
On the Postulation of a General Projection 
of a Curve in pN, N>4  (*). 
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Summary. - Fix a curve X o] genus g and L ~ Pic~(X). Let ~z(X) be the image o] X through 
the complete li~ear system Ho(x, L). Here we prove that a general pro#ction o] q~z(X) into 
pN has maximal rank i] either (a) N>~4, O<~g<N-- 1, d>~g-~ N, or (b) d~d(g ,N)  ]or 
suitable d(g, N). 

Introduction. 

Let  C be a curve in pN. We say tha t  C is of maximal  rank if for every k > 1 the 
natural  map of restriction: 

r~(k): H~ ---> H~ is injective or sur jec t ive .  

The maximal  rank  conjecture (see [EH]) states tha t  a general embedding of a 
general curve in P~ is of maximal  rank  (if N ~ 3 this is proved in [BE, 3, 4]). In  
[Ha] 4.3.4, R. H A n ~ s ~ o ~ n  raised the following projection problem: 

(( Le t  Z be a projectively normal curve in P~. Take n with 3 < n  ~ N ~nd let  
C<~P ~ be a general projection of Z. Is C of maximal  rank? ~). 

Examples  are known where the answer is negative. For  example in [GP] it is 
proved tha t  the general projection into p3 of a canonical curve of genus 5 or 6 is 
not  of maximal  rank  (see also [Be, 6] for other examples). Bu t  it  seems reasonable 
to hope tha t  the projection problem has an affirmative answer if the genus of Z is 
low or the degree of Z is high. Here we consider only the case of general projections 
of curves in P~, IV>4 (if N =- 3 see [BE, 5]). We prove the following results: 

T ~ n o ~ , ~  I. - Fix,  .N, d, g with N>~4, O < g < N  -- 1, d>~g ~ N.  l~ix a curve X 

of genus g and L ~ Pic a (X). Let  ~L(X) be the image of X through the complete linear 
system H~ .L). Then a general projection of ~L(X) into P~  has maximal  rank. 

(*) Entrata in Redazione il 16 aprile 1986. 
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T~EO~E~ I I .  - F ix  N~ g with N~> 4, g~> 0. There exists an integer d(g, _IV) such tha t  

for every  d>d(g~ ~u for every smooth  curve X of genus g and every  L in Pie ~ (X), 

the  general  project ion of ~L(X) into P~ has max ima l  rank.  

Note  tha t  in bo th  theorems TL(X) is projeet ively  normal  ([M, 1]). The restric- 

t ion d~> g ~ - h  T in theorem I means  t ha t  we are working with non special embed- 

dings. Thus for g <~ 3~ theorem I gives an aff irmative answer to the project ion conjec- 

ture  if the project ion is in P~', N>~4. I n  par t icular  this proves the max ima l  r ank  

conjecture in t h a t  range. 
Fo r  the  proofs of bo th  theorems we use a result  of [BE, 1] which gives examples  

of reducible curves which are flat l imits of projections of ~L(X). B y  semicont inui ty  

it  is sufficient to construct  such a reducible curve of max imal  rank.  

This is done, v ia  m a n y  lemmata~ b y  an induct ive procedure,  the  so called (~ m~- 

rhode d 'Horace  >> (see [HH,  1, 2], [Hi, 1~ 2], [BE, 1, ..., 5]). I n  par t icular  the proofs 

of [HI=I, 1] showed us the  r ight  pa th .  I n  sections I ,  ..., X we give all the  details of 

the proof of theorem I .  I n  sections A, . . . ,F we show how the construct ions of the 

previous sections yield theorem I I .  

0.  - P r e l i m i n a r i e s ~  d e f i n i t i o n s .  

We work over  an algebraicMly closed field of characteris t ic  zero. 

0.1 DEFINITION. - I f  S c P~  is a set of distinct points we say t ha t  S is in linear 

general  posit ion (1.g.p.) if any  t < N  ~ - 1  points  of S span a linear subspaee of di- 

mension t -  1. 

0.2. DEFINITION. -- A tree of degree d in P~  is a connected reduced curve in pN, 
union of g lines, wi th  ar i thmet ic  genus zero and only ordinary double points  as 

singularities. 

0.3. DEFINITIO~ ~. -- A bam boo  is a tree,  T, which looks like a chain: we can order 

the lines of T, say L1, ..., Ld, in such a way  t h a t  Li  and  Lj intersect  if and  only if 

i i -  it<1. 

0.4. DEF;~ZTZO~. -- Le t  X be a curve and  T be a bamboo.  We  say t ha t  T is l inked 

to X at  the  point  p ~ X if T intersects X only a t  p and  quasi- t ransversal ly  (i.e. /~ 

and  X are smooth  a t  p and  have  distinct tangents  a t  p). 

0.5. DEPIcTIon.  - A final line of a tre% T, is a line of T which intersects one 
(and only one) irreducible component  of T. I f  no confusion can arise we will denote 

b y  (T)f such a line. 

0.6. DEfINITIOn. - Assume Z ~ X U T where T is the  union of k dist inct  
bamboos ,  T~, ...~ TT~ and X is ~ curve. A final free line of Z (or of T in Z, o r o f T )  
is any  final line of a T~ which intersects one (and only one) irreducible component  of Z. 
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0.7. DEFII~I~ION. - Le t  Y be a subscheme of the scheme Z. We denote by  Jr.~ 

the ideal sheaf of Y in 0z.  The natural  restriction map:  H~176 is 
denoted by  rz,z(t). I f  there  is no danger of confusion we write more simply ~z, rr(t ). 

0.8. DEFINITION. -- Le t  Y be a subscheme of P = pN and denote by  H a divisor 

of P.  The residual scheme of Y with respect to H~ Res R (Y), has for defining ideal 
the kernel of 0p--~ ~ O~(H) where / is the composite of the natural  maps: 

o~-~ or(H), ov(H)~ oA/t). 

The two main facts used in this paper are <~ la m~thode d ' t to raee  >> (see [Hi, 1] 

especially 2.1, [Hi, 2], [HH, 1, 2], [BE, 2, 3, ~]) and theorem 0 below. As far as 
we know <~ la m~thode d 'Horace  >> is the only method to construct  curves of maximal  
rank  in a systematic way. Using reducible curves and modulo some arguments  of 
general position, one may  work by  induction. Bu t  as we are interested in smooth 
curves this procedure requires results on smoothabil i ty of reducible curves. In  our 
part icular  case this is achieved by  theorem 0. Le t  X be a smooth curve and 
s e Pie g (X) be a very  ample line bundle, Consider the embedding, ~L, of X into 
p(Ho(L)~) ~ pN given by  the sections of L. Let  H be a linear subspaee of P~. 

0.9. DEfinITIOn. - With  notations as above Pr~ (L, H) is the closure in Hilb (H) 
of the set of general projections of ~oL(X) into X. 

0.10. R ~ n K .  - Clearly Pr~ (L, H) is irreducible. 

Tm~OlCE~ 0. - Let  X be a smooth, connected curve embedded in P~" with 
deg (X) = d. Let/~1, ..., P~ be distinct points of X a n d  a~, ..., ak be positive integers. 

k 
Set L 

Le t  T~, 

t o X  at  
Then 

Oz(1), r = ~ a, and M = Z ( Z  asP,). Assume 

l < i < k ~  be disjoint bamboos with l(T~)-~-as. 
P i .  

X w T1 w ... U T~ is in Pr~+7~ (M~ P~). 

ho(x, ~ )  = ho(x, L) § r. 

Assume tha t  T~ is l inked 

0.]1. t~E~l~I~S. - (1) We do not  require tha t  X is non degenerate. (2) This 
theorem was proved (but s tated in a weaker form) in [BE, 1] (Prop. II.5).  See 
also [B], w 7. 

As said above when using the (~ m6thode d 'Horace  )> one has to so lve  some 
problems of general position. For  instance when working in Pa the typical  s i tuat ion 
is like this: Q is a smooth quadric, Y is a reducible curve intersecting Q transversally,  
S c Q is a set of s distinct points;  a, b are some integers and we have to show tha t  
Y u S (or a little deformation of it) satisfies: 

h~ Q(a, b)) = )/fax ((a § 1)(b + 1 ) -  s -  2 deg (17), 0 ) .  

The results needed in this paper  (when working in ps) are contained in [BE, 2], w 6. 
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I .  - T h e  f irs t  t h e o r e m .  

The first par of this work is devoted to the  proof of: 

THE01~E~[ 1. - F ix  N,g, d with N>~4, O<g<N--1,  d>~g + N. Let  X be a 
curve of genus g and let L be a degree d line bundle on X. Denote  by  ~L(X) the 
image of X by  the embedding:  

�9 {s e  o(x, L): = 0}. 

Then the general project ion of q~.(X) into P~ has maximal  rank. 

1.1. I~E~IA~KS. - (a) Note  tha t  hi(X, L)~-0  since deg (L)>~2g-~ 1. 
Also if d = -g  + N then  ~L(X)c  p ~  is project ively normal  according to [M1]. 

(b) As a corollary of theorem 1 and [BE, 2] we obtain tha t  the general curve 

in P~, n>~3, of genus g, 0~<g~<3 and degree d (d>~g ~- n) is of maximal  rank.  

(c) A similar theorem for projections into P~ is proved in [BE, 5]. 

(d) The conditions O<~g<<.N--!, d>~g ~-N seem not  too bad  according to 
the following fact :  if X is an hyperelliptic curve of genus 3, none of its embeddings 
of degree 7 in p3 has maximal  rank  [BE, 6]. 

I I .  - T h e  i n d u c t i v e  hypothesis H~(g). 

Theorem 1 is first reduced to the  inductive hypothesis Hn,:v(g). To state H..N(g) 
we need some preliminaries. 

II .1.  L E N A .  - Le t  X _c p s  be a smooth,  non degenerate curve of genus g, degree 
g ~ - N  with N~>4 and g~<N- -1 .  Set L : =  0x(1). F ix  a point  p e X .  Then for 
a general hyperplane,  H,  through p, H n X consist of g -~ ~V distinct points in linear 
general position if either: 

(1) g~<s 2 or g = N - -  1 and X is not  hyperelliptic,  or: 

(2) g = 2u 1, X is hyperell iptic and L( - -  p) is not  g times the g~ on X. 

PROOF. -- For  general H through p, X n H is reduced. I t  is enough to show tha t  
when (1) or (2) hold, the linear system corresponding to V:= H~ L(--p)) has 
no base points and gives a birat ional  map. Indeed in this case, the 3-secant 1emma 
shows tha t  for any N -- 2 points {p~} in (X n H ) \ ( p } ,  {p~} and p span an hyperplane 
in H.  I f  the lemma does not  hold, by  monodromy (H n X ) \ { p }  is contained in a 
linear space R. B y  Bezout 's  theorem, a pencil of hyperplanes through R shows tha t  
g ---- 0. %'or g ---- 0, the lemma is clear. 
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Since deg (L(--p))>~2g,  _L(--p) has no base points and it  is not  very  ample if 
and only if g ~ N - -  1 and L(--/~) _~ wx(p~ + P2) for some p~ e X. Thus when (1) 

holds, V gives a biration~l map. I f  X is hyperelliptic and g = N -  1, then  V gives 
a birat ional  map or has a rat ional curve as image. In  the second case Z ( - - p )  is g 

times the g~. 

11.2. LE~AVfA. - Le t  X be a smooth, non degenerate curve of genus g and degree 

g + N i n  pN, N~>5, g < N - - 1 .  Set L : = 0 x ( 1  ). F ix  two distinct points, p ,q  
of X. Assume one of the following conditions holds: 

(1) g < N - - 3  or g ~ N - - 2  and X is not  hyperelliptic~ 

(2) g -= N - -  2, X is hyperelliptie and L(--  p -- q) is not  g t imes the  g~ on X, 

(3) g = N - - 1  and L ( - - 2 - - q )  is not  isomorphic to ~ ( x )  for some x e X. 

Then if H is a general hyperplane through p and q, X n H consists of g + N 
distinct points in linear general position. 

PBoo~. - The conditions give precisely tha t  L(- -  p -- q) has no base points ,  i.e. 
the line [p, q] is not  a 3-secant to X, and tha t  X n H is reduced for general H. As 
in 11.1, (1), (2) or (3) imply tha t  Z(- -  p -- q) gives a birational map. 

II .3.  Tm~ co~DI~Io~ (*). - Given a curve G _c p ~  we will say tha t  P e C (resp. 
(P, _~) e C•  C) s~tisfies (o) (resp. (oo)) if for a general hyperplane,  H,  through P 
(resp. P , /~)  C (~ H is in linear general position. 

