On the Postulation of a General Projection
of a Curve in P¥, N>4 (*).

E. Barrico - PH. ELLIA

Summary, — Fix a curve X of genus g and L € Pic®(X). Let ¢, (X) be the image of X through
the complete linear system HO(X, L). Here we prove that a general projection of ¢ (X) into
P? has mazimal rank if either (a) N>4, 0<g¢<N-—1,d>g + N, or (b) d>d(g, N) for
suitable d(g, N).

Introduection.

Let C be a curve in P¥, We say that C is of maximal rank if for every k>1 the
natural map of restriction:

(k) HYOpx(k)) — HY(Oy(k)) is injective or surjective .

The maximal rank conjecture (see [EH]) states that a general embedding of a
general curve in P¥ is of maximal rank (if N = 3 this is proved in [BE, 3,4]). In
[Ha] 4.3.4, R. HARTSHORNE raised the following projection problem:

« Let Z be a projectively normal curve in P¥, Take n with 3<n < N and let
C< P" be a general projection of Z. Is ¢ of maximal rank? ».

Examples are known where the answer is negative. For example in [GP] it is
proved that the general projection into P* of a canonieal curve of genus 5 or 6 is
not of maximal rank (see also [Be, 6] for other examples). But it seems reasonable
to hope that the projection problem has an affirmative answer if the genus of Z is
low or the degree of Z is high. Here we consider only the case of general projections
of curves in P¥, N>4 (if N = 3 see [BE, 5]). We prove the following results:

THEOREM I. - Fix, N, d, g with N>4, 0<g<N —1,d>g + N. Fix a curve X
of genus g and L € Pic* (X). Let ¢,(X) be the image of X through the complete linear
system H®(X, L). Then a general projection of ¢, (X) into P¥ has maximal rank.

(*) Entrata in Redazione il 16 aprile 1986.
Indirizzo degli AA.: E. Barrico: Scuola Normale Superiore, Piazza dei Cavalieri, 56100
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TueorREM I1. - Fix N, g with N >4, g>>0. There exists an integer d(g, N) such that
for every d>d(g, N), for every smooth curve X of genus ¢ and every L in Pic? (X),
the general projection of ¢ (X) into P¥ has maximal rank.

Note that in both theorems ¢ (X) is projectively normal ([M,1]). The restric-
tion d>g -+ N in theorem I means that we are working with non special embed-
dings. Thus for g< 3, theorem I gives an affirmative answer to the projection conjec-
ture if the projection is in P¥, N>4. In particular this proves the maximal rank
eonjecture in that range.

For the proofs of both theorems we use a result of [BE, 1] which gives examples
of reducible curves which are flat limits of projections of ¢, (X). By semicontinuity
it is sufficient to construct such a reducible curve of maximal rank.

This is done, via many lemmata, by an inductive procedure, the so called « mé-
thode d’Horace» (see [HH, 1, 2], [Hi, 1, 2], [BE, 1, ..., 5]). In particular the proofs
of [HH, 1] showed us the right path. In sections I, ..., X we give all the details of
the proof of theorem I. In sections A, ..., F we show how the constructions of the
previous sections yield theorem II.

0. — Preliminaries, definitions.
We work over an algebraically closed field of characteristic zero.

0.1 DEFINITION. — If 8 ¢ P¥ is a set of distinet points we say that § is in linear
general position (Lg.p.) if any t<N 4 1 points of § span a linear subspace of di-
mengion {— 1.

0.2. DEFINITION, — A tree of degree d in P¥ is a connected reduced curve in P¥,
union of 4 lines, with arithmetic genus zero and only ordinary double points as
singularities.

0.3. DEFINITION. — A bamboo is a tree, T, which looks like a e¢hain: we can order
the lines of 7, say L, ..., L, in such a way that L, and L, intersect if and only if
i —jl<1.

0.4. DEFINITION. — Let X be a curve and 7' be a bamboo. We say that T is linked
to X at the point p € X if T intersects X only at p and quasi-transversally (i.e. T
and X are smooth at p and have distinct tangents at p).

0.5. DEFINTION. — A final line of a tree, 7, is a line of 7 which intersects one
(and. only one) irreducible component of 7. If no confusion can arise we will denote
by (T), such a line.

0.6. DBFINITION. — Assume Z = X U T where 7' is the union of % distinet
bamboos, 7, ..., T: and X is a curve. A final free line of Z (or of T' in Z, orof T)
is any final line of a T, which intersects one (and only one) irreducible component of Z.
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0.7. DEFINITION. — Let ¥ be a subscheme of the scheme Z. We denote by J,,
the ideal sheaf of ¥ in ©,. The natural restriction map: H°(0,(t)) — H*(0,(1)) is
denoted by r, ,(¢). If there is no danger of confusion we write more simply J,, 7,(f).

0.8. DEFINITION. — Let Y be a subscheme of P = P¥ and denote by H a divisor
of P, The residual scheme of ¥ with respect to H, Res, (Y), has for defining ideal
the kernel of Op-%~ O,(H) where f is the composite of the natural maps:

Op—> Op(H), Op(H) X% O4(H).

The two main facts used in this paper are «la méthode d’Horace» (see [Hi, 1]
especially 2.1, [Hi, 2], [HH, 1, 2], [BE, 2, 3,4]) and theorem 0 below. As far as
we know ¢ la méthode d’Horace » is the only method to construct curves of maximal
rank in a systematic way. Using reducible curves and modulo some arguments of
general position, one may work by induction. But as we are interested in smooth
curves this procedure requires results on smoothability of reducible curves. In our
particular case this is achieved by theorem 0. Let X be a smooth curve and
L e Pic? (X) be a very ample line bundle. Consider the embedding, ¢,, of X into
P(H°(L)") ~ P~ given by the sections of L. Let H be a linear subspace of P¥.

0.9. DEFInITION. — With notations as above Pr, (L, H) is the closure in Hilb (H)
of the set of general projections of ¢,(X) into X.

0.10. ReMARK. ~ Clearly Pr, (L, H) is irreducible.

THEOREM 0. — Let X be a smooth, connected curve embedded in P¥ with
deg (X) = d. Let Py, ..., P, be distinct points of X and a,, ..., a; be positive integers.
k

Set L~ 04(1), r= S a, and M= L(3 a,P,). Assume (X, M) = h*(X, L) + r.
i=1

Let T,, 1<i<k, be disjoint bamboos with {(T;) = a;. Assume that T, is linked
to X at P;.
Then XU T, U..UT, is in Pry, (M, P¥).

0.11. REMARKS. — (1) We do not require that X is non degenerate. (2) This
theorem was proved (but stated in a weaker form) in [BE, 1] (Prop. IL.5). See
also [B], § 7.

