a polynomial with complex coefficients and P, () = 3 @&
|xj<m |

its prineipal part.
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DrrFrniTION 1.1.1. - A polynomial P will be called hyperbolic-elliptic or a hybrid
with respect to the direction 6 if P,(0) == 0 and there exist positive constants e,
and ¢, such that

(1.1.1) PE—ith) =0 it <t<clf], EcRn.

The class of all such polynomials P will be denoted by he (0).
For homogeneous elements H in he(f), (1.1.1) can be replaced by

(1.1.1) HE—ith)#0 it 0<[t|<clt], &cR-,

for some positive constant ¢, and we shall write H € He (0).

DEriNITION 1.1.2. — Let H be a homogeneous polynomial and £e R». The
localization H of H at & is the first not identically vanishing term in the expansion

H(E + 1) = 1" He(l) + O(F*)  as - 0;

¢ is called the multiplicity of H at &.

We are going now to list the main results proved in [2]; hereafter hyp (8)
(resp. Hyp (0)) denotes the class of all hyperbolic (resp. and homogeneous) polynomials
with respect to the direction 0.

TEEOREM 1.1.3 ([2]). — (i) Pehe () if and only if P,eHe(f) and P is wea-
ker (*) than P,; (ii) he(6) = he(— 6); (iii) if P € he () then P,:c Hyp () for every
e R™N\{0}; (iv) if Pehe(0) then Pehe(y) for every direction % in I'(P,, ) =

= (] I'(Pye, 0), where I'(P,;, 0) is the component of § in the set {£; P,e(l) = 0}.
0#£EeRn
The foregoing statements generalize well known results for hyperbolic polynomials,

in particular (i) is an extension of the corresponding theorem proved by SVENSSON
in [12]. However the open cone I'(P,,, §) defined in (iv) is in general smaller than
the eomponent of {£; P,(§) == 0} containing §. The dual cone

I'(P,, 0)*= {n; #-5 ()>0 for every we I'(P,, )}

- is equal to the convex hull of the wave front surface

U F(meﬁ 0)*

0#&cRe
and, as for hyperbolic operators, we have:
M It B = (3 |[PY&)*)F, P = 8*P, Q weaker than P means (&)< OP(&) for some

0> 0 ([5]).
(2) If &= (wli ...,ﬂn), n = (7715 AAA] 77")’ 97'77 = Z“’ﬂ?i-
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THEOREM 1.1.4 ([2]). — If P ehe() then P(D) has a fundamental solution (in
the space of distributions) which is analytic outside the wave front surface.

As above there is a geometrical difference with the hyperbolic ease; in fact the
boundary of I'(P,, 0)* is not generally contained in the wave front surface.

The last result we state in this section is a converse of Theorem 1.1.4 and really
characterizes hybrid operators.

THEOREM 1.1.5 ([2]). — If P(D) has a fundamental solution (in the space of distri-
butions) which is analytic oufside a proper closed cone I" with vertex at the origin,
then P is hyperbolic-elliptic with respect to every direction I in the open econe

o= {77; 2y >0 for every me[’\{o}},

1.2. Uliradistributions and generalized wave front sets.

DrriNITION 1.2.1. — Let K be a compact get in R”. For 1 <% < oo and A >0
we denote by &":*(K) the space of all functions fe O°(K) satisfying for every
xel?

sup | D*f(x)| < O (o 1)

veK

for some positive constant ¢, and by DY the space §*HMNEK) N CP(K).
g (K) and DY* are Banach spaces under the norm:

; e |D* )|
h]!“f‘;{%}’h(lf)— bgp S;ég hloc](lx ')/t .
For Q2 an open set in R», we put

§9(0) = lim lim MK §(Q) =lim lim §¥PNQ)

KEcQ h—>oo ﬁc!) h/—>0
DH(Q) = lim lim D DO (D) = lim Lim D&,
{ K
iy Am 11
KECR2 h—oo K h—oo

The elements of the preceding spaces are called Gevrey functions of order x» on L.
We shall dencte by =, either {x} or (x) when we deal with the two cases together.

The spaces of ultradistributions of order » on 2, D**'(Q) and & (L), are defined
as the strong dual spaces of D*#(Q) and &*=(2) respectively. &+« (L) may be identified
with {u e D*¥'(Q); suppu is compact}.

&%#(Q) and D**(Q) are complete Montel spaces; moreover &§*(0) is a Schwartz
space, §M(Q) is Fréchet-Schwartz, D™(Q) (resp. D™(L)) is an inductive limit
(strict) of Fréchet-Schwartz spaces, ([7]). To have uniform notations, for C* fune-
tions and usual distributions we put

8{00}(9) = 8(00)(9) - GOO(Q) fl){“}'(g) = ‘;D(‘X’)'(‘Q) — ZD’(.Q)
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but such a writing is formal indeed, since

e(@) = U 89(Q) = U 8(9Q).
#>1 x>1
The Fourier-Laplace transform of e §*<(Q) is the entire analytic funetion
() = u (exp (— iw-{)). An analogous of the Paley-Weiner theorem holds for Gevrey
functions and ultradistributions; for later use we state it here.

THEOREM 1.2.2 ([7], [8]). — Let K be a compact convex set in R» and 1 < » < oco.

(i) An entire funetion ¢ is the Fourier-Laplace transform of a function

@€ DP(Q) (resp. D)), with support in K, if and only if for every L >0 there
is a positive constant O (resp. there are positive constants L and C) such that

16(2)|< C exp (— L|¢|V*+ Hy(Im)), CeCr,

where Hy(n) = SEJ? 27 denotes the supporting function of K.
&

(ii) An entire function U is the Fourier-Laplace transform of an ultradistri-
bution % e D™ (Q) (resp. D(Q)), with support in K, if and only if there exist
positive constants L and C (resp. for every L > 0 there exists a positive constant C)
such that

[U(¢)|<Cexp (LIC|" + He(Im¢)), CeCn.

We can now define the generalized wave front sets for ultradistributions; 7%(f)
will denote T*(2)\{0}.

DEFINITION 1.2.3. — Let £ be an open set in R7, »,>1, fe D™(Q), 2, <x< oo.

(i) We say that f is regular of class §* (resp. &™) in a conic neighborhood
of (1,, &%) € T*(Q2) if there exist a neighborhood U of z,, an open cone I'cC R™\{0}
containing &, a function ¢ € D*)(T) with p(x,) # 0 and for every L > 0 a positive
constant C (resp. there exist positive constants L and O) satisfying

(@ E)|<Cexp (— LIE[Y™), el

We define the wave front set WE,(f) (resp. WF,,(f)) as the complement in 7*(2)
of the collection of all (1, &) € 7*(2) such that f is regular of class §™ (resp. &™)
in a conic neighborhood of (x,, &).

(ii) We say that f is in D™ (resp. D) in a conic neighborhood of
(w0, &) € T#(Q) if there exist a neighborhood U of w,, an open cone I'c R™\ {0}
containing £, a function ¢ € D"N(T) with g(z,) = 0 and positive constants L and C
(resp. for every L > 0 there exists a positive constant () satisfying

(eh (&)< Cexp (LIEM™), £el.
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We define the wave front set WE™(f) (resp. WF™f)) as the complement in 7™*(02)
of the collection of all (x,, &) € T%#(R) such that f is in D®’ (resp. D) in a conic
neighborhood of (z,, £).

(iii) Moreover we say that f is regular of clags C® (resp. is in D’) in a conic
neighborhood of (u,, &) € T*(£2) if there exist a neighborhood U of z, and an open
cone I'c R"™\{0} containing & such that for every ¢ € D*)(U) and for every non
negative integer N there i3 a positive constant C (resp. there are an integer N and
a positive constant O€) satisfying

@DE) <0 + jg)-~, ¢el.

We define the wave front set WF (f) = WF(f) = WE(f) (resp. WEF)(f) =
= WF(f)) as the complement in 7*(Q) of the collection of all (z,, &) € T%(Q)
such that f is regular of class C® (resp. is in D’) in a conic neighborhood of (,, £).

(iv) Finally we define the analytic wave front set of f. Let U,c U, be neigh-
borhoods of #,e R*. Then there exist a sequence {y,}c D*U,) and a positive
congtant ¢ such that for every h > 0 there is a positive number C, satisfying

D7 ()| < Cu(ONVIRINBLY ol < WY

and y =1in U, for N =1,2, ... ‘
The analytic wave front set WF (f) of f is defined as the complement in 7™*(£2)

of the collection of all (1,, £) € T*(R2) such that for some U,, U,, {x,} as above,

there are a conic neighborhood I'c R™\ {0} of & and a positive constant C satisfying

(G DE<CONWY (L + |E)>, ¢&el, N=1,2,...

For the properties of WF,, and WF, we refer to [6] and [14], for WI*~ see [14].

To state the main result we need about propagation of singularities for continuous
linear maps K: &% — D*<, we now briefly recall some definitions; details and
complete statements may be found in [5], [8], [14].

DEFINITION 1.2.4. — Let £, £, be open sets in R~

(i) Let ¢: £2,— O, be a §*»mapping. We denote by ¢*: 854(0,) — &%(Q,)
the pull-back, defined by (¢*u)(x) = u(d(»)).

{ii) Let u: 9, -0, be a real analytic proper mapping. We denote by
e = Y(p*): &% (Q,) — §*'(Q,) the push-forward. 1, may be extended to an operator
from D*<'(2,) to D*<'(8,).