A (1, 2)-index of length k is a couple of integers (x, y) such tha t :  x + 2y -~ k. 
Given an integer k and a (1, 2)-index of length k~ ~ -~ (x~ y), we will say tha t  a 

! 

collection of points of C: (pl, . . . ,p~; q~, q~; ...; q~, q~) satisfies condition (*) for v 
if any p~ satisfies (o), any (qj, q~) s~tisfies (oo). 

Clearly we will often drop the index T and just  speak of the condition (*). The 
context  will indicate what  is meant.  

11.4. Tm~ ~U~EBEBS r(n, N, g), q(n, N, g). - For  n>~l, N>~3 and g > 0  we define 
integers r(n, N, g), q(n, N, g) by:  

n . r ( n , N , g ) - - g  + 1  + q ( n ~ N , g ) = _ ( N ~ n )  O<~q(n,N~g)<~n--1 

11.5. THE INDUCTIVE HYPOTHESIS H~,~v(g). - For  n > l ~  N > 4 ,  0 < g < N - - 1 ,  
we make the following s ta tement :  

H~,~(g): <~ There exist an integer k, a (1, 2)-index of length k, 3, a sequence 
of integers (al, ...~ ak) such tha t :  if C c p ~  is a smooth connected curve of genus g, 
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degree g ~ 5r and if P~, ..., P~ are k distinct points on C satisfying condition (*) 
for r,  then there exist: 

1) a curve, Y, of degree r(n,N,g): Y =  CWB~W.. . tJB~,  where the B~'s 
are bamboos of length a~ linked at  C at  the P~'s 

2) an index ]o, l~<]o<k,  and a line L intersecting the final free line of B 4 

3) a set S c L \ ( Y  (3/5) of q(n, 2g, g) distinct points. 

These data satisfy: h~ ~, ~r~s(n)) : O ~. 

III .  - R e d u c t i o n  o f  t h e o r e m  1 to  the  i n d u c t i v e  hypothes i s  H~.~.(g). 

I I I .1 .  P ~ o ~ o s ~ o N .  - I f  H~,~(g) is t rue for n>~l, N ~  and O<g<N--  1 then 
theorem 1 is true. 

PI~ooF. - Take L i n  Pic ~(X) wi~h d > g - ~ N .  We can write: ir(n,N,g) 
< d<r(n-- 1, N, g) for some n > l .  Le t  k, v, (a~, ..., a~) be given by  H,,~v(g). Choose 

k 

' ' ~ ~ Then take k integers a~, ..., % such tha t  a~ > a~, g ~ 2g -~- ~ a~ = d, aj. > ajo. 
1 /c ( ' )  distinct  points o n X :  P~, ..., P~ and consider g : =  L -- ~ a~2O~ . We have deg (g) = 

1 

= g @ 2g and g is very  ample. Let  C _c p~v be the image of X by  the complete linear 
system IH~ g)l: Set p~ :=  ~(P~).  We m ay  assume tha t  (p~, ..., p~) satisfies con- 
dition (*) for ~ (II.1, II .2).  Now H~:,.(g) applied to C and (p~, ..., Pk) give us a good 
curve for C of degree r(n, N, g): Y---- C u B ~ k ) . . . U  B~ and a set S, of q(n, 2g, g) 
points,  such tha t  h~ ~, ~r~z(n)) ---- 0. We m ay  find a good curve for C: Y '=-  

f f ! 
- -  C U B~ t) ... t )  B~ with the B " s  of length linked to  C at  the p~'s and such tha t  

k 

we conclude tha t  Y' is in Pr~ (cry(X), pN) (see w 0, theorem O). 
Therefore a general element,  Z, of Pr~ (~0~(X), P~) satisfies: h~ ~v, ~z(n))=-0.  

In  a similar way, using H~+~...(g), we prove tha t  a general element,  Z' ,  of Pr~ (~oL(X), P~) 
satisfies: h~(P ~, 3z , (n- t -1)) :  0. By  irreducibili ty of Pr~(w~(X),P~) ,  a general 
element,  Z '~, of Pr~ ( ~ ( X ) ,  P~) satisfies ho(P ~, Jz,,(n)) = 0 and h~(P ~, 3z,,(n + 1)) ---- 0. 

Hence Z" is of maximal  rank  ([M2], p. 99). 

IV.  - R e d u c t i o n  o f  H~.~(g) to S..~(g) and A.,~.-~(s). 

As we have seen the proof of theorem 1 is reduced to the proof of H~,N(g), n>~l, 
2V>4, 0 < g < h  r -  1. In  this section we perform a fur ther  reduction.  We introduce 
two other inductive statements,  S~,~(g), An,~-l(s) and show tha t :  S~-~.N(g) 

A~.N-z(s) imply H~,~(g). 
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The new statements are: 

S.N(g): ~>Assume 2V~>4, n~>l, 0 < g < h  r -  1 and 

(+)  r(n, N,  g) -- q(n, N,  g) -- g -- N > n  

Let  C _c p~ be a smooth connected curve of genus g and degree g + N. Let  (-Pl, ..., P , )  
be n distinct points on C satisfying condition (*). Then there exists a curve X 
such tha t :  

(a) deg (X) = r(n, N,  g) 

(b) X = Y ~_/)1 J~ ... JL Dq(,,~.g) has q(n, 2V, g) ~- 1 connected components. The 
first one, Y, is a good curve for C: ~ = C u T1 u ... U T~, with the T,'s 
linked to C at  the/~, ' s .  The other connected components, D~, ..., Dq(~,~,g), 
are disjoint lines. 

(o) Finally:  h~ ~, 3x(n)) = 0". 

IV.1. I~EMAI~I~. - ]In view of (a), (b), the condition ( + )  is necessary. The following 
lemma shows tha t  it  is almost always satisfied. 

IV.2. Lv, m~_x. - Assume: (a) N~>4, n > 3 ,  0 < g < N - - 1  or (b) N > 5 ,  n = 2, 
0 < g < N - - l ,  or(e) l V = 4 ,  n----2, g = 0 o r g - - - - 2 .  

Then: r(n, N,  g) --  q(~, N, g) -- g -- s 

PROOF. - Suppose 

(x) r(n, N,  g) -- q(n, N,  g) -- g -- s < n 

From the definition of r(n, N, g), using (x) and q(n, N,  g ) < n  -- 1, g.<<s 1, we get: 

(xx) 

with: 

G(N, n) > 0 

q(~V, n ) =  2 n ( n - - 1 )  + ~ ( 2 n - - 1 )  + 1 -  ( (N  + n ) ! / ( N ! n ! ) ) .  

{N + n~ 
Since G(2V -4- 1, n) - G(N, n) = 2n -- 1 -- \ n  -- 1 ] we easily see tha t  for n>~2 and 

N > 4 :  G(N-~ 1, n) < G(N, n). Furthermore:  

S(4, n - [ - 1 ) -  S(4, n ) =  4[n ~- 2 - -  ((n -~ 4)!/(4!(n -}- 1)!))] . 

Thus G(4, n ~ - l ) < G ( 4 ,  n), n > 2 .  Since G ( 4 , 3 ) < 0  we get: G(N~n) < 0 ,  N > 4 ,  
n > 3  which is a contradiction with ( x x ) a n d  proves (a). 



274 E. B• - PIt. ]gLLIA: On the postulation, etc. 

Pa r t  (b) is proved using (xx) directly. 
everything.  

The second new s ta tement  is: 

A~,~-~(s): ((Assume N - - l ~ s ~ 2 ( ~ - - l ) ,  n > 2 ,  N > ~ .  

tegers such tha t :  

+ n )  
r,r~ + ~' -}- q" q- s = \ N -  1 

Final ly (v) i s  checked just  computing 

L e t  r, el', q'~, s be in- 

with r > n ,  0 < q " < n - -  1 ~ q ' > n .  

Let  Po, P~, ... ~ P~ be s @ 1 points in P~-~ in general linear position. Then there exist:  

1) n disjoint bnmboos whose union, W, has degree r. Fur the rmore  there is 
a final line of a bamboo in W containing P~, 

2) ~ set, R, o~ q'--n points in general linear position, 

3) a set, S, of q" points contained in a line, D, such tha t  W u D is the union 
of n disjoint bamboos containing Po in one oi its final lines. 

Finally X = Vr S ..., then: 0 

]~V.3. REI~IAI~K. - -  Note  tha t  A~,;-~(s) is concerned with subschemes of pN-~ (and 

not  of pN). We will need A,,.a,-~(g -t- 1u 1), 0 < g < X - -  1. 
So we take:  N -- 1 <s<2(~V -- 1). Later  on (VII) we will allow a larger range for s. 

IV.4. P~aoPosx~rioN. - Assume: (a) N>4~  n > ~  0 < g < N - -  1; or (b) N > 5 ,  n = 3, 
0 < g < N - - l :  or (c) s  n = 3 ,  g = 0  or g = 2 .  

Then S~_~,~(g) @ A~,~-~(g @ s 1) imply H,,~(g). 

P~ooF. - Let  C _c pN be a smooth connected curve of genus g, degree g @ • and 
let t)1, ..., P~_~, xo be n distinct points on C satisfying (*). By  S._~,~(g) (which is 
well defined according to IV.2) we are given a curve X = Iz ~) D~ (9 ... L) Dq(~_~,N,g), 
of degree r(n --  ! ,  N ,  g), where Y = C U T~ U ... ~) T~_~ is a good curve for C. Fur-  
thermore  the T~'s ~re l inked to C at  the P / s ,  the D / s  are disjoint lines and 

h~ ~v, ~ x ( n - - 1 ) ) =  0. Consider a general hyperplane H through xo. We m ay  
assume tha t  H intersects X in r ( n -  1, N ,  g) distinct points in linear general po- 

sition. L e t  C ~ H = { x o ,  x~,...,x~+~v-~}, l~ow we apply A ~ . ~ _ , ( g @ N - - 1 )  to 

Xo, x~, ..., x~+~_~ and with:  

q ' - -  n = r ( n -  1, 2~, g) - -  g --  N - -  n - -  q(n --  1, N ,  g) @ 1 ,  q" = q(n, N ,  g ) ,  

r = r(n,  ~ ;  g ) - -  r ( n - -  1, N ,  g ) ,  s = g @ ~Y-- 1 . 

lqote that~ by IV.2, q ' - - n > 0 .  Also: 

rn @ q' @ ~' @ s = n . r (n ,  N ,  g) - -  (n - -  1)r(n -- 1~ N, g) @ q(n, N ,  g) - -  q(n --  1, iV, g) 
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which is : 

(.;,,) (. +. ,) ( .- ,  + .) 
iV iv--i " 

The only thing i t  remains to check is: r>n,  this follows from IV.5 below. So we get 
W, R, S which, together with xo, x~, ..., x,+~-~, sutisfy A.,N-~(g + N - -  1). Set 
W : = B o u  B~ u ... u B._~. Moving the lines in X (but keeping the intersections 
with C fixed) we may  ussume tha t  I / : = X u W  is a good curve for C. More 
precisely we may  assume tha t :  Y = O W ~ o U ~ U . . . w ~ _ ~  with ~6~:=T~U 
w B i w  D~, l < i < q ( n - -  1, iv, g); ~ i : =  T~U B~, q(n-- 1, iv, g) < i < n - -  1, ~o= Bo. 

We may  also assume B = ( I /~W )  n H. Under  these conditions we claim thut :  
h~ ~v, 3 s , ~ ( n ) ) =  0. 5ndeed if ] e H ~  N, 3r~s(n)) then /[H v~nishes on W u R W 
u S u {x~, ..., x,+~-~}. By  A,,~-_~(g + N - -  1 ) , / ] H  = O. So we get a f o r m / '  of degree 
n - - 1  vanishing on l~es a ( Y U S ) = X .  By  S._~,~.(g), / ' ~ 0 .  Hence ] ~ 0  as 
wanted.  Sett ing a~:= length (~_~), l < i < n ,  this proves H,,~.(g). 

IV.4.1. REMARK. -- I f  N = 4 in the proof ~bove we need A,.3(g ~-3), n>~4, 
0 < g < 3  with q ~ = r ( n - - l , 4 ~ g ) - - g - - 3 - - q ( n - - l , 4 ,  g). We note tha t  q '~>2n- -3  
(see IV.4.2 below). This remark  will be used in X where we will prove A~,~(g + 3) 
with the extra  condition q'>~2n- 3 (see the s ta tement  A:,3(g + 3) of X).  A similar 
remark  applies for proposit ion VIA. 

