
Propagation of Singularities for Operators with Constant Coefficient 
Hyperbolic-Elliptic Principal Part (*). 

M. CICOG~A~I - A. CORT~I 

S u m m a r y .  - In  this paper we consider partial di]]erential operators o] the type 1)(x, D) 
= Pro(D) + Q(x, D), where the constant coe]]ieient principal part t)~ is supposed to be hyper- 
bolic-elliptic. We study the propagation o] Gevrey singularities ]or solutions n o] the equation 
P(x, D)u = ], ]or ultradistributions ], ]inding exactly to which spaces o] nltradistributions u 
microlocally belongs. The results are obtained by constructing a ]undamental solution ]or P 
when the lower order part Q is with constant eoe]]icients, and a parametrix otherwise. 

O. - I n t r o d u c t i o n .  

The s tudy  of operators splitting into hyperbolic or elliptic factors leads to define 
a subclass of the set of locally hyperbolic polynomials, which has been studied by  
F E E ~ A ~  in [2]. The polynomials P of such a subclass, named hyperbolic-elliptic, 
are characterized algebraically by  the  following proper ty :  P is hyperbolic-elliptic 
with respect to  the  direction 0 if P~.(O) V= 0 and there  exist positive numbers e~, c~ 
such tha t  

_P(~-- itO) =A 0 when c~ < t < c21~[, ~, t real; 

here Pm denotes the  principal par t  of P.  

For  these polynomials the theory  parallels, under  m an y  aspects, t ha t  of hyper-  
bolicity; bu t  while hyperbolic operators have fundamenta l  solutions with support  
ia a convex cone, for the hyperbolic-elliptic ones we can only say tha t  such a cone 
contains the  analyt ic  singularities of their  fondamenta l  solutions. This notable 
difference does not  permi t  to consider the Cauehy problem for these operators, 
unless to add fur ther  hypotheses as it  is (tone by  ]~U~A:NO-GO in [9]. 

In  this paper  we s tudy operators of the  type  

(*) _p(x, D) = _P.~(D) § Q(x, D) 

D j = -  iS/Sxj ,  D ~ =  D~' D ~ ,  where P~ is supposed with constant  coefficients 
and Q is the  lower order par t ;  P~ is always assumed to be hyperbolic-elliptic. Con- 
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sidering the principal part with constant coefficients is owed to the remark that,  
when this is also the case for Q, it is possible to construct a fundamental solution 
for P(D) by the fundamental solutions for the iterates of P~(D), [1], [2], that  is 

o o  

E(_P) = ~ (-- 1)kQ(D)~E(.P~;+~) . 
k = o  

In particular we are interested in the Gevrey singularities for such (ultra) distri- 
butions, and the reason of this choice lies in Ivrii's result [6], for which, although 
the Cauchy problem is not in general C~-well posed for operators with hyperbolic 
principal part, this comes true in some Gevrey classes. A microlocal study of this 
problem has been carried out by WA]~ABAYASHI in [13] and [14] for operators with 
constant coefficient hyperbolic principal part, and the techniques we use here have 
been inspired by %hose papers. 

In the first chapter we briefly recall the definitions and some results about 
hyperbolic-elliptic polynomials, following [2]; we introduce then Gevrey classes 
and ultradistributions, as well as the relative wave front sets. For more informations 
about this second part we refer to [5], [7], [8], [13], [14]. 

In the second chapter we consider constant coefficient operators with hyperbolic- 
elliptic principal part:  at first, by means of a precise study of the zeros of the 
polynomials, we find a result (Theorem 2.1.7) which extends Svensson-Fehrman 
theorem [12], [2] (see also [10]). Then, through the choice of a suitable integration 
path, we construct a fundamental solution in a class of ultradistributions depending 
on the polynomial, improving a result by ZA~IPIEI~I [15] (see also ~[AI~I [11]). Further- 
more we show that  this fundamental solution is analytic outside a convex cone and 
give outer estimates for the wave front sets of it and of the solutions u of the 
equation P(D)u = ], for ultradistributions ] (Theorem 2.3.3). 

In the third chapter we apply to variable coefficient operators the techniques 
before employed, retaining however the hypothesis that  the principal part is with 
constant coefficients; we obtain then results of propagation of singularities, similar 
to those of the previous chapter, by constructing a left parameCrix for the operator 
~(x, D) (Theorem 3.2.1). On the other hand, by using a right parametrix, we give 
a result of semiglobal solvability for the equation xP(x, D)u = ]~ modulo analytic 
functions (Theorem 3.3.1), and finally supply some examples, calculating explicitly 
the degree of regularity of the solutions. 

1 .  - P r e l i m i n a r i e s .  

1.1. Hyperbolic-elliptic polynomials. 

Let P(~) : ~ a ~  be a polynomial with complex coefficients and P~(~) : ~ a ~  ~ 

its principal part. 
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D E ~ r ~ b ~  1.1.1. - A polynomial P will be called hyperbolic-elliptic or a hybrid  
with respect to the direction 0 if P~(O)=/= 0 and there exist positive constants c~ 
~nd e~ such tha t  

(1.1.1) P(~- -  itO) V: O if el < t < c~[~[, ~ e R" . 

The class of all such polynomials P will be denoted by he (0). 
For  homogeneous elements H in he(0), (1.1.1) can be replaced by 

(1.1.1)' B ( ~ -  ito) ~ o if o < [tl < el~l, ~ e R - ,  

for some positive constant  e, and we shall write H e He (0). 

DEFI~XTIO~ 1.1.2. -- Let  H be a homogeneous polynomial and ~ e R ~. The 
localization He of H at  ~ is the first not  identically vanishing te rm in the expansion 

H(8 + tO = t ~ ( ~ )  + O(t,+~) as t + o; 

r is called the multiplicity of H at  ~. 
We are going now to list the main results proved in [2]; hereafter hyp (0) 

(resp. g y p  (0)) denotes the class of all hyperbolic (resp. and homogeneous) polynomials 
with respect to the direction 0. 

TI~EO~E~ 1.1.3 ([2]). - (i) P e h e ( 0 )  if and only if P~eHe(O)  and P is wea- 
ker (1) than  P,~; (ii) he (0) = he (--0);  (iii) if P e he (0) then P ~ e  I typ  (0) for every 
~eR '~ \{0} ;  (iv) if P e h e ( 0 )  then P e h e ( u  ) for every direction ~ in _F(P~, 0 ) :  
: ~ F(P~ne, 0), where I ' ( P ~ ,  O) is the component of 0 in the set {$; P~($)  # 0}. 

Or 

The foregoing statements generalize well known results for hyperbolic polynomials, 
in particular (i) is an extension of the corresponding theorem proved by SVE~SSO~ 
in [12]. However the open cone / '(P~., 0) defined in (iv) is in general smaller than  
the component of {~; P ~ ( ~ ) #  O} containing 0. The dual cone 

/"(P~,  0 )*=  {~]; x .~  (~)>0 for every x e . F ( P ~ ,  0)} 

is equal to the convex hull of the wave front  surface 

[_J I ' ( P ~ ,  0)* 

and, as for hyperbolic operators, we have:  

(1) If  P(~) = ( ~  [P(~'(~)l"-)+, P(~) = ~=p, q weaker than P means O(*) < CP(~) for some 
C > 0 ([5]). 

(3) If x = (xl . . . . .  x~), V = (~x ..... V~), x.~ = ~ xj~J. 
J 
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T~[EO~E)~ 1.1.4 ([2]). - I f  P e he (0) then  P(D) has a fundamenta l  solution (in 
the  space of distributions) which is analyt ic  outside the wave front  surface. 

As above there  is a geometrical  difference with the  hyperbolic cuse; in fact  the 
boundary  o~ T'(P.~, 0)* is not  generally contained in the  wave f ront  surface. 

The last result  we s ta te  in this section is a converse of Theorem 1.1.4 and really 
characterizes hybr id  operators.  

TItEOREI~ 1.1.5 ([2]). -- I f  P(D) has a fundamenta l  solution (in the space of distri- 
butions) which is analyt ic  outside a proper  closed cone F with ver tex  at  the  origin, 
then  P is hyperbolic-elliptic with respect to every  direction /~ in the open cone 

= > o for  e v e r y  

1.2. Ultradistributions and generalized wave /font sets. 

DEFINITION 1.2.1. -- Le t  K be a compact  set in R% For  1 < g < c~ ~nd h > 0 
we denote  by  g(~}'h(K) the  space of all functions ] ~ C~(K) satisfying for every  

n ~ , +  

sup ]D ~ ](x) t < Ch I~' (~ !) ~" 
x ~ K  

for  some posit ive constant  C, and by  ~}, t~ the space 8(~}'h(K)~ Co(K ) . 
g~}'l~(K) and ~D~ }'h are Banach spaces under  the norm:  

For  ~ an open set in R ~, we pu t  

g(~}(Y2) ---- t im l im g(~}'"(K) 
h---> ~x~ 

KeY2 h--> co 

g(~)([2) -~ lira lira g(~}'~(~) 

~(~')([2) -~ !ira lira ~ } ' ~ .  

The elements oi the  preceding spaces are called Gevrey functions of order ~ on ~2. 
We shall denote by  ,~ ei ther {z} or (z) when we deal with the  two cases together .  

The spaces of ul tradistr ibntions of order z on ~2, ff)*~'(.Q) and g*-'(~2), are defined 
as the strong dual spaces of ~*'~(~2) and g*--(~) respectively, g*~'(~2) m ay  be identified 

with {u e ~*~'(s ; supp u is compact}. 
g*~(~2) and ~*~(~2) are complete Montel spaces; moreover  g~}(s is a Schwartz 

space, g(~)(s is Fr~ehet-Schwartz,  ~ } ( ~ )  (resp. ~(~)(f2)) is an induct ive limit 
(strict) of Fr~chet-Schwartz spaces, ([7]). To have uniform notations,  for r func- 

tions an4 usual  distributions we pu t  
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but  such a writing is formal indeed, since 

x>l g>l 

The Fourier-Laplace transform of u e ~*~'(~9) is the entire analytic function 
~(~) ~ u~(exp (-- ix. ~)). An analogous of the Paley-Weiner theorem holds for Gevrey 
functions and ultradistributions;  for later use we state it  here. 

THEOREM 1.2.2 ([7], [8]). - Let  K be a compact convex set in R ~ and 1 < u < co. 
(i) An entire function r is the Fourier-Laplace transform of a function 

e ID(~)(~2) (resp. ~{~}(~9)), with support in K,  if and only if for every Z > 0 there 
is a positive constant  C (resp. there are positive constants Z and C) such tha t  

Ir162 c exp ( -  zlr H- H~(ZmO), CeC", 

where H~(~7) = sup x .~  denotes the supporting function of K.  
~ e K  

(if) An entire function U is the Fourier-Laplace transform of an ultradistri- 
bution u e ~(~)'(~9) (resp. ~{~}'(~2)), with support in K, if and only if there exist 
positive constants I and C (resp. for every Z > 0 there exists a positive constant  C) 
such that 

c exp H~(Im~)) , ~ e  C". 

We can now define the generalized wave front sets for ultradistributions;  T*(D) 
will denote T*(T2)\{O}. 

DEFINITION 1.2.3. -- Let  t~ be an open set in R ~, z ~ > l ,  /eff)('~')'(~), z ~ < z <  co. 