For every continuous linear map K: D*x(Q,) — D*='(2,) there exists a kernel
K(x, y) € D*' (2, x ;) such that for every u e D*»(£,)

{Ku, 9> = {K(x, y), p@)uy)>, @& DLy
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(see [8]). This result leads us to write formally for u e &%« (£,)
(1.2.1) Ku = IT, 0 4*(K(z, 1)® u(y)) , Kue D= ()

where I7,: £, X £, 2, is the projection I[;(x,y)=a and A: 2, X2, 02, X2, X,
is the map A(x, y) = (#, ¥, ¥). Under suitable hypotheses Ku is well defined by
(1.2.1) and we have outer estimates of the wave front sets WF, (Ku) and WE**(Ku):

THEOREM 1.2.53. — Let 1<u,<x< oo, u€ &¥n(Q;), K(x,y)€D*a(Q2yx 2;). Put
WEF,, oK) = {(y,n) € T*(Qu); (@,y; 0, —n) € Wy, (K(x,y)) for some ve 2} and
for Wc T2, x 92,)

W= {((, &), (5, m) € T*R) X T*(); (@ y; &—n)eW}.

It WF,, o (K)N WF,, (u) = ¢, then Ku is well defined by (1.2.1) and we obtain
the following estimates:

WFy (KEu)c () {WF(E)oWF,, (u)U WF;MI(K)oWF*s(u)U
Hy 8K
U WF, (K)o WE, (u)U WF,, (K)osuppi(u) U WE, (K)osupp(u)}
WEF*(Ku)c ) {WF*Q(K)oWF*m(u) U WEF* (K)o WF, (u) U WE,, (K)o WF*s(u)U

PRSI 4

U WF;S(K)oWF*‘(u)u WEF* (K)osuppy(u) U WF;MI(K)osuppﬁ‘*(u)u
U W, (E)osuppi(u)}

where supp,(u) = {(%, 0) € T*(2,); v € supp u; and suppy(d) = {(», 0) € T*(2);
x € sing supp™(¢4)}.

2. -~ Operators with constant coefficients.

In this chapter we shall deal with differential operators P(D) with principal
part P, (D)e He(f) and general lower order terms. Our goal is to construct, for
such an operator P(D), a fundamental solution E with analytic singular support
contained in the wave front surface; so, in view of Theorems 1.1.3 and 1.1.5, we
have to consider the more general spaces than 9’ introduced in section 1.2. Precisely,
refering to Definition 2.1.2 for o(P) and g(£), we shall find a solution E, with the
required property, in DM@ I jg microlocally in D’ at every (z,, &) € T*(Rr)
with ¢(£°) = 0, (see Theorems 2.3.1 and 2.3.2). n—1

During the whole of this chapter, P(£) = P,(£) +~ Y @,(&) denotes a polynomial

£=0

with hyperbolic-elliptic principal part P,, with respecf to the direction 6 and lower
order homogeneous terms @;, degQ,=j, j=0,...,m—1.



310 M. CicoeNANI - A. Coril: Propagation of singularities, eic.

2.1. Polynomial with hyperbolic-elliptic principal part.
Levma 2.1.1. — Let P,cHe(f), &£eR"\{0} and put a(f’) = a = degP, ..
Then there exist a conic neighborhood I of £° and positive constants ¢;, ¢, such that

PE—ish) £ 0 if qf[“ Vi< s <], é&el.

Moreover if g = max
the equation P,(§) =

a(&) denotes the highest multiplicity of the real roots & in
0, £ 0, we have

PE—ish) £ 0 if O [ Vr<cs< ClE], EeRr
for some positive congtants 0; and C,.
Proo¥. — P,,€ He(n) for every 5 in the open cone I'(P,, ), so we have

P&+ (—i0) = P.(£ + Rel — i(0 — Im()) % 0

for sufficiently large real £, say |£|>1/¢,, and small { € C*. Thus from Lemma 11.1.4
in [5] it follows that

(2.1.1) P& — i) < O\Pa(e — i0)] it [§]>1fcs .

On the other hand from » |P@(£)[2+ 0 by homogeneity we obtain
|o]=a

(2.1.2) Olglm-s< P (8)

for & in suitable conic neighborhood I" of £&°. The estimates (2.1.1)-(2.1.2) yield

; IQﬂ(E_@SB)I —al glati—m 1 <o &
(2.1.3) e —iso)| <Ol o<s<altl, fel

and then
P(§ — is0)|> | Po(E — is0) (1 — O 3 s=[&[++") >0

for ¢|E[“" V< s<e,|E| and every & in I'if ¢, is sufficiently large. The second asser-
tion in the lemma may be proved using the first one by an easy covering argument.

DEFINITION 2.1.2. — Let P,, be in He(0), I a cone in R™\{0}, &e R™\{0{. We
define
o(P; I') = o(I') = inf {g>0; there exist positive constant y, and y, such that
P(E— ish) = 0 if eI and ylEle< s < p,l€]}
o(P; &) = (&%) = inf {o(I"); I" conic neighborhood of £}
o(P) = sup{(£); &€ R™\{0}}.
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By Lemma 2.1.1 we have g(f)< (¢ — 1)/a and o(P)<{p— 1)/u. If P ehe(f) then
0(&) = 0 for every &e R™\{0}; conversely, if o(P)= 0, from (iii) in the following
lemma, we obtain P €he(f) by a covering of the unit sphere.

LeMmA 2.1.3. - Let £€ R"™\{0}. Then the following properties hold:
i) o) = p(A8°) if 1>0;
(i) e(l1)<oly) if Inc I, are conic neighborhood of &°;
(iif) there exists a coniec neighborhood I of & such that ¢(&) = o(l});

(iv) there exists a conic neighborhood I, of & such that o(§) <o(£°) for every &
in Iy

(v) e(&% is a rational number;

(vi) if o(&°) > 0, then for every conic neighborhood I" of & there are Puiseux
series s(r) € R, &(r) e I', converging for large positive r, with |&(r)| = r,
s(r) = er?®(1 + o(1)) as # —> oo, ¢> 0, and P(&(r) — is(r)§) = 0;

(vii) when P, e Hyp () wehave g(£°) = §(£°) with 6(£°) defined in [14];
(vii) the set {p(&); £€ R"™\{0}} is a finite set.
Proor. — The assertions (i)-(ii) are trivial. Let K.c R*" be the semi-algebraic
set defined by the system
PE—is0)=0, seR
§[r =12, r>0
| — r&P<e®r?, e>0
Sa<o;z-7,.a—1
i.e. Be={(r,s,&) e R*"; (r,s,&) satisfies (2.1.4)}, where we may assume that
|€°l =1 and @, ¢; the same constants of Lemma 2.1.1.
From Tarski-Seidenberg lemma (3), repeating the same arguments as in the

proofs of Lemma 1.1.2 in [14] and Theorem A.2.5 in [5], we can find a positive
integer 1, ;> 0, &> 0 and analytic functions g,(r,¢), ¢ =1, ...,, in

D = {(7’7 g)e R r >y, "'—1/l<8<80}
such that:

a) — oo == @< @y(r, &) < @u(r, &) < ... < @, (1, €), (r,8)€ D;

(3) See [4], [5]-
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b) @ir, &) = ¢.e)*(1 + 0(1)) as » — oo, with rational g,, where o0, and sgne,(s)
are independent of ¢ for (r,e)eD, i=1,..,;

¢) Fe={(s,r)eR?; (s, 1, E)€ B¢, (r,e)e D} is the union of the curves s=— pi{r, €)
and of the strips bounded by them.

Define g(r, &) = sup {s; (r, 5, £) € B} and I = {£; .£ — |£|&% <&lé[}; in conse-
quence of ¢) there exists 4,€ {0, 1, ..., 7} such that

p(rye) = @;(r,e) in D
with the convention 4,= 0 if F.= ¢. Therefore

max (g;,,0) if i, 0 and ¢;,(¢) >0
o(l") = .
= 0 otherwise

for every conic neighborhood I" of £ contained in I,. This proves (iii) and (v). The
assertion ({iv) easily follows from (iii), while (vi) holds by virtue of Theorem A.2.8
in [5]. If P, e Hyp(0) the last inequality in (2.1.4) follows from the first two equal-
ities of the system, hence we have (vii). Finally, (viil) may be proved in the same
way as Lemma 1.1.3 in [14].

DeriNiTioN 2.1.4. ~ Let I be a cone in R™\ {0}, £&e R"\ {0} and R > 0 a con-
stant such that P,(£— 0)==0 for [£[> R, (see (1.1.1)). For j==0,..,m— 1,
we define

1Qs(& —i0)]
P (€ —i0)]

n(P; &) = ny (&) = inf {n,(I"); I'" conic neighborhood of &%}

n{P; Iy = n,(I") = jnf{k < CJ&f¥ tor every &el| &> R}

nf = max (n;, 0) .

By (2.1.1) and Lemma 10.4.2 in [5] we have n; () = 0 for every &e R\ {0} if and
only if @, is weaker than P,, that is P ehe(f) if and only if nj(f) = 0 for every
e RN\{0} and §j =0, .., m—1.

Lemma 2.1.5. — If £ R™\ {0}, then for every j = 0, ..., m—1 we have
(1) n;(I)<n,ly) it I'yc I', are conic neighborhoods of £°;
(1) n;{%) == n,(A&%) if 1 0;
(iii) there exists a conic neighborhood I3, of & such that %,(&) = n,([});

{iv) there exists a comic neighborhood I, of & such that n,(£)<n,(&) for
every & in [y;
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(v) for every conic neighborhood I" of & there are Puiseux series s,(r)e R,
&) e I, converging for large positive r, with [&/(r)| = 7,
|95(&7(r) —6)] _

&;(r) = crm(éo)(l -+ 0(1)) as 7 — oo and !Pm(f"(V)——w)l = 8,(7);

(vi) j—m + deg P, — deg@Qe, <n;(§)<j— m + deg P, ;
(vil) n;(&) = j— m + deg P,¢ if @,(&) # 0; -
(viii) n;(£) = j— m if P,(&)#0.