IV.4.2. Le t  q' be as in IV.5, then q'~>2n-- 3 

PROOF. -- I f  n > 5  this will follow from r : =  r(n--1 ,  4, g)>~3n + 1. Indeed by  

definition: ( n - -  J ) r  @ 1 -- g + q = 3 with O<q<n--  2. 

I f  r < 3 n  we get: n~ ,~ - 6n 3 -  61ns@ 54n + 2 4 < 0  which is false if n~>5. The 
case n = 4- is checked by  computing everything. 

IV.5. LEp tA .  - For  N~>4, n > 3 ,  0 < g < N - - 1  we have:  

r(n, iv, g) -- r(n -- 1, N, g)>n.  

PROOF.  -- Assume 

(x) r(n, N, g ) < r ( ~ -  1, N~ g) _u n -  1.  

F rom the definitions of r(n~ N, g), r(n-- 1~ N, g) we get: 

~.r(n, iv, g) -- (~-- l ) r (n- -  l ,  iv, g) + q(n, N, g) -- q(~-- l~ iv, g) = ( N - -  l @ n) 
i v - - 1  " 
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Using (x), q(n, N, g )<n- -  1 and q(n-- 1, 2r g)> we get: 

/2v-iv_l +1 n) (xx) r(n - 1, :Y, g) + n ~ -  1 > [  . 

Combining with (xx) : F(5", n) > 0 where 

�9 '(Y, n ) : =  =Y-- 2 + (n--  1)(~ ~ -  1) + [(5" + n - -  1)!(n-- 3r(n -- 1 ) ) /n !~! ] .  

I t  is easy to check that  for N > 4  and n > 3  T(2V + 1, n)</~(N,  n). Since for n > 3 :  
F(4, n ) <  0 we get a contradiction and the lemma is proved. 

IV.6. Cm~CK-POINT. - In  order to get theorem 1 it remains to prove: 

S~,~(g) for: n>3, N > 4 ,  0 < g < N - - 1  

n = 2 ,  hr>5,  0<g<_/Y--1 

n : 2 ,  h r : 4 ,  g : 0  and g = 2  

A,,N-~(g + 2 r  for: n>3 ,  N > 5 ,  0 < g < N - - 1 ;  

n>4, 2r : 4, 0 < g < 3  (but with q '>2n- -3 ,  see IVA.1) 

n : 3 ,  N : 4 ,  g : 0  and g : 2  

H+,,~(g) for: l ~ n < 2 ,  _Y>~, 0 < g < 2 r  

n : 3 ,  N = 4 ,  g : l  and g : 3 .  

V .  - P r o o f  o f  s o m e  i n i t i a l  c a s e s .  

First we need some lemmas: 

V.1. L E N A . -  Let N,g  be integers such that:  3/>5,  2 < g < ) 7 - - 1 .  Denote 
by _P, P, -Pl, ...~/)~-2, g points of p~-2 in linear general position. Let ~1, z~ be integers 
satisfying: T~+ % + g = h r - - 1 ,  z~>0, 1~<i<~2. Then there exist two disjoint 
bamboos, I'1, T~, such that :  

(a) deg (T~) = ~ 

(b) if T~ > 0 (resp. T~ > 0) then 2 ~ ~ (T~)~ (resp. _P ~ (T~)I). 

(e) h~ N-~, JT, ur, uiV, f~,P, ..... p,_~}(1)) ----- 0, 0 < i < 1 .  
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PI~OO~. - Since v~ -F ~ -l- g --~ N - -  1 it  is enough to show 

0I h ~3r, or~o~,.v,v ...... v~_fll)) = O. 

The proof is by  induction on N. The initial case N ~ 5 is easy. I f  g ~< ~ -  2 we m a y  
assume ~ > 0. Take an hyperplane H of P~-~ containing P ,  _P, P1, .., P~_~. By  

induction we get two bamboos in H :  T~, T '  --- with deg (T'~) ~ - -  1, deg (T~) ~ .  
l 

To conclude, just  add a line L r H to T~. 
I f  g ---- N - -  1 then ~ = ~ = 0 ~nd the lemm~ is clear. 

V.2. LE~wA. - l, et N , g  be integers such tha t :  N>~5, 2<g<~N--1  and 

g - - ( N ~ 2 ) ( m o d 2 ) .  Let P,P,P~, . . . ,P~-~ b e g p o i n t s  of P ~ - ~ i n l i n e a r g e n e r ~  1 

position. Then there exist two disjoint bamboos T~, T~ such tha t :  P e (T~)~ 

P e (T~)~ and 

h~(P ~-~, 3T,,T~o{v ...... e~_~}(2)) --~ 0 ,  0~<i~<1. 

t)l~OOr. - Induct ion  on N. The initial case N : 5 follows easily with (tl, t:) ---- 

= (1, 3) if g = 2, (t~, t~) = (1, 2) if g = 4 (ti = deg (T~)). Assume N is even. Let  k 

be defined b y :  2 k + l = N - - 1 - - 2 g .  

+ 2k + 1 ~< N - -  2. Le t  Je be an hyperplane of pN-2 containing none of the points 
P,  P ,  P~, ...,-P~-2. By  induction there exist in Je two disjoint b~mboos T~, T~ such 
tha t  their  union with g + (2k + 1 ) -  2 general points is not  contained in ~ quadric. 

l T ! _ _  l Set t~ : ~  deg ( i ) .  Out of JE take two bamboos, T~, of degree t~ t~ with: t~ -]- t2 -~ 
= g -[- (2k -]- 1) -{- t~ q- t~; t ~ ) t ' ~ -  1. We m ay  assume tha t  the folowing conditions 

hold: T~:---- T~ U T~ is ~ b~mboo of length t~ P ~ (T~)j, _P c (T~) I. I f  ~q :---- (T~ (h T~.) (h 

n ( ~ \ ( ~ ;  w ~;))  then ~'(ae, ~ ; ~ : o ~ ( ~ ) )  = 0, 0 < ~ < ~  (note that ~ (S) = g + 
+ ( ~  + ~ ) -  ~). ~ o w  i f / e H o ( V ~  -~, ~.o~o<~ ...... ~~ t~cn ]1~ = 0. 

Hence ] ---- hh' where h is an equat ion of J~ ~nd where h' is a linear form vanish- 

ing on 

Since h~ ~-~, 0h(1))----5 r -  1, we may  assume (V.1) tha t  h ' -~  0 and therefore 

]----0. I f  g - - - - -N- -2  the same proof works w i t h 2 k - F l = - - N + 5 ; i f g = ~ V - - 1  

with2/c + 1 - - - - - - N  + 3 .  Finallyobservethat, byconstruction:ho(Ox(2)): ( ~ - -  2 ) '  
~ g 

x : =  ~ l u  r ~ w  {pl ,  ..., P~_~). Therefore ~ ( ~ ( Z ) )  = 0 ~ t~(~(2) )  = 0. 
The case N odd is similar. 
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V.3. L E ~ s  - Let  N,g  be integers such tha t :  N>~5, 2 < g < N - - 1  and  

g ~ ( / V N 2 )  (mod2).  Let P,P,p~,...,p~_~ (resp. Q,_P,P,P~,...,P~_~) be g (resp. 

g + 1) points of P~-2 in linear general position. Then there exist three disjoin~ 
bamboos, T~, T~, L such tha t :  

(a) L is a line 

(e) h~(P ~-~, "~"~r~,~(2 ...... ~_.}(2)) = 0, 0<i<I. 

As in the previous lemma the proof is by  induction on N. The initial case N -- 5, 
g = 3 is the well known fact tha t  three skew lines in P~ are contained in a unique 
quadric surface. 

V.4. LE~n~A. - Le t  _P be a point of pK-~ N~>5, [resp. _P, Q be two distinct points 

of P~-~]. 

Then there exists a bamboo, T, of degree v such tha t :  P ~ (T)• and h~ ~-~, ~(2)) -- 0 
[resp. P e (T)~, Q 6 T and ho(P N-~, ~,;o}(2)) ---- 0]. 

k 1 X 1 

duction on iY~ according to the par i ty  of N. The initial cases N = 5, N = 6 are easy. 

k ] 

linear subspace such tha t  P e ~ .  
By  induction there exist T' of degree r -  ( N -  1), contained in Je and a point 

Q e ~  such tha t :  P ~  (T')~ and h~ ~T,,Q(2)) = 0. Let  L be a line in H, not  con- 
rained in Je, and such tha t  L w T'  is a bamboo. Finally let ~ be a bamboo of degree 
N - - 2  such tha t  X : =  ~ w L D T '  is a bamboo, Q ~ ( X ) j  and ~ intersects 
H ~ ( L W J G )  in N - - 4  general points x~,...,xN-4. If  9~H~(~x(2)) set ~ = 9 ] H .  
Then ~[JC= 0, thus q~=JC. l  where l is a linear form vanishing on Z =  
-- L W {x~, ..., <v-~}. Since h~ = N - -  2 we may  assume Z -- 0. Thus 9 = H.V 
with l' vanishing on ~6. Again we may  assume l ' =  0 hence ~ = 0. 

I f ( N h r  2) i s e v e n t h e p r o o f i s s i m i l a r : b y i n d u e t i o n o n e g e t s T ' i n J ~ ~  ree 

r -- (N--  2). Then just add a point Q in H and a suitable ~ of degree N -  2. 

V.5. 1)goor o~ H~.~-(g)~ N > 4 ,  0 < g ~ < N - - 1 .  - This follows directly from a 

theorem of ~ u m f o r d  [M1]. 

V.6. Pgoo~ o~ H~.~,(g), N>5~ 2 < g < N - -  1. - We distinguish two cases according 

to the v~lue of ~(2,~ ..~gj: 
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V.6.1. Assume q(2, h r, g) = 0. 

2 " = 2g 2 -1-2K-}-1 

~ 1 ~  2 ) ( m o d 2 ) .  Let  C_cP~v be a smooth curve of degree g +  ~V. w e  have:  g 
\ ] 

Let  H be a general hyperplane and set: C ~ H = {P~, ..., P~+~}. Take Je, an hyper-  
plane of H,  containing PI~ . . . ,P~ but  not  P,+I, .. , P~+~,. Now by V.2 there exist 

/'1, T~, two bamboos in Je such tha t :  

/~ , - le  (T1)~, P , ~  (T,)~ and M(Je, Jr,~r,~{e ...... r,_,}(2)) -= 0 ,  0 < i < 1  . 

Set X = C u / ' 1  w T~. Since {_P~+~, ..., P~+~,-} is not  contained in a hyperplane of H 
and since C c_P ~ is non degenerate, we get: h~ z~, a x ( 2 ) ) =  0. Fur thermore  

p~(X) g and h ~  = , thus deg ( X ) =  r(2, 5V, g) and we are done. 

v.6.2.  Assume q(2, hr, g) = 1. 

 i=o w o  oo  ,ion  
k ! 

we take for Je an hyperplane of H containing P1, ..., P~+, if g < N - - 1  (resp. 

21, ..., Ps-~ if g = N - - t )  bu t  no other P~. 
F rom u there  exist P1, T~, Z in ~ such tha t :  P1 ~ (Yl)/, P2 ~ (T2)• Pa ~ .5 and, 

if g <  N-- 1: h~ 3r, uT,~{~" ...... e,_~}(2)) = 0. 
I f  g < N -- 1 we take one fur ther  point,  Q, in H such tha t  Q, P~+~, ..., P~+s span H.  

Then X : =  C U / ' I U T ~ k J L U Q  works. I f  g = 2 g - - 1  we t a k e Q  in Je such tha t  

h~ 3r~.T~Zo{Q,e ...... p~_~}(2)) = 0. Again X :--  C U 1'1 k) T~ k ) L  k)Q works. 

V.7. PnooF oF //2.~(1), N > 5 .  - Assume q(2,2V, 1 ) =  0. For  C a smooth el- 

liptic curve of degree h r -p 1 let  {/)1, ..., P~+I} = C n H,  H a general hyperplane.  
Le t  J e c H  be an hyperplane through P~+I not  containing P~, l<<.u<2V. By  VA 

there exists a bamboo,  T, in ~ such tha t :  P~+I e (T)~ and h~ 32(2)) = 0. Then 
X : =  C u T works. I f  q(2, 5", 1) = 1 the same proof (using VA again) works ad- 

ding one fur ther  point,  Q, in Je. 