As said above when using the «méthode d’Horace» one has to solve. some
problems of general position. For instance when working in P? the typical situation
is like this: € is a smooth quadrie, Y is a reducible curve intersecting @ transversally,
8 c@ is a set of s distinet points; @, b are some integers and we have to show that
Y U 8 (or a little deformation of it) satisfies:

h(Jy us,0(t b)) = Max ((a + 1)(b +1) — s — 2 deg (Y), 0) .

The results needed in this paper (when working in P3) are contained in [BE, 2], § 6.
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I. ~ The first theorem.
The first par of this work is devoted to the proof of:

TurorEM 1. — Fix N, g,d with N>4, 0<g<N —1, d>g+ N. Let X be a
curve of genus g and let L be a degree d line bundle on X. Denote by ¢,(X) the
image of X by the embedding:

9u: X > P(HUX, L)’), @+~ {seHX, L): s(@) = 0} .

Then the general projection of ¢,(X) into P¥ has maximal rank,

1.1. REMARKS. — (@) Note that »Y(X, L) = 0 since deg (L)>2¢ -+ 1.
Also if d =g+ N then @, (X)C P¥ is projectively normal according to [M1].

{b) As a corollary of theorem 1 and [BE, 2] we obtain that the general curve
in P*, n>3, of genus g, 0<<g<3 and degree d (d>g -+ n) is of maximal rank.

(¢) A similar theorem for projections into P? is proved in [BE, 5].

(d) The conditions 0<g< N — 1, d>¢ -+ N seem not too bad according to
the following fact: if X is an hyperelliptic curve of genus 3, none of its embed dings
of degree 7 in P? has maximal rank [BE, 6].

II. — The inductive hypothesis 1, ,(g).

Theorem 1 is first reduced to the induetive hypothesis H, v(g). To state H, y(g)
we need some preliminaries.

I1.1. LEmmA. — Let X C P¥ be a smooth, non degenerate curve of genus g, degree
g+ N with N¥>4 and g<N—1. Set L:= 9,(1). Fix a point pe X. Then for
a general hyperplane, H, through p, H N X consist of ¢ + N distinet points in linear
general position if either:

(1) g<N—2 or g= N—1and X is not hyperelliptic, or:
(2) g = N—1, X is hyperelliptic and L(— p) is not g times the g; on X.

ProoF. — For general H through p, X N H is vreduced. It is enough to show that
when (1) or (2) hold, the linear system corresponding to V:= H%X, L(— p)) has
no base points and gives a birational map. Indeed in this case, the 3-secant lemma
shows that for any N — 2 points {p.} in (X N H)\{p}, {p:} and p span an hyperplane
in H. If the lemma does not hold, by monodromy (H n X)\{p} is contained in a
linear space E. By Bezout’s theorem, a pencil of hyperplanes through R shows that
g = 0. ¥or g = 0, the lemma is clear.
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Since deg (L(— p))>2g, L(— p) has no base points and it is not very ample if
and only if ¢ = N—1 and L(— p) ~ wx(p, + p.) for some p,e X. Thus when (1)
holds, V gives a birational map. If X is hyperelliptic and ¢ = N — 1, then V gives
a birational map or has a rational curve as image. In the second case L(— p) is g
times the g;.

11.2. TemMma, — Let X be a smooth, non degenerate curve of genus g and degree
g-+Nin P¥ N>5, g<N—1. Set L:= 0,1). Fix two distinct points, p,q
of X. Assume one of the following conditions holds:

(1) g<N—3 or g= N— 2 and X is not hyperelliptie,
(2) g = N — 2, X is hyperelliptic and L{— p — ¢) is not g times the ¢} on X,

{3) g= N—1 and L(— p— ¢) is not isomorphic to w,(x) for some xc X.

Then if H is a general hyperplane through p and ¢, X N H consists of ¢ - N
distinet points in linear general position.

ProOOF. ~ The conditions give precisely that L(— p — ¢) has no base points, i.e.
the line [p, ¢] is not a 3-secant to X, and that X N H is reduced for general H. As
in IT.1, (1), (2) or (3) imply that L(— p — ¢) gives a birational map.

IL.3. THE CONDITION (*). — Given a curve G C P¥ we will say that P e C (resp.
(P, R) € 0 x 0) satisfies (o) (resp. (00)) if for a general hyperplane, H, through P
(vesp. P, R) O n H is in linear general position.

A (1, 2)-index of length & is a couple of integers (v, y) such that: z + 2y = k.

Given an integer %k and a (1, 2)-index of length %, v = (@, ), we will say that a
collection of points of C: (Pi, ..., Puj @1y 61} -} Gey ) Satisfies condition (*) for
if any p, satisfies (o), any (g;, ¢;) satisfies (oo).

Clearly we will often drop the index 7 and just speak of the condition (*). The
context will indicate what is meant.

II.4. THE NUMBERS #(n, N, ¢), ¢(n, N, ¢). — For n>1, N>3 and ¢>0 we define
integers r(n, N, g), ¢(n, N, g) by:

n'r(”y-N’g)"“g"}‘l+Q(W5N7g):(N;—_ n); 0<gln, Nyg)<n—1.

I1.5. THE INDUCTIVE HYPOTHESIS H, y(g9). — For n>1, N>4, 0<g<N-—1,
we make the following statement:

H, v(9): « There exist an integer k,a (1,2)-index of length k, 7, a sequence
of integers (@, ..., ;) such that: if ¢ C P¥ is a smooth connected curve of genus g,
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degree g + N and if Py, ..., P, are k distinet points on C satisfying condition (*)
for 7, then there exist:

1) a curve, Y, of degree r(n,N,g): ¥ = CU B, U ...U B,, where the B/s
are bamboos of length «; linked at ¢ at the P;s

2) an index j,, 1<jy<k, and a line L intersecting the final free line of B;,

3) a set ScIN(Y N L) of g(n, N, g) distinet points.

These data satisfy: ho(P¥, 3,,(n)) = 0».

ITi. ~ Reduction of theorem 1 to the inductive hypothesis H, y(g).

I11.1. ProrosiTioN. — If H, y(g) is true for n>1, N>4 and 0<g<N — 1 then
theorem 1 is true.
Proor., — Take L in Pic*(X) with d>g -+ N. We can write: j?“(n, N,g) <
<d<rin—1, N, g) for some n>1. Let k, 7, (a,, ..., a;) be given by H, y(g). Choose
k
integers @,,...,a, such that a;>a,, g+ N + 3 a,=d, w;0> a, . Then take k

1

k
distinet points on X: Py, ..., P, and consider £ := L(—— > a;JPj). We have deg (£) =
1

= g -+ N and £ is very ample. Let C C P¥ be the image of X by the complete linear
system [H°(X, £)|: Set p,:= @p(P,). We may assume that (py, ..., p:) satisfies con-
dition (*) for v (1L.1, IL.2). Now H,x(g) applied to C and (py, ..., px) give us a good
curve for € of degree r(n, N,¢): Y = CU B,U ...U B, and a set 8, of ¢g(n, N, ¢)
points, such that A(P¥, 3, ,(n)) =0. We may find a good curve for ¢: ¥'=
= 0 U B, U ...U B, with the B,’s of length a, linked to O at the p’s and such that

k
(YU S)c Y. A fortiori: 2(P¥, J,(n)) =0. Finally since: 00(1)(2 a; pi) ~L
we conclude that Y’ is in Pr, (¢.,(X), P¥) (see § 0, theorem 0). !