PrOOF. — The statements (i)-(ii) are obvious. Let E.c R**" be the semi-algebraic
set defined by the system

8|P, (& — 0)*— [@:;(§ —i0)*=0, seR
&2 = r2, , 7> 0

|§ — ¢§0|2<82/’-2 .

Refering to the arguments and the notations we used in the proof of Lemma 2.1.3,
we can find &> 0 such that

@(r, &) = sup{s; (r, 5, &) € Be} = o(e)re(L + o(1)) as r —> oo
for (r,e)e D, with ¢ and sgne(s) independent of e. Hence if

Iy={&; |§ — B8] <elél} -
we have
0/2 = n;{(L3) = ny(&°)
proving thus (iii). The assertion (iv) is a trivial consequence of (iii) and, as in
Lemma 2.1.3, (v) follows by Theorem A.2.8 in [5]. We have already proved the second
inequality in (vi) by (2.1.3); for what concerns the first one, choose o such that
QE) 5 0, || = degQye ; then we have
5(€) < |9,5) < CIE[EI| P, (& — )| < O£V 3 |49, 6)F P,,(8)]

k=0 :

for every £e€l,. Replacing & by #£° and letting ¢ — oo we get

j— deg @ <ny(8°) + m — deg P, .

Finally, (vii)-(viii) easily follows from (vi).
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Lemma 1.2.4 in [14] holds also in the hyperbolic-elliptic case; the following
remark is the only variant in its laborious proof.

LeEMMA 2.1.8. — Let £&° be in R"™\{0}, | a positive integer and #(s) the Puiseux
series, converging for small s,

n(s) = s (50 1 g sf/lgf) , &eRn

Moreover let 7.(s) be the roots of P,(sn(s) -+ 70) = 0, 7,(s) = a,s**(1 + o(1)) as
s -» 0, a,5 0, with the convention u,= co if 7, =0, k=1, ..., m. Then we have

(2.1.5) P,(n(s) + s%(v — 1)0) = s*(es(r) + 0(1)) as s >0
where b = m -+ > min{u,, 1 — o) and ¢s(7) has no real roots 7 for all 0<o < 1.
k=1

Proor. ~ The only non-trivial part of the lemma concerns the polynomial ¢s(7).
If 7.(s) is not real for real s, then [z.(s)| > ¢|sn(s)], ¢>0 (see (2.3) in [2]), 80
Hr<0<1—g. Sinee

Mg

(1) = Cz— iy [ (v — ¢ — &)

k=1

where {1, ..., my} = {k; i =1— o}, we have ¢s(7) = 0 for real 7, and the lemma is
proved.
We can now state the following result, parallel to Theorem 1.2.5 in [14].

THEOREM 2.1.7. ~ Let P,cHe(f) and ¢ R™\{0}. Then we have

(2.1.6) max (g(&%), o(— &) = max n(€0)/(m —j + nf(§%)).
o<i<m—1
In particular
o(P) =max max nf(§)/(m—j+ nj(é)).
1&f=1 o<i<m—1

PROOF. — Put § = é}if’;,%i_l’”f(fo)/(m” j -+ nf(&) and let Iy be a conic neigh-

borhood of & such that #,(8°) = n;(I}) for every j = 0, ..., m — 1. Then we obtain

(P& — isf)| > [Pule — ish)] (1= 0 3 97" > 0

for every £e + T, if y,J6|°< 8 < y,J€|, with y, and y, suitable positive constants.
Hence max (g(£°), o(— &%) <.

To prove the reverse inequality, we may assume ¢ > 0 and proceed in the same
way as in [14], considering the improvement we have given by the assertion (v) of
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Lemma 2.1.5. Thus for every conic neighborhood I” of & we can find Puiseux series
s()eR, &(t)e 41", converging for small positive #, such that s(t)= ¢|&t)]’(1+ o(1))
as ¢t — 0+, ¢> 0, and P(&(t) — is(t)0) = 0. This proves max (¢(&), o(— &°))>¢ and
then the theorem.

REMARK 2.1.8. — The above theorem is an extension of Fehrman’s result we
reported in Theorem 1.1.3 (i). In fact it follows from (2.1.6) that

an'(f — iﬁ)}( < O[E[(m_j)gl(l”e)

(2.1.7) o(P)<p<1 if and only if MI

for every & with [§|> R, j=0,...,m—1.

2.2. Construction of the fundamental solution

To have simpler notations we shall write ¢ = g(P) and »,= 1/p.

LEMMA 2.2.1. — Let P, be in He(f) and M a compact set in I'(P,,0). Then
there exist positive constants ¢, y, and p, such that

[P — s >ealsim  if pléle<s| <w(l§]l, neM.
Proor. - P, e He(0) implies the existence of a positive constant y, satisfying
(2.2.1) P&~ in)<O|P(E—in)| it |€]>1)p, neM
(see (2.1.1)). Moreover, by Lemma 10.4.2 in [5] and (2.1.7) we obtain
(2.2.2) Q& — in)|<Q;(E— in)< Of|m=OP (£ — i), i |E]>1fy, neM .
Hence, from (2.2.1)-(2.2.2) we can find positive constants ¢, and y, such that

[P — isy)| > |Pofé = isy)| (L — € 3 |s|i=mI0=0]gn=Dei1=0) 5 g, g|o
F)

if p|éle<< |s| < y,l&], for every % in M. The lemma is proved.

DEFINITION 2.2.2. — A map t — ,, from a topological space T to open sets
in R» will be called inner continuous if, for every %, 7T, any compact part of 2,
is contained in Qto when ¢ is clogse enough to t,.

DEFINITION 2.2.3. — A map ¢ -> M,, from a topological space T to compact
sets in R~ will be called outer continuous if, for every t,& T, any compact neigh-
borhood of M ¢, contains M, when # is close enough to 7,.

The family I'(P,, 0), & € R"™\{0}, is inner continuous, ([2], [3]).
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LeMMaA 2.2.4. — Let P, be in. He (), M a compact set in I'(P,., 0), £2e R™\{0}.
Then there exist a conic neighborhood I' of & and positive constants y,, y, and R
such that

PE—ish— i) =0 if plée<s <nlf], O0<i<nlél, fel, [§|>RE, ne M.
ProOOF. ~ We may assume that |[£°] = 1 without loss of generality. Define

f(s, 8, 7, &5 m) = P8+ &+ 50+ ty) -+ me_ij(§°+§+ s0 -+ )

for (s,%, 7, &) e C** and n e M. By « Main Lemma » in [3] and Theorem 2.10 in [2]
we have

(2.2.3) (5,1, 0, & ) 0

if ImsImt>0, Im(s 4 ¢) # 0, & real, £ s, ¢ small enough;
on the other hand, from {2.1.7) we easily obtain

(2.2.4) (5,0, 7, & 1) 7 0

if {Ims| > yy|z|te, & real, & s sufficiently small
for some positive constant yp,. Let us now prove

(2.2.5) {867, &) # 0

if ImsImié>0, Ims|> p|tr|*e, & real, & s, t, v small enough .

Since (0,7, 0, 0; 1) = Pp(&+ty) =" P,¢ () + O(F"™) as ¢ — 0, we can factorize f
in the following way:

r

fsy 8 7, &5 1) = Pus(n) TT (8 — Ails, 7, &5 9)) F(sy 8, 7, &5 )

=1

where F(—;#) and A,(—;#) are analyfic functions for small s, {, 7, & with
£0,0,0,0;7) =1, 4,00,0,0; %) =0, i =1,...,r. From (2.2.3) we get

Imifs, 7, &9y <0 if Ims > 0, & real, § s small enough
for ¢ =1, ..., 7, while (2.2.4) yields

Imai(s, 7, &) 50 if Ims> y|t)>e, & real, & s, 7 sufficiently small
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for ¢ =1, ..., r; hence by continuity
fs,ty 7, &5) £ 0 if Imt>0, Ims > 97|t

under the above conditions on §&, s, f, . With an application of the same argument
to the reverse inequalities Ims << — y,]&|*¢ and Im¢<0, the proof of (2.2.5) may
be completed.

Choose a positive number ¢ small enough and define K = {{ e R*; |{{|=1 and

|£ — &< e} in such a way to have from (2.2.5) that there exists a positive constants V2
satisfying ’

P(r(C—ish—itn)) =0 if s>plt]"e, 5, 4, |o] <y, 10, e M
for every [ in K. If I'={&; é =2{, A> 0, € K}, then
P& — ish — itn) = P(||(/1¢] — is/|&| — stn/|¢])) # 0

if pille<<s < pulé| and 0<E<y,|é|, for every & e " with |£| > 1/y, and every ne M.
This ends the proof.