V.8. P~ooF oF H~,~(0), 3r>~5. - Assume q(2, 3 r, 0) = 0. Then 2r(2, N, 0) -t- 1 = 

\ / 

general hyperplane and C • H = {P1, ..., P~}. In  H take an hyperplane,  ~ ,  through 
P1 and not  containing any fu r the r / )~ .  Denote  by  15 a line (in H) through P~. Set 
/5 (~ Je : =  Q (we may  assume Q =/: p J .  By  V.4 there exists a bamboo,  T, of length v 
i - -  - _  ~ \ 

\ \-1/ 
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R = L t.) {P~, ..., P~.} has h~ = N, we m a y  assume h~(H, 3g(1)) = 0, 0 < i < 1 .  
So X : =  C ~ ~5 k) T works. 

I f  q(2, N, 0 ) =  1, the  proof is similar. 

V.9. P~ooF OF H~.~(g)~ 0 < g < 3 .  - These cases are easy, suppose for example  

g = - 3 .  We  have  r ( 2 , 4 , 3 ) = 8 ,  q(2, 4=, 3) = 1 .  Let  C 2 P ~  be a smooth  curve of 
genus 3, degree 7. Le t  H be a general  hyperp lane  and  C 5~ H - -  (P~, ..., P~}. Let  

;E c H be a plane containing P~, P~, P~, Le t  L be a general line in ;E th rough  P~. 

Also let Q be a point  of J~ not  coltinear wi th  P~, P~ and not  lying on L. Then 
X : =  C ~) L ~ {Q} works. The other  cases are similar. 

V.10. Pgoo~  o~ S,..~(g) Fo~ N>5,  2 < g < N - - 1 .  - I t  is identical  to the proof  
of H~,N(g), N~>5, 2 < g < N - - 1  (see V.6) and therefore is omit ted.  

V I I .  P~ooF oF S2,N(g) FOg N>5,  0 < g < l .  - As usual C denotes a smooth  curve 
of genus g, degree g + N in pN and H a general hyperplane.  

(a) g : O ,  q(2, N , O ) : O :  let  { P x , . . . , P ~ } :  C n H .  Take  J~ an hyperp lane  
in H containing P~, P~ and no fur ther  P~. I n  ;E consider two disjoint bamboos  T: 

such t ha t :  P~e (T~b, 1 < i < 2 ,  and h~(JC, ~ T i u T , ( 2 ) ) :  O, 0 < j < l  (see V.2). Then  
let D be a line in H,  not  contained in ;E, and intersect ing the other  final line of T'~: 

l f 

Final ly  set:  T~ -~ T~ ~) D, T u = T 2. We easily get t ha t  X : =  C w T~ u T 2 Sat- 

iSfieS S~,;(O). 

::;? (b) g = 1, q(2, N, 1 ) =  0: as above bu t  this t ime  J~ contains three points 

of C n H .  

(e) g----- 0, q(2~ h r, 0) ---- 1: as in (a) bu t  in JC we t ake  two  bamboos~T~ and a 
line L such t ha t :  P~E(T~)s, 1 < i < 2 ,  hJ(J~,3~,~,~(2))=O, 0 < ] < 1  (see V.3). 

(d) g = 1, q(2, N, 1) = 1: as in (e) bu t  wi th  ;E containing three  points  of C (5 H.  

V.12. P~oo~  oF ~q2:a(g), 0 < g < 3 .  - I f  g : 1 or 3 then  S~,4(g) is meaningless.  

Final ly  the  cases N : 4, g : 0 or 2 ~re easy. 

VI. - Reduction of  S~,,~(g) t o  A~,~v(s). 

VIA.  P ~ o P o s r n o ~  ~. - For  N~>4 and n~>3: 

S,-~,~(g) and A~,N-I(g -~ N- -  1) imply  S~,N(g) 

P~0oF. - Le t  C _c p ~  be a smooth  connected curve of genus g and  degree g / -  N 
and let  P I ,  ...~ P,~ be n points  of C satisfying (*) (see I I .3 ) .  B y  S~-l,s(g) for P2, ...~ P~ 
we get  u curve X of degree r(n-- 1, N, g) of the  form:  X = Izw D1U ... ~3 Da(n_l,l~-,~ ) �9 
Let  H be a general hyperp lane  through P~. I n  H we consider a curve Z of degree 
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r(n~ N,  g) -- r ( n -  1, N,  g) which is the disjoint union of n bamboos (see IV.2) and 
such tha t  X w Z is a curve of type  (q(n, s g), g) (i.e. the configuration required by 
S~,~-(g)). Furthermore we may  assume tha t  exactly one of the bamboos of Z 
intersects C (at P1). All this is possible since Y has at least n -  1 free lines. Indeed 
if ~(n -- 1, ~Y, g) ~ q(n~ N,  g), all the bamboos of Z intersect X at  free lines except 
the one intersecting C at !)1), q ( n -  1, N,  g) -- q(n, N~ g) of them intersect two bam- 
boos at  free lines~ at  most one of these two bamboos intersects C. If  q ( n -  1, N~ g)<~ 
< q(n, ~ g), exactly q(n, :Y~ g) -- q(n -- 1~ ~ ,  g) of the bamboos of Z do not inter- 
sect X ,  one intersects C at 21 and n--q(n,~V~g) 3 ~ ( n - - l ~ Y , g ) - - i  of them 
intersect X at  free lines. 

Now Q ' =  (X~C) (~ ( H \ Z )  is a set of: 

q'--  n -~ r(n -- 1, N,  g) -- q(n -- 1, N,  g) -~ q(n~ ~ g) -~ 1 -- g -- N - -  n points .  

By  semi-continuity we may  assume tha t :  C n H, Z and Q' satisfy A~.x-l(g -~ N - 1). 

Note tha t :  n.  deg (Z) + g @ h r -  1 -~ q , =  h r -  1 " 

Since Res .  ( X U  Z ) =  X, by S~-l,~-(g) we get: h~ N, Jxoz(n))----0 and X U  Z 
satisfies S~,~(g). 

VI.2. REMARKS..- (1) AS in IV.~ we notice tha t  in the proof above we need 
An,~(g ~- 3) with q' -~ r(n -- 1, 4, g) -- q(n -- 1, 4, g) -~ q(n, 4, g) ~- 1 -- g -- 4 and tha t  
q'>~2n--  3 (see IV.4.2). 

(2) To get theorem 1 it remains to prove: 

A ~ - l ( g - ~  iV--  1),  N>~5, n~>3, 0~<g~<N-- 1 

A,,8(g ~ 3),  n > 4 ,  0~<g<3 (with q'>~2n-- 3) 

A ~ , ~ ( g ~ 3 ) ,  g - ~ 0  or 2; H3,~(g), g = l  or 3 .  

VII .  - The  s t a t e m e n t s  -~ . ,s (s)  and  P,,N(s). 

In  order to prove A~,N(s) we first define a more general form of A,,N(s) (denoted 
by A~,N(s)) and we also introduce a new inductive statement,  P,~,N(s). Then we show 
tha t  P~.~(s), N>~r and A~,3(0), n~>3, yield ]~,N(s), n~>3, 5V~>4. Finally it  is obvious 
tha t  .4~,~(s) implies A~,~(s), n~>3, 5V>4. 

The proof of P~,~(s), 1V~>4, is fairly easy (see VIII) .  Instead the proof of X~,3(0), 
n>~3, is quite t r icky and therefore is postponed to the next  section (see IX :  initial 
cases in p3). 

The more general form of A~,:v(s) we will consider is: 

~,,zc(s): N~>3~ n~>2~ s>~0: 
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Let  Po~ P~, ..., P~ be s + 1 points in P~  in general linear position. 
be integers such tha t :  

(a) n r + ~ ' + q " + s =  N 

(b) r > O, O < q ' ~ < n - - 1 .  

Let r, q', q~' 

(c) i f  2V>4: / ' > r a i n  (n, r) and if N = 3: q'>~V[ax [min (n, r), 2 n - -  3], 

Then there exists a subscheme X of P~  such tha t :  h~ Jz(~)) := 0 and  X is 
the  disjoint union of the following subschemes:  

(1) Pi, 0 < i < s  

(2) ~ ' - - m i n  (n, r) points  of pN 

(3) the union, W, of rain (r, n) disjoint bamboos  with deg ( W ) =  r, Po being 
contained in a fin~l line of W 

(4) q~' eolline~r points  on a line D such t h a t  W U D is the  union of min  (r, n) 
disjoint  bamboos  and contains 2o in a final line. 

To define P~.~,(s) we need some preliminaries. 

VI I .1 .  DEFI~-ITIOS. - We define numbers  a(n, N, s), b(n, N, s) by:  

n.a(n, N~ s) + s + b(n, N, s) = (N ; n) ~ 

n<b(n,_A r, s ) < 2 n - -  1 , n>2,  N > 3 ,  0 < s < 2 N .  

V I I .  LElVDIA. -- (:1) Assume N~>5, n > 2  or N = 4, n > 3  or N = 3, n > 6 .  Then 

for O<s<2N, a(n, 2~, s) and b(n,N,s) are well defined and  satisfy:  a(n, 2~,s)> 
>b(n, N, s). 

(2) The same conclusion holds if N = 4, n = 2, 0 < s < 7  or N = 3 and: n - -  5, 

0 < s < 6 ;  n =  4, 0 ~ s < 6 ,  s : ~ 4 ;  ~ - - 3 ,  0 < 8 < 5 ,  s : / : 3 ;  ~'~ = 2, 0 ~ s ~ 4 ,  8=/=3. 

 ooo , - - -  n -  s b y  n we get a(n, •, s) and ~, 0 < ~ < n -  1. 

Then we pu t  b(n, N, s) = n @ ~. I n  order to do this we need:  

o 

F u r t h e r m o r e  we want :  
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Claim: if 

(§ 

then (*) and (**) hold. 

F i r s t ( N ~ n } - - ( n @ l ) ( 2 n @ l ) < ( : V ~ n } - - 2 n "  - -  " " - -  " so (@) Proof of the claim. 
implies (*). 

\ ~ , /  \ x , /  

l~ow suppose a(n, lY, s) % b(n, .N, s). Then (l~ ; n)-- s < (n @ l ) b(n, N, s) < 
\ / 

~< (n @ 1)(2n -- 1) in contradiction with (@). 
So if we want  s 4 2 N  it is enough to check: /~(iV, n)~<0 where 

We first have: 

/~(N,n) = 22(@ (n @ l ) ( 2 n - - 1 ) - - ( N ~ n ) .  

Hence i~(N @ 1, n) < /7( /y ,  n), N~>3, n > 2 .  Then one easily checks that : /~(3,  n) < 0, 
n~>6; /~(4, n) < 0, n~>3 and /~(_~, 2) < 0, N~>5. This proves (1). 

Par t  (2) is checked by direct computations. 

VII.3. DEfinITIOn. - For  ~ > 3 ,  n~>2, we define 

S(N, n) = {s ~N: O<~s<~2N and a(n: IY, s)>~b(n, N, s)}. 

Then we set: 

P.,~(s): For  N~>4, n~>2 and s~  S(N, n). 

Let  2o, 21, ..., P~ be s @ 1 points of Px  in general linear position. Then there 
exists (Y, W) such tha t :  

(1) W is the union of b(n, N, s) disjoint bamboos of P~. Furthermore Po is 
contained in ~ final line of W and deg ( W ) =  a(n, iV, s). 

(2) ~ = w u {P1, ..., ~ }  aud ~0(p~,  ~ ( ~ ) )  = o. 

VIII. - Proof of ~2,N(s). 

VIII..1 I>ROPOSI~ION. - For N~>~ and sr 2), P~,N(s) is true. 

P~ooF. - ]~y induction on N. Assume N~>5 and P~,N-I(s) true. First  assume 
s~>iV + 1. Take an hyperplane H containing P~ for i ---- 0, i > N + 1. In  H take W', 
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of degree a(2, N - -  1~ s') 

( s ' =  s -  N -  1). 
W e  have:  

which satisfies Ps,N-,(s') for P~, i = 0 ~  i > N ~ - 1  

~ ( a ( 2 ,  N ,  s) - -  a (2 ,  ~ - -  1,  ,~ - -  N - -  I ) )  = - -  b(~,  2~, s) + b(~,  _ ~ - -  ~,  s - -  N - -  a ) .  

So a(2, 2r s) - -  a(2, N - -  ! ,  s --  N - -  1), b(2~ N, s) = b(2, N - -  1, --  N -[- s --  1) and  we 

are done because any  linear fo rm of P~" vanishing on P , ,  ..., P~.+I is identically zero. 