Therefore a general element, Z, of Pr,{p,(X), P¥) satisfies: h(P¥, J,(n)) = 0.
In a similar way, using H,+, v(g), we prove that a general element, Z’, of Pr, (¢,(X), P¥ )
satisfies: hY(P¥, 3, (n + 1)) = 0. By irreducibility of Pr,(p,(X), P¥), a general
element, Z”, of Pr, (p,(X), P¥) satisfies h%(P?, J,.(n)} = 0 and h{(P¥, J,.(n + 1)) = 0.
Hence Z" is of maximal rank ([M2], p. 99).

IV. — Reduction of H, y(g) to S,x(g) and A4, y(s).

Ag we have seen the proof of theorem 1 is reduced to the proof of H, y{(g), n>1,
N>4, 0<g< N — 1. In this section we perform a further reduction. We introduce
two other inductive statements, 8, .(g), 4A.x—(s) and show that: S,—x(9) -+
-+ -An,N—l(s) imply H, x(9).
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The new statements are:

8, n(g): »Assume N>4, n>1, 0<g<N —1 and

(+) r(n, N, g)—qn, N,g)—g— N>n

Let € C P¥ be a smooth connected curve of genus g and degree g + N. Let (Py, ..., P,)
be « distinet points on C satisfying condition (*). Then there exists a curve X
such that:

(@) deg(X) = r(n, N, g)

) X=Y 1D, Il .. LDy,px, hasg(n,N,g)+ 1 connected components. The
first one, Y, is a good curve for C: ¥ = CuU T, U ...uU T,, with the T,’s
linked to C at the P;’s. The other connected components, Di, ..., Dy, x o)
are disjoint lines.

(¢) Finally: a(P¥, J.(n)) = 0".

IV.1. REMARK. - In view of (a), (b), the condition (+) is necessary. The following
lemma shows that it is almost always satisfied.

IV.2. LeMMA. —~ Assume: (8) N>4, n>3, 0<g<N—1 or (b) N>5, n = 2,
O0<g<N—1,0r{¢) N=4,n=2,g=00rg=2.
Then: r(n, N, g) —q(n, N,g9)— g— N>=n.

ProoF. — Suppose
(x) r(ny Ny g)—g(n, Nyg)—g—N<mn
From the definition of r(n, N, g), using () and ¢(n, N, g)<n— 1, g<N — 1, we get:

(xx) G(N,n)>0
with:
G(N,n)=2n(n—1)+ N@2n—1) +1— (N + 2)!/(N!n})).

N
n_—*—ln) we easily see that for n>2 and

N>4: G(N 4 1, n) << G(N, n). Furthermore:

Since G(N 4+ 1, n) — G(N, n) =2n-1—(

G4, m +1) — G4, n) = 4[n + 2 — ((0 + 9 (41 +1)1))] .

Thus G(4,n + 1) < G(4,n), n>2. Since G(4,3)<0 we get: G(N,n) <O, N4,
n>3 which is a contradiction with (xx) and proves (a).
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Part (b) is proved using (xx) directly. Finally (¢) is checked just computing
everything.
The second new statement is:

_An,N—l(S)t «Agsume N — 1<s<2(N — 1), n>2, N>4. Let 7,¢',¢",s be in-
tegers such that:

N—1 .
yn—;_q’_g_g"+3=( N*—i—n)w1th¢>n, 0<g’'<n—1, 4¢>n.

Let Py, Py, ..., P, be s -~ 1 points in P¥1in general linear position. Then there exist:

1) n disjoint bamboos whose union, W, has degree r. Furthermore there is
a final line of a bamboo in W containing P,,

2) a seb, B, of ¢ — »n points in general linear position,

3) a set, 8, of ¢" points contained in a line, D, such that W U D is the union
of n disjoint bamboos containing P, in one of its final lines.

Finally if X = WU RU SU {P, ..., P} then: h(P*7, J;(n)) = 0.

IV.3. BEMARK. - Note that 4, y-(s) is concerned with subschemes of P¥* (and
not of P¥). We will need A, y—(g+ N—1), 0<g< N — 1.
So we take: N — 1<s<<2(N — 1). Later on (VII) we will allow a larger range for s.

IV.4. PROPOSITION, — Agsume: (a) N >4, n>4, 0<g<N — 1;0r (b) N>5, n = 3,
0<g<N—1:0r (¢) N=4,n=3,¢g=0 or g=2.
Then 8, () + Any-{g + N —1) imply H, x(g).

PRroor. ~ Let € C P¥ be a smooth connected curve of genus g, degree ¢ + N and
let Py, ..., P, @, be n distinct points on € satisfying (*). By 8, ~(g) (which is
well defined according to IV.2) we are given a curve X = YU D; U ..U Dy, v oy,
of degree #(n — 1, N, ¢), where Y = C U T, U ...uU T, is a good curve for . Fur-
thermore the 7's are linked to C at the P/s, the D,’s are disjoint lines and
RO(PY, 3o (n—1)) = 0. Consider a general hyperplane H through z,. We may
assume that H intersects X in r(n— 1, N, g) distinet points in linear general po-
sition. Let ON H = {@, @1, ..., Bpin—). Now we apply A,y—(9+N—1) to
Doy By ooy Boyn— and with:

f—n=rln—1,N,g—g— N—n—qn—1,N,9+1, ¢=qn,g,
r=rn,N,g)—rn—1,N,g), s=g+N—1.

Note that, by IV.2, ¢ — »>0. Also:

™ —}—-q’—l—q”—l—-s:n"r’(n,N,g)—- (n—1rin—1,N,g) + q(n, N, 9) — q¢(n—1, N, g)
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which is:

PR

\

The only thing it remains to cheek is: 7> n, this follows from IV.5 below. So we get
W, R, 8 which, together with =y, ..., Xpn—y, sabisfy A4, -(g+ N —1). Set
W:= B,U B,U...U B,_,. Moving the lines in X (but keeping the intersections
with ¢ fixed) we may assume that ¥ := X U W is a good curve for C. More
precisely we may assume that: ¥ =0U GU G, U ..U TG, with B;:= T,uU
VB, UD,;, 1<i<gn—1,N,¢9); Gi=T,UB, qgn—1,N,g)<<i<n—1, Gy== B,.