(i) We say tha t  ] is regular of class g(~) (resp. g{~)) in a conic neighborhood 
of (xo, ~o)e T.'*(~) if there exist a neighborhood U of xo, an open cone F c  R ~ { 0 }  
containing ~o, a function ~ e ~(")(U) with ~(xo) :/: 0 and for every Z > 0 a positive 
constant  C (resp. there exist positive constants L and C) satisfying 

A 

a e r .  

We define the wave front  set WF(~)(]) (resp. WF{~(t)) as the complement in ~'*($2) 
of the collection of all (xo, ~o)c ~"*(D) such tha t  I is regular of class g(~) (resp. g{~) 
in a conic neighborhood of (xo, ~o). 

(if) We say tha t  I is in ~(~)' (resp. ~f~Y) in a conic neighborhood of 
(x0, ~0)~V*(~2) if there exist a neighborhood U of Xo, an open cone F c R ~ { 0 }  
containing ~o, a function ~0 E II)(~)(U) with ~(xo) =~ 0 and positive constants Z and C 
(resp. for every L > 0 there exists a positive constant  C) satisfying 

A 
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We define the wave ~ront set WF(~)(]) (resp. WF~}(])) as the complement in T*(tg) 
of the collection of all (xo, ~o) e ~'*(~9) such tha t  ] is in 9) (~)' (resp. ff%~}') in a conic 
neighborhood of (xo, ~o). 

(iii) Moreover we say that ] is regular of class ~ (resp. is in if)') in a conic 
neighborhood of (xo, ~o) e ~*(tg) if there exist a neighborhood U of xo and an open 
cone _Fc R~\{0} containing ~o such tha t  for every ~ e 9)(~')(U) and for every non 
negative integer N there is a positive constant  C (resp. there are an integer N and 
a positive constant  C) satisfying 

I 1) 
We define the wave front set W~(r162 WF{~}(])~--WF(]) (resp. WF(~)(])= 
-~ WF{~}(])) as the complement in T*([2) of the collection of all (xo, ~o)e T*(~9) 
such tha t  ] is regular of class C ~ (resp. is in flY) in a conic neighborhood of (xo, ~o). 

(iv) Final ly we define the analytic wave front  set of ]. Le t  U~c U~ be neigh- 
borhoods of xo~R ~. Then there exist a sequence {g~} c ~(~')(U:) and a positive 
constant  C such tha t  for every h > 0 there is a positive number  C~ satisfying 

ID=+'e Z~(~)[ < C~(~)l=Ihl~l(fl !F~ , [~1 < Y  

and Z ~ I  in U1 for N = ! , 2 ~  .... 
The analytic wave front  set WF~(]) of ] is defined as the complement in ~'*([2) 

of the collection of all (xo, ~o)e T*(Y2) such tha t  for some U~, Us, {X~} as abov% 
there are a conic neighborhood F c R~\ (0}  of ~o and a positive constan~ C satisfying 

 er, . . . .  

For the properties of WF,~ and WF~ we refer to [5] and [14], for WF*~, see [14]. 
To state the main result we need about  propagation of singularities for continuous 

linear maps K :  ~*~'-~ ~*~', we now briefly recall some definitions; details and 
complete s tatements  m a y  be found in [5], [8], [14]. 

DEFINITION 1.2.4. - Let  Y21, ~92 be open sets in R ~. 

(i) Let  r Y21-* ~9~ be a 8*'~-mapping. We denote by  r 8*~(Q,)-> ~*~(~91) 
the pull-back, defined by (r = u(r 

(if) Le t  ~: Dl-~t~2 be a real analytic proper mapping. We denote by  
~#. = t(~p.) : ~.~'(~i) _+ g*~'(g2~) the push-forward, y~. may  be extended to an operator 
from O*~'(D~) to ff)*~'(D2). 

For  every continuous linear map K :  N*-(D~)-~ ff)*~'(D~) there exists a kernel 
K(x, y) e ~*-'(D~ • D~) such tha t  for every u e O*'(D2) 

(Ku, ~} = (K(x, y), cf(x) u(y)},  q0 e O*~(D~) 
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(see [8]). This result leads us to write formally for u e g*"' (D,) 

(1.2.1) Ku = II~,oA*(K(x, y)@ u(y)) , Ku e ~D*~"(O~) 

where / /1 :  Q~ • .05 -+T21 is the projection H~(x, y) = x and A: ~9~ • #2~ -* #2~ x/2~ • ~9~ 
is the map A(x, y ) - -  (x, y, y). Under suitable hypotheses Ku is well defined by 
(1.2.1) and we have outer estimates of the wave front sets W~,~(Ku) and W~*~(Ku): 

TItEOI~E~ 1.2.5. -- Let  1 < n~ < ~ < c~, u e g*~:(~2~), K(x, y) e ff)*~'~(~ • ~ ) .  Pu t  
Wf,~,o~(K) = ((y, ~) e ~'*(~Q~); (x, y; 0, -- V) e W~,.,(K(x, y)) for some x e ~Q~} and 
for W c T * ( ~  • D~) 

w ' =  {((x, (y, e x z*(Q,); (x, y; - v )  e w } .  

! 

If  WE,.~2,(K ) n W ~ , ~ , ( u ) :  r then Ku is well defined by (1.2.1) and we obtain 
the following estimates: 

W~,~(Ku) c ~ {WF" ~(K)oW~,~:(u) U WF,  (K)o WF ,(u) u 
l I w WF,~(K)oWF,~(u)W WF',~(g)osupp*'(u)u WF,~(K)osuppo(U)} 

i $ WE*~.(Ku) c ~ {WE*',(K)o WE,,~ (u) w Wff*,'(K)o W~,~(u) ~) W~,. ,  (K)o WE ,(u) W 

w WF',,(K)o WF*.(u) W WE*" (K)o suppo (u) U WF',~(K)o supp*'(u) U 

w WF',~(K)osupp*'(u)} 

where sUppo(U) ---- {(x, 0) e T*(Q~); x e supp u) and supp*~(r ---- {(x, 0) e T*(9~); 
x e sing supp*~(r 

2. - Operators w i t h  cons tant  coefficients.  

In  this chapter we shall deal with differential operators P(D) with principal 
part  P,.(D)~ He (0) and general lower order terms. Our goal is to construct, for 
such an operator P(D), a fundamental  solution E with analytic singular support 
contained in the wave front  surface; so, in view of Theorems 1.1.3 and 1.1.5, we 
have to consider the more general spaces th~n ~D' introduced in section 1.2. Precisely, 
refering to Definition 2.1.2 for @(P) and @(~), we sha.ll find a solution E, with the 
required property, in ~(~IQ(~))'; E is microloc~lly in ~ '  at  every (Xo, ~0)eT*(R ' )  
with @(t ~ -~ 0, (see Theorems 2.3.1 and 2.3.2). ~-1 

During the whole of this chapter, P(~) = P.~(~) + ~ Qj(~) denotes a polynomial  
f = o  

with hyperbolic-elliptic principal part  P.,~ with respect to the direction 0 and lower 
order homogeneous terms Qj, degQj : j, j ---- 0, ..., m - 1 .  
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2.1. Polynomial with hyperbolic-elliptic principal part. 

L E ~ A  2.1.1. - Let  P ~ H e ( 0 ) ,  ~~  and put  a(t  ~ = a - - - - d e g P ~ 0 .  
Then there exist a conic neighborhood/~ of t ~ and positive constants c~, c2 such tha t  

P(~ -- isO) ~ 0 if e~[~[(~-:)l~< s < c21t[, ~ e _P. 

Moreover if # = max  a(~) denotes the highest multiplici ty of the real roots ~ in 

the equation P~(t)  = O, t =/: O, we have 

P ( t -  isO) :/: 0 if r s < r ~ e R,, 

for some positive constants C~ and C2. 

P~ooF. - P ~ e H e ( ~ )  for every ~ ia  the open cone F ( P ~ ,  0), so we have 

P,~(~ d- $ -  iO) = P~(~ + 1~e$-  i(O -- I m O )  # 0 

for sufficiently large real ~, say [~1 > 1/e~, and small $ e C ~. Thus from Lemma 11.1.4: 

in [5] it  follows tha t  

(2 . : . : )  P+(t-  iO)< r iO)[ if I~1>1/c2. 

On the other hand from ~ ]P(~)(t~ 0 by homogeneity we obtain 

(2.1.2) Oltl~-o<P~(t) 

for ~ in suitable conic neighborhood F of t ~ 

IQ~(~ - is0)l 
(:~,1.3) !P~(t  - i s ~ l  < c s - ~  I~ 

and then  

The estimates (2.1.1)-(2.1.2) yield 

if 0 <  s<c,~i~l, t ~ -  F,  

!P(t - / s o ) ] >  IP~(t  - is0)! (~ - c Z s-~247 > o 
J 

for c:lti(~-:)/a< s<c2]t[ and every $ i n / ~  if c: is sufficiently large. The second asser- 
t ion in the lemma m a y  be proved using the first one by an easy covering argument.  

DEFII '~ITION 2.1.2. - Let  P~ be in He (0), /" a cone in 1 ~ { 0 } ,  t~ R~\{0( .  We 

define 

@(P; F )  ---- @(F) = inf{@>0; there exist positive eonstar~t y~ and 7~ such tha t  

P(~--  isO) ~ 0 if ~ e / '  and 7~]t[~~ s < 7~It[} 

o(P; t o) = e(~ o) = inf{q(F);  F conic neighborhood of ~o} 

o(P) = sup (e(~);  ~ e R % { o ) ) .  
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By Lemma 2.1.1 we have ~o(~)<(a--1)/a and o(P)<(#--1) / / z .  If  zOahe(0) then  
~(~) : 0 for every ~ e R~\{0) ;  conversely, if 0(P) ----- 0, from (i i i ) in the following 
lemma, we obtain P e he (0) by  a covering of the unit  sphere. 

L E ~ r h  2.1.3. - I~et ~oe R~ \ (0 ) .  Then the following properties hold: 

(vii) 

(viii) 

(i) ~(~o) = 0(~o) if ~ > 0; 

(ii) ~(FI)<~(F~) if / '~c F~ are conic neighborhood of ~o; 

(iii) there exists a conic neighborhood Fo of ~o such tha t  Q(~o) = ~(Fo); 

(iv) there exists a conic neighborhood Fo of ~o such tha t  ~(~)< ~(~0) for every 
in Fo; 

(v) e(~ ~ is a rational number;  

(vi) if ~(~o) > 0, then  for every conic neighborhood F of ~o there are Puiseux 
series s(r) e R,  ~(r) e F, converging for large positive r, with ]~(r)[ ---- r, 
s(r) = or~(~')(1 + o(1)) as r - +  o% e > 0 ,  and P(~(r)--  is(r)O) = 0; 

when P~,~ ~ Hyp  (0) we have 0(~o) __ ~(~o) with ~(~0) defined in [14]; 

the set (e(~); ~ e R" \{0)}  is a finite set. 

PROOF. - The assertions (i)-(ii) are trivial. Let  E~c R 2+~ be the semi-MgebrMc 
set defined by the system 

(2.1A) 

P ( ~ - i s 0 ) = 0 ,  s e n  

I~l~= r~, r > o 

I~-- r~~ e2r~, ~ > 0 

s ~ < 0~ #-1 

i.e. E~ -~ {(r, s, ~) c R~+~; (r, s, ~) satisfies (2.1.4)), where we may  assume tha t  
[~~ ~-1 and a, el the same constants of Lemma 2.1.1. 