REMARK 2.2.5. — Let & — M, be an outer continuous map, where M, are compact
sets in I'(P,, 0) satisfying M, = M, wher ¢> 0. Then, by the inner continunity

of the cones I'(P,,, 0), the property (2.2.5) and a finite covering of the unit sphere,
we can prove the existence of positive constants C;, €, and R such that

P(E—ish —itn) =0 if Clfffe<s < Chlt], 0<t<Oylé|, ne M,
for every £e R* with |£| > R, and
P —isn) =0 if Offe<s< O,lf|, neM,.
We construct now a fundamental solution ‘for P(D) assuming, as usual, that

the principal part P, e He(f). From the definition of ¢ = p(P) there exist positive
constants ¢, and ¢, satisfying

P(E—iy(L+ [E])20) £ 0 if o<y < 6lé[re;
thus we can define, with a fixed y > ¢,

(2.2.6) E(P,0,y, C; ) = (275)—"f eXpP((q,'g-C) ac

where A = {{ = &— iy(1 + [£])e6; E€ Rn, |E|> 0> (p)e,) V"~ 9}; when P,.e Hyp (6)
we can choose ¢ = 0.
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THEOREM 2.2.6. — Assume P, He(f). Then (2.2.6) defines an ultradistribution
E e D"(R"), %,=1/p, by the correct interpretation

L0
2.2, . = n Dl R ,
(2.2.7) B, p> = (2 !P“’ i, e DERY)
Modulo entire analytic functions, & is a fundamental solution of P(D) independent
of y and € as long as these consfants satisfy the condition ¢, <y < ¢|&|*-¢ when

I&l>C.

PrOOF. — Putting M = {6} in Lemma 2.2.1 we have |P({)|>C,>0 for every {
in A; moreover, by Theorem 1.2.2, if ¢ € D*}(R") for every L > 0 there is a positve
constant ¢, such that

[p(— O)|<Cpexp (— LIE["™ + AIm(]), (eCr

with some 4 > 0 depending on . Therefore, choosing L sufficiently large, we can
easily prove the convergence of the integral in (2.2.7).

If ;>0 as j — oo in D*NR™), then there exist A > 0 and for every L >0
positive constants ¢} — 0 as j — oo, satisfying

I$(— O < €% exp (— LiE[ 4+ AfImzl), e C

hence <&, ¢,> — 0, which proves E e D" (R").
Obviously P(D)E = 6 + h where ¢ is the Dirac measure and kb the entire fune-
tion

W) = — @ay»[exp (- 0)dL, o= {£ = —ip(L + [E])e6; <0}

4,

To show that E(y, 0)— E(y', (") is an entire analytic function first note that
if ¢'< ¢, the ultradistribution defined by

By, 0)— By, 0), 9> = are[ Fpac, pepem,

A1

where A; = {{ = &— iy(1 - |£])e0; O'< || < C}, has this property; then it suf-
fices to prove that E(y, 0) — H(y', C) has no analytic singularities when C is chosen
as large as the condition ¢,<< sy + (1 — s)y’ < 6,|€[*¢ is satisfied for all 0<s<1
and & with |&|>C. Define {,= &—i(sy + (1 — 8)y') (1 4 [£])20, [£]>C, 0<s<1;
by Stokes’ theorem we have

N
g2
=
=
|
S
‘Q\
3
S
N
I
W
g
|
3
kﬁ
;Q\;
g
Sy
oy
-
m
=4
g
®

which defines an entire function. The proof is complete.
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REMARK 2.2.7. — Since the principal part P, is in He (6), it is locally hyperbolic,
(see [2], [3]). By choosing then, as it is always possible, an entire function f such
that P(D)f = h, B — f becomes a fundamental solution for P(D).

In [15] is proved the existence of a fundamental solution for P(D) in the space
D, where o= p/(p— 1) with p equal to the number of the real roots ¢ of
P,.(£ -+ 1), when & is not parallel to 6. We improve then this result, since ¢ is gen-
erally smaller than u/(u— 1)<, with g the same constant of Lemma 2.1.1.

In [11] is considered a class of operators P(D) satisfying

PE—is0) =0 if Afjf<s < Bl|*, 0 in a open cone I

where 8 €[0,1[, « €13, 1[; for an operator P(D) in this class is proved the existence
of a fundamental solution H e DY’ with E regular of class §%* outside the dual
cone I'*, Theorems 2.2.6 and 2.3.1 show that this result holds for « = 1 too;
furthermore our techniques may be adapted to the general case.

2.3. Propagation of singulariiies.

THEOREM 2.3.1. — Let (u, &) € T*(R") with x,¢ I'(P,z,0)*. Then we have
(20, &°) ¢ WEF 4(B), that is

WEAE)c (Pne, 0)*x{&};

0%
in. particular sing supp.(#) is contained in the wave front surface.

ProoF. — From the definition of the dual cone we ean find e I'(P,,., 0) and
a neighborhood U of a, such that x-7°<< 0 for every v € U. Let K be a compach
set in U and {y,} a sequence in D*(U) satisfying

(2.3.1) | D348 g ()| < OL(CN) B, |a|<N =1,2, ..

for every k>0, with ¢,> 0 depending on &, supp y,c K. By the property (2.3.1),
for every B > 0 there is Cz> 0 to get

(2.3.2)  |£,0DI<Ca(ON)¥(1 + |Z])=¥ exp (— BJ;["* + Hx(Im()), C(eCn.
Write yy <() = exp (— iw-£) z,.(»), and consider

(n E)(E) = <B(@), gel0)> = (20) f Mf{)«@dc, L= w—iy(1 + w0
4

We gplit the above integral into I°-+ I®, where in I® the integration is performed
in {&=w—iyp(L + |w|)20; |w— & < ¢lf|, e > 0} and in I” consequently. Then we
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have, from (2.3.2),

27| < Co(ON (L + efél) = [exp [~ BIE — w]™ + Ay(1 + fw])e] dw <

< O5(ONP¥(1 + [])-

Where 4 >0 depends on K and B is taken larger than Ay(g/2) ",
““i% Let us now estimate 7°. Choose a conic neighborhood I” of £ for which Lemma 2.2.4
holds, and let Iic I" to satisfy

wel if fel} and |jw— & <elf.
Then we have, by Tarsky-Seidenberg lemma and Lemma 2.2.4,
P(w— iy(1 + [w])e6 — itholn)|> C(1 + [w))*,  O<t<ty

for some positive constants ¢ and t,, @ € Q, if £ € I is large enough and |w — &| < £|&].
Thus, by Stokes’ theorem, we can write I°= I°(B) + I°(%,), where the integration.
is performed in {{,= w— (1 + |w|)e0 — dtjwly®; |w— & = ¢|£|, 0<i<t} and in
{Co,=w—iy(1 4 [w])20 — it Jwln®; |w— &|<elé]} respectively. We can estimate
I%(B) in the same way as I®. For what concerns I°(%,) ,note that there exists a positive
constant ¢ such that

[Tt < Cal O (1 + [£])~ [exp [ — Blo— £+ Ap(1 + fwl)e— etphol] (1 + o)

<Ox(ONYW(1+ |£l)-¥, £ely, £ sufficiently large.
The proof si complete.

THEOREM 2.3.2. — Let (2% £) be in 7™*(Re). Then (i, &) ¢ WHEN(E), in-
tending (u,, &%) ¢ WFUE) if o(&) = 0.

PrROOF. — Let ¢ be in D™ with ¢(x,) 7 0 and choose a conie neighborhood [
of & satisfying o(f") = 0(£%). Refering to the arguments and the notations of the
preceding proof, we have only to give a new estimate of I°. First assume p(&%) > 0
and put {,=w— @'[y(l + |w|)e + ty((l + fw])e®— (1 + [w])e)] 6 for 0<i<1. Lem-
ma 2.2.1, the definition of g(&°) and Tarsky-Seidenberg lemma imply

PL)=0(1 + w))*  if eIy, |w— & <elf], & large enough

for all 0<t<l and some C >0, ac . Again, by Stokes’ theorem, we can write
I'= I%B) + I°(1) where I*(B) may be estimated in the same way as I*, while for
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every L > 0 there is a positive constant C, to get

[I°(1)| < Oy, f exp[— L|§ — w]'™ - Ay(1 4 |} dow
|6—w} <]

<Cexp (0[g[*®7), £ely, & sufficiently large
if L is suitably chosen. Finally, if o(£%) = 0, we easily obtain
(pE)(@)|<C + [§)", £elt

for some constants C > 0 and M, ending thus the proof.

We are going now to give outer estimates for the wave front sets of # % f. When
P, e Hyp (0) we may prove, by Lemma 2.2.1, that supp B(y, 0) is contained in the
closed cone I'(P,, 0)*; of course this property does not hold for general P, in He (),
therefore we can only consider convolution with ultradistributions f which have
compact support.

TuEOREM 2.3.3. — Let 1 < x,<sy= 1/o(P), %, <x<oo; then we have

WF(n)(E * f) C {("I/‘ + v, &e T*(R")’ = F(me, 0)*’ (y, £ e WF(l/Q(g))(f)
it 1/o(€)<#, (y, &) € WE(f) if 1/o(€) > x}, fe &™),

WF{;;}(E xflc{w+y, & e T*(R"L el (P, 0)% (y, &€ WF(l/g(E))(f)
it 1/o(&)<w, (y, &) € WF () if 1/o(8) >x}, fe &P

WEE * f) c {(@ + v, &) € T*R); @€ I'(Pos, 0%, (9, £) € WF 11000(f)
it 1/0(£) <%, (y,£) € WEN(f) if 1jp(&)>x}, fe&*;

WEE fic{lz+9,8& e T*(Rn)7 2 el (P, 0)% (y, &) e WF(l/g(g‘))(.f)
if 7 <1/o(E)<x, (y, &) € WEY(f) if 1/p(€) > x,
(y’ E) € WF{I/Q(E)} f) if 1/@ = }51} , fE 8{”1}' .

ProOF. — The result follows from a simple appheafmon of Theorems 1.2.5, 2.3.1,
2.3.2.