We may also assume B = (Y "\ W) N H. Under these conditions we claim that:
B(PY, 3,,4(n)) = 0. Indeed if fe H'(PY, J,,,n)) then flH vanishes on WU RU
U S U {&yy oy Bprwafe BY Aunalg -+ N —1), fiIH = 0. So we get a form ' of degree
#—1 vanishing on Res, (YU S8)=X. By 8. x(9), f=0. Hence f=0 as
wanted. Setting a;:= length (G,), 1<i<n, this proves H, »(g).

IV.4.1. REMARK. — If N = 4 in the proof above we need A, (g 3), n>4,
0<g<3d with ¢ =r(n—1,4,9) —g—3—qn—1,4,9). We note that ¢'>2n— 3
(see IV.4.2 below). This remark will be used in X where we will prove A4, (g + 3)
with the extra condition ¢'>2n — 3 (see the statement A,,',,?,(g 4 3) of X). A similar
remark applies for proposition VI.1.

IV.4.2. Let ¢’ be as in IV.5, then ¢ >2n— 3

Proor. — If #>5 this will follow from r:=r(n—1,4,9)>3n + 1. Indeed by
definition: (n—1)r +1— g + q = (” '3*‘ 8

If r<3n we get: n*- 60— 61n? -- 54n - 24 <0 which is false if n>5. The
case n = 4 is checked by computing everything.

) with 0<g<n — 2.

IV.5. LeMMA. - For N>4, n>3, 0<g<N—1 we have:
rin, Nyg)—rin—1, N,g)>n.
Proor. — Assume
(x) rin, Nyg)<rin—1, N, ¢9) +n—1.
From the definitions of r(n, N, g), r(n —1, N, g) we get:
N—-1

ner(n, Ny g)— (n—L)r(n—1,N,g) + qgn, N, g) — qin—1, N, g) = (N-—l 4 n)
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Using (x), g(n, N,g)<n—1 and ¢(n— 1, N, g)> we get:

(x3) r(n—l,N,g>+n2—1>(N“1+”).

N-—-1

On the other hand: (n— 1, VN, g)< [N— 2 4 (N_l(: - 1)] [(n—1).

Combining with (xx): F(N, n)>0 where
FN,n):=N—2+n—1)n*—1)+ [(N+n2—1){n— Nn—1))/a!N!].

It is easy to check that for N >4 and n>3 F(N - 1, n) < F(N, n). Since for n>3:
F(4,n) < 0 we get a contradiction and the lemma is proved.

IV.6. CHECK-POINT. - In order to get theorem 1 it remains to prove:

Sunlg) for: >3, N>4, 0<g<N-—1
n=2, N>b5, O0<g<sN—1
n=2, N=4, ¢g=0 and g =2

A, w(g + N—1) for: n>3, N>b5, 0<g<N-—1;
n>4, N =4, 0<g<3 (but with ¢ >2n — 3, see IV.4.1)
n=3, N=4,g=0 and g =2

H, y(g) for: 1<n<?2, N>4, 0<g< N —1

n=3, N=4,g=1 and g = 3.

V. — Proof of some initial cases.

First we need some lemmas:

V.1. Lemma, — Let N, g be integers such that: N>5, 2<g<N — 1. Denote
by P,P, P,, ..., P,_,, g points of P¥-? in linear general position. Let 7,, 7, be integers
satisfying: 7,4+ 1.+ 9 =N —1, 7,20, 1<i<2. Then there exist two disjoint
bamboos, 7, T,, such that:

(@) deg(T,) = =,
(b) if 7,> 0 (resp. 7.>>0) then P e (7)), (resp. P € (Ts);).

(e) hD(Psz’ JT:,UTzU{P;IBa Ph---,Pa-z}(l)) = 07 0<i<l,
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Proor. — Since 17, + 7,-+ g = N —1 it is enough to show

ho(JTlu T,u{P, P, Pl,...,Pg-,}(l)) =0.

The proof is by induction on N. The initial case N = 5 is easy. I g<N — 2 we may
agsume 7,> 0. Take an hyperplane H of P¥-* containing P,P,P,, .., P,,. By
induction we get two bamboos in H: Ty, T; with deg (Ty) = 7,— 1, deg (T,) = 7,.
To conclude, just add a line L¢ H to T;.

If g= N—1 then 7,= 7,= 0 and the lemma is clear.

V.2. LEMmA. - Let N,g be integers such that: N>5b, 2<g<N ~1 and
g= (le 2) (mod 2). Let P,P,P,,...,P,—, be g points of P¥-2 in linear genera,
position. Then there exist two disjoint bamboos T,, T, such that: Pe (T,
Pe(T,), and

hi(PN—Z’ JTlU TzU{P1:~--:Pﬂ—2}(2)) - 0 3 0<i<1 .

ProOF. — Induction on N. The initial case N = b follows easily with (¢;,1,) =
= (1,3) if g =2, (t,8) = (1,2) if g =4 (t,= deg(T,)). Assume N is even. Let k
be defined by: 2k +1 = N—1— 2g.

N —

Note that g -2k 41 E( 1) {mod 2). Also if g<N — 3 we have: 2<g +

N—-3
+ 2k +-1<N-— 2. Let & be an hyperplane of P¥-? containing none of the points
P,P,P,,...,P,_,. By induction there exist in J& two disjoint bamboos T,, T, such
that their union with ¢ 4~ (2% -+ 1) — 2 general points is not contained in a quadric.
Set ¢, := deg (T,). Out of J¢ take two bamboos, T;, of degree ¢, — ¢; with: #, - t,=
=g+ (2k 1)+ + 1,3 t,>1,— 1. We may assume that the folowing conditions
hold: T,:= T, U T, is a bamboo of length ¢;, P € (T,);, P (T,),. If 8:= (T, N T,) N
N (IN(T, U Ty)) then (X, Ip.,705(2) = 0, 0<i<l (note that #(8) =g+
+ (26 + 1) — 2). Now if fe H(P¥2, 3, ,r.0(p,.....2,.(2)) then fl3€ = 0.

Hence f = hh' where h is an equation of J& and where &' is a linear form vanish-
ing on

R:= Resy (T:U T, U {Pyy ..y Ppy}) =Ty UT, U {Py, ..., P,,} .

Since RY(P¥-2, 0,(1)) = N—1, we may assume (V.1) that ' =0 and therefore
f=0. If ¢ = N — 2 the same proof works with 2k +1=—N+5;ifg=N—1

with 2% -+ 1 = — N - 3. Finally observe that, by construction: hu((‘)x(Z)) = (Nli 2) ,

X:=T,0T,U{P,.., P,_,}. Therefore k"(JX(Z)) =0 < hl(JX(z)) = 0,
The case N odd is similar.
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V.3. Levma. - Let N,g be integers such that: N>5, 2<g<N —1 and
N = -
S (N-— 2) (mod 2). Let P, P, pyy ..., Po-s (resp. @, P, P, Py, ..., P,_;) be g (resp.

g + 1) points of P¥-2? in linear general position. Then there exist three disjoint
bamboos, T, T,, L such that:

() L iz a line
() Pe(Tv), Pe(Ty), (resp. Qe L)

(0) hi(PN_27 JTlu TguLU{Pl,...,Pg-g}(z)) = 07 0<®<1'

As in the previous lemma the proof is by induction on N. The initial case N =5,
g = 3 is the well known fact that three skew lines in P? are contained in a unique
quadric surface.