From Tarski-Seidenberg lemma (a), repeating the same arguments as in the 
proofs of Lemma 1.1.2 in [14] and Theorem A.2.5 in [5], we can find a positive 
integer l, r~> 0, ~o> 0 and analytic functions 9~(r~ e), i ~ 1, ... ,v, in 

such tha t  : 

a) -- c~ ~ ~o< ~01(r, e) < ~c2(r, ~) < ... < ~( r ,  e), (r, e) e D; 

(3) See [4], [5]. 
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b) 9~(r, s) = e~(e)~'(1 + o(1)) as r --> 0% with rational q~, where q, and sgnci(s) 
are independent  of s for (r, e) ~ D, i = 1, ..., v; 

o) F , =  ((s, r)elU-; (s, r, ~)eE~, (r, e)~D} is the union of the curves s =  9i(r, e) 
and of the strips bonnded by them. 

Define ~(r, ~) = sup(s;  (r, s, ~)eE~} and F o =  (~; .~-- [~t~~ in conse- 
quence of e) there exists io~ (0, 1, ...,v} such that 

9(r, e) = ~%(r, ~) in D 

with the convention io = 0 if 2~, = r Therefore 

{ m a x ( ~ . , 0 )  if i o r  0 and e,o(e)> 0 

o(/') = 0 otherwise 

for every conic neighborhood F of $o contained in Fo. This proves (iii) and (v). The 
assertion (iv) easily follows from (iii), while (vi) holds by  virtue of Theorem A.2.8 
in [5]. I f  P,,~ a t t yp  (0) the  last inequali ty in (2.1.4) fo]lows from the first two equal- 
ities of the system, hence we have (vii). Finally, (viii) m a y  be proved in the same 
way as Lemma 1.1.3 in [14]. 

DEFInITIOn" 2.1.4. - Let  _N be a cone in R~\(0} ,  ~oe R . \ { 0 }  and R > 0 a con- 
s tant  such tha t  P, , (~--  iO) :/= 0 for [$[ > R, (see (1.1.1)'). For  j = 0, ..., m - -  ],  
we define 

IQ~(~-io)I } 
n~(~; r) = ,~j(F) - - i n f  k; [P,~(~--iO-~ <Cl~t~ for e v e r y  ~ e F ,  1~] > R 

nj(_P; ~o) = nj(~o) = inf(nj(U); 2" conic neighborhood of ~o} 

n~ = m a x  (n~, 0 ) .  

By (2.1.1) and Lemma 10.4.2 in [5] we have n+(~) = 0 for every ~ e R~\{0} if and 
only if Qj is weaker than  P~,  tha t  is P e he (0) if and only if n+(~) = 0 for every 

e n ~ \ { 0 }  and  ] = o, . . . ,  ~ -  1. 

IaEM3IA 

(i) 

(ii) 

(iii) 

(iv) 
every ~ in 

2.1.5. - If  ~oe R~\(O}, then  for every j = 0, . . . , m - - 1  we have 

nj(F1)<nAF2) if /~1=/~2 are conic neighborhoods of ~o; 

nj(~ ~ = nj(2~ ~ if ~ va 0; 

there exists a conic neighborhood 1o of ~o such tha t  nj(~ ~ = nj(/~o); 

there exists a conic neighborhood Fo of ~ such tha t  nr ~ for 
re;  



M. C~co~A~r  - A. Co~L~: Propagation o/ singularities, etc. 313 

(v) for every  conic neighborhood _F of ~0 there  are Puiseux series sj(r) ~ R+,  
~(r)  ~ 1-', converging for large positive r, with [~J(r) l = r, 

sj(r) : vrn~(~0)(1 -~ o(1)) as r - .  c o  a n d  IqJ(~(r)--iO)[ - -  
IP~(~(~) - i0)l - ~(r) ;  

(vi) j -  m q- degPm~ . -  degQj~o<<.nj(~~ m ~- 4 eg P ~o ;  

(vii) n~(~ ~ = j -  m q- degP,,~~ if Qj(~o) :/: o; 

(viii) n~(~ ~ = i - m if p~(~o) # 0. 

PROOF. - The s ta tements  (i)-(ii) are obvious. Let  E ~ c R  2+~ be the semi-algebraic 

set defined by  the  system 

sl_P~( ~ --  iO)[ ~ -  [Qj($ - iO)[~--- o ,  s E R 

I~l ~ = r~,  r > o 

l~efering to the  arguments and the notat ions we used in the  proof of Lemma 2.1.3, 

we can find eo > 0 such tha t  

~(r,  ~) = sup  {s; (r, s, ~) e ~ , )  = e(~) r~(~ § o(~)) as r - *  co 

for (r, e )~  D, with ~ and sgne(e) independent  of e. Hence if 

r e =  {~; I ~ -  I~1~~ - 

we have 

e /2  = n~(Fo) = n~(~~ 

proving thus (iii). The assertion (iv) is a tr ivial  consequence of (iii) and, as in 
Lemma 2.1.3, (v) follows by  Theorem A.2.8 in [5]. We have already proved the second 
inequal i ty  in (vi) by  (2.1.3); for what  concerns the  first one, choose g such tha t  

j ( ) # 0, [~[ : degQj~o; then  we have 

IQ~=)(~) < IQj(~)< c[~[n~<~~ - iO)l < C[~l nj<~~ ~ I(3, 0>~ P,~(~)] 
k = o  

for every  ~ ~/~o. l~eplaciag ~ by  t~ ~ and let t ing t--> c~ we get 

j -  degQ~o<nJ(~ e) ~ m -  degPm~ ~ . 

Finally,  (vii)-(viii) easily follows from (vi). 
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Lemm~ 1.2.4 in [14] holds ~lso in the  hyperbolic-elliptic case; the  following 
remark  is the only varia.n~ in its laborious proof. 

LE)I:~iA 2.1.0. - Let  2 ~ be in R' : \{0},  1 ~ positive integer ~nd ~7(s) the Puiseux 
series, converging for sma.ll s, 

~7(s) : s-~ (2~ + i s~/~20, 2 ~ R  ~ 

3r !et ~(s) be the roots ol P.~(s~(s) + 7:0) = O, v,~(s) = a,os'~*(1 + o(1)) as 
s - + O ,  a ~ r  with the convent ion / ~ =  c~ if v ~ - O ,  k = l , . . . , m .  Then we h~ve 

(2./.5) ~ ( v ( s )  + 8 - " ( ~ -  i) 0) = 8~(0~(~) + o(1)) as 8 -~ o 

where b : m +  i m i l l ( / ~  1 - - a )  ~nd e~(r) has no re~l roots r for ~ll 0 < a <  1. 

Plcoom - The only non-tr ivial  par t  of the lemm~ concerns the polynomial  co(z). 
If  z~(s) is not  re~l for  rea.1 s, then  [z~(s)] > e[s~7(s)[, e >  0 (see (2.3) in [2]), so 
#~ < 0 < 1 -- a. Since 

c~(~:) = C ( ~  - i F '  ] - I  (~  - i - a J  
k=l 

where {1, ,_, m~} = {k; S~ = 1 -- s}, we have eo(~) ~ 0 for real r, and the lemma is 

proved.  
We caI1 now state  the following result, parallel to Theorem 1.2.5 in [14]. 

Tia-EOI~E~{ 2.!.7. - Le t  P . ~ H o ( O )  and ~~ Then we have 

(2.L6) 

In  p~rticular 

max (@(~9, o(-- $o)) = max n+(2~ -- j + n+(~~ 
O~<~<m--1 

o(P) = max max  ~ t ( 2 ) l ( ~ -  j + n~+(2)). 
1~I=1 o < ~ < m - 1  

Pgoom - P u t  (9-- m~x 2~f(2~ i-/nj+(2~ ~nd let  /'o be a conic neigh- 
O<J~ m -  • 

borhood of 2 ~ such tha t  nj(2 ~ ---- nj(Fo) for every  j = 0 2 ..., m -- 1. Then we obtain 

_ - -  + + o 

for every  $ ~ • Po, if y112]~< s < Y~]2[, with yl and y~ suitable positive constants.  
Hence max  (e(P), @(-- ~o)) < 3. 

To prove  the  reverse inequali ty,  we m ay  assume 8 > 0 and proceed in the  same 
wa.y as in [14], considering the  improvement  we have  gdven b y  the  ~ssertiotl (v) of 
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Lemma 2.1.5. Thus for every conic neighborhood I" of t ~ we can find Puiseux series 
s(t)eR, t ( t)~ •  converging for small positive t, such tha t  s(t)~-cIt(t)]~(l+ o(1)) 
as t -+ 0+, c > 0, and P(~(t) -- is(t) 0) = 0. This proves max  (e(~o), ~(-- ~0)) > ($ and 

then  the  theorem. 

RE~AI~I~ 2.1.8. - The above theorem is un extension of Fehrman~s result we 

repor ted in Theorem 1.1.3 (i). In  fact  it  follows from (2.1.6) t ha t  

(2.1.7) ~ ( P ) < ~ <  1 if and only if ip,~(t_iO) I 

for every  t with It] > R, j----0, ..., m - - 1 .  

2.2. Construction o] the ]undamental solution 

To have simpler notat ions we shall write 9 ---- 9(P) and ~o = 1/9. 

L E ~ A  2.2.1. - Le t  P~ be in He(O) and M a compact  set in I'(P~, 0). Then 
there  exist positive constants c~, ~ and ~s such tha t  

[ P ( t -  is~)[>c~]s] ~ if r~]tle< Is[ < y2(Itl, ~ e M .  

Pl~ool~.-  P ~ e  He(0)  implies the  existence of a positive constant  V~. satisfying 

(2.2.D 

(see (2.1.1)). 

P~( t - -  i v )<CfP , ( t - -  iV)I if v e M  

Moreover, by  Lem m a  10.4.2 in [5] and (2.1.7) we obtain 

(2.2.2) ]QAt-  i v ) l < O j ( t -  iv)< Cltl<~-~)o/(~-~)P~(~ - iv),  if [tI>~l/y~, ~ e M .  

Hence,  f rom (2.2.1)-(2.2.2) we can find positive constants cl and ~,~ such tha t  

Ie( t  - gsV)l~ [em(t--  i8~])] (1-- C ~ IS[(i-m)/<l-q)ltl<m-J)Q/(1-Q) )>c118] m 

if y~]t]e< ]8] < Y2]t], for every  V in M. The lemma is proved. 

DEFINITIOlX" 2.2.2. -- A map t--> D~, f rom a topological space T to open sets 
in R ~ will be called inner continuous if, for every  toe T, any compact  par t  of /2t 
is contMned in Q~o when t is close enough to to. 

DEFINITION 2.2.3. -- A map t--~ M,, f rom a topological space T to compact  
sets in R n will be called outer  continuous if, for every  toe T, any  compact  neigh- 
borhoo4 of M 4 contains Mt when t is close enough to to. 

The family F ( P ~ ,  0), t e Rn\{0},  is inner continuous, ([2], [3]). 
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L E p t A  2.2.4. - Let  P.~ be in He  (0)~ M a compact  set in/ ' (Pm~0,0),  ~~ 
Then there exist a conic neighborhood F of ~o and positive constants 71, ~ and R 
such tha t  

P ( ~ - - i s O - - i t ~ ) ~ : O  if r l l $ [Q<s<7~t~ l ,  0~<t~<71[~[, S e F ,  [Sly>R, u e M .  