OOROLLARY 2.3.4. — Under the hypotheses of Theorem 2.3.3 we have:

(i) assume that the fiber WF, (f)|.= ¢ for x<<1/p(é) and that WF(ug(s))(f)ls: ¢
for #>1/p(¢), £ € R"™\{0}; then WF, (B f) = ¢, that is, E % f € &;

(ii) assume that WE™(f)le=¢ (resp. WF™(f)ls= @) for x<1/o(£) (resp.
#<1[0(8)) and that WF ;. (f ]§_¢1f%>1/g(§) (resp. x>1/p(£)); than WF ) (B % f) = ¢
(resp. WE™(E % f) = ¢), that is, B* fe D™ (resp. B fe D).

Here WF'(Bx [)=¢ it WF)f)le=¢ for o(¢) =0 and WEF e (H)ls= ¢ for
o(§) > 0, & e R™N\{0}.
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3. — Operators with constant coefficient principal part.

3.1. COonstruction of a parametriz.

In this section we shall construct a left parametrix for differential operators
Pz, D) = P,(D) -+ Q(z, D), where P,, is in He(f)) and the coefficients of the lower
order part @ are in §*J. We begin by introducing some notations which extend in
an obvicug way those of the foregoing chapter.

Let £&e R™\{0}; we define

n,{8%) = sup wf (P, -); &)

zeRn

and remark, although this will not be used in the following, that employing Tarsky-

Seidenberg lemma one may prove that such a supremum is really attained. Further-
more set

n;(P) = max n,(§)

[él=1
#(§%) = min (m—j 4 n;(8°))/ns(&°)
o<i<m—1
%, = min %(§)
[&l=1

with 2(8) = 4 o0 (&) =07j=10,..,m—1.

If this is the case, i.e. »(f) = + oo for every & in R\ {0}, then the operator
Pz, D) is hyperbolic-elliptic (with respect to the direction ) for every fixed x;
moreover, it is of constant strength, [5].

We denote, as in the section 2.1, with ¢{£%) the degree of the localization P, .,
and u = max a(&); then from (2.1.3) it follows that »(&°) depends only on the terms
of degree strictly greater than m — a(£°) and, in view of the fact that s, will give
the class of ultradigtributions of the parametrix, we can say that such a class is stable
under perturbations of operators of degree less or equal than m — w. Again, from
(2.1.3) and the definition of »(&°), it follows

w(E)>a(&))(a(E) —1)  wn>p/lu—1);
moreover if one knows ! = deg@ these estimates may be improved:

(&) > a@) /() + 1—m) > pllp +1—m)

{see e.g. [10], Theorem 19).
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We are going now to write the lower order part Q(z, D) in such a way to make
easier the use of Fourier transform. For this, set

V.= {p{&) € C[&]; p(é) is homogeneous of degree j and

J

w/ (P4 p; 1) <ny(n) for every 5 in R™\{0}} .

V, is a finite dimensional vector space; remark that if %, = -4 co then the hypothesis
(P + p; 7)<ni(n), for every 5 in R"™\{0}, is equivalent to the request p weaker
than P,,. Clearly Q,(x, -) €V, for every «. Let {p’} be a base of the finite dimen-
sional vector space V(P) = V,+ ...+ V,._i; we may suppose it as set up by homo-
geneous elements.

Let #, be a number > 1 and suppose the coefficients of @(z, D) are in §*!; then

we have:

LemmA 3.1.1. — Under the preceding hypothesis and notations me may write

Qa, &) = J (@) p'(€) g€ 8%,

Moreover, if the coefficients of @(», D) have compact supports, the same is true
for {q;}.

In the following we shall always assume
T<omy<uy if #y<< + o0 or 1 <<oy<<4 oo if 35= -+ oo

and work out the construction of the parametrix for the case {g;} ¢ D™’: in the
next section the hypothesis of compactness of the supports will be easily removed.

We denote H,= {z; x0>—¢}, e>0. Let ve 8™, suppoc H,, ¢ € D", and
define

B, 9> = 20 f= DO 1=0,1,3,..
A
where
Bo(0)(0) = = #(2)
A TS

B0 = 3 1tem g [arang ek -
e " "

Bl B = YR — = 1Y)
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fed, 1=1,2,.., with

A= {f=§E—iy(L + [£])=0; e Ry [E]> Cop(1 + [E))'} y>1,

Ay (8) = {(517 e 0N L= ia(l + E’?jl)wﬁH’ £ — 7]1_ e >
>0y + E)™ o 3 0+ )], =11
h=1

where £ = & — iy(1 + (&), a>0, I =1, 2, ..., denoting by C, a constant such
that P,.(&— ith) = 0 if 0 < t< CF|E]-
The iteration of the functionals {#;} will yield another sequence {R;} such that

(3.1.1) B(P,u) =— B,_(Qu) + Bi(u) 1

Il
=
o

defined by

~

(Biv)y @ = {2m)” fRz(U)(C)tﬁ(-— 0di =12, ..,
a4

where
—— B 1 . p}' -
B)(l)= 2 (—-i)m(m)-ln——P & f Cl...dé’lqmsl)fl;—(',—-é‘l)...
.01 m A?(C) m
e GNP — T — o — Yo — L —...— Y

Af(f) = {(Cl, s £ (51, ., e /1,_1@), fl= 771‘—|- io&(l + Inll)unlle ,
i o <Gy P 0 S (1 )]}

h=1

We shall now prove that

j

Pt =] <Oy

/\
[
.
o
Sy

B

I

with p > 1 and for some positive constants 4, o, where Ced, (& ...,0% edl)
aznd 1 < x1< ;ﬂo< ";- 0.
In fact

[ k »—m
T2+ ) a 3 (1 )T

=1

'{[ﬂl -+ 16D+ aé (L + )] "
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denoting » = degp’. Since n:(P) — [m—v -4 n':(P)]no“gO, we get

o< Oy~ it g e < [E]

Furthermore

<Ca—-1y—o’

. k
J;g<0{7_6 [av——m-}-a—m(P) E (1 [ Inh!)llxl]
h=1 ) :
it |+ o+ > [

y—m+ c+(u1—1)m(P)}

putting o= _min A (m—j— n(P)ey—1)), 4= min (m—»—o+ n,(P)); since
%o, (P) — m + v — n,(P)<0 and »x, <<%, it follows that ¢ and A are > 0.
We can now state the main result of this section.

00 N
THEOREM 3.1.2. — Let 1 <2, < wy< -+ o0, {g;} ¢ D¥*. Then the series > F,(v),

00 A P ' =0

> Ry(v) converge in A to E(v), R(v)respectively defining then two ultradistributions

I=1
E(v), E(v) by
CB(v), gy = (Zﬂ)“"f¢(~ OB AL, (B(v), 9> = (2ﬂ)‘"f¢(— §) R(v)(£)al
4

a4

for v e &Y, suppve H,, p e DI,
Furthermore we have

(3.1.3) E(Pv) = v + h(v) -+ R(v)
where 2{v)(x) = — (2n)™" f exp (ix-{)¢(C)d{ is an entire function,
Al‘l
A= {0 =E—iy(1 + [£))""0; &Ry [E|<Cop(1 4 |E])"} .

More precisely we get the following estimates (4), for v € 8", supp vc H,:

(3.1.4) [E/(;)(C)K |PO(L'C)16XP [L]&|Ys 4 ep(1 + |E])W=]  for every L >0
(3.1.5) [R/(;)(C)K 'P?C)iexp [— MgV + eyl + |&])Y*%] for some M >0

which hold true for [ € /A and y greater than some constant y, depending on P and a.
The rest R is regularizing, i.e. R(v) e §",

(4) o= 0 if 2y = + oo.
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Proor. — We begin with proving (3.1.4). By Theorem 1.2.2 there exist positive
constants C;, M, B and for every L & constant C, such that

(3.1.6) (0| < O exp [~ M| 4 BlIm{[]
(3.1.7) 18(0)] < Cx exp [LIZ[V* -+ Hx(Im?)]
for every { in C», suppvc K. From (3.1.2), for { c A, we get

——

[By0)(D)] <001 Ca*y™)' Oy @}denl--efdn‘exp [-le |7 [t
. E I j=1 )
0B 3 (1 )] exp [ Ll — oo i o1 + g+
1
a 3 (1 + )]
i=1

Choosing now I < M/4 and fixing once for all 0 <a < M/4(B - ¢),

——

B (0)(O) <00, Oy~e)! Oy exp [Li&[Y 4 ep(L -+ [€] )]

1
1Pu(0)]

1=1,2,..,lc, and this permit us to get the convergence of the series for y large
enough. Then F(v) satisfies the following estimate, for every positive L:

E/\

I\ IPS{C exp [L!f:‘l/nl 4- 87( + 1§|)1/30] CE/]. .

The convergence of the integral defining <E(v), ¢)> is therefore obvious, since
if peDi

[KB(v), p>[< Oy CLfeXP [— Dufe[" + Dyy(L + [N + DI + ep(1 -+ [§)"]ag

a4

for every L and constants C,, D,, D, depending on ¢; it is then sufficient to take
L < D,. The continuity of the functional F{») may be seen as in Theorem 2.2.6.