V.4, LeMMA. - Let P be a point of P¥~2, N > 5, [resp. P, @ be two distinet points
of Py-2],

N . N . N
Define 7 by: 2741 _(N— 2) [resp. if (N—— 2) is even: 21—}—2._(N_ 2)]

Then there exists a bamboo, 7, of degree 7 such that: P & (T), and r°(P¥-2, 342)) =0
[resp. Pe(T);, @ ¢ T and k(P2 J;,4(2)) = 0].

N N—2 . .
Proor. - Note that (N— 2) = (N—~ 4) - 2N — 3. The proof is a double in-

duction on &, according to the parity of N. The initial cases N = 5, N = 6 are easy.
N

Assume ( ¥
linear subspace such that P eJC.

By induction there exist 7" of degree r — (¥ — 1), contained in J and a point
Q € 5 such that: P e (T'), and (3, JT,UQ(2)) = 0. Let L be a line in H, not con-
tained in J¢, and such that L U 7" is a bamboo. Finally let G be a bamboo of degree
N— 9 such that X:= BULUT is a bamboo, @c(X), and T intersects
AN(LU®) in N— 4 general points @, ..., oy-. I @cH(Ix(2)) set ¢ = g|H.
Then @J€ =0, thus ¢ =J-1 where ! is a linear form vanishing on 7 =
= LU {my, oy @y—s}. Since 7%(0,(1)) = N — 2 we may assume [ = 0. Thus ¢ = H-I'
with I’ vanishing on 6. Again we may assume !'= 0 hence ¢ == 0.

If (Nl\': 2) is even the proof is similar: by induction one gets T’ in J€ of degree

) is odd. Let H be an hyperplane of P¥2 and Xc H a (N — 4)-

7— (N — 2). Then just add a point @ in H and a suitable T of degree N — 2.

V.5. Proor oF H,,(g), N>4, 0<g<N —1. — This follows directly from a
theorem of Mumford [M1].

N}

V.6. Proor oF H,y(g), N>5, 2<g< N — 1. - We distinguish two cases according
to the value of ¢(2, N, g)



E. Barrico - Pu. Eiria: On the postulation, ete. 279

V.6.1. Agsume ¢(2,N,g) = 0.
-2 . N+2 N
We have 2:7(2, N,9)—¢g+1= (N—; ) Since ( ;_ ) ;(N— 2) + 2N +1
we have: g = (N— 2) (mod 2). Let CC P¥ be a smooth curve of degree g - N.

Let H Dbe a general hyperplane and set: € N H = {Py, ..., Pyy}. Take J€, an hyper-
plane of H, containing P, ..., P, but not P, ,.. , P,,y. Now by V.2 there exist
T,, T,, two bamboos in J¢ such that:

P,ne(Ty),, P,e(T), and hi(JG, JTlufzu{Pl,.,.,P,_,}(z)) =0, 0<i<gl.

Set X = CU T,U T,. Since {P,4y, ..., Pyty} is not contained in a hyperplane of H
and since CCPY is non degenerate, we get: A°(PY, 3x(2)) = 0. Furthermore

p(X) =g and R(0x(2)) = (Nl—\Tl_ 2), thus deg (X) == (2, N,g) and we are done.

V.6.2. Assume ¢(2, N, ¢g) = 1.
Nl_V_ 2) (mod 2). With the same notations as above
we take for J& an hyperplane of H containing Py, ..., Py, if g<< N —1 (resp.
P, ..y Py if g = N —1) but no other P,.

From V.3 there exist P, T, L in J& such that: P, e (1'),, P, € (T4),;, P; € L and,
Hg<N—1: ho(Je7 JT1UTgULU{Ply.--;Pg—z}(2)) = 0.

If ¢ < N — 1 we take one further point, @, in H such that @, Py, ..., Psy span H.
Then X :=CuU T, U T,ULUQ works. If g =N — 1 we take ¢ in JC such that
B3, 370 r.0z0(@, Py, ov)(2) = 0. Again X:= CU T,V T,U LU Q works.

This time we have g i(

V.7. PrOOF OF H,y{1), N>5. - Assume ¢(2, N,1) = 0. For C a smooth el-
liptic curve of degree N -1 let {Py,..., Py} = CN H, H a general hyperplane.
Let Jc H be an hyperplane through Py, not containing P,, 1<u<N. By V.4
there exists a bamboo, T, in JC such that: Py, € (T), and A (X, 3,(2)) = 0. Then
X:=Cu T works. If ¢(2, N,1) = 1 the same proof (using V.4 again) works ad-
ding one further point, @, in J.

V.8. ProoF oF H,y(0), N>5. - Assume ¢(2, N, 0) = 0. Then 2r(2, N, 0) + 1 =
N
:(N_2)-|-2N+1.

So (Nlj 2) =0 (mod2). Let CC P¥ be a rational normal curve. Let H be a

general hyperplane and ¢ N H = {P,, ..., Py}. In H take an hyperplane, J, through
P, and not containing any further P;. Denote by L a line (in H) through P,. Set
LNJ:=@Q (we may assume @ % P;). By V.4 there exists a bamboo, T, of length 7

(Where 27 4 2 = (Nli 2)) such that: P,e(T), and h'(X, Ip0q(2)) = 0. Since
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R = LU {P,, .., Py} has h*(0,(1)) = N, we may assume F*(H, 3,(1)) = 0, 0<i<1.
So X:=CuULuUT works.
If q(2, N, 0) == 1, the proof is similar.

V.9. PRrOOF OF H,,(g), 0<g<3. — These cases are easy, suppose for example
¢ =3. We have r(2,4,3) =8, ¢(2,4,3) =1. Let CC P* be a smooth curve of
genus 3, degree 7. Let H be a general hyperplane and ¢ N H = {P,, ..., P,}. Let
¥ c H be a plane containing P, P,, P,. Let L be a general line in J¢ through P;.
Also let @ be a point of X not collinear with P,, P, and not lying on L. Then
X := 0U LU {@} works. The other cases are similar.

V.10. ProoF oF §,y(g) For N>5, 2<g<N — 1. — It is identical to the proof
of Hyx{g), N>b, 2<g<N—1 (see V.6) and therefore is omitted.

VII. PrOOF OF 8, 4(g9) FOR N5, 0<g<1. — As usual C denotes a smooth curve
of genus g, degree g -+ N in P¥ and H a general hyperplane.