I f  s < ~g-- 1 we take  for H an hyperp lane  containing no P , .  Outside of H we consider 

a bamboo,  T, of degree _~r_ s, containing Pc and  such tha t  T and the P~'s span P~. 

I n  H we have  ~V - -  s points  Q0, Q~, ..., Q~-,-,  of T c~ H.  We take  W in H satisfying 

P = . . ~ - I ( N - - s - -  1) for the Q2s. w e  conclude as usual (note t ha t  b(2, N , s ) =  

= b(2, 2 ( - -  1, _N-- s --  1)). Final ly  if s = N we t ake  for H an ! hyperp lane  contain- 

ing P ,  and  no other  P~. Then we repea t  the construct ion done for s = 2 r  1. 

The s tar t ing  case k r = 4 can be checked in the same way,  reducing to e l e m e n t a r y  

assertions in Pa. 

IX. - Reduct ion o f  ~,,~r and Pn,~,(s) to the  initial  cases in p3. 

The nex t  two lemmas  prove  pa r t  of the  X~,N(s). 

IX.1 .  LE~_~ .  - P~-~,_.v(s) and  A.,~_,(0) imply  P~,~(s), n > 3 ,  N > 4 ,  0<s<2~V.  

I X . 2 .  Lv,~L~~ - P,_~,_~(s) and _A~,~_~(0) imply  .4~,~(s), n > 3 ,  ~V>g, 0 < s < 2 2 r  

P~ooF oF IX.1 .  - Le t  P0,-Pl ,  ..., P~ be s + 1 points in general l inear posit ion 

in Pg.  B y  P~-I,N(s) we are given (Y, W) where W has degree a ( n - - 1 ,  5V, s) and 
is the  union of b(n - -  1, 2~, s) bamboos  (for this we need s e S(N, n - -  1) so the  case 
N ~ 4, n = 3, s = 8 has to b e  handled separately) .  Le t  g be a general  hyperplane .  

I n  H consider the  union, 5/', of n disjoint bamboos  with:  deg (T) = r = a(n, N ,  s) - -  

a ( n - - 1 ,  N , s ) .  B y  IX .3 :  r > n .  Fur the rmore  we require t ha t  T~3 W is the  union 

of b(n, N ,  s) disjoint bamboos .  This is possible because:  

: b ( n , N , s ) - - b ( n - - l , N , s ) i < n  and b ( n - - l , N ~ s ) > n - - 1 .  

N - - l q -  n )  
B y - ~ . , - 1 ( 0 )  we m a y  assume tha t  the  union of T and  d : =  N - - 1  - - r n  - n  

points  of H m general posit ion is not  contained in a degree n hypersur face  of H .  

Now W ~ ( H ~ T )  consists precisely in 

d - -  a(n - -  1, N ,  s) --  b(n --  1, _u s) -[- b(n, N', s) --  n 

points  t h a t  we m a y  assume in general position. 
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B y  semi-continuity we may  suppose that  T O  ( W r ~ H )  satisfies -4~.~_1(0). 
If  ] ~ H ~  ~v, 3~.~r(n)) then ]]H=--O by  ]~.N-~(0). Thus ] is divided by  the equa- 
tion z of H.  Since ]/z vanishes on Y, by  P~-~.~(s), we get ] -  0 as wanted. In  a 
similar way  we prove /2,4(7) -[-A3,~(0) implies -P~,4(8) taking for H an hyperplane 
through Ps (and with P~ ~ H ,  0 4 i 4 7 ) .  

IX.3.  LE~_A. - For  2/>~4, n ~ 3 ,  s E S(2/, n) ~ S(2/, n -- 1) we have: a(n, -57, s) -- 
-- a ( n - -  1, .571 s)>~n. Also: a(3, 4, 8 ) - -  a(2, 4, 7 )~3 .  

P~ooF. If  a(n, N~ s ) < a ( n - -  1, N, s) @ n - -  1 then from the definition we get: 

-57/@ n -- 1)  
-57-- 1 <a(n  -- 1, -57, s) @ n(n  -- 1) @ b(n, N ,  s) -- b(n -- 1, -57, s ) .  

Since: 

a ( n - -  l ,  2/, s) < (2 /  @ n - 1 " )  
-57 I ( n -  1) 

and b(n, N ,  s) -- b(n -- 1, N ,  s) < n, we get F(N,  n) ~ 0, where 

/~(2/, n) = [(7~ + n -  1 ) i ( N n -  2 / - -  n ) ] / ( 2 / ! n ! ) -  n2(n - - 1 ) .  

I t  is easy to check tha t :  

/~(2/@ 1, n) > F_(N, n ) ,  2/~>4, n~>3 and /~(4, n) > 0 ,  n~>3. 

This proves the  first par t  of the lemma. The last s ta tement  is checked directly. 

P~ooF oF I X . 2 .  - Let  /)0,-P1, ...,-Ps be the data  of A~,~(s). Pu t  

x : =  a(n -- 1, N ,  s) @ In -- b(n -- 1, N, s)] and r ' =  r -- a(n -- 1 1 2/, s) . 

First  assume: r' > 0, r>~x and s e S(N, n - -  1). Let  (Y, W) be given by  /)~-l.~(s) 
for the /)~'s. Take a general hyperplane H and consider in H the union, T, of 
k : =  min (n, r -- a(n -- 1, 2/, s)) disjoint bamboos,  with deg (T) = r' and such tha t  
W u T is the union of n disjoint bamboos.  This is possible by  the assumption r > x .  
Then in H add q ' - - m i n  (n, r) general points and q" points on a line D such tha t  
W ~J T U D satisfies (4) of A~.N(s). Fur thermore in H there are the a(n -- 1, N ,  s) -- 
- - k  + n - - b ( n - - 1 ,  N, s) points of W n ( / / ~ T ) ,  we may  assume these points in 
general position. So we have ~ ' - - k  points in general position in H with 3 ' =  
= q' + a(n -- 1, N,  s) -- b(n -- 1, -57, s) + n - -  rain (n I r). We want  to apply ~.N-I(0)  
to the union of these ~ ' - -  k points, the q" points on D and T. For  this we have 
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, , > I N - - 1  + n)  F rom the definitions we get: mr'+ q '+  to cheek: nr' + ~' + q ~ N - - 1  " 

+ q " - - b ( n - - l , N , s ) ~ - - \  N - - 1  7~ since a(n - -1 , . h  r , 8 ) + n - m i n ( n ~ r ) > O ,  we 
ure done. 

The same proof works if r' -~ O, r>x,  adding only points in H. I f  s 6 S(IY, n -- 1) 
then N -~ 4, ,~ = 3~ s -- 8: just  consider an hyperplane H containing one of the P~'s. 

Now a.ssume r < x. Arguing as above we prove A~,N(s) for: r = x, q", q'-- n(x -- r). 
We get: deg (W) = x, union of q~ disjoint bamboos, Po in a final line of W; a set, Q', 
of q ' -  n ( x -  r + 1) points of P~; u set, Q", of q" points on a suitable line such tha t :  
X : =  W w (P~} W Q ' w  O" satisfies: h~ ~, ~(~)) = O. 

Note tha t :  

nx + q'~-b q'-- n(x- -  r) + s = nr + q'-~ q'+ + s =  

Note also tha t :  min (n, x ) :  n(IX.3) and:  q ' > n ( x - - r  + 1) (IX.4). Now we take 
W ' c  W, deg ( W ' ) =  r, W' the union of min (r, n) bamboos. We may  assume tha t  
X ' ~  X \ ( W ~ W ' )  satisfies the conditions of A~,~(s). The natural  map:  rz,(n): 
tie(opt(n))-~H~ is surjective, hence we just  have to add n(x - - r )  suitable 

points to X '  to prove A~,N(s) for r~ q', q". 

IX.4.  L E ~ .  - Wi th  the notations of the proof of IX.2 if r < x then q'~> 

> n ( x -  r + I). 

PI~ooF. - We have x<a(n  -- 1, N, s) -]- n - -  3 hence: 

(*) x - - r - ~ - 1 4 a ( ' a - - l , N ~ s ) - -  r-~- n - - 2 .  

From the definitions we get: 

n ( r  - ~ ( ~  - 1, •, s)) + a(~ - 1, N, s) § q" § q ' -  b(~ - 1, ~ ,  s) = N - - 1  

, {N+ If  q ~ < n ( x - -  r + 1 ) ,  combining with (*): a ( n - - l , N , s ) + n ( ~ - -  2 ) >  / �9 

Since I N +  n -- l~ /(n - -1)  > c~(n-- l ,  N, s) we get . F ( N , ~ ) >  0 w i t h :  
\ ] N - - 1  

/ ; (N,  n) - -  (N § ~ - 1 ) ! ( ~ -  =u § N) / (~ !N! )  + (+~ - ~)(~ -- 2 )~ .  

But  F ( N  -~- 1~ n) < _~(N, ~), N~4~ n ~ 2  and F(4, n) < 0~ n ) 2 ,  which proves the 

lemma. 
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X. - Initial  cases in p3 and end o f  the proof  o f  theorem 1. 

In  this section we will prove A..3(0), n > 3 .  According to I X  this will prove 
A~,N(s), n>~3, _AT>4, 0<s~<2N and hence A~,~(s), N < s < 2 N ,  n>3, 2~>4. Then 

we have to prove A~,z(g + 3), n~>4, 0 < g < 3  bu t  with the condition q ' > 2 n - - 3  
(see IV.4.1 and VI.2):  this will be implied by  the s ta tement  A:,a(g + 3), n>4, 
0 < g < 3 ,  of this section. 

For  the proofs we need two other inductive steps: B~(s) and C,(s, k). Then after  
to prove A3,~(g + 3), g ----- 0 or 2 and H~,4(g) for g ----- 1 or 3, to get theorem 1. This 
will be done at  the end of this section. 

X.1. T I ~  S T A T E M E N T  Bn(8), P R E L I M I N A I ~ I E S .  - For  any genus g > 0  and any 
integer n > l  we have defined numbers r(n, g), q(n, g) by:  

(n ~3 3) = n.r(n, g)-- g + l + q(n, g); 0 < q ( n , g ) < n - - 1  (see [BE2] ) .  

The r(n, g) are the critical degrees for the postulation of curves of genus g in p3 
(at least for non special curves). 

I f  g -~ 0, writ t ing more simply r(n)~ q(n), we hay% according to the congurence 
of n mod. 6: 

Since 

o r :  

r(6k + 1) ---- 6k ~ +  8k + 3 ,  

r(6k + 2) --~ 6k ~ +  10k + 4 ,  

r(6k + 3) ~-- 6k ~- + 12k + 6 ;  

r(6k + 4) = 6k2 + 14k + 8, 

r(6k + 5) --~ 6k2+  16k + 11 ,  

q(6k + 1) = 0 

q(6k + 2) ---- 3k + 1 

q(6k + 3) = 2k + 1 

q(6k + 4) = 3k + 2 

q(6k + 5) = 0 

r(6k + 6) ---- 6k ~ +  18k + 13,  q(6k + 6) ----- 5k + 5 .  

3)  = nr(n)+1 + q(n), we may  w r i t e :  

(n~3]=nr (n ) - - (1 - - e )+[ - l+s  with e-=l+q(n)--s,  
\ O l  

+ 3 ) =  o, +1 wi h § 
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These la t ter  numbers are h~ if Y is the disjoint union of s points and of e 
disjoint bamboos such tha t  the curve par t  of 17 has degreee r(n) (resp. r ( n ) -  1). 
This is the mot iva t ion  for the definition of B(s) (see X.2,  4). 

Note  also tha t  for the first par t  of this work (proof of theorem 1) we only need 
B.(0) .  Bu t  for theorem 2 we will need B.(s) for some n > s > 0. This explains why 
we let  s va ry  in the definitions bu t  only prove,  in this section, the initial cases 
for s = O. 

Finally,  before to start ,  we need one fur ther  definition. 

X. I .1  D]~FI~iTIo~. - Le t  T = 5 T, be the union of r disjoint bamboos. An 
i=1 

s-uple of disjoint lines (D~, ... ,Ds) is a b-connecting secant for 2 ~ if there  exist b 
connected components of T, for example /71, ..., Tb such tha t :  /'1 w ... ~9 Yb W D~ W 
W ... W D~ is a bamboo (hence is connected);  T w D~ W ... w D~ is a union of disjoint  
bamboos.  

X.2. B.(s) /or n odd. 