The proof of (3.1.5) is rather similar to that of (3.1.4); in fact we have, with
the same constants above used,

5 L —gyi-1 1 1 L,
F0)(8)] < 00 Cy—o) CLIPm(C)lde i

A8@)
! !
exp[— 3 3 i aB 3 (1 ]
i=1 i=
1

- eXp [Lfé'—?’jl— R e s(y(l + ]5')1/%u+ a 21(1 -+ Iﬁjl)l/xl)] lpi({—Ct—...— &

§=

for e A.
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From the definition of the domain of integration it results
. } ! TR T
s e O o+ ) @ 3 (0 )] = S b
j= je=

and from here we infer, with easy calculations,

——

Rz(@)(C)l <0(0; CV—G)Z CL

iP:kr:>|‘“’XP [— gt ep(1 + [E])0=]

t e, for a new positive constant. M, where we have chosen L sufficiently small.
Therefore, for every y large enough to assure the convergence of the series, we
get (3.1.5).

The functional R(») is well-defined and continuous arguing as above, and then
results an ultradistribution of class D

To prove the regularity of the rest B, let ¢ be in D™, o in R*; so

IWM@KG - exp [ MIE— AJf — oVt By(1 + J£] ] dt

1
|P
for some positive constants M, A, B. This gives, putting for instance D = min (M, 4)

A
|pE(v)(0)| < C exp [— Dig|*=/2]

and so we have WF, ,(R(v)) = ¢.
Since the equality (3.1.3) is an obvious consequence of (3.1.1), the theorem is
completely proved.

REMARK 3.1.3. — When », <%, = - oo the proof of Theorem 3.1.3 could be
made simpler, since then it is not necessary to consider complex variables [/,
j=1,..,1: actually one can take ¢ = 0 and use the estimate

e iyy)

3.1.
(3.1.8) 5

<Oy 1< y< 074

instead of (3.1.2). This follows from what above observed about the spaces V;
if %= -4 co.

The cage x;, = #, = - oo is not treated in the theorem; if this happens we get
the following estimates of polynomial kind:

(3.1.4)  |E(@)(E—ivd)|< gy L+ Il for some N0

|Po(&
r o7 A ; 0
(3.1.5) |R(v)(& —iyh)| < P — i) (1 + &)Y for every N >0

with & real sufficiently large.
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Sinee (3.1.4)" is quite clear we trace only a sketeh of the proof of (3.1.5), which
ig slightly different from the preceding one. In the case we are, the elements of the
sequence defining the rest take the form

_— . - PR 1 . 9 ,
Ry{w)(& —1p0) = il,%,a'z (— L N2y~ TPoE—i70)] f a&trg; (&) % (§ —E1—dnf) ...
[§—&|>Cy
AE G (ENpI(E — Bl L — E— 90 D(E — E1— ... — £ —1y0)

[E—8—.  —&<Coy

for v &, &> JQV We split the integral into the sum I, + I,, where in I; sup-
pose |&] < ¢|é|/(I—1), for every j =1, ...,1— 1, and I, consequently. From Paley-
Wiener theorem and the fact that in Iz there exists at least an A, 1<h<l— 1,
such that |&*| > &l£|/(I—1) we obtain

1

| { —1}1
L < Ox{0y™) BaE—i70)] (5-—¢y0){( -+ &)
for || > C,y. A similar estimate holds for I;, since in this case [&']> (1/2 — &)|¢]
for |£| large enough. So we have (3.1.5)" summing up with respect to I.

Finally the regularity of the rest, in this case of elass C®, is clearly a conse-
quence of (3.1.5)".

We want now to show that the functional E has a kernel E(z, y)e DV (R» x H.,), [8].

THEOREM 3.1.4. — Let 1 <oy <wy<<+ oo or 1 <oty <<+ oo if %= -4 oo. Then B
is a continuous functional from D™}(H.) to D™V(R) with range contained in
8{”‘}(1{”).

ProoOF. ~ Consider for the moment the case 1 < <xy<< -+ oco and take

ve D¥N(H,), suppv c K, with K compact subset of H.; then there exist positive
constants L, ¢ so that

(3.1.9) 8(0)|< € exp[— LIt + Ho(Im?)] teCr,

If we take ¢ in /A then

[B(0)(8)] < C(C; Caty=2) ledi/ d77

I
et § i on § 04 by

oxp [ Ll g o e (30 (8D 0 3 (0 )|
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since |£— gt— ...— pi|t> gV — [t — ... [*[**, choosing eventually a smaller I,
in (3.1.9) to get L < M[4, we have

1
|Pu(0)]

EL(0)(£)] < O(C, Catyo)? exp [— L)t + ep(1 + |&| W]

for { in A, and, if y is sufficiently large,

——

C
( _v _ J, 1]
BN < gy o0 [ L+ eyt + 1))

By following the lines of the proof of Theorem 3.1.2 when was showed the regularity
of the rest, one immediately sees that E(v) e §*}(R") if v € D"(H.,).

The continuity is obtained in quite a standard way: let {v;} c D"(H.) be a
sequence converging to 0 in the topology of this space; then there exist a constant I,
a sequence {C;}, C;— 0, a compact subset K of H, such that

Iﬁa(C)l< 0, exp [_ LICIU%!“*‘ HK(ImC)] feC, §=1,2,..

Just as above one can easily obtain

a 1 ! #y o =
|E(Uf)(5)]<001mexl) [ L'J§[a 4 eyl + |E[)M=]  Eed

for a suitable constant L. If now ¢ e D™ we get

[<E(Q)j), (}7>!<005JGXP [_ L/!é_-lllm_l_ ey(l + Igl)llxo__ Dléll/n,+ Fy(l + lEI)l/za]dé—
A

for positive constants D and F; then <{H(v,), p> — 0.
We leave to the reader the case s, <Cx = - oo; finally, if 7, = 2%, = - oo, in

P
the formula defining E,(v) we perform the integration at first where |n/|<e|€|/l,
for every j=1,...,1, 80 [§— n'— ...— 9}|>(1 — ¢)|§|, and then in the remaining

region, where there will be an h, 1<h<l, such that |n*| > ¢|&|/l holds true; Paley-
Wiener theorem and (3.1.8) allow us to reach the thesis. Also in this case continuity
is as easy to prove as in the former ones.

3.2. Propagation of singularities.

The aim of this section is to extend the results on propagation of singularities
achieved in the previous chapter to operators with wvariable coefficients. The
methods of proof will be then similar, although we need a more precise study for
the zeros of the principal part of the polynomial (see Lemma 3.2.4) and it will be
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requested a careful analysis of the sequence defining the parametrix we set up.
The following theorem will be the main result:

THEOREM 3.2.1. — Let P(z, D) = P,(D) + Q(z, D), P, in He(0), Q(z, D) with
coefficients {g,} of class £, Let further u be a solution of the equation Pz, DYu=f,
with » and f in D™ with support contained in H, (°); 1<u<w, if xy<<+ oo,
1<w; <+ o0, if #;= -+ oo Then we have

WP, (u)c{(x+y & e T*Rm); we I'(P me 6) y (1, 8) € WE ()
#(E)<x, or (y, &) € WEF4(f) if 2(&) > x} .

W) c {@ £) e T*(Rr); we I'(P,e, 0)% (4, &) € WE()(f)
it %(§)<x, or (y, &) € WF™(f) if (&) > x} .

It will be not restrictive to establish this theorem under the hypotheses of compact-

ness of the supports of the coefficients {g;} and of the solution # (and then of f).
In fact let @ e D™}, @ =1 in a neighborhood of suppwu; then

[Pn(D) + @Q(», D)]u = f

and now the coefficients have compact supports. For what concerns the solution,
let us suppose u € DY and

P, D)u =1, suppucH
where fe D™ and the coefficients ¢;e &%), Set
Ty= [ — (P, 0¥ N H, h=1,2,..

and let {p,}c D™ be a family of functions identically equal to one in a neighbor-
hood of T]L, supp (phﬂ HDC Th+1- Now {¢h u} C 8{"1}1 and.

P, DYpwu) = @uf + o h=1,2,..

with f,e 8™, supp frc L5 \T. Cutting the coefficients as above we are then under
the hypotheses to apply Theorem 3.2.1 in the case when all supports are compact,
from which, sefting

W= {(&, ) e T*R"); z€ Ty}

¢®) Hy= {weRr; ©-0>0}
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we deduce

WFu) = U (W, WE,(gu))

i

c{@ + y, &) e T*(R); (@, &) € I'(Pos, 0)*, (y, &) € WE () it
w(E)<ny (y, &) € WF,(f) if 2(E) > «} .

From what precedes we can remark that, as regards the propagation of singularities
of the solution u, it is sufficient to assume sing su]pp{,,l}ucltf0 instead of suppucH,.
The proof of the theorem, where we shall consider H. in place of H,, will be

achieved by studying the wave front set of the kernel H(z, y); we shall found that
such a kernel is in D (R x H,),

sing suppy,; E(@, y) ¢ {(, y) e R" X He; @ — y € I'(Py, 0)*}
(see Theorem 3.2.5). This assumed, the restriction to the case in which only the

supports of the coefficients ¢, are compact may be seen also in the following way.
Let g€ §")(R™), y=1 in a neighborhood of sing supp,, ,H(z, y),

Supp x C sing suppy,; Bz, y) + {|(=, y)|<r},
7 small, and split
E=yE+(1—-yE.

The second term yields a regularizing operator, while for the first the projection I1f;:

supp xE(x, y) — R», II,(», y) = «, is proper. This permits to extend the functional
associated to yE(z,y) to the space D"V (H,).

As already said, in the proof of Theorem 3.2.1 will be needed some informations
on the zerog of the principal part P,, which we are going now to establish.

LEMMA 3.2.2. — Let £&e R™\{0}, 7°€ I'(P,,«, 0). Then there exist positive con-
stants d, ¢, K and a conic neighborhood I" of £* such that

(3.2.1) P, (E— 10— dt|Ely) 4 0
ifo<i<ty, m— <6, §T, |§|>R.