P ~ o o F . -  We may  assume tha t  I$ o] = 1 wi thout  loss of generality. Define 

J 

for (s, i, ~, $) e C ~+~ and ~ e M. B y  (~ Main Lemma )) in [3] and Theorem 2.10 in [2] 
we have 

(2.2.3) ](s, t, O, $; ~/) # 0 

if I res  Imt~>0, I m ( s  + t ) #  0, ~ real, ~, s, t small enough; 

on the other hand, from (2.1.7) we easily obtMn 

(2.2.~) /(s, o, r, $; ~) # o 

tlms] > ~]z[~-~ ~ ~ real, ~, s sufficiently small 

for some posit ive constant  y~. Let  us now prove 

(2.2.5) ](s, t, ~, ~; V) r 0 

if I m s I m t > O ,  [Ims[ > ?~1~[~-~, ~ real, ~ , s ,  t, ~ small enough .  

Since ](0, t, 0, 0; U) = p ~ ( $ o ~  tu ) = t~p~o(~) ~_ O(t~.§ as t ~ 0, we can factorize ] 
in the  following way:  

where F ( - - ;  ~) and 2,(--;  V) are analytic functions for small s, t, v, ~ with 
F ( 0 , 0 , 0 , 0 ; ~ ] ) = I ,  ~ ( 0 , 0 , 0 ; U ) = 0 ,  i = l , . . . , r .  F rom (2.2.3) we get 

Im3.,(s, -6 ~; ~) < 0 if I m s  > 0, ~ real, ~, s small enough 

for i : 1, ..~ r, while (2.2.4) yields 

Im/~(s,  v, ~; U)r 0 if I m s  > y~]v[~-e, ~ real, ~, s, ~ sufficiently small 
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for i - ~  1~ ..., r ;  hence by  continui ty 

](s,t ,~,~;~)r if Imt~>0, I m s >  ~,ll~ll-e 

under the above conditions on $, s~ t, ~. With  an application of the same argument  
to the reverse inequalities I m s  < -  y~l~l~-e and I m t < 0 ,  the proof of (2.2.5) may  
be completed. 

Choose a positive number s small enough an4 define K = {$eR~;  {~l-----1 and 
I$ -- ~~ s} in such a way to have from (2.2.5) tha t  there exists a positive constants },~ 
satisfying 

for every ~ in K. If  F - ~ ( ~ ;  ~ = ~ ,  ~ ) 0 ,  t e K } ,  t h e n  

. ~ ( ~ -  ~ o -  its) = P(I~I(~/I~I- isOll~!- itvll~l)) ~ o 

if Y~I~P< s < )'~l~'l and 0<t<~2[~l,  for every ~ e /~  with I~1 > 1/?~ and every V e M. 
This ends the proof. 

RE~[AR~; 2.2.5. -- Let  ~ -+ M~ be an outer continuous map, where M~ are compact 
sets in T'(P~, O) satisfying Mt~ ~ M~ wher t ~ 0. Then, by  the inner continui ty 
of the cones F ( P ~ ,  0), the property (2.2.5) and a finite covering of the unit  sphere, 
we can prove the existence of positive constants C~, C~ and R such tha t  

for every ~ e R ~ with I~1 > R, and 

We construct now a fundamentM solution for P(D) assuming, as usuM; tha t  
the principal part  P. ,E He (0). From the definition of ~ = ~(P) there exist positive 
constants cl and c~ satisfying 

P ( $ - -  iy(1 + t~l)q0) :~ 0 if cz< ~ < e~[~ll-q; 

thus we can defin% with a fixed y > c1~ 

(2.2.6) E(P, 0, ?, C; x) = (2~)-~( exp (ix.~) 
J P(~) 

A 

d~ 

where A = {~ ---- ~--  i?(1 + 1~1)~0; ~ e R-, I~1> o > (~]/(~2)1](1-Q)}; when iPmE t~yp (0) 
we can choose C-~ 0. 
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THEOREI~I 2.2.6. - Assume P , ,~  He(O). Then (2.2.6) defines an ul tradistr ibution 
E e ~(~'#(Rn), ~o = 1/@, b y  the correct interpretat ion 

(2.2.7) 
A 

Modulo entire analytic functions, E is a fundamenta l  solution of / ' (D) independent  
of y and C as long as these constants satisfy the  condition c~< y <  c~[~l~-o when 

I$l>C. 

PROOF. - Pu t t ing  M - =  {0) in Lemma 2.2.1 we have ]P(~)[~>C~>0 for every 
in A ; moreover,  b y  Theorem 1.2.2, ff ~ e ~D(*~ ~) for every L > 0 there is a positve 
constant  CL such tha t  

l~(-Ol<~=exp(-~lCU'~247 CeC~ 

with some A > 0 depending on ~0. Therefore, choosing J0 sufficiently large, we can 
easily prove the convergence of the  integral in (2.2.7). 

If  % - +  0 as j--> co in ~D(~~ then there exist A > 0 and for every L ~ 0 
posit ive constants C~-* 0 as j - *  co, satisfying 

hence (E, %) ~ 0, which proves E e ~('~ 
Obviously P(D)E --- ~ -~ h where 6 is the  Dirac measure ~n4 h the  entire func- 

t ion 

h(x) =- -- (2u)-*fexp ( ix .r162 Ao---- {$ -~ ~ -  i t (1  q- [~t)~ I~[< C} 
A0 

To show tha t  E(F, C ) -  E(F', C') is an entire analytic function first note tha t  
if C~< C, the  ul tradistr ibution defined b y  

(E(~/, C') - -  E (7 ,  C), q~) = (2z~)-. d e ,  ~ e ~(~.)(R~) , j r(r 
A~ 

where A I =  {$---- } - -  i~(1 ~-I}[)Q0; C~< [}1 < C}, has this proper ty ;  then it sui- 
rices to prove tha t  E(7, C ) -  E(F', C) has no analytic singularities when C is chosen 
as large as the  condition c~< sy + (1- -  s )y '<  c2]~[ 1-~ is satisfied for all 0 < s < l  
and } with ]}[~C. Define $~= } - -  i(s~ -~ (1- -  s )~ ' ) (1  Jr [}[)-~ [}[>C, 0 < s < l ;  
b y  Stokes'  theorem we have 

<~(~, c) - z(~', c), ~} = (2=)-- [ 
r G) 

]~[=c 

which defines an entire function. The proof is complete. 
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I~E~AtCK 2.2.7. -- Since the principal par t  20  is in He (0), it is locally hyperbolic, 
(see [2], [3]). By  choosing then, us it is always possible, an entire function ] such 
tha t  / ) (D)f  ~ h, E - -  f becomes a ~uudamental solution for P(D). 

In  [15] is proved the existence of a fundamenta l  solution for /)(D) in the space 
if)(~ where ~ = p / ( p - - 1 )  with p equal to the number of the real roots t of 
_P~(~ + tO), wheI1 ~ is not  parallel to 0. We improve then  this result, since ~ is gen- 
erally smaller than  # / ( # - - 1 ) < Z o  with # the same constant  of Lemm~ 2.1.1. 

In  [11] is considered ~ class of operators xP(D) satisfying 

t'($--isO) r 0 if A[~[a< s < Bi~[~, 0 in a open cone / '  

where/5 e [0, 1[, ~ e ]fl, 1[; for an operator/~(D) in this class is proved the existence 
of a f lmdamental  solution E e ~(~/~)' with E regular of class g(x/~} outside the dual  
cone F*. Theorems 2.2.6 and 2.3.1 show tha t  this result holds for ~-~ 1 too; 
furthermore our techniques may  be adapted to the general case. 

2.3. Propagation o] singularities. 

TB:EOICEI~ 2.3.1. -- Let (xo, ~o) e ~*(R ~) with Xo~ I '(P~o, 0)*. 
(Xo, ~o) r W~AE), that  is 

WF~(E) c U (Po~, 0)* x {~}; 
0r 

Then we have 

ia particular sing supp~(E) is contained in the wave front surface. 

PI~OOF. - From the definition of the dual cone we can find ~ o ~ p ( p ~ . ,  O) and 
a neighborhood U of xo such tha t  x . ~ ~  0 for every x e U. Let  K be a compact 
set in U ~nd {Z~} a sequence in ~(~~ satisfying 

(2.3.1) [D~§ , [~[<N = 1, 2, ... 

for every h > 0, with C~> 0 depending ou h, supp Z2c K. By  the property (2.3.1), 
for every B > 0 there is CB> 0 to get 

(2.3.2) 12~(0l< o~(o~x)~(1 + I~l) -~ exp ( -  BI$1"~o+ H~(Im$)) ,  $~ C ~ . 

Write Z~.~(x) = exp (-- ix.~) Z~(x), and consider 

a~ 

A 

We split the above integral into I ~  F ,  where in I ~ the integration is performed 
in {~ = w- -  iy(1 + Iwl)~0; Iw-- ~1 < siS1, e > 0} and in I ~ consequently. Then we 
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have, from (2.3.2), 

11~I< C~(CN)U(1 

where A > 0 depends on K and B is taken larger than  Ay(e/2) -~/~~ 
Let  us now estimate I ~ Choose a conic neighborhood F of ~o for which Lemma 2.2.4 

holds~ and let F~c 1" to satisfy 

w e t  i f ~ e l l  and Iw-~l<el$1.  

Then we have~ by Tarsky-Seidenberg lemma and Lemma 2.2.~, 

IP(w-iy(1 Jr iw[)~o-itlwlv~ Jr Iwlp, O<t<to  

for some positive constants C and to, a ~ Q, if ~ e 1"~ is large enough and [w -- ~t < el~l. 
Thus, by  Stokes' theorem, we can write I o =  lO(B)Jr iO(to), where the integration 
is performed in {~t= w - -  iy(1 Jr [wl)oO-- itlwlv~ Iw- ~[ = ~1~1, 0<t< to}  and iu 
{r w -  i~,(1 + iwl)~o- itolwlr Iw-  ~1<~1~1} respectively. We can estimate 
I~ ia the same way as I ~. For  what  concerns I~ ,note t ha t  there exists a positive 
constant  c such tha t  

P 

110(4)i < C~(C.~')N (1 Jr l~l)-~J exp [ -  BIw-- ~11/~~ Jr A>,(1 Jr I~1)~ o -  CtolWl] (1 Jr !wl)~d~ 

<c~(~lv)~(1 + lal)-~, a e S ,  a sufficiently large.  

The proof si complete. 

TEEORE~ 2.3.2. -- Let  (x ~ ~o) be in ~*(R~). Then (xo, $0) q~ WNO/e(~~ in- 
tending (Xo, ~o) ~ W~(~)(E) if @(~o) = 0. 

P~OOF. - Let  ~o be in 9(~) with ~(xo)r  0 and choose a conic neighborhood /~ 
of ~o satisfying @(1")= @(~"). Referiag to the arguments and the notations of the 
preceding proof, we have only to give a new estimste of I ~ First  assume ~(~o) > 0 

w ~(~~ [w])o)]O for 0 Lem-  and put r176 +1 D - ( 1 +  <t<x. 
ma 2.2.1, the definition of @(~o) and Tarsky-Seidenberg lemma imply 

IP($t)]> C(1 + ]wl) ~ if ~ e F1, ]w -- ~l < el~l, ~ large enough 

for all 0 < t < l  and some C >  0, a ~ Q. Again, by  Stokes' theorem, we can write 
I ~  I~ Jr 1~ where I~ m a y  be est imated in the same way as F ,  while for 
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every L > 0 there is a positive constant C~ to get 

IZo(~)l<c~ f e ~ p [ -  .Cl~- wl"~'+ A).,(1 q- I~1)o(~~ 

< e e x p -  " "(el~l~(~~ ~ e G ,  sufficiently large 

if L is suitably chosen. Finally, if @($o) ~ O, we easily obtain 

for some constants C > 0 and M, ending thus the proof. 
We are going now to give outer estimates for the wave front sets of E .  J. "When 

P ~ e  H y p  (0) we may  prove, b y  Lemma 2.2.1~ that  suppE(y,  0) is containe4 in the 
closed cone F(P~,  0)*; of course this proper ty  does not  hold for general P~  in He  (0), 
therefore we can only consider convolution with ultradistributions J which have 
compact  support.  