B~k+,(s), O<~s<2k--1. For  every s ~ -1  points Po, P~, ..., Ps in linear general 
posit ion there exist (Y, Z, Q) where 

(1) 

(2) 

Y is the disjoint union of the P~, l<~i<s, and of a curve Z which satisfies: 
h~ 8, 3r(6k + 1)) = 0 

Z has degree 6 k ~  - 8k ~ 2 and is the union of 6k -]- 2 -- s disjoint bam- 
boos; /~o is contained in ~ final line of Z 

(3) Q is a smooth quadric intersecting Y transversally. Moreover Q contains: 

(a) 2/c - s - i pairs (Di, D~), l<~i<2k -- s -- 1, of 3-connecting secants for Z 

(b) one (2s-{-3)-conneeting secant (6j), 1<~]~<2s ~ 2  for Z. The lines 
D,,  1)~, (~ are all in the same system of lines of Q. 

BI~A~t~. - I t  follows tha t  Z ' : =  Z w ( U D i )  w (UD~) u (U(3~) is the union of 
2k ~ - 2 -  s disjoint bamboos and has degree 6k~-~ 12k ~ 2. We will use Z '  to 

prove B~+3(s). 

B6~+3(s), 0~<s<~2k ~- 1. For  every s ~-1  points Po, PI ,  ..., Ps in 1.g.p. there  exist 
( Y, Z) where: 

(1) Y is the disjoint union of P 1 , . . . , P s  and of a curve Z and satisfies 
h~ 3, J~(6k -[- 3)) = 0. 

(2) Z has degree 6k 2 - [ - : [ 2 / ~ 6  and is the union of 2 k ~ 2 - - s  disjoint 
bamboos i JPo is contained in a final line of Z. 
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B6~+~(s), 0<8<6/c-}-5 .  For  every 8-k 1 points Po, ..., t)~ in 1.g.p. there exist 
(Y, Z) where: 

(1) I; is the disjoint union of P~, . . . ,P~  and of a curve Z and satisfies 
h (P~, ~(6k + 5)) = 0 

(2) Z has degree 6k ~ q - 1 6 k q - 1 0  and is the union of 6 k q - 6 - - s  disjoint 
bamboos; Po is contained in a final line of Z. 

~ . 3 .  INDUCTION FOI~ TILE ODD OASES. 

X.3.1. Bok-l(s) implies B6~+l(s), 0 < 8 < 2 k - - 1 ,  k > a .  Let  (Y, Z) be given by 
B6~-I(s) for the P~'s. By  definition Z has degree 6k2-[ - 4k and is the union of 
6 k -  8 disjoint bamboos. Let  Q be a smooth quadric not containing any irreducible 
component of Y. On Q we consider 4k -k 2 disjoint lines (L~) such tha t :  if l< i< .dk , .  
33~ is linked to a final line of a connected component of Z. I f  i > 4k: ~ (~ Z ----- 0 

4 1 c + 2  

I t  follows tha t  g ' : - - - -g tA((JL~)  has degree 6k 2 + 8 k + 2  and is the union of 
6k ~ 2 -- 8 disjoint bamboos. Take l ~ H~ -1-1)) where Y' = Z'  w {P1, ..., P~} 
Then J ' : =  ][Q vanishes on the 4k ~- 2 lines ~ and on the 12k 2 q- 4k = (6k q- 2)(2k) 

4 k + 2  

points of S = Z n (Q\([.JL~)). 
Claim: every form of type ( 2 k -  1, 6 k - - 1 )  vanishing on S is identically zero. 
Assuming the claim we get ] ' =  0. Thus f = qg with g e H ~  1)). By  

B6~-~(8), g ---- 0 hence ] = 0 as wanted. Finally the claim above is just  a little varia- 
tion of [BE, 2] lemma 5.2. This proves (1) and (2) of B6~+~(s). 

Now it remains to show condition (3) of B6k+~(s). Let T~, 1 < i < 6 k - -  s, be the 
connected components of Z. If  length (T~)>2, T~ has two final lines, say: T~, R~'. 
I f  length (T~) = 1, T~ intersects Q in two distinct points: t~, t f~ . From the construc- 
tion above we have, for example, tha t  Li is linked to Y f~ if 1 < i < 4 k .  For  1 < i <  

l 
< 2 k - -  s - -  1 let x~ be a point of T~k+z(~ Q (if l(Td~+l ) = 1, xz = t~k+, ) and x~ be a 

! 

point of T~'(~ Q (x~ = t~' if l ( T , ) =  1). Let  Ax i (resp. Axe) be the line on Q 
? ! 

through we (resp. x~) and intersecting L~. Define: y ~ =  Ax~n L~ (resp. y~ = 
! ? l 

= Ami ~ L~_s§ , l < i < 2 k - -  8-- 1. Pu t  D~ :---- [z~, p~], D~ : =  [x~, y~]. 
Note tha t  (Di, D~) connect liW Ti,  Z2~-,+i and Td~+i, l < i < 2 k - - s - - 1 .  They 

will be the ( 2 k -  s -  1) 3-connecting secants. 
I ! 

Define x~-~, y~-~, zz~_~, p~_~ ~s m~, ... for i < 2 k - -  8-- 1. Furthermore for 
~' t ~' if l(T~_e~+~ ) = 1]. 0 < j < 2 s - - 1  let ~ be a point of T~_z~+~n Q [ ~ =  ~_~+~ 

Let  A ~  be the line through ~ intersecting L~ and put  z~+~= A~nL~_~,+~+~, 
0 < ] < 28 -- 1. Finally set: 

f ! 
Now we deform the lines 35~ into lines L~, l < i < d k  q- 2, such tha t :  Li is transversal 
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to  Q for 

4 k + 2  

The resulting curve 2 : =  Z ~ (ULI)  satisfies (1) and (2) of B~:+~(s). Now we claim 
tha t  Z also satisfies (3) of B~+~(s). Indeed (D~,D~), 1<i<21c- -1 - -  s, are the 
( 2 k -  1 -  s) 3-connecting secants and (6~, ..., ~+~) is the (2s ~-3)-connecting secant 
to Z. Note also tha t  we m a y  assume tha t  P belongs to T~'~: Hence 

z ' =  2 u (UP, )  u (UPS) u (U#~) 

is the union of 2k -- s -~ 2 disjoint bamboos and P is contained in a final line of Z'. 
This finishes the proof of B~+~(s). 

X.3.2. B6~:+~(s) implies B6.~+a(s), 0 < s < 2 / c - - 1 ,  k > l .  Let  (Y ,Z ,Q)  be given by 
B6~+~(s) for the points/)o,  .... , P~. In  Q we have the (2k -- 1 -- s) 3-connecting secants 
to Z, (D~, D~), and the (2s Jr 3)-connecting secant (6j). This all together yields 4k 
lines and Z ' =  g U ( UDi k) D~) k) (U6j)  has 2k + 2 -- s connected components. 
Also, by  construction, two of these components are lines transversal to Q (cf. the 
lines J5~7~+~, L~7~+,~ of the previous proof). In  Q we consider four further lines Bz, 

4 

1 < l < 4 ,  such tha t  Z : =  Z ' U  (UB~) has degree 6k~-~ 12k -~ 6 and is the union of 
2k + 2 -- s disjoint bamboos. Now if f~Ho(;ir(6k + 3)) where Y ~- 2 k; {P~, ..., P~} 
then ] ' : =  ]tQ vanishes on the 4/c -f- 4 lines D~, D,~ 6~, B~ and on the 

2(6k~-~ 8k ~- 2 ) -  (8k -[- 4) ---- (6k -~ 4)2k 

points of Z n (Q\(  UD, u D; u ~ u B~)). As before using [Bn2] ~ 6 we see that 
]~--O, hence ] = 0 as wanted. 

X.3.3. B6~+~(s) implies B6~+5(s), 0<s<2 /c  + 1, /c>~0. Let  (Y, Z) be given by 
B6~+~(s) for the P / s .  Let  Q be a smooth quadi.ic not  containing any irreducible 
component of Y. In  Q we consider 4k -}- 4 disjoint lines, I~i, such tha t :  ~i n Z ---- O, 
l < i < d k  -[- 4. So Z'---- Z U  (UJ5~) has degree 6M-~ 16k + 1 0  and is the union of 
6k-~  6 -  s disjoint bamboos. Arguing as in the previous cases we may  assume 
tha t  Y ' =  g '  U {P1, ..., P~} satisfies h~ (6k -~ 5)) ---- O. 

X.4. B,(s) ]or n even. 

B6~r O<.s<.<2k -}- 1. For  every s -}- 1 points Po, P1, ...,P~ in l.g.p, there 
exist (Y, Z) where: 

(1) 1/ is the disjoint union of 201, . . . ,P~ and of a curve Z and satisfies 
h~ ~, 5~.(6k ~- 2)) = 0 
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(2) Z has degree 6k ~ + 1 0 k + 4  and is the union of 3 k + 2 - - s  disjoint 
bamboos; Po is contained in a final line of Z. 

B~+~(s), O<~s<~3k-~ 2. For every s + 1 points Po, . . . ,P~ in 1.g.p. there exist 
( :Y, Z) where: 

(1) Y is the disjoint union of P~ , . . . ,P~  and of a curve Z and satisfies 
ho(P + = 0 

(2) Z has degree 6 k ~  - 14k ~ - 8  ~nd is the union of 3k + 3 - - s  disjoint 
bamboos; /)o is contained in a final line of Z. 

B~+~(s), O~<s<4k -]- 4. For  every s -~  1 points -Po~ ...~P~ in 1.g.p. there exist 
(:Y, Z, Q) where: 

(1) I z is the disjoint union of PI~.. .~P~ and of a curve Z and satisfies 
h~162 + 6)) : 0 

(2) Z has degree 6k ~ + 18k -}- 13 and is the union of 5k -]- 6 -- s disjoint 
bamboos; Po is contained in a final line of Z 

(3) Q is a smooth quadric intersecting :Y transversally. ~ur thermore Q con- 
rains 2k + 1 disjoint 2-connecting secants, D~, l<~i<2k + 1, to Z. 

X . 5 ,  I N D U C T I O N  F01~ THE EVEN CASES. -- The proofs are similar as in the odd 
case so we will just sketch them. 

X.5.1. B6~+~(s) implies B6~+4(s), 0<~s~<k--1, k > l .  Let  (:Y, Z) be given by 
B~k+2(s) for the P'is. Let Q be a smooth quadric surface containing no irreducible 
component of Y. Let T~ l<~i<~3k + 2 - - 8 ,  be the connected components of Z. 
On Q we take 4k ~- 4 disjoint lines, ~5~, in the following way: for l<~i~<k + s + 2~ 
Z~ and L~+~+~+~ intersect T~ so tha t  L~ W Lk+~+~+~ td T~ is a bamboo. For 2k + 2s + 
+ 5~<i~<4/r -,~ 3~ L~ is linked to a final line of T~_~_~_~; L~+~ (~ Z = 0. I t  follows tha t  

4 / ~ + 4  

Z' ---- Z ~ (UL~) has degree 6k ~ -~ 14k -~- 8 and is the union of 3k + 3 -- s disjoint 
bamboos. As in the previous cases we may  show tha t  h~ = 0 where 

z '  v {P1, ..., 

X.5.~. B67~-~(s) implies BGk+6(S), O<~s<~k-~ 1, k>O. Let  (:Y,Z) be given by 
B6~+~(s) for the P~'s. Let  Q be a smooth quadric containing :no irreducible component 

1 of :Y. On Q we consider 4k + 5 disjoint lines, L~, as follows: if l~<i<~2k -{- 3, L~ is 
linked to a final line of a connected component of Z. If  i > 2k + 3, L~ n Z = 0. 
We may  assume tha t  g'-~ Z W((_JL~) satisfies, with {P1, ...,P~}, (1) and (2) of 
B6~+6(s). For condition (3) let x~ be a point of L~, l<~i<~2k + 1, and let Ax~ be the 
line on Q through x~ and intersecting 351. Set y~ ~ Ax~ n L~+~+I. We deform the 
lines L~, 1~<i<4k -+- 5, into lines L~ such tha t :  L'~ is transversal to Q; for l~<i~< 

! 
~< 2 k + 1 ,  L~ (resp. L~7~+~+~) passes through x~ (resp. y~); Y : = Z w ( [ . J L ~ ) w  
u (P~, ..., P~} s~tisfies B67o+6(s). 
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X.5.3. B67o+6(s) implies B67~+8(s), O < s < k - - 1 ,  k>~l. Let  (Y, Z,Q) be given by 
B~7:+6(s) for Pc, P~, ..., P~. On Q we have also the 2k + 1 disjoint 2-connecting se- 
cants, D~, to z. Let  (Ti)~<i<sk+6_ ~ be the connected components of Z. If  I(T,)~>2 
let T ~ s' ~, T, be the two final lines of T~. If  l(T~)----1 then let T, nQ----{t~,t~'}. We 
m a y  assume tha t  T~, -' T~+~+l intersect D~ (or t~ (resp. i t~+,~+~) belongs to Di, if l(Ti) = 1 
(resp. l(T,+~+~) -= 1) 1 < i < 2 k  + 1. Then we take 2k + 1 further disjoint lines 

t ! l - 

on Q, D,, such tha t :  D, (~ D, ---- O, T ~'~+~+~ intersects D~ (or t ~ + ~  e DI). Finally we 
take, always in the same system of lines, five other lines, D, ,  such tha t  D, is linked 

2,%+1 5 

to a final line :of T~+~+~, 1 < i < 5 .  Then Z'---- ZtA ( [JD, U D~)~3 ([.J/)~.) has degree 
6k 2 + 22/~ + 20 and is the union of 2/~ -]- 5 -- s disjoint bamboos. Arguing as before 
Y~ ---- Z'  ~3 {P~, ..., P~} m a y  be taken to satisfy B6~+s(s). 