Proor. — Assume |[£°|=1; since the polynomial P, (& -- &) defines, as a funec-
tion of &, a locally hyperbolic function, the « Main Lemma » in [3] yields

(3.2.2) P (8 + & — ish— ity) # 0
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for every # in a fixed compact subset M of I'(P,.,0), &€ R, |&], t, s all bounded
from above by a eonstant %, 10, s > 0. By homogeneity then there exists a conic
neighborhood I' of & such that

P, (& — i) — it|Eln) = 0
it £l El=1t,, 0<I<ty, n€ M, which proves (3.2.1).

LeMMA 3.2.3. — Let £2e¢ R™\{0}, n°c I'(P,,z, 0). Then there exists positive con-
stants %, R and a conie neighborhood I' of & so that
(3.2.3) P, (& — i0 — it|€|n°) < O|P,(& — i0 — it|Ey)].
(3.2.4) P (&tlEl — i0Jt|E] — in®) < O|P..(E/t1E] — 0 /t]E] — i),
if ¢|&] > 0, for some constant C. Here and in the following we denote with the same
letters constants or neighborheods maybe different.

PROOF. — Let ¢ be a positive number such that 0 + en°e L' (P, 0). If tj§| <o
then 6 4 t|é|y° varies in a compact part of I'(P,, 0); and since P, is hyperbolic-
elliptic with respect to every direction of such a cone we get

P,(& -+ Rez— i(6 -+ t|épp°~ Tmz)) # 0

for ze € sufficiently small, & in R~ large enough. This proves (3.2.3) when
ti¢|<p, in view of Lemma 11.1.4 in [5].

If now I, #,, d have the same meaning as in Lemma 3.2.2, we choose a cone
I'icl'in a way that &+ |fwel if £el}, 0<|v|<t d. Then (3.2.1) gives

Py (& + 1| Res — i(0 + (tlehe— Imz))) 0
if fell, E|>R/(1—%40), 0<i<t(l—%0). Again by Lemma 11.1.4 in [5] we have

PE(E — itfelye— i8) | < [O[(1E18)]1*|Pu{& — 0 — itléla)]

}

under the above conditions and ¢}&| > 0, concluding the proof of (3.2.3). Multiplying
this last inequality by (¢|¢)!*~™ and summing up with respect to o we reach (3.2.4).

With the help of the results just obtained one can deduce the following lemma,
the proof of which, quite analogous to that of Lemma 2.4.2 in [14], is skipped away.

LeEMMA 3.2.4. — Let £e R0}, p°€ I'(P,z, 0), v = degpi. Then there exist
pogitive constants ¢, B, ¢ and a conic neighborhood I" of £ such that

Bl (1 ey —iiepe)| <0y

for el |&] > Ry(1 + &)™, =1, 0<i<t.
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THEOREM 3.2.5. - W (B2, ) c {(®,y; &~ & e T*R"); o — y € I'(P,e, 0)*).

Proor. — We shall achieve the proof of this theorem under the hypothesis

1 < < #,<< 4+ oo; the remaining cases may be treated with variants analogous
to those pointed out in the preceding seetion.

We begin by proving that if (a,, yo; &, ) € T*(R®) and &% — nY, then
(%0, Y03 &, 1") ¢ WEF,,,(B(@,y)). In fact let I' be a conic neighborhood of (&, 5?)
in R*\{0} such that

&+ gl>e(lEl+ @) Enel

for some positive constant ¢. Let peD™), ye DMNH,), p(x,) # 0, wly,) 0 and,
(&, 5) e I'; from (3.1.4) and Theorem 1.2.2 we get then
—
lpyB(w, y)(& )<
<0 [lexp [ Dlg — w4+ (3 -+l — Fl + g+ ep(1 + ol ]z

4

with { = w — ip(1 + |w])""* 0, for suitable positive constants C, D, D,, F. We may
agsume D == F, and written D = A 4 B we obtain

D& — wft+ i + 1] > A[E + 1+ BLIE— w0+ o + 7 ];

then

——
I(PQPE(% Y){&, 77)]<
<0 exp [(B — ACH(JE+ 1] exp [~ 2Blofe 4 (Dr-+ (1 + wl] .
A

Choosing B < .DC,/(1 4+ C;) we conclude this first part of the proof: the fibers in
the wave front set are similar to those of the kernel of a convolution operator.

The statement on the base of the wave front set is essentially inspired to [1],
as we have already emphasized. Let & R*\{0}, (%),%,) € R*XH. sueh that
@o— Yo I'(P,00, 0)*; then there will exist #°c I"(P,z0, 0)§and open neighborheoods U,
V in R* of w,, y, respectively (V ¢ H:) such that

(3.2.5) (@—y)n"<0 xeU, yeV.

Let again @, » be two functions of elass D, but with supports contained in U, V
respectively, @(x,) 7 0, p(%) # 0. Put y,(y) = exp[— iy -nlp(y); then

T ——~
Bz, y) (& n) = (27t)‘”f¢(§ — ) By, (0)dl = 1.

A
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Split now I = 1,4 I,, where in I; we perform the integration in the region
{C=w—ip(l + [w))"0ed; lw— & > 08¢}, 6> 0 small enough, and in I, con-
sequently. An estimate of I, is achieved at once: in fact there will exist positive
constants D = 4 + B, D, depending on ¢ such that

i< Cexp[— 4 6]53)”"‘ r Bltfl”"‘]_’exp[ Blw|" + (D &)(1 + w])V*] dw

A

with (£, %) in a suitable conic neighborhood I' of (£, — &%) such that |(&, #)|<¢'|¢]
it (§,9)el, ¢ > 0. Choosing now B < A5 we get

IL|< Cexp[— Byj¢['"].

As to I,, remark that if |£] is sufficiently large the region of integration becomes
{w— dp(1 + |w])0; |w— & < 8}€|} c 4; split again I,= I? + I°, where explicitly

~(1+Dn PE—0)
=335 f D

|w—&| <6}é|
< [ b= - gie) ¢
AT "
X B 8B A P 8 = (2 f §(& — O E=p,(0) de

fo—¢g|<8l§]

with

¢ [
AP Q) = (€ Y € AE); &= wt da(l 4 w0, 3 (1 o ) (311 )
l==1,2,.., and

1= (2m) P& — £) Eoyp,(0) dc
[w— & <6]&]

consequently. If M is the constant in (3.1.6) then
12 (D] <O exp [ M(OIE| it + ep(L + o] }]
which yields, for counstants D, D, depending on ¢
|12 < 0 oxp[(— M54 + D)[g[] [exp[— Dpw[+ (Dy + e)p(L + hw)**] dov;

if we suppose now D < M**/4, we can estimate Iy as I,.
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We pass then to I3. If |&]> € = O(y, §), the region of integration of the set
of variables {%, ..., ! in the I-th term of the series defining E@n(é ) is actually given

[2
only by the inequality > (1 + |w'|)"* < (5|¢])¥™, since
=1

p (L4 Wi+ a3 (L4 B <p(L + 0+ 8)E)™+ a(olé) <
h=1
<01 — 20)[¢] < 05

i
w— 3> wh.

h=1

Our aim is now to define E@n on the manifold

{Co=w—ip(1 + [w|)"™0 — itholy’; 0<t<ty, |w— &< SlE]};
to control the quotients p//P,, we shall make use of Lemma 3.2.4. Therefore let I”
be as in such lemma, [ic Isc I’ conic neighborhoods of & with the following

properties:

(3.2.6) if |v|< o), tely, then &4 velly;
(3.2.7) if v|<élwl/1—96), wel, then w-+vel.

This settled, it is easy to see that

(3.2.8)

p’ 1 o
E(Ct_z — oo F)

%(w_é wh—i [y {1+ oo aé (t + [whl)l”’l]ﬁ—it[w]no)

<Oyt

for 0<t<ty, £€ T, [£] > Oy(y, &), {7 in the above specified region, € = C(&°, 5");
for simplicity of notations in the following we shall write ¢, instead of t;. From
(3.2.1) and (3.2.8) we deduce

(3.2.9)  |§(E— L) By, (L)< C exp[— Dje — Co|Vi A p(Dy A+ e) (1 - |w] 1]

of 0<i<t, §el} and y > Cy(£°, 7°); this last condition is needed to get the con-

vergence of the series defining E/OZ),?(C ). By Stokes’ theorem we can write
I? = I1(t,) + I3(B), meaning

I3(t) = (2m)" f ‘f’(f“étu)E@n(Ctn)dCto
|w—&|<afé]

I3(B) = (2) f HE— L) B (L) dL .

|w—&|=0]€]
[IES £
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From (3.2.9) then, for some constant D'> 0,
\Li<Cexp[— D'g['"™] fel}

since this is obvious as far as it concerns I)(B), while in the region of integration
of I3(t) it results |6 —{, |>6'€], 0’ a suitable positive constant.

The proof is not yet complete, because the inequality (3.2.9) has been reached
only for values of y sufficiently large; therefore we must check that such a change
of the path of integration A does not compromise the estimates given for I.