THEOI~E~ 2.3.3. -- Let i < ~<~0= I/9(P), ~x<~<oo; then we have 

WF(~)(E * [) c {(~v q- y, ~) e T*(R");  x e F ( P ~ ,  0)*, (y, ~) e W.~(1]~(~))(] ) 

if 1/~o(~)<x, (y, ~) e WF(~.)(]) if 1/~(~) > n}, 

W F { ~ } ( E , / ) c  {(x + y, ~) e T*(R");  x e F ( P . ~ ,  0)*, (y, ~) e WFO/~(~))(]) 

if I / e ($ )Kz  , (y,$)eWF{~}(]) if 1 / O ( ~ ) > x } ,  / e  g{~d'; 

WF(~)(E * J) c {@ -}- y, ~) e T*(R~); x e F ( P ~ ,  0)*, (y, ~) e WFO/e(~))(]) 

if ~/e(~) < ~, (y, ~) e w~(~)(/) if 1 / e ( ~ ) > . } ,  

W~{~}(B * l) c {(z + y, ~) e ~.*(R-); z z P ( P ~ ,  0)*, (y, ~) e w~v(.o(~))(/) 

if ~ <  1/e(~)<~ , (y, $) e WF{'q(J) if 1/~(~) > ~, 

(y, ~) e W~{I/e(~)}(] ) if 1/~($) = x~}, j ~ g{,,d', 

] e g(~)' ; 

P~ooF. - The result follows from a simple application of Theorems 1.2.5, 2.3.1, 
2.3.2. 

COR0~.LA~u 2.3.4. -- Under  the hypotheses of Theorem 2.3.3 we have:  

(i) assume tha t  the fiber WF..(J)I~ = r for ~ <  1/q(~) and tha t  WF0/~(~))(/)I~ = r 
for u> l / e (~ ) ,  ~ e R ' \ { 0 } ;  then W ~ . ~ ( E ,  ] ) =  r tha t  is, E .  l e  g* ' ;  

(ii) assume that W~(~)(])I~-= r (resp. WF{'}(J)I~= r for u<l /~(~)  (resp. 
~ <  1/~(~)) and tha t  WZ(1/~(~))(] ) ]~ = r if u >  1/e(~ ) (resp. ~>~ 1/~(~)); than WF(~)(E. ]) = r 
(resp. W_F{~}(E. ]) = r tha t  is, E .  ] e ~  (~)' (resp. E .  Je~{~}'). 

Here  WE(~176 ])-----r if WF(~)(])I~= r for Q(~)= 0 and W~(1/q(~))(J)b=- r for 
e(~) > o, ~ e R%{o}. 
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3. - Operators with constant eoeflleient principal part. 

3.1. Construction o/ a parametrix. 

In this section we shall construct a left  pa ramet r ix  for differential operators 
P(x, D) = P,~(D) + Q(x, D), where P~ is in He (0) and the coefficients of the lower 
order pa r t  Q are in g{~'}. We begin by  introducing some notat ions which extend in 
an obvious way those of the  foregoing chapter.  

Le t  ~o~ R~\{0};  we define 

n;(~ ~ = sup ~ t ( P ( x ,  .); ~~ 
Xo~R n 

and remark,  al though this will not  be used in the following, tha t  employing Tarsky- 
Seidenberg lemma one m a y  prove tha t  such a SUloremum is really at tained.  Fur ther -  
more set 

n~(P) = max nj(~) 
I~1 =1 

~(~o) = rain (m--j-~-nj(~~ ~ 

~o = min ~(~) 

with ~(~o) = + oo if n,($ ~ = 0 j = 0, ..., m - - 1 .  
I f  this is the  case, i.e. ~(~)---- + c~ for every  ~ in R~\{0},  then  the  operator  

P(x,  D) is hyperbolic-ell iptic (with respect to the  direction 0) for every  fixed x; 
moreover,  it  is of constant  strength,  [ 5 ] .  

We denote,  as in the  section 2.1, with a(~ ~ the  degree os the  Ioealizatio~ P ~ o ,  
and # = m~ax a(~); then  f rom (2.1.3) it  follows tha t  ~(~o) depends only on the  terms 
os degree str ict ly greater  than  m -  a(~ ~ and, in view of the fact  t ha t  no will give 
the class of ul tradistr ibutions of the  parametr ix ,  we can say tha t  such a class is stable 
under  9ertm.ba.tions oI operators of degree less or equal t han  m -  #. Again, f rom 
(2.1.3) and the  definition of ~(~~ it  follows 

~(p)> a(~o)/(a(~)- : 0 ~o>~/(~- 1); 

moreover  if one knows 1 = 4egQ these estimates m a y  be improved:  

(see e.g. [10], Theorem 19). 
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We are going now to write the  lower order pa r t  Q(x, D) in such a way  to muke  

easier the  use of Fourier  t ransform.  For  this, set 

Vr = {p(~)e C[~]; p(~) is homogeneous of degree j and  

n+(P,,~-~ p; ~])<n~(u) for every  ~ in R~\{O}} .  

V~ is a finite dimensional  vector  space;  r emark  t ha t  if ~o = �9 c~ then  the  hypothesis  

n+(P~ ~ P;  V)< n~(v), for every  U in R~\{O}, is equivalent  to the  request  p weaker  
t h a n  P , , .  Clearly Q~(x, .) e V~ for every x. Le t  {p~} be a b u s e  of the  finite dimen- 

sional vector  sp~ce V(P) = Vo ~ ... ~- V~_~; we m a y  suppose it us set up b y  homo-  

geneous elements.  
Le t  n~ be a n u m b e r  > 1 and  suppose the  coefficients of Q(x, D) are in g{~}; t hen  

we have :  

LE~v~A 3.1.1. - Under  the  preceding hypothesis  and  notat ions  me m a y  write 

~o reove r ,  if the  coefficients of Q(x, D) have  compact  supports ,  the  same is t rue  

for {q~}. 

I n  the  following we shall a lways assume 

1 < ~ , < ~ o  if U o < - ] - ~ 1 7 6  or l < a , < q - -  oo if x o =  q - ~ 1 7 6  

and work out  the  construct ion of the  pa rame t r ix  for the  case {q~} c II){~'}: in the  

nex t  section the  hypothesis  el compactness  of the  supports  will be  easily removed.  
We  denote H ,  ~ {x; x.O > --  s}, e > O. Le t  v ~ g{"}', suppv  c H~, ~o ~ ~{~'}, and 

define 

where 

A 

~1,... ,~'~ 

Eo(V)(0 = _ _ 1  ~(~) 
P~(~) 

(_1)~/2~)_~ ~ 1 f ~ ,  �9 ~ ( ~ )  d~l ... d~,q~l(~l)~ ( ~ _  ~1) ... 
Az(~) 

psz 
�9 .. ~ , , ( ~ ' ) ~ - ~  ( ~ -  ~ _  . . . -  ~ , ) ~ ( ~ -  ~ _  . . . -  ~,) 
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S e A ,  I = 1 , 2 , . . . ~  with 

&(~) = l(~ , . . . ,  r ~/ + + l~l) "~'o, I~-  . . . -  ~'l> 

h=1 

where ~ = ~ - - @ ( 1  @ [~t)~/~'~ a >  0, 1 = 1, 2, ..., denoting by Co a constant  such 
tha t  P ~ ( ~ -  itO) :/: 0 i~ 0 < t < Co~[~[- 

The i terat ion of the func~ionals {Ez} will yield another sequence {Rz} such tha t  

(3.1.1) E~(P~ u) -~ --  E~_~(Qu) + R~(u) l = 1, 2, . . . ,  

defined by 

where 

~(v)(~) = 

f A ( ~ ( v ) , ~ }  - (~ ) -~  _~(v)(r  g)a~ z = ~, ,o, . . . ,  

A 

f pi  
~1 d~ q~t~ ) ~ ( g - ~ )  

P,.(r 
AO(r 

. . .  [ I h ~ 21 ~ l _ _  

A~(~) = ~1, 

' ]} f ~ - n ~ - . . . - n ~ l < e o [ r 0  + i~l)'~~ a Z (~ + ltJ) "'' �9 
h = l  

We sh~ll aow prove tha t  

(3. I. ~ ) ~ : _  PJ , , .  Ck) j 

with y > i and for some positive constants 2, s, where ~ c A ,  (~1, ..., ~)eAT:(r 

and 1 < z 1 < : ~ o <  @ ~ .  
In  fact  

h = l  

{[ ' ? } 
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denot ing ~ = degp  ~. Since n~(P)-  [ m -  ~ § n~(P)]no~<0,  we get  

~] y - 7 / b  
J~<.C r if Ir + . . . +  I~1<1~1 �9 

Fur the rmore  

J~ ~C {~2 -a [aV-ra+a-n~'(-P)h__~ 1 (1 § l~hl)llul] v-m '-i- a4-('c'c1-1)~'~'('P)} ~ Ca-:'~-a 

if I~1 + ... + In~l > 1r 

pu t t ing  a ---- m i n  (m -- i -- n,(P)(u~-- 1)), 2 ---- rain (m --  v - -  a § n~(P)); since 
0 ~ J ~ < m - - 1  

z o n e ( P ) - - m  § v--n~(P)<~O and z~<  ~o it  follows t h a t  a and  2 are > 0. 
We can now s ta te  the  ma in  result  of this section. 

co A 

TII:E01~EI~ 3.1.2. -- Le t  1 < ~ <  ~o-<§ oo, {q~}c ~C~}. Then the  series ~ .E~(v), 
co  ~ A t I = O  

~, R~(v) converge in A to E(v), R(v) respect ively  defining then  two ultradistribu~ions 
1 = 1  

E(v), R(v) b y  

<E(v),~> = (2~1-~ ~(--~) (r <R(v),~> = (2~1- ~(--r162162 
A A 

for v e 8{~}', suppv  e H~, ~ e ~{~}. 
Fur the rmore  we have  

(3.1.3) E(Pv) ---- v § h(v) § R(v) 

where h(v)(x)=- (2n)-~fexp (ix'$)~(~)d~ is an entire function,  
A o 

More precisely we get the  following est imates  (4), for v e 8 {~'}', supp v c  H~: 

(3.1.4) 

(3.1.5) 

- ~  CL 
[E(v)(~)l< ~ exp [LI$I1/~I § ~y(1 § 121)x/~~ for every  /5 > 0 

[R(v)(~)l< ~ e x p  [ - -  Mt$I1/~'~§ e7(1 § [~1)1/~0] for some M > 0 

which hold t rue  for $ e A and y greater  t han  some constant  yo depending on P and  a. 
The rest  R is regularizing, i.e. R(v)e ~,~1}. 