Now we turn  to the special ease s = 0 and prove the missing initial cases: 

X.6. PI%OPOSITIOI~. - -  For n>~l, B~(O) is true. 

P~ooF. - As two skew lines are never contained in a plane BI(0) is clear. For  
B~(0) we take the disjoint union of a line and of a bamboo of length three. Then,  
using a plane instead of a quadric, we prove B~(0) implies Bs(0). In  this way  the 
general union of two disjoint bamboos of length 3 satisfies B,(0). :Now for odd cases 
the induction can start .  

Using again a plane we show B3(0) implies B4(0). The curve satisfying B~(0) 
is the disjoint union of T1,/ '2 two bamboos of length 3 and of Ta, a degenerate conic. 
We show B4(0) implies B6(0) adding 5 skew lines L~ in a quadric Q such tha t  T~ w L~, 
1 < i < 2 ,  are disjoint b~mboos and L~ n (T~ u T~ tA T3) ---= 0, i > 2. With  the usual 
procedure this yields a curve satisfying B~(0) and having three 2-connecting secants. 
Wi th  a slight modification of the general proof we can show B6(0) implies Bs(0) and 
the induction starts also in the even case. 

:Now we introduce the second inductive s ta tement  of this section. 

X . 7 .  

in 1.p.g. 

(1) 

(2) 

(3) 
(~) 

Recall tha t  a(n, 3, k), b(n, 3, k) are defined by:  

n .a(n ,  3, k ) + k + b ( n ,  3, k ) = = ( n + 3 )  
3 

C(s, lc), O<<s<n + k -- 1, n>~l, k>0 .  - :For  every s + i points Pc, P1, ...~ P~ 
there exists a triple (Z, D, S) where: 

Z is the disjoint union of n + k - - s  bamboos, deg (Z) ---- a(n, 3, k) (see 
below) and Pc is contained in a final line of Z 

D is a line with Z u D disjoint union of n + k - -  s bamboos and Pc is 
contained in a final line of Z ~3 D 

S c  D is a set of b(n, 3, k ) - - n  points 

h~ = 0 where Z ' =  Z w {P1, ..., Ps}. 

n<b(n,  3, k )<2n- -  t o 
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In  this section we are interested in the case s = k, 0 < k < 3 ,  n > 3 .  I f  0 < k < 3 ,  n > 3  
then a(n, 3, k)>b(n, 3~ k)>n except if n ---- 3, /c ~-- 3. In  this case: a(3 ,3 ,3)  ---- 4, 
b(3, 3, 3) ----- 5. 

X.8. LEptA.  - For 0 < k < 3  and n > 3 ,  B,-3(0) implies C,(k, k). 

P~ooF. - Let  (Y, Z) be given by B~_~(0) for the point /~o: Let  Q be a smooth 
qliadric containing _P~, ..., Pk (k > 0) bu t  not Be. Zet  (u, v) be respectively the 
degree and number of connected components of Z. In  Q consider x :---- a(n, 3, k) -- u 

k 

disjoint lines (L~, ..., L.) in such a way tha t  T -= Z ~J ( [J L~) is the union of n disjoint 
bamboos. According to X.8.1 below, this is possible. Now let D be a line on Q not 
intersecting T and take S c D with # (S) = b(n, 3, k) -- n. We have to show tha t  
every form of type  (n, n) vanishing on (T n Q ) u  S w (P~, ... ,P~} is identically zero 
(then the lemma will follow because the residual scheme to Q satisfies B~_~(0)). 
Again this follows from [BE, 2] w 6, especially lemma 6.2. :Note tha t  the points 
/)1, ..., _P~, cause no trouble since k < 3 and we may  assume tha t  Q does not  contain 
any  line [P~, Pj]. 

X.8.1. Su]~-L~.~vlA. - With  the notations of the proof of X.8 we have:  (i) x > 0, 
(ii) v<n, (iii) n > x > n - - v .  

1)1~oo1~. - (i) By  definition we have: 

=n.a(n~3,  k ) + k - ~ b ( n ,  3, k), n<~b(n, 3, k )<2n- -1  

(k +3 1 ) =  (n-- 2)u + v.  

Hence 

(n + 1) 3 =  nx + 2u + lc + b(n, 3., k)-- v(*) . 

If  x~<0 then (n + 1)~<2u + 2n + 2. S i n c e u < r ( n - -  2) we get (n + 1)2<2r(n--  2) + 
+ 2n -~ 2 which is impossible if n > 3  (use X.1). 

(ii) This follows from the definition of B~-3(0). 

(iii) I f n < x t h e n ( n + 3 )  3 > n(n + u) + k + b(n, 3, k) this lat ter  being greater 

than  n ~ + n + nu. Since u>r(n- -  2) -- 1~ using the definition of r(n -- 2) we get 

3 > 3 :+n 3 - n + 2 + 2 r ( n - 2 ) ,  i.e. 3 n - - l > 2 r ( n - - 2 ) .  I f  n > 7  this 

is impossible. For  n ~< 6 the lemma is eheeked by direct computations. 
I f  x < n - - v ,  using(*) we get: ( n + l )  3 < n ( n - v ) + 2 u - l - k + b ( n , 3 , k ) - e ,  

i.e.: v ( n + l ) + ( n + l ) 3 < n ~  3, k ) < n 2 + 2 u + 2 n + 2 .  Finally:  
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v(n + i)  < 2r(n -- 2) + 1, which is impossible if n > 3 ,  except if n ~ 5 (mod 6) and 
k = 3. In  this lat ter  case a direct computat ion shows x ---- n -  v (this is due to the 
fact tha t  b(n, 3, 3) ~- 2 n - -  2 if n ~ 5 (rood 6). 

X.9. P~OPOSlTIO~. - For  n>2,  C.(3, 3) is true. 

P~ooF. - According to X.6, X.8 it remains to show tha t  C~(3, 3) holds. But  
this means tha t  for every Po, P1, P~, P3 spanning p3 we can find two lines D, R, 
with t)o ~ D such tha t  D u R (J {/'1,-P2,/'8} is contained in exactly one quadric. 
Jus t  take a smooth quadric containing all the Pi 's  and two skew lines on it. 

X.10. P ~ o r o s I ~ o ~ .  - For  n>2,  C.(0, 0) is true. 

P~ooF. - According to X.6, X.8 it  remains to show tha t  C~(0, 0) holds. For  this 
take the disjoint union, X,  of a line and of a bamboo of degree 3. I t  is easy to check 
tha t  X is not contained in a quadric surface. 

X . ! I .  THE ST&TE)[ENT A,~.3(s), n>4.  - The s ta tement  is similar to Z,.3(s). The 
only difference is tha t  instead of condition (c) in Z.,3(s) (see VII)  we require: 

(e') q ' > m i n  (r, n) + ~ - -  3 for n > 4 .  

X.12. L~-v~A. - For  0 < g < 3  and n > 4 :  C~-2(3, 3) implies A:.a(g + 3). 

P~oor .  - Le t  Po, ..., P~+~ be the points considered. By C,_~(3, 3) for P0, . . . , / '8  we 
are given (Z, D, S). :Note tha t  Z has n -- 2 connected components. Let  Q be a smooth 
quadric containing P~, ..., P~+3 but  not  P~ for i < 3 .  First  assume r>~a(u--2, 3, 3), 
hence r > n .  In  this case we add in Q the union T of r -  a(q, -- 2, 3, 3) disjoint lines 
in such a way tha t  Z W T is the union of n disjoint bamboos. This is possible since: 
2(n -- 2)>~r -- a(n -- 2, 3, 3) -- 2 (see below). Outside Q we have the b(n -- 2, 3, 3) -- 
- - n  + 2 points of S and in Q we add the q" collinear points and further q ' - -  
-- b(n-- 2, 3, 3) -- 2 points in general position (note tha t  q'--  b(n -- 2, 3, 3) -- 2 > 0  
because of the new assumption on ~'). We claim tha t  the union, X, of Z, T, S, 
{~Pl, ..., P~+~}, the q~' collinear points and the q ' - - b ( n - - 2 ,  3, 3 ) - - 2  points satisfies 
A'~.~(g + 3). Indeed ResQ (X) satisfies C~_~(3~ 3) and we may  assume (by [BE, 2] 
w 6) tha t  any  form of type  (n, n) vanishing on X (~ Q is identically zero. Finally 
we can always reduce to the case r>a(n- -  2, 3~ 3) + 2 since n[a(n-- 2, 3, 3) + 2] + 

( n + 3 )  I n d e e d i f n o t  then § 2 4 7 2 4 7  3 " 

(-~-) net-~ 5 q - ~ 2 > (  n+3 3) 

( n + ~ )  
But  from the definition: ( n - - 2 ) a <  3 - - n - - 1 .  Combining with (-t-) 2 a >  

> n ~ -  2n. Using again the definition of a = a(n -- 2~ 3, 3) we get: 0 > 2n~(n-- 6) @ 
@ 19n @ 6 which is false if n > 3 .  
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X.12.1. Wi th  notations of the proof of X.12; we have:  

(*) 2 ( n - -  2)>~r-- a (n- -  2 7 3, 3 ) - -  2 

Fi rs t  for n~>4 we have r<~a(n, 3,0) (because q " + q ' + g + 3 ~ > 2 n - - 1 ) .  On the 
other  hand,  f rom the definitions, we get:  a(n--  2, 3, 3 ) > a ( n - -  2, 3, 0) - - 1  for 
n ~> 4. Moreover:  

(**) a(n, 3, O) -- a(n -- 2, 3, O) + 1 <<. (n -~ 1) ,  n >  4 

and (*) follows. To prove (**) note  tha t  the definition of a(n ,3, 3 ) =  a, a ( n -  2, 
3, 3) ---= a' yields (n + 1) 2 --  n(a -- a') ~- 2 s  + b -- b' and 

from which (**) follows. 
In  a similar way we have:  

X.13. LEMlVrA. - For  n > 4 ,  C~_,(O,O) implies A'~,3(0). Hence ~,,3(0) is t rue 
for n > 4 .  

X.14. LE~r  - Aa.3(0) holds. 

PROOF.-  One easily computes the possible values of r, q', q". For  example 
5 > r ~ l .  I f  r ~ 3  take ~ smooth quadric Q. Let  Z, L '  be two disjoint lines intersect- 
ing Q transversally.  Then  in Q consider a bamboo, T, with deg (T) = r -  2; a set, 
~, of q" co]linear points and a set, P ,  of q ' - -  3 general points. Then X = Z U Z'  u 
U T u  S U / ~  satisfies h~ = 0. Indeed if ]eHo(3x(3) )  then  ]]Q -~ 0 and 

moreover  Z u Z'  is not  contained in a plane. I f  1 < r < 2 ,  do as above bu t  with one 
line, iS, outside Q and deg ( T ) =  r - - 1 .  

Almost the  same proof shows: 

X.15. LE~W_A. - I f  g -= 0 or g = 2 then As,3(g ~ 3) is true. 
The following lemma concludes the proof of theorem 1. 

X.16. I~E~d3~• - For  g ----- 1 or g = 3, H3.4(g) is true. 