(@) g =0, ¢(2,N,0) = 0: let {P,,..., Py} = C N H. Take J an hyperplane
in H containing P;, P, and no further P;,. In X consider two disjoint bamboos T:
such that: P, e (Ty);, 1<i<2, and h(J, Ipyp(2) = 0, 0<j<1 (see V.2). Then
let D be a line in H, not contained in J€, and intersecting the other final line of 7';:
Finally set: 7,= T, U D, T,=T,. We easily get that X:= CuU T,U T, sat-
isfies 8, x(0).

S (b)) g=1, ¢(2,N,1) = 0: as above but this time J& contains three points
of CNH.

(¢) g==0, q(2,N,0) =1: ag in (a) but in & we take two bamboosiTﬁ and a

line I such that: P;e (T, 1<9<2, W(X, Ipzy0(2)) =0, 0<j<1 (see V.3).
(d) g=1,¢(2,N,1) = 1: ag in (¢) but with J€ containing three points of ¢ N H.

V.12, ProoF oF §,,(g), 0<g<3. — If g=1 or 3 then §;,(g) is meaningless.
Finally the cases N = 4, g = 0 or 2 are easy.

VI. - Reduction of 8, y(g) to A4, (s).
VI.1. PROPOSITION. — For N>4 and n>3:
Su-,v(g) and 4, y(g + N— 1) imply 8,.5(g)
Proor. — Let 0 C P¥ be a smooth connected curve of genus g and degree g + N
and let Py, ..., P, be n points of C satisfying (*) (see I1.3). By 8, x(g) for Py, ..., P,

we get a curve X of degree r(n— 1, N, g)of the form: X =Y U D, U ..U Dy, x.4-
Let H be a general hyperplane through P,. In H we consider a curve Z of degree
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r(n, N, g) — r(n — 1, N, g) which is the disjoint union of » bamboos (see IV.2) and
such that X U Z is a curve of type (¢(n, N, g), g) (i.e. the configuration required by
S, x(g)). Furthermore we may assume that exactly one of the bamboos of Z
intersects ¢ (at P,). All this is possible since Y has at least n — 1 free lines. Indeed
if g(n— 1, N, g)> q(n, N, g), all the bamboos of Z intersect X at free lines except
the one intersecting C at P,), ¢(n — 1, N, g) — g(n, N, g) of them intersect two bam-
boos at free lines, at most one of these two bamboos intersects C. If ¢(n —1, N, g)<
< q(n, N, g), exactly g(n, N, g)— g(n —1, N, g) of the bamboos of Z do not inter-
sect X, one intersects ¢ at P, and n— g(n, N, g) +qen—1,N,g)—1 of them
intersect X at free lines.
Now Q'= (X\0) n (H\Z) is a set of:

QI—n:T(n_LN,g)_Q(n_l’N;g)“I’Q(nyNyg)'["l—g_N“n points .

By semi-continuity we may assume that: C N H, Z and Q' satisfy 4, y—(g -+ N — 1).
N—-1
Note that: n-deg(Z) g+ N—1+¢,= (” ;_ ) )
Since Res, (X U Z) = X, by S.x(g) we get: h(P¥, 3, ,(n)) =0 and XU Z
satisfies S, x(g).

VI.2. REMARES. — (1) As in IV.4 we notice that in the proof above we need
A, qlg +3) with ¢'=r(n—1,4,9)— gn—1,4,9) 4+ q(n, 4,9) +1— g— 4 and that
g >2n— 3 (see IV.4.2).

(2) To get theorem 1 it remains to prove:

A, yag+N—1), N5, n>3, O0<gg<N-—1
Auglg +3), n>4, 0<g<3 (with ¢'>2n— 3)
Asag+3), g=00r2; Hylg, g=1or3.

VII. - The statements Zn,N(s) and P, y(s).

In order to prove 4, y(s) we first define a more general form of A, y(s) (denoted
by Z,,,N(s)) and we also introduce a new inductive statement, P, y(s). Then we show
that P, (s), N>4, and 4,,(0), n>>3, yield 4, y(s), >3, N>4. Finally it is obvious
that A, y(s) implies 4, (s), n>3, N>4.

The proof of P, y(s), N >4, is fairly easy (see VIII). Instead the proof of Zn,a(()),
% >3, is quite tricky and therefore is postponed to the next section (see IX: initial
cases in P3),

The more general form of 4, y(s) we will consider is:

A, x(5): N>8, n>2, s>0:
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Let Py, Py, ..., P, be s | 1 points in P¥ in general linear position. Let 7,9, q"
be integers such that:

(@) mr 4 ¢+ '+ s =(
by r>0, 0<g"<n—1.

N+ n
N

(¢) f N>4: ¢'>min (n,r) and if N = 3: 4'>Max [min (n, ), 2n — 3].
Then there exists a subscheme X of P¥ such that: B(P¥, 3x(n)) = 0 and X is
the disjoint union of the following subschemes:
(1) P, 0<i<s
{2} ¢’ — min (n, r) points of P¥

(3) the union, W, of min (r, n) disjoint bamboos with deg (W) = r, P, being
contained in a final line of W

(4) ¢" collinear points on a line D such that W U D is the union of min (v, n)
disjoint bamboos and contains P, in a final line.

To define P, ,(s) we need some preliminaries.

VIL1. DurFINITION. — We define numbers a(n, N, s), b(n, N, s) by:
N
nean, N,s) -+ s+ bn, N, s) :( J_Vl— n),
n<bn, N,s)<2n—1, n>2, N>3,0<s<2N.
VII. LEMMA. — (1) Assume N5, n>2 or N =4, n>3 or N = 3, n>6. Then

for 0<s<2N, a(n,N,s) and b(n, N,s) are well defined and satisfy: a(n, N, s)>
>b(n, N, s).

(2) The same conclusion holds if ¥ = 4, n = 2, 0<s<7 or N = 3 and: n = 3,
0<sB; n=4, 0<8<6, s54; n =23, 0<s<B, §%3; n =2, 0<s<4, §5£3.
g N-4n _ _
Proor. ~ Dividing O Rt by n we get a{n, N, s) and ¢, 0<g<n — 1.
Then we put b(n, N, s) = n - §. In order to do this we need:

*)

N-+n
N

)—— nN—8>=Mn.
Furthermore we want:

(%) a(n, N, 8)>b(n, N, s) .
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Claim: if

) o<s<(NI}L ")——(n+1><2n-1);

then (*) and (**) hold.
~ N4+ n
Proof of the claim. First (N; %) — (n 4+ 1)(2n -~ 1)<( ]—\t )— 2n so (+)
implies (*).
N4+n
Now suppose a(n, N,s) < b(n, N,s). Then N ] < (n41)b{n, N, 8)<

<(n +1)(2n— 1) in contradiction with ().
So if we want s<2N it is enough to check: F(N , #)<0 where

F(N,n) = 2N - (n +1)(2n — 1) — (va" ”)

‘We first have:

F(N-+1,n0) — F(N,n) = 2"(IZZL;”)
Hence F(N + 1,n) < I(N,n), N>3,n>2. Then one easily checks that: F3,n)<0
n>6; F(4,n) <0, n>3 and F(¥,2)<0, N>5. This proves (1).
Part (2) is checked by direct computations.