(4) l / s 0  = 0 i f  ~0 = § oo .  
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P~oo~. - We begin with proving (3.1.4). By  Theorem 1.2.2 there  exist  positive 
constants  C~, M, B and for every  L a constant  C~ such tha t  

(3.1.6) 

(3.1.7) 

Iq~(~)l < C exp I -  MI~I ~/'~' + Bllm ~'1] 

for every  ~ in C ~, suppv c K.  F ro m  (3.1.2), for ~ c A, we get 

-+-aB ~ (1 -~ lv/;l>l/~] exp [.LI~-- r]~--...--,'l~/~l Jr- .~(,(1 -~-[~1)'/~o+ 
j = l  

+ o  + 
J = l  

Choosing now L < M/4 and fixing once for all 0 < a < M/4(B + s), 

!E/~)(r < O(C~ Cy-~) ~ Ip,~(~.)l C~ exp [LI~i11 ~, + ~,(I + I~I)~'] 

t = 1, 2, ..., ~ A ,  and this permi t  us to get the convergence of the  series for y large 
enough. Then E(v) satisfies the  following estimate,  for every  positive L:  

CL ]E(v)(~)t < ~ e x p  ELI~I 'j'a -~- ~y(1 -I- I~I)'~03 ~'eA. 

The convergence of the  integral  defining (E(v), of} is therefore  obvious, since 

A 

for every  L and constants Q ,  D1, D~ depending on ~; it is then  sufficient to take 
L < D~. The cont inui ty  of the funct ional  E(v) m a y  be seen as in Theorem 2.2.6. 

The proof of (3.1.5) is r a the r  similar to tha t  of (3.1.4); in fact  we hay% with 

the  same constants above used, 

Af(r 

] 
j = l  ~=1 

�9 exp + + X;J)I  o + )] 
$=1 

for ~ A .  
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From the definition of the domain of integration i t  results 

+ a 5 (1 + 2 
" j = l  j = l  

and from here we infer, with easy calculations, 

R,(v)(~)I < C(C1Cy-~) ~ CL ~ e x p  [-- MIni 1/~, -~ zy(1 -+- I~l)~/~.], 

e A, for a new positive c o n s t a n t  M, where we have chosen L sufficiently small. 
Therefore, for every y large enough to assure the convergence of the series, we 

get (3.1.5). 
The functional R(v) is well-defined and continuous arguing as above, and then 

results an ultradistr ibution of c]ass 9) {~}'. 
To prove the regulari ty of the rest R, let ~ be in ff){'~}, ~ in R~; so 

I~R(v)(~)l < ~  C ~'~,~(~)! | 1  exp [-- M[~[ll~'--A[~--O[1/u:--~ BT(1 + I~[)l/g~ 

A 

for some positive constants M, A, B. This gives, put t ing for instance D ---- min (M, A) 

A 

and so we h a v e  W2%,~)(R(v) )  = r 
Since the equali ty (3.1.3) is an obvious consequence of (3.1.1), the theorem is 

completely proved. 

I~E~A~K 3 . 1 . 3 . -  When ~1< ~o = + co the proof of Theorem 3.1.3 could be 
made simpler, since then  it is not  necessary to consider complex variables ~J, 
] ----- 2, ..., l: actually one can take  a ---- 0 and use the estimate 

�9 i70) (3.1.s) p ~ r ( ~ -  < c 7  -~ 1 < 7 <  c~l~l 

instead of (3.1.2). This follows from what above observed about the spaces Vj 
if Zo= + co. 

The case ul-~ ~o = + co is not  t reated in the theorem; if this happens we get 
the following estimates of polynomial kind: 

==~ C (1 + I~1)~ for some N > 0 (3.2.4)' IE(v)(~--i~O)[< IP~(~--irO)l 

~ -  C~ (1 + I~])-~ for every N > 0 (3.1.5)' [R(v)(~--iyO)[< ]p~(~_i70) I 

with ~ real s~ficiently large. 
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Since (3 .1 .4 / i s  quite clear we t race only a sketch of the proof of (3.1.5)', which 
is slightly different f rom the  preceding one. In  the  case we are, the elements of the 
sequence defining the  rest  take  the form 

i~-~-.. .-~l<C.r 

for v ~ g', [~i > Coy. We split the  integral  into the stun /1 + I2, where in /1 sup- 
pose [~1 < el~l/(l- 1), for every  j = 1, ..., l -  1, and I~ consequently.  F ro m  Paley- 
Wiener theorem and the  fact  t ha t  in I~ there  exists a t  least an h, l < h < / - - 1 ,  

such tha t  t~:~[ > ciVil(l-1) we obtain 

1 
II2 I< CN(C~]--I) / [Pm(~ - -  i~]O) t (1  - ~  I~[)  -~g 

for [~l > Coy. A similar est imate holds for I~, since in this case [~z] > (1/2--  e)l~ i 
for I~l large enough. So we have (3.1.5)' summing up with respect to I. 

Final ly  the  regular i ty  of the  rest, in this case of class C ~, is clearly a conse- 

quence of (3.1.5)'. 
We want  now to show tha t  the funct ional  E has a kernel E(x, y)e ~("}'(R- • H~), [8]. 

THEOt~E3~ 3.1.4. -- Le t  1 < ~1 < Uo < -i- ~ or 1 < g I < -@ C~ if ~o = ~- c~. Then E 
is a continuous funct ional  f rom ~{~'}(H~) to 9(~}'(I1 ") with range contained in 

~(~,}(R'). 

P R O O F . -  Consider for the  m o m e n t  the  case 1 < h~l< ~0< "~  OO and t ake  
v e 9~'}(H~), s u p p v  c K,  wi th  K compac t  subset  of H~; then  there  exist  posi t ive  

constants  L, C so t h a t  

(3.1.9) I~(r < c exp [ -  51r +/~K(Im0] ~ e C - ,  

If  we take  ~" in A then 

f f C(C~Ca-~7-~) ~ ~ d~#.o, d~ ~" [~,(v)(Oi< 1 

�9 e ~ p  [ -  ~ :~ I ~ q ~ / ~ +  ~ B  ~; (1 + j~i)~/~, �9 
J=l j=l 

i 

' , ~=1 
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since I~ -- Vl-- . . . -  ~]z[1/<> [~[1/~,_ i~1[,/<_ ... [~111/.,, choosing eventual ly  a smaller L 

in (3.1.9) to get L < M/4, we have  

---- t 
IZ~(v) (01<  IP,~(O I 

for ~ in A, and, if y is sufficiently large, 

iE(v)(0i < C 

B y  following the lines of the proof of Theorem 3.1.2 when was showed the  regular i ty  
of the rest, one immediate ly  sees tha t  E(v)~ g{~}(R ~) if v e D{~}(H~). 

The cont inui ty  is obtained in quite a s tandard way:  let  {vj} c ~{~}(H~) be a 
sequence converging to 0 in the  topology of this space; then  there  exist a constant  L, 
a sequence {Cr Cj-+ 0, a compact  subset K of H~ such tha t  

I~(r < G~ exp E-  m[r247 H~(Imr ~ e c ~ ,  j = 1, 2, . . . .  

Jus t  as above one can easily obtain 

IE(vj)(0] < CC;~ exp E- L'I~/]/~ § ~ ( 1  § I~])1/~0] 

for a suitable constant  Z'.  If  now ~ e ~{,1} we get 

[<E(vJ), q~>l < cCjfexp [-- L'I~I~/~.,-F ~r(z + I~t) "~o- DI~I1/~'-F Fy(1 § i@ ,~o3 a~ 
A 

for positive constants D and F ;  then  (E(vj), ~> ---> O. 
We leave to the reader  the  case ~ 1 < ~ =  §  finally, if z l = z 0 =  § oo, in 

A 

the  formula defining E~(v) we perform the integrat ion at  first where [~Jl<e]~[/1, 
for every  j =1 , . . . ,1 ,  so [ $ -  ~ 1  . . . -  ~ ; q > ( 1 -  e)]~[, and then in the remaining 
region, where there  will be an h, l < h < l ,  such tha t  [~;~] > e[~]/l holds t rue ;  Paley-  
Wiener theorem and (3.1.8) allow us to reach the thesis. Also in this case cont inui ty  
is as easy to prove as in the former  ones. 

3.2..Propagation o] singularities. 

The aim of this section is to extend the results on propagat ion of singularities 
achieved in the previous chapter  to operators with variable coefficients. The 
methods of proof will be then  similar, al though we need a more precise s tudy for 
the  zeros of the principal par t  of the polynomial  (see Lemma 3.2.4) and it  will be 
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requested a careful analysis of the sequence defining the paramet r ix  we set up. 
The following theorem will be the  main  result :  

THEO~.~[ 3.2.1. - Le t  .p(x, D) = .P,~(D) -~- Q(x, D), .P~,~ in He  (0), Q(x, D) with 
eoofficients {q~} of class g(~l}. Let  fnr ther  u be a solution os the  equat ion .p(x, D)u  = ], 
with u and ] in ff)~}' with support  contained in /to (~); l < z ~ < ~ o  if ~ o < +  c~, 
1 < ~ 1 < + o o .  if ~ o = + o o  Then we have 

WF<,~(u) c ((x + y, $) ~ T*(R-) ;  x e F(.P,~,  0)*, (y, $) e WF(~(~))(/) 

if ~(~)<x,  or (y, ~) e WF<~}(]) if ~(~) > ~}. 

WF~}(u) c {(x + y, ~) ~ ~'*(R"); x ~ F ( . p ~ ,  0)*, (y, $) e WF(~(~))(/) 

ff ~(~)<z,  or (y, ~) e W ~ } ( / )  ff z($) > ~ ) .  

I t  will be not  restr ict ive to establish this theorem under  the hypotheses of compact-  
ness of the  supports of the  coefficients {qj} and of the solution u (and then  of ]). 
In  fact  let  q)~ fl)(~}, ~b ~ 1 ia a ne ighborhood of suppu ;  then  

[.P~(D) + CQ(x, 9 ) ]  u = ] 

and now the coefficients have compact  supports.  For  what  concerns the solution, 

let us suppose u c ~ } '  and 

_P(x, D) u = ] ,  supp u c H 

where ] e  ~)(~*}' and the  coefficients qj~ ~<~}. Set 

Th = [hO -- F( t~ . ,  0)*] c3 Ho h = 1, 2, ... 

and let  {~oh) c ID <~1} be a family  of fmlctions identically equal to  one in a neighbor- 

hood of Y;~, suppq~(~ HoC T~+~. Now {q~u}c ~(~}' and 

.p(x, D)(cphu) --  % ]  -]- )r h = 1, 2, ... 

with /~e S{~1}', supp/~c T~+I\T~. Cutting the  coefficients as above we are t h en  under  
the  hypotheses  to app]y Theorem 3.2.1 in the  case when all supports are compact,  

f rom which, sett ing 

w,,  = {(z, ~) e i '* (R~) ;  z e T,~} 
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we deduce 

WF(u) = U (w~ a WF<A% u) ) c 
h 

c {(x q- y, ~e) e IP*(R-); (x, ~e) e F ( P ~ ,  0)*, (y, ~) e W_F(~(~))(]) if 

From what  precedes we can remark that~ as regards the propagation of singularities 
of the solution u, it is sufficient to assume sing supp{~,}uc/7o instead of suppuc / t0 .  

The proof of the theorem, where we shall consider He in place of / to,  will be 
achieved by studying the wave front set of the kernel E(x, y); we shall found that 
such a kernel is in ~('o)'(R~xH~), 

sing supp{,.,}E(z, y) c {(x, y) a R - •  x -  y ~ F ( P ~ ,  0)*} 

(see Theorem 3.2.5). This assumed, the restriction to the case in which only the 
supports of the coefficients q~ are compact may  be seen also in the following way. 
Le t  g r 8(~~ Z -  1 in a neighborhood of sing supp(~.}E(x, y), 

supp Z c sing supp{~}E(x, y) -{- {[(a, y ) l<r} ,  

r small, and split 

/~ = Z.E -~- (1-- Z) E .  