Let then 1 <y,<y, and under the condition |w— &| < §|¢| consider the path
Co=w— i(yo+ s(yr— o)) (1 + |w])V*0, 0<s<1. Arguing as we did in the first
part of the proof of (3.1.2) we get

P . )
g Ll = LB <Oy
P, | =

it (1 4 [w])"™ < Oy '|w], i.e. for sufficiently large values of |&| (remember that
fw — &| < 8|&]). For such values of |¢]

‘ A e RN A V/\ G
BE — L) EOp (L) Ao — f P& — &) B, (L)) ddy| <
fw— &< j¢] jw—E&|<6]é]
[' P
< j (P& — L) B w, (L) 140, <

fw—&l=0]&]
0

sl

<0 f exp [— D{& — w[Vm - yi( Dy e)(1 -+ |w| =] [dl,| < C exp [— D'|E[m] .
fw— £ =0]¢|
0<s<1

This proves that the choice y > C,(£° #°) in (3.2.9) is not restrictive and moreover
we have

B(w, y; y1) — B@, y; yo) € 8" (R X He)

taking into account the former estimates. The theorem is now completely proved.

With the help of the proof of Theorem 3.2.5 we can now prove another result
of regularity.

THEOREM 3.2.6. — Under the hypotheses of Theorem 3.2.1,
(@) Yo; &% — &) ¢ WECCEN B, y))  for (@, p) e R, e R™N{0}.

PROOF. — Suppose 1 < ;< 2#,<< -+ oo, since if x,== -+ oo there is nothing to
show. et U, V be neighborhoods in R* of x,, ¥, respectively, V c H., and
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@ € DHNT), pe D"HV), p@)#0, p(y)#~ 0. Looking back to the proof of the
preceding theorem one sees that the condition about the base of the wave front
set has been obtained by the suitable choice of two neighborhoods of x,, ¥,, for
which held xy— yo¢ I'(P,e, 6)%, but this was needed only when we took I? into
account. Then it is now sufficient to give an estimate of this term only, without
any hypothesis on the base, since all the other integrals decrease exponentially
with |€]Y%. '
Congider the path

Lo=w—iy[(1 4 lw) + ¢((1 + )0 — (1 + w)=)]0  0<i<1

and let I' be a conic neighborhood of & such that n;(£) = n,I") for every j
(see Lemma 2.1.5 (iii)); choose then two cones I'yc Iyc I' as in the proof of Theo-
rem 3.2.5. If » = degyp’ then

pi

1)_m'(Ct— fr—.. =)<

] k
<0E) [+ o] — 3w

=1

(1 -+ )] <0y

since

k k
D lwt|<dlw|(l1—¢6) and then w— 3 wrel if £eT,
h=1 n=1

(v — m)[#(£°) + n,(5%) — n,(£°)/x(£°) <0 from the definition of #(&%), and
k

. ,
IImCt—l— a > (14 [w")"0|< Clw— > wh] if £ell,
h=1

h=1

|é] large enough. .
We can therefore give meaning to Eoy,(l,), obtaining

(3.2.10) By, L) < € exp [e|Im ¢, — Flw 4+ q[t=]

with 0<i<1 and ¥ a positive constant depending on . Once again by Stokes’
theorem

I3 = (2m)™ f PE— B p,(L) AL, + (2m) f PE— &) By, (L) L.
hoo-E1=31z1 lw—E] <8¢

About the first integral we may proceed as we have done other times, and then get
the exponential decrease with |£]'*; on the other hand, if #(£°) < + oo the second
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one is estimated by

0 [ oxp[— DIg— wf + (Dy+ &)p(1 -+ w]) ) Flao + ] duw
lw—&[<d¢]

<Oexp[(Di+e)ylE0] [ exp[— DIE— w4 (Dt &) (L + [~ wl) ] duo

1e—w| < b]€]

< O exp [D'|§[17]
and the thesis in this case is reached; if %(£°) 4 == oo from Tarsky-Seidenberg lemma
[Pulw — y0) [ < O(1 + [w])’
for some constants C and b, we [, and then
[LI< O + ).
The proof is now complete.

CoroLLARY. — The kernel E(z,y) of the parametrix ¥ is an ultradistribution
of class D' (R"x He).

The probf of Theorem 3.2.1 i3 now gained making use of Theorems 3.2.5 and
3.2.6 and recalling the rules of composition of wave front sets (Theorem 1.2.3).

3.3. Semiglobal solvability. Examples.

The parametrix constructed and studied in the previous sections is also useful
to obtain results of semiglobal solvability for data with compact support, modulo
analytic functions.

Let P(z, D)= P,(D)-+ ¥ q,(»)p'(D) be the operator till now considered, {g;}€8";
i

the transposed operator of P(z, D) is

1,

tP(w, D) = (= 1)" P (D) + 3 (—1)""1/a! D* g,(w) p" (D)

where y; = degp’. For the operator ‘P it results (P, &) = »(P, &) for every & in
R™\{0} (see [14], Lemma 2.1.4); in view of the problems are we dealing with, we
shall assume that the coefficients have compact supports, and write again for sim-
plicity of notations

‘P(@, D) = (—1)"Pu(D) + X ¢;(®) p'(D)

where g, D", p'e V(P).
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We shall denote by E(tP) the left parametrix of the operator *P, by E(*P;x,y)€e
€ D" (Rr x H) its kernel and by R(‘P) the rest. The transposed functional ¢E(‘P),
which we indicate here with E*, is well defined by

T
@0, = @ BEP)p = (30 61— O EepIpd)at

a4

for g € D™(H,), v e (R"), has H*(w,y) = ‘BE(‘P; 2, y)e D™ (H.xR") as kernel
and rest B*=tR(‘P); furthermore

PE*=1 4 B*

where I is the identity operator. So E* is a right parametrix.

TueoREM 3.3.1. — For the wave front set of the kernel E*(z,y) of the right
parametrix E* holds the result of Theorem 3.2.5; instead

WF(R*v)=¢ ve&™'(R").

Proor. — The first statement is obvious in view of the preceding remarks.
As regards the regularity of the rest, suppose at first 1 <, <x#,< + oco; let UeH,
be a neighboroohd of z,, {xy} & sequence in D)T), supp yyvc K, K compact
subset of U, such that for every h > 0 there exists a constant (), satisfying

D"+ g @) < C(ON)FIBY™  [a|<N, zeK.
Setting as usual yy.(() = exp[— ¢{-&]xy(l) We have

T o —
(3.3.2) Ly BF)(E) = (Zn)‘"fv(_ §) R('P) ynell)dl
A

where { = w — iy(1 + |w])*/*8, and, as in the previous sections,

/\ 1 '
Rz(tP) ZN,E(C) == f—(-f) . z _ (_,l)um-i—l)—rl (Zn)—’"x
R N R R
A4

for {ed, {'=wi+ ia(l + |w/|)*0. From (3.3.1) it easily follows that for every
h > 0 there exists a constant C, such that

(12 (@)| < CuON)¥ (1 + [o]) exp[— hle["* + Hx(Im2)]
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for ze C*, N = 0, 1, 2, ..., and then, recalling the geometry of the region of integra-
tion, splitting it into the subsets |w - &[> dlw| and |w -+ £|<olw| and proceeding
as above (see for instance the proof of Theorem 3.1.2) we get

T
1y B¥*(0)(&)| < C(CN)F(1 + [€])

and then the thesis if x,< 1+ co. The case »,= - oo is left to the reader.

The equation P(w, D)u = f is therefore solvable for data f of class &% (R®),
modulo analytic functions; the propagation of singularities of the solution u is
clearly given by Theorem 3.2.1.

4. — Some examples.

ExampiE 3.3.2. — Let P, (&) = {T— &' — ...— &7, m positive and even; in any
way we choose a polynomial @ of degree less than m, P= P, 4 @ is hyperbolic-elliptic
with respect to the direction 8 = (1, 0, ..., 0) by Theorem 10.4.10 in [5] and 1.1.3 (i)
Then s, = -+ oo.

Exampre 3.3.3. — Let P = P,+ @, Q, where P& = &+ &(&+ &) — &,
Q&) = &, deg@<2; P, is hyperbolic-elliptic with respect to the direction 6 =
= (1,0, 0). If £ is not parallel to the vector &= (0, 1, 0) one has

3
2 [0P,f05(&)| + 0
i=1

80 x(§) = -+ oo; on the other hand, since @,(£°) =0, Lemma 2.1.5 (vii) yields
ny(8%) = 1, and threfore x(£%) = 2. In this case then s, assumes the least value
allowed to a polynomial with principal part with at most double characteristics.

ExampLE 3.3.4. — Let P = P+ Q,+ Q,+ Q, denoting P,(&) = &(& + & + &),
Qu(6) = E(E+ £), Q48 = £,£, and @ a polynoamil with degQ<2; = (1,1,1)
is a direction of hyperbolic-ellipticity for P, . Since @, is weaker than P;, it follows
that n,(&) = 0 for every £ e R™\{0} and so x(&) = + oo if & is not parallel to
£ —=(0,1,—1). For this vector ,(&°) =0 and then n,(&) = 1, which implies
%(£%) = 3.

Therefore x»,= 3, while the least value for a polynomial with principal part P,
is 3/2.

m—1

Exampir 3.3.5. — Let P(§) = &» - 3 &PI(E) with & = (&, &), deg(P?) = m,,
i=0

max o m;f(m — j) = p < 1; P, is hyperbolic with respect to the direction 0 =
= (1,0, ..,0). For every £€ R\ {0} with &5 0 it results x(§) = + oo, The
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homogeneous term of degree y is

Q,8) = 0; EP,_&)
7'+\'n:j<>vv

where P!_, stands for the homogeneous term of degree » —j in P For the

indexes j in the above sum the inequality j> (v— pm)/(1-— p) is satisfied, from which
n,(E)<p(m — v)[(L — p) and x»(£)>1/p for every &€ R"™\{0}; on the other side this
lower bound is really reached when & = (0,§') and » = m;+ §, m;= p(m — j).
In conclusion, »,= 1/p.
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