)

VII.3. DEFINITION. — For N >3, n>2, we define
S(N,n) = {seN: 0<s<2N and a(n, N, s)>b(n, N, s)} .
Then we set:

P, w(s): For N>4, n>2 and s S(N, n).

Let Py, Py, ..., P, be s + 1 points of P¥ in general linear position. Then there
exists (Y, W) such that:

(1) W is the union of b(n, N, s) disjoint bamboos of P¥. Furthermore P, is
contained in a final line of W and deg (W) = a(n, N, s).

(2) ¥ = WU {Py, ..., P} and hO(P¥, J,(n)) = 0.

VIIL — Proof of P, (s).

VIII..1 PROPOSITION. — For N>4 and s€ 8N, 2), P,y(s) is true.

PrOO¥. ~ By induction on N. Assume N>5 and Py v (s) true. First assume
s> N -+ 1. Take an hyperplane H containing P, for : — 0,i>N -+ 1. In H take W',
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of degree (2, N —1,s') which satisfies P,y,(s8') for P;, ¢=0, ¢+>N+1
(8 =8—N—1).
We have:

2a(2, N,s)— a{2, N— 1,5 — N—1)) = — b(2, N, 5) + b2, N—1,s— N—1).

So a(2,N,s) = a2, N—1,s—~ N—1), b(2,N,s) =52, N—1,— N | s— 1) and we
are done because any linear form of P¥ vanishing on P,, ..., Py, is identically zero.
If s< N — 1 we take for H an hyperplane containing no P,. Outside of H we consider
a bamboo, T, of degree N — s, containing P, and such that 7' and the P,’s span P¥,
In H we have N — ¢ points Qp, Q1 ..., @x—y of TN H. We take W in H satisfying
P, y(N—s— 1) for the @’s. We conclude as usual (note that b(2, N,s) =
= b(2, N—1, N— s—1)). Finally if s = N we take for H anf hyperplane contain-
ing P, and no other P;. Then we repeat the construction done for s = N — 1.

The starting case N = 4 can be checked in the same way, reducing to elementary
assertions in P°.

IX. — Reduction of Zn,N(s) and P, (s) to the initial cases in P2

The next two lemmas prove part of the Zn,N(s).
IX.1. LEMMA, — P, x(s) and 4, y(0) imply P,y(s), n>3, N4, 0<s<2N.
IX.2. LEMMA. — P,y x(s) and A,y(0) imply A4,x(s), >3, N>4, 0<s<2N.

Proor or IX.1, — Let P, P,,..., P, be s + 1 points in general linear position
in P¥, By P,_,v(s) we are given (Y, W) where W has degree a(n— 1, N,s) and
is the union of b(n — 1, N, s) bamboos (for this we need s ¢ S(¥, n — 1) so the case
N = 4, n = 3, s = 8 has to be handled separately). Let H be a general hyperplane.
In H consider the union, 7, of n disjoint bamboos with: deg (T) = r = a(n, N, s) —
a(n —1,N,s). By IX.3: r>n. Furthermore we require that 7 U W is the union
of b(n, N, s) disjoint bamboos. This is possible because:

b(n, N,s)—bn—1,N,s)l<n and bn—1,N,s)>n—1.

— N—14
By 4, y-(0) we may assume that the union of 7' and d:= ( N—ﬂl_ n)— ™m o-n

points of H in general position is not contained in a degree n hypersurface of H.
Now W n (H\T) consists precisely in

d=an—-1,N,8)—bn—1,N,s) 4+ bn,N,s)—n

points that we may assume in general position.
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By semi-continuity we may suppose that T'U (W N H) satisfies Zn,N_l(O).
If fe HY(P~, 3,,,(n)) then flH=0 by A, y-(0). Thus f is divided by the equa-
tion ¢ of H. Since f/z vanishes on Y, by P, (s), we get f =0 as wanted. In a
similar way we prove P,,(7) + A4;,(0) implies P,,(8) taking for H an hyperplane
through Py (and with P, ¢ H, 0<i<T7).

1X.3. LEMMA. - For N>4,n>3, s€ 8(N,n) N\ 8(N, n— 1) we have: a(n, N, s) —
—a(n—1,N,s)>n Algo: a(3,4,8)— a(2, 4,7)>3.

Proor. If a(n, N,s)<a(n—1,N,s)+ n—1 then from the definition we get:

N+n—-1
N—-1

)<a(n——1,N, s) +n(n—1) -+ bn,N,s)— bn—1, N, s).

Since:

an—1,N,s) < (N_}_lg_l-)/(n—l)

and b(n, N, s) — b(n—1, N, s)<n, we get F(N, n) < 0, where
F(Nyn)=[(¥N +n—1)(Nn— N— n)]/(F'!n!) — n2(n —1).
It is easy to check that:
F(N+1,0n)>FN,n), N>4, n>3 and F(4,n)> 0, n>3.

This proves the first part of the lemma. The last statement is checked directly.

Proor oF IX.2. - Let Py, Py, ..., P, be the data of 4, (s). Put
v:i=an—1,N,8) + |n—bn—1,N,s)| andr=r—an—1,N,s).

First assume: r' >0, r> and se S(N,n—1). Let (¥, W) be given by P, n(s)
for the Ps. Take a general hyperplane H and consider in H the union, 7, of
k:= min (n, r — a(n—1, N, 5)) disjoint bamboos, with deg (T) = r' and such that
W U T is the union of # disjoint bamboos. This is possible by the assumption 7> x.
Then in H add ¢'— min (n, ) general points and ¢" points on a line D such that
WU T U D satisfies (4) of Zn,N(s). Furthermore in H there are the a(n — 1, N, s) —
—k+n—>bn—1,N,s) points of W (H\T), we may assume these points in
general position. So we have §'— % points in general position in H with § =
=q¢+aorn—1,N,8)~bn—1,N,s) + n—min (n, 7). We want to apply A, y-1(0)
to the union of these §'— & points, the ¢" points on D and 7. For this we have
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—1
to cheeck: nr' - §' + Q”>(NV__1P n) From the definitions we get: ny' -} ¢’ +
N-—-1+4
+qg"—b{n—1,N,s) :( N—-_lr n), since a(n— 1, N,s) +n— min{n,7)>0, we
are done.