The second term yields a regularizing operator, while for the first the project ion/ /1:  
supp zE(x,  y) -+ R 5 II~(x, y) = x, is proper. This permits to extend the functional 
associated to ZE(x, y) to the space 9)(~)'(H~). 

As already said, in the proof of Theorem 3.2.1 will be needed some informations 
on the zeros of the principal part  P~,  which we are going now to establish. 

LEPTA 3.2.2. - Let  ~~ uoeF(P~,,~0,0). Then there exist positive con- 
stants ~, to, R and a conic neighborhood /~ of ~o such tha t  

(3.2.1) P ~ ( ~ -  i o -  itI~[~) ~ 0 

if o<t<t0,  [ n _ v o [ <  ~, ~ e r ,  [~[>R. 

P~oo~'. - Assume [$ el = 1; since the polynomial p~(~o + ~) defines, as a func- 
t ion of $, a locally hyperbolic function, the (( main Lcmma )> in [3] yields 

(3.2.2) p~(~o + ~ _ isO -- its) # 0 
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for every  ~t i~ a fixed compact  subset 2)/ of _F(P,,~o, 0), ~ e R  ~) ]~[, t, s all bounded  
i t e m  above by  a constant  to, t~>O, s > O. B y  homogenei ty  then  there  exists a conic 
neighborhood /" of ~o such t ha t  

if ~ f f ~  l~l>l/to~ 0 < t < t o ,  ~ M, which proves (3.2.1). 

Ln~-~[~ 3.2.3. - Le~ }~ R~\{0},  ~l~ P(P~o, 0). Then there  exists positive con- 
stants to, R and a conic neighborhood / '  of }~ so t h a t  

(3.2.3) 

(3.2.~) 

P~(~- iO- itl~b o) < CIP~(~- iO- itl~b~ 
P.~(~/t[~i- io/t[~ I - iv~ ] - io / t [~ l -  i~7~ 

if tl~ I > 0, for some constant  C. Here  and in the  following we denote with the  same 
letters constants  or neighborhoods maybe  different. 

P~oom - Le t  Q be a posit ive number  such that 0 + @~oep(p~, 0). If  t i l l<@ 
then  0 + t]~l~ ~ varies in ~ compact  pa r t  of F(P~, 0); and since P.~ is hyperbolic- 

elliptic with respect  to every  direction of such ~ cone we get 

p.(~  + ~ e ~ - -  ~(0 + till ,~ ~m~)) ~ 0 

for z~  C "~ sufficiently small, ~ in R" large enough. This proves (3.2.3) when 
tt}l<@, in view of Lemma  l l . I A  in [5]. 

If  now ~ to, ~ have the  same meaning as in Lem m a  3.2.2, we choose a cone 
P~cF in a way tha t  ~ +  I~lv~P if ~ e / ' ~ ,  0 < ] v [ < t o &  Then (3.2.1) gives 

+ ,1 1 + 0 

if ~T'~ ,  I~I>~R/(1- to~), o < t < t 0 ( 1 -  to~). Again by  Lem m a  11.1.4 in [5] we have 

~ '  io)I. - ,P~ ( ~ -  itt#I~ o -  <[r  io itI~b~ 

under  th~ above con.ditions and t[~[ > 0, concluding the  proof of (3.2.3). Multiplying 
this last inequal i ty  by  (t]~[) bI-'~ and summing up with respect to zr we reach (3.2.4). 

Wi th  the  help of the  results just  obta ined one can deduce the  following lemma, 
the  proof of which, quite analogous to tha t  of Lemma 2.4.2 in [14], is skipped away. 

L]~{IVL~ 3.2.4. - Le t  ~o ~ R ~ { 0 } ,  ~o~ p ( p ~ . ,  0), v = d e g p t  Then  there  exist 

positive constants  to, B, C and a conic neighborhood / '  of ~o such t h a t  

Z v -  ( + l~:IF~~176 ) < 

for ~ ~ l ,  i~l > :~r(1 + lal) ~'~o, ~,>~, o<t<to .  
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T . ~ o ~ ) ~  3.2.5. - W~'<~(E(x, y)) c {(x, y; $ , -  ~) e ~?*(R~); x -- y e r ( P ~  0)*}. 

P a o o ~ . -  We shall achieve the proof of this theorem under the hypothesis 
1 < ~ <  go< ~-oo; the remaining cases may be treated with variants analogous 
to those pointed out in the preceding section. 

We begin by  proving that if (xo, yo ;~%~)eT*(R  ~) and ~or then 
(Xo~ Y0; $o, V~) ~ WE{~)(E(m~ y)). In fact let /~ be a conic neighborhood of ($~ ~7 ~) 
in R ~ \ { 0 )  such that 

for some positive constant c. Let ~ e  ~("), W e O{")(H,), ~(Xo)r 0, W(Yo)V= 0 and~ 
($, ~)e/~;  from (3.1.4) and Theorem 1.2.2 we get then 

A 
[ ~ E ( x ,  y)($, n)l < 

< O f e x p  [- D)8 
A 

with ~ ---- w -  iy(1 q- Iw])~/'~ for suitable positive constnnts C, D~ D~, ~. We m~y 
assume D ~ F,  and written D - ~  A - } - B  we obtain 

then 

A 
lq~fE( x, Y)(5, V)I < 

< C exp [(B - -  AC:)(I~} x/z~ -~ Ivtl[~l)]; 

A 

exp [ - -  2B lw I ~/~ --l- (.D~ q- e)y( l  -I-- lwl) 11~~ d~. 

Choosing B < DC~/(1 + r we conclude this first part of the proof: the fibers in 
the wave front set are similar to those of the kernel of a convolution operator. 

The statement on the base of the wave front set is essentially inspired to [1], 
as we have Mre~dy emphasized. Let ~~ (Xo,Yo)~R~• such that  
xo--yo~P(P.~o, 0)*; then there will exist ~~ F ( P ~ o ,  0)~and open neighborhoods U, 
V in R ~ of xo~ Yo respectively (V c H~) such that  

(3.2.5) ( x - - y ) .~~  x e U ,  y e V .  

Let again ~ y~ be two functions of class ~(~'), but  with supports containe4 ia U~ V 
respectively, ~(Xo) =/: 0, ~(Yo) r 0. Put  yJ,(y) ---- exp [-- iy.~] ~(y); then 

A 2~ -~f  A~ q~vE( x, Y)(~, ~7) = ( ) qJ~ -- ~) 
,# 

A 
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Split now Z = / 1 +  I~, where i~ 11 we perform the integration in the  region 
{~ = w- -  @(1 q- [wl)'",0 cA; l w -  ~1 > Ol~l}, ~> o small enough, and in I ,  con- 
sequently. An est imate of I~ is achieved at once: in *act there will exist positive 
constants D = A -{- B~ D1 depending on ~o such tha t  

I_r,[ < c' exp [ -  A(al~i)'~'-F - Bi~l~/~:Jfexp [-- BI l l  ""' + ~(D, + e)(1 + Iwl).~.~ , ~  
A 

with (~, ~) in a suitable conic neighborhood F of (~o, _ ~o) such tha t  [(~, ~)l<c'[~[ 
if (~, ~) e/~, e' > O. Choosing now B < A~ 1/~ we get 

l& l  < (7 exp [ -  B j ~ I ' ~ " , ] .  

As to l~, remark thn t  if I~i is sufficiently large the regio~ o~ integration becomes 
{w -- i t (1 + lw])u~~ lw -- ~[ < ~l~l} c A; split again 12 = I~  + I~, where explicitly 

2 z f z=o ~ ...... ~', -P,,,(Q 
I~'-~1<~1~1 

f A~(r 
x ~-~ ( ; -  . . . -  ... 

with 

A 

I,~- ~1<,~1~1 

A~'(~) i (~ "1, ..., = = ~') e A , (~ ) ;  ~J w j + in (1  + i~;i).~.,o, Z (1 + iw~l).~,> (al#l) ,~, 
j = l  

1 -~ 1~ 2~ ...~ and 

f A 
z o = ( 2 ~ ) - -  r  - C ) E o , p , ( r 1 6 2  

consequer~tly. I f  M is the constant  ia (3.1.6) then 

which yields, for constants D, D~ depending on 

O exp [(-- M(~lz~'t4 + D)l~[1/'*jfexp [-- Dlwl'~*+ (D1 + ~)~(1 + Iwl) '/~o] dw; 

if we suppose now D < M6~/~/4, we can est imate I ~ as I1. 
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We pass then  to I~. If l~[ > C = C(y, (3), the region of integration of the set 

of variables ~, ..., ~ in the 1-th term of the series defining Eo~V,($) is actually given 
1 

only by  the inequali ty ~ (1-l-lw~[)~/~'<(c~[~[) ~/~', since 
5=1 

y (1 -t- Iwl ""~ + a ~ (1 + I~1)1~"') <~(1 + (1 + ~)l~t)lZ~~ a(~l~l)'~'~< 
h=l 

< 2 )1 1< 

A 

Our aim is now to define Eo ~, on the manifold 

{~t---- W-- i~)(1 + [w])l/u~ itlwl~O; 0< t< t0 ,  IW-- ~[ < ~I}l}; 

to control the quotients p~/P~ we shall make use of Lemma 3.2.4. Therefore let F 
be as in such lemma, / ' ~ c F ~ c / '  conic neighborhoods of }o with the ~ollowing 
properties: 

(3.2.6) 

(3.2.7) i~ [vl<~lw[/(~-t), weI'~ t h e n w + v e P .  

This settled, it  is easy to see tha t  

(3.2.s) P~-~ ~)l ($~- ~ - . . . -  = 

~m(W--h~l$/)h--~[~2(1 -~ ]w,)l]g~ ~ (1 -[-twh])lu/1]O--itlw]~ O) ~.~C~-I 
h=l 

for O<t<t~, ~ F I ,  I~[ ~ C~(y, ~o), ~j in the ~bove sgecified region, C : C(~~176 
! 

for simplicity of notations in the following we shall write to instead of t o. From 
(3.2.1) and (3.2.8) we deduce 

(3.2.9) ]~(~--~t)E~ y(D~+ e)(l + Iwl)~/~.] 

of O<t<to, $~F1 and y > C~(~ o, ~o); this last condition is needed to get the con- 

vergence of the series defining Eo~(~t) .  By Stokes' theorem we can write 
is _o_ io(to) _}_ iO(B), meaning 

f - -  

O[ A 

lw-~l<~l~l 

f I~(B) = (2~) -~ ~(~ --  ~ , ) E"~ ( r  

1~-~1=~1~1 O~t~to 
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From (3.2.9) then, for some constant  D ' >  O, 

since this is obvious as far as it  concerns I~ while in the region of integration 
of I~ it  results I~--~, . l>a ' l~l ,  a' a suitable positive constant. 

The proof is not  ye t  complete, because the inequali ty (3.2.9) has been reached 
only for values of y sufficiently large; therefore we must  check tha t  such a change 
of the pa th  of integration A does not  compromise the estimates given for I .  