PI'~0OF. -- Le t  C be an elliptic quintic in p4 and H be a general hyperplane.  Set 
H (3 C-----{P1, . . . ,Ps}.  Le t  L~ be a general line in H through P~, 1 < i < 5 .  Also 
let D be a general line (not contained in H) bu t  intersecting LI.  Finally let S = 

: {x, y} be a set of two distinct points such tha t  Ix, y] meets D. We m ay  assume 
: =  L~ w ... u Z~ to be in general position in H -- p 3  
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Hence  h~ ~- 0 (see [ItH1]).  Hence a cubic containing X = C u f i u  D ~9 S 
has to split into the union of H and of an hyperquadr ic  containing D U ~q. Bu t  we 
m a y  assume tha t  h~ ~, 3 . , s ( 2 ) ) =  0 (for instance let H '  be an hyperplane contain- 
ing D u S, then  D w S W (C n H')  is not  contained in a quadric of H ~ and C is non 
degenerated). I f  g = 3, C is a curve of degree 7 and we modify  a little bi t  the above 
construction:  in H we take four lines L~, ...,L~ t h r o u g h / ~ ,  . . . ,P4 and one fur ther  
point  P.  

Outside H we take D intersecting L~. As the union in p3 of four general lines and 
four general points is not  contained in a cubic surface, we conclude as above. 

A) The second theorem. 

These last sections are devoted to the  proof of: 

T~EOBE~ 2. - F ix  N, g with N~>4, g~>0. There exists an integer d(g, N) such tha t  
for every  d>d(g, N), for every smooth curve X of genus g and every L in Pie ~ (X), 
the general project ion of ~ ( X )  into P~ has maximal  rank. 

F rom the proof we could obtain induct ively  an explicit  upper  bound for d(g, ~), 
N >  4. Bu t  the construct ion is highly inefficient and therefore the bound is useless. 
Nevertheless theorem 2 seems interesting because it  shows tha t  asymptot ical ly  iu 
a fixed P~  the postulat ion of a general embedding of every curve does not  depend 
on the geometry  of the  curve. The proof is, as usual, b y  induction on N but  we wri te  
with details only the <~ start ing ~) case N ~ 4. Then the induction from N -  1 
to zY, ~Y>5, is similar and even simpler. 

B) Structure of  the proof for hT_~ 4. 

We define s tatements  D~, H~.4(g) (see C). We show tha t  if n is big enough 
then  D,~ holds and tha t  there  is a chain of implications: 

(D~E) D~:~ ::> D~-:+I =~,,. ::~ Dt:l  => H;,4(g) 

Thus H~,~(g) holds for t>~to. This implies theorem 2 (see F). Thus the proof is es- 
sentially reduced to the proof of D~, t>n. The start ing point,  Dn, is proved using 
a curve in pa and a specific construction (D). Then to prove D~, t>n, we use: 
Dt-~-~ A't.8(g -~ 3) ~ Dr. To prove A~,3(s) with t >> s, we use the chain of implica- 
tions: Bt_~(s)=> Or(s, 8)=>A't+~(s) (these s ta tements  are defined in section X). 
Final ly  it remains to prove B~(s), 1 >> s. For  this we use (E.1) the constructions of 
X.2, ..., X.6 and the fact (see X.6) tha t  B~(0), n~>l, is true. 
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C) The statements D~, H~,4(g). 

From now on we fix a smooth curve, X ,  of genus g. 

C.1. D~: 

There exist (Y, W, :Y~, h) such tha t :  

(1) h: W - >  X is an isomorphism 

(2) :Y = W u ([.J:Y~), p~(:Y) -= g, deg (:Y) ~-- r(t, 4, g) and ~Y has q(t, 4, g) + 1 
connected components.  

(3) The :Y~'s are disjoint bamboos;  every :Y~ intersects W at  most  at  one point  
and quasi-transversally. At least t of the :Y~'s intersect W. 

(4) ho(p~ ~r(t)) = 0. 

There exist (Y, W, D~ S~ h) with: 

(1) h: W - +  X is an isomorphism 

(2) D is a line, S c D ~  ~ # ( S ) = q ( t ,  4, g) 

(3) ]( and :g U D are connected and union of W and t disjoint bamboos 

(4) deg (:Y) ----- r(t, 4, g) and h~ ~, ~r~s(t)) = 0. 

D) Proof of D~ for some n large enough. 

Firs t  of all let  C be the image of X through an embedding of degree g -[- 3 in p3 
with 0~(1) not  special. In  the lemma below we consider p3 as an hyperplane,  

H a in P~. 
We define integers r( t) ,q( t)  by  the relations: 

We have 

+ 1),(,) + q(t)= l,t + o<q(,)<, (t 
' \ 3 ] 9 " 

r(t) = (t + 2)(t + 3) /6 ,  q(t) = 0 if t - -  0, 1 (rood 3) 

and 

r(t) = (t + 1)(t + 4)/6,  q(t) = (t -~ 1)/3 if t ~- 2 (rood 3) (see [HH1] ) .  

Finally let m be the least integer ~> 2g + 6 with m ~ 0 (rood 6). 
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]).1. L E ~ z ~ .  - For  every  n > m  with ~ b - - m  even there exist  (Y~ Z, D, U, S) 
where: 

(1) Z / =  C u Z ~  U u S  

(2) Z is the union of r(n)-r(m) disjoint lines 

(3) D is a line, S o D ,  @ ( S ) = q ( n ) ,  U is a set of 

+ 3 ) -  z + g -  q(n) = 

= 3 -- m(g + 3 ) - -  1 + g -~ ( r (m) - -  g - -  3 ( ( n - -  m) points  

(4)  o(Pt = o. 

P~ooF.  - B y  Castelnuovo theorem h~(J~,,(m)) = O. Thus there  exists the union, 

V, of x : - -  3 - -  m(g -k 3) - -  1 @ g points  with r - ~  v,~(m) bijective. Con- 

sider a" general qugdrie Q. I n  Q add  r(m -~ 2) - -  r(m) disjoint lines a'nd 2(r(m) - -  g - -  3) 

points  in such g way  tha t  the union Y has rr, ,(m -~ 2) bijective.  Repea t ing  this pro- 

cess we get the  l emma.  
The  condition m > 2g -[- 6 ensures us t ha t  C n Q is in general posit ion for forms 

of type  ix, y) on Q, y > m - k  2, since we m a y  assume tha't Q does not  contain any  

secant  line to C [BE2]. 
Now we ea'n construct  curves in p4 isomorphic  to X and with  mgxim~l  rank.  

D.2. LE~V~A. - Fo r  some n large enough (n depending only on g) D .  is true. 

PROOF. -- Since asympto t ica l ly  on ~ we have  a(n, 4, O ) ~  r(n, 4, g)..~ n~/24, we 

ca'n find a la'rge integer n, n > m ,  n ~ m  (mod2)  (~ depending only on g) such 

tha' t :  r(n, 4, g) > a(n - -  1, 4, 0) -~ g 4- 3 -k 3n a'n4 such tha't  r(n --  1, 4, g) ~ 10~ q- 
( n -  m)(2x ~ 1) say. B y  P~-I,~(0) (see V I I )  there exists in p4 a reduced curve T 

union of q ( n - - 1 ,  4, 0) disjoint bamboos~ with h~ ~, 3 r ( q ~ - - t ) ) =  O. We m a y  ~s- 
sume tha t  T intersects C only a't one point .  We can find in H the union B of 
r(n, 4, g) -- a (n - -  1, 4, 0) --  g - -  3 disjoint lines, say B ~- B1U B~, such t h a t  deg (B~) ~- 
= q(n, 4, g), C W T W B~ is connected,  of a r i thmet ic  genus g, with only ordinary  

double points  and has ~t least  n lines intersect ing only a'nother irreducible component .  
Also we a s s u m e B 2 n ( C ( J T u B 0 = 9 .  Let  Y---- C U T U B .  The points  of T r i l l  

not  on C are generul points in H.  Thus b y  ]emma" D.1, C u B U ( T ~ B )  is not  
contained in any  degree n surface of H and ry(n) is bijective.  B y  the  choice of 27, ]( 
ha's maxima' l  ra'nk. We  can deform C kY 27 W B~ to Z U A where Z is isomorphic  

to X,  A is the  union of n disjoint lines each intersecting Z only a't one point .  
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E) Proof of D~, t >~ ~. 

We have just  proved D~. F ro m  now on n is fixed. We will prove below tha t  
D~_~ and A~.~(g -~ 3) imply D~, t>n  -~ 1. Bu t  first we have to prove Ai3(s) when t 

is much bigger than  s. This is a consequence of the following lemmus: 

]~.1. LE~vnv~• - We have:  

B6k+l(S ) ==~ B6k+s(S ) ::=> B6k+5(8 ~- 1) ==~ Bsk+7(8 -~ 1) if s <  k 

B6~+2(s ) ==> B6k+~(s ) => Bsk+6(s -~ 1) ~B6k+s(S -k 1) if s < k .  

P~oo~. - ~Iost of the lemma has been proved in section X. Slight modifications 

of the constructions of X.2,  ..., X.6 prove the implications above when s increases 

to s ~ l .  
Wi th  the same type  constructions as in section X we have:  

E.2. L ~ A .  - B~_2(s) implies C~(s, s) if 6s ~ t -  2 and C~_~(s, s) implies A~.8(s) 
when t is big and s small with respect to t. 

Using X.6 and the lemmas above we have proved A~,a(g -~ 3) for t ~ K(g), K(g) 
a constant  depending on g. We may  assume n ~ K(g) (n is define(1 in D.2). 

E.3. L E N A .  - For  t>~n ~ 1, Dt_I and A~.3(g -~ 3) imply D t , fl--[So Dr-  1 implies 

PnOOF. - The proof is similar to the one of IV.4. However  we have to be a little 

careful. Let (Y, W, Yi) be given by  D~-I. Let  P e W be a point  not  contained in 
any Yi. Suppose tha t  to prove D~ we add to Y some bamboo intersecting W only 
at  P.  For  this we have to control the postulat ion of H n W, H a general hyperplane 
through P.  By  theorem 0 we can degenerate W in Pr~ (0w(1), p4) to W' --~ M w N 

where 

(a) M ~  W, deg ( M ) =  g ~ - 4  and L = 0~(1) is non special 

(b) N is the union of d - -  g - -  4 disjoint lines /~ ,  each/~i  intersecting M only 
at  one point,  P~, quasi-transversMly; 

] ' 0 ; ( 1 )  ---- ~( /91-~  ... + -Pal-g-4) �9 

We may  even assume tha t  p'-= ]-~(p) is a smooth point  of W'. Thus we can apply 
A~,a(g -~ 3) to W r taking a generM hyperplane H through p ' .  
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F) End of ~he prooL 

Take L in l~ic a (X) and suppose r(t, 4, g) < d<r( t  -~ 1, 4, g). I f  d is large enough 
then  D~_~ holds. We have proved Dt-~+~, ..., Dt_~, H~,~ for some W, in g steps. At 
each steps we have ]inked one more bamboo to W through a point  we can fix before. 
Then we add d -  r(t, 4, g) lines, one of them being the line D in the definition of 
H~,4(g), to the curve given by  H~,~(g). The lines are added in such a way tha t  we 
obtain a connected curve T, union of W and of t disjoint bamboos,  Y~, each intersect- 
ing W at one point,  P~. Set a~ ~ deg (IZ~) and let Z~ c Y~ be the line intersect- 
ing W. By  construction t -  g of the L~ were added in the construct ion of a curve 
satisfying Dr-,; say L~ for 1 4 i ~< t -- g. On the other hand ~ ,  i > t -- g, where added  

during the  chain of implications: 

(*) Dt-~ => Dt-,+l => ... ===> Dr-1 ~ H~,~(g). 

t 

Set M----Ow(1 ). Unfor tuna te ly  M( ~ a~P~) in general need not  to be isomorphic 
i = ]  

t ! 
to L. Bu t  by  Abel's theorem there exist  g points, P~, . . . , P ,  such tha t :  

" =  ~ - - g d - 1  

I f  in the chain of implications (*) we can take P~ = PI ,  i > t -  g, we are done, 

if we are sure tha t  P'i # P J "  
This can be achieved moving the points and using semi-continuity.  Now by  

theorem 0 and semi-continuity a general element of P r  d (L, P~) has r(t) injective. 
In  the same way, using H~+l,4(g) we can prove tha t  a general element X of Pr~ (L, P~) 
has rz(t 4-1)  surjective (and hence rx(lc) surjective for k~>t ~ -1 ,  see [M] p. 99). 
Since Pr~ (Z, P~) is irreducible, this proves theorem 2 for s = 4. 

The full proof of theorem 2 now follows b y  induct ion from 2 V -  1 to N, N > 5 ,  

in a similar way. 
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