Let  then  1 < y0<  Yl and under the condition ]w--~[ < ~[~[ consider the pa th  
~ , =  w - - i ( r o @ s @ t - - ? o ) ) ( 1  ~-[w[)~/~'~ 0 < s < l .  Arguing as we did i~x the first 
par t  of the proof of (3.1.2) we get 

I P j ~1__ ~)  

if yl(1-4-[wt)~l~~ Coliwl, i.e. for sufficiently large valnes of I~1 (remember t ha t  
I w -  ~l < ~l~[)- For  such values of [~l 

- -  ,L)E~162 - r  L)  ,o ~ < 

Iw-~ ai~I Iw-q<qq 
/, 

3 {~-q=qq 
0~<s~<l 

< C  f exp [ - -Dl~- -wl~ /~@ 71(D1@ e)(1 -t- Iw])~/~.] fl$~l<Cexp[--D't~tl/z.]. 
Iw-~i=al~l 

O<s~<l 

This proves tha t  the choice y > C~(~ e, ~o) in (3.2.9) is not  restrictive and moreover 
we have 

E(x, y; Yl) -- E(x, y; Yo) e g~'a(R" • H~) 

taking into accotmt the former estimates. The theorem is now completely proved. 

Wi th  the help of the proof of Theorem 3.2.5 we can now prove another result 
of regularity. 

TgEO~E~r 3.2.6. - Under the hypotheses of Theorem 3.2.1, 

(xo, yo~ ~o, _ ~o) r wr(.(~o))(~(x, y)) for (Xo, yo) e R~- ,  ~oe R . \ { o } .  

P~ooF. - Suppose l < n l < n o < + C %  since if n o =  + o o  there is nothing to 
show. Let  U, V be neighborhoods in R n of Xo, Yo respectively, V c H ~ ,  and 
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e ~){~~ V e ~{"}(V), ~(Xo) v e 0, V(Yo) :/: 0. Looking back to the proof of the 
preceding theorem one sees tha t  the condition about the base of the wave front 
set has been obtained by the suitable choice of two neighborhoods of xo, Yo, for 
which held Xo--yo~F(P~#~0,0)*, but  this was needed only when we took I ~ into 
account. Then it is now sufficient to give an estimate of this term only, without  
any hypothesis on the base, since all the other integrals deereuse exponentially 

with I~1 lz~''. 
Consider the pa th  

~ t =  w - -  iy[(1 + Iw[)~/*~ - t((1 -F [w]) '/~('~~ (1 ~-[w])l]u~ O < t < l  

and let F be a conic neighborhood of ~o such ~hat nj(~ ~ = nj(F) for every  
(see Lemma 2.1.5 (iii)); choose then  two cones I'~c F2c F as in the proof of Theo- 
rem 3.2.5. I f  ~ = degp j then 

. •  (C,- Q - . . . -  C ~) < 

k 
+ + 

since 

k k 

~f Iw~l<alwl(Z- a) and then w - -  ~ w~eF if ~eF~, 
h = l  h = l  

O ' -  m)/u(~ ~ -{- n~(~ ~ -- n~(~~ ~ < 0 from the definition of z(~~ and 

Ct-+- a ~ (1 Jr- lwh[)]/'~O [< Clw--  w h if ~ e l ~ ,  
h = l  - " 

I~[ large enough. 
We can therefore give meaning to Eoyj~(Ct) , obtaining 

(3.2Jo) 
A 

IE~ < C exp [qim G; -- Flw + ~1,'~0 

with 0 < t < l  and ~ a positive constant  depending on ~. Once again by Stokes' 
Sheorem 

f A f A 0 ~" I ~  (2~)-,, r  C,)E~ (~x)-" r C1)E ~(C1)a~. 

Iw-~l=al~l [,o-q<~lq 
O~t~l 

About the first integral we may  proceed as we have done other times, and then get 
the exponential  decrease with 1511/~1; on the other hand, if u(~o) < + c~ the second 
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one is est imated by 

i ;-~'~'t <~ld 
< C exp [D'I~i "~'<~~ 

and the thesis ia this case is reached; if ~(~o) @ = ~ from Tarsky-Seidenberg lcmma 

for some constants C and b, w ~ / ~ ,  and then  

iZgl< (  + I 1) . 

The proof is now complete. 

COROLLARY. - -  The kernel E(x, y) of the parametr ix  E is an ultradistributiott  
of class ~(~~215 

The proof of Theorem 3.2.1 is now gained making use of Theorems 3.2.5 and 
3.2.6 and recalling the rules of composition of wave front  sets (Theorem 1.2.5). 

3.3. Semiglobal solvability. Examples. 

The parametr ix  constructed and studied in the previous sections is also useful 
to obtain results of scmiglobal solvability for data  with compact support, modulo 
analytic functions. 

Let  P(x, D ) =  P,~(D)+ ~ qj(x)pJ(D) be the operator till now considered, {q~}e g{~'}; 

the transposed operator of P(x, D) is 

~P(x, D) = (-- 1)~P~(D) -t- ~ (-- 1)'J1/~! D~ qj(x)Ps(~)(D) 
j~c~ 

where v, = degpJ. For the operator ~P it results z(~P, ~) = z(P, ~) for every ~ in 
R~\{0} (see [i4], Lemma 2.1.4); in view of the problems are we dealing with, we 
shall assume tha t  the coefficients have compact supports, and write again for sim- 
plicity of notations 

tP(x, D) = (-- 1)'~P~(D) @ ~ qs(x)pJ(D) 
J 

where qje ~D P'd, p ie  V(P). 
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We shall denote by  E(tP) the left parametr ix of the operator tP, by ]~(tP; x, y ) e  
~)(~o)'(R ~ • its kernel an4 by R(tP) the rest. The transposed functional *.E(tP), 

which we indicate here with E*, is well defined by 

f A 
= = v ( - -  $ ) E ( * P ) ~ ( ~ ) d $  <E*v,~}  <v,E(*P)~> (2x) -~ * 

A 

for ~ e ff)(*~)(H~), v ~ ~(~o)'(R~), has E*(x, y) = ,Ettp.~, x, y) e ff)(~o)'(H~ •  ~) as kernel 

and rest R * =  ~R(~P); furthermore 

PE* -= I ~ R* 

where I is the ident i ty  operator. So E* is ~ right parametrix.  

Tm~,ogE~ 3.3.1. - For  the wave front  set of the kernel E*(x, y) of the right 
parametr ix  E* holds the result of Theorem 3.2.5; instead 

W-~.dR* v) = r v ~ ~(~~ ~) . 

P g o o F . -  The first s ta tement  is obvious in view of the preceding remarks. 
As regards the regulari ty of the rest, suppose ~t first 1 < ~ <  Xo< + c~; let UeH~ 
be a neighboroohd of xo, {Z~} a sequence ia ~(~~ s u p p g ~ c K  , K compact 
subset of U, such tha t  for every h > 0 there exists ~ constant  Q satisfying 

ID~+ZZ,(x)I<C~(C.Y)Ic'Ihl~[(fl!) ~ [~I<N, x e K .  

Setting o~s usual ~ ~ exp [-- have 

~ z (3.3.2) Z~R (~)t~) = (2~)-~ ~(-- r R(~P) X~,,~(g) d~ 
.4 

where ~ = w - -  i7(1 @ [w])l[~:~ and, as in the previous sections, 

A 1 
R,( 'P)  Xx,,(r - p ~ ( ~ ) , , ~ ,  ( - -!)  ~("~+~)+~ (2~)-~ • 

A 
- $ ~ ) Z ( ~ + ; - ~ 1  ... ~) 

for ~ e A ,  ~ =  wig- ia (1  + ]WJ])I/zlO. F r o m  (3.3.1) it easily follows tha t  for every 

h > 0 there exists ~J constant  C~ such tha t  

A 

Iz~(z)l < c,~(cN)~(1 + Izt) -~ exp [ -  hlzI1/~~ H~(Imz)]  
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for z e C ~, 7/----- 0, 1, 2, ..., and then, recalling the geometry of the region of integra- 
tion, splitting i t  into the subsets ]w ~ ~[ > ~[w[ and [w ~ $[<~[w[ and proceeding 
as above (see for instance the proof of Theorem 3.1.2) we get 

A 
iz,~n*(v)(~)[ < r + i~ l )  - ~  

and then  the thesis if no< ~ oo. The case n0---- ~ co is left to the reader. 
The equation P(x ,  D ) u  = ] is therefore solvable for data  ] of class g{~'}'(Rn), 

modulo analytic functions; the propagation of singularities of the solution u is 
dear ly  given by  Theorem 3.2.1. 

4.  - S o m e  e x a m p l e s .  

m m ]]XA_M_PLE 3.3.2. -- Let  P~(~)-- - -$~-  ~ 2 -  . . . - - ~ ,  m positive and even; in any  
way we choose a polynomial Q of degree less than  m, P = P~ ~- Q is hyperbolic-elliptic 
with respect to the direction 0 = (1, 0, ..., 0) by  Theorem 10.4.10 in [5] ~nd 1.1.3 (i) 
Then ~o = ~ c~. 

EXAI~IPLE 3 . 3 . 3 .  -- L e t  P = Pd"Jl - Q 8 - ~  Q, w h e r e  .Pd(~) = ~ - ~  ~1(~22 2 _~ ~g)2 _ ~8,4 

Qa($) = ~ ,  d e g Q < 2 ;  P,~ is hyperbolic-elliptic with respect to the  direction 0---- 
= (1, 0, 0). I f  $ is not  parallel to the  vector ~o= (0, 1, 0) one has 

3 

J = l  

so n ( ~ ) = - ~  oo~ on the other hand,  since Qa(~ ~ r 0, Lemma 2.1.5 (vii) yields 
ns(~ ~ ----1, and threfore n(~ ~ = 2. In  this case then  no assumes the least value 
allowed to a polynomial with principal par t  with at  most  double characteristics. 

EXA]gPLE 3.3.4. -- Let  P = P5 q- Q4 ~- Qa -~ Q, denoting Ps(~) ---- $1($1~ a ~_ ~,23 ~ ~a),a 
Q~(~) ~ 2 ~ ---- ~1(~2~ ~a), Qa(~) = ~2~a, and Q a polynoamil with d e g Q < 2 ;  0 = (1, 1, 1) 
is a direction of hyperbolic-ellipticity for P.~. SinCe Q~ is weaker than  Ps, it  follows 
tha t  n~(~)= 0 for every ~ e R * \ { 0 }  and so n ( ~ ) =  ~ - c o  if $ is not  parallel to 
~o= (0, 1 , - -1 ) .  For  this vector Qa(~ ~ # 0 and then na(~ ~ ----1, which implies 
n(~ ~ = 3.  

Therefore ~o---- 3, while the least value for a polynomial with principal part  P5 
is 3/2. 

m - -  1 
E x a m ' ~ E  3.3.5. - L e t  P(~) = # ~ +  ~ ~ P ; ( ~ ' )  wi th  ~ = (~,, ~'), d e g ( P 0  = m,,  

j=0  
max  mj/(m -- j) ---- p < 1; P~ is hyperbolic with respect to the direction 0 = 

= (1, 0, ..~ O). For  every ~ e R ~ \ { 0 }  with $~=/= 0 it results n(~)---- ~- co. The 
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homogeneous t e r m  o~ degree ~ is 

Q~(~) ~ ~ , = ~: P ,_~(~  ) 

i+m~v 

where P~-5 stands for the  homogeneous t e r m  of degree ~ - - j  in PJ. Fo r  the  

indexes j in the  ~bove sum the inequal i ty  j~> (~- -p ro) l (1 - -p )  is s~tisfied, f rom which 
n ~ ( ~ ) < p ( m - - ~ ) / ( 1 -  p) ~nd ~(~)~>l/p for every ~ e R ' \ { 0 } ;  on the  other  side this 

lower bound  is real ly re~ched when ~ = (0, ~') ~nd ~-~ m~+ ~, m~= p (m- -~ ) .  
I n  conclusion, ~ = l ip .  
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