The same proof works if ' = 0, r>x, adding only points in H. If s ¢ S(N, n— 1)
then N = 4, n = 3, ¢ = 8: just consider an hyperplane H containing one of the P.’s.
Now assume r < . Arguing as above we prove 4, x(s) for: r = #, ¢', ¢’ — n(w — 7).
We get: deg (W) = @, union of # disjoint bamboos, P, in a final line of W; a set, @',
of ¢’ — n{w — r + 1) points of P¥; a set, @”, of ¢" points on a suitable line such that:
X:= WU {P}UQ UQ" satisfies: h*(P¥, J(n)) = 0.
Note that:
np g+ —ne—r) Fs=mnr+q+q+s =(N;\; ”)

Note also that: min (n, #) = n(IX.3) and: ¢'>n{x—r + 1) (IX.4). Now we take
W’ c W, deg (W') =, W' the union of min (r, n) bamboos. We may assume that
X' = XN(WN\W') satisfies the conditions of Zn,N(s). The natural map: 7p(n):
HOpx(n)) — H*(Ox.(n)) is surjective, hence we just have to add n(z— r) suitable

points to X’ to prove A4, x(s) for »,¢', ¢".

IX.4. LeMda. — With the notations of the proof of IX.2 if r < then ¢'>
>ale—r 4 1).

ProoF. — We have z<a{n — 1, N, 8) + n— 3 hence:
(*) z—r-+l<an—1, N, 8)—r+n—2.

From the definitions we get:

\ ) N4 n—1
%(T—a(n—l,N,s)}+a(n—1,N,s}+-Q"+q’—b(n-1,N,s)=( 2—;__1 )'
.. . , N-+n—1
If ¢'<alw—r + 1), combining with (*): a{(n—1, N, s) - n(n — 2)>( N1 )
Since (N;le)/(n~1)> a(n—1,N,s) we get F(N,n)> 0 with:

FN,n) = (N +n—1)l{n— Nu+ N)/n!N!) 4+ (n—1}(n—2)h.

But F(N +1,n) < F(N,n), N>4, n>2 and F(4,n) <90, n>2, which proves the
lemma.
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X. - Initial cases in P* and end of the proof of theorem 1.

In this section we will prove En,s(O), n>3. According to IX this will prove
A, x(8), >3, N>4, 0<s<2N and hence 4, (s), N<s<2N, n>3, N>4. Then
we have to prove A, (g -+ 3), n>4, 0<g<3 but with the condition ¢'>2n— 3
(see IV.4.1 and VI.2): this will be implied by the statement A,',,a(g + 3), n>4,
0<g<3, of this section.

For the proofs we need two other induective steps: B,(s) and C,(s, k). Then after
to prove A; (g + 3), g =0 or 2 and H;,(g) for g =1 or 3, to get theorem 1. This
will be done at the end of this section.

X.1. THE STATEMENT B,(s), PRELIMINARIES. — For any genus g¢>0 and any
integer n>>1 we have defined numbers r(n, g), q(n, g) by:

(”?3)=n-r(n, 9—9g+1+qmng); 0<gm,g)<n—1 (see [BE2]).

The r(n,g) are the critical degrees for the postulation of curves of genus g in P3
(at least for non special curves).

If g = 0, writting more simply »(n), ¢(n), we have, according to the congurence
of n mod. 6:

r6k + 1) =6k*+ 8k 3,  ¢6k+1)=0
16k + 2) = 6k2 4+ 10k - 4, g6k + 2) =3k + 1
16k +3) = 6k*+ 12k -6, g6k +3) =2k + 1
M6k + 4) = 6k*+ 14k + 8,  q(6k + 4) = 3k + 2
16k + 5) = 6k + 16k - 11, ¢(6k + 5) = 0
(6% + 6) = 6k + 18% + 13, q(6k - 6) = 5k + 5 .

n-+3

Since ( 3

) = nr(n) +1 + ¢g(n), we may write:

(n§3)=m(n)—-u—o)+1+s with o =1 4 g(n)— s,

or:

(n—;—3):n(r(n)——l)—(l—c)+1—}—s With ¢ = n 4 g(n) +1—s.
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These latter numbers are A°(Oy(n)) if ¥ is the disjoint union of s points and of ¢
disjoint bamboos such that the curve part of ¥ has degreee r(n) (resp. r(n)— 1).
This is the motivation for the definition of B(s) (see X.2, 4).

Note also that for the first part of this work (proof of theorem 1) we only need
B,(0). But for theorem 2 we will need B,(s) for some # > s > 0. This explains why
we let s vary in the definitions but only prove, in this section, the initial cases
for s = 0.

Finally, before to start, we need one further definition.

.

X.1.1 DEFINITION. — Let T = 1{J 7, be the union of » disjoint bamboos. An
i=1

s-uple of disjoint lines (D, ..., D,} is a b-connecting secant for T if there exist b

connected components of T, for example T, ..., T, such that: T, v ..U T,u D, U

U ... U D, is a bamboo (hence is connected); 7' D, U ...U D, iy a union of disjoint

bamboos.

X.2. B,(s) for n odd.

Bg(s), 0<s<2k— 1. For every s + 1 points Py, Py, ..., P, in linear general
position there exist (Y, Z, ¢) where

(1) Y is the disjoint union of the P,, 1<i<s, and of a eurve Z which satisfies:
R(P3, 3y(6k 1)) = 0

(2) Z has degree 6k%-- 8k - 2 and i3 the union of 6% -}- 2 — ¢ disjoint bam-
boos; P, is contained in a final line of Z

(3) ¢ is a smooth quadric intersecting Y transversally. Moreover ¢ contains:
(@) 2k — s — 1 pairs (D;, D}), 1 <é<2k — s — 1, of 3-connecting secants for Z

(b) one (2s - 3)-connecting secant (J,), 1<j<2s + 2 for Z. The lines
D,, D;, §; are all in the same system of lines of Q.

RemMARK. — It follows that Z':= Z U (UD,) U (UD;) U (U9,) is the union of
2k + 2 — s disjoint bamboos and has degree 642+ 12k - 2. We will use Z’ to
prove Bgi(8).

Bas(s), 0<8<2k 4 1. For every s | 1 points P,, P, ..., P, in Lg.p. there exist
(Y, Z) where:

{1y ¥ is the disjoint union of P,..., P, and of a curve Z and satisfies
RY(P3, 35(6k + 3)) = 0.

(2) Z has degree 6k*4 12k 4 6 and is the union of 2k 4 2 — s disjoint
bamboos; P, is contained in a final line of Z.
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Bes(s), 0<s<6k + 5. For every s -- 1 points P, ..., P, in lg.p. there exist
(Y, Z) where:

(1) Y is the disjoint union of Py,..., P, and of a curve Z and satisfies
R (P3, 35(6k + 5)) =0

(2) Z has degree 6k%-- 16k + 10 and is the union of 64 + 6 — s disjoint
bamboos; P, is contained in a final line of Z.

X.3. INDUCTION FOR THE ODD CASES.

X.3.1. Bg—y(s) implies Bgy(8), 0<s<2k— 1, k>1. Let (Y, Z) be given by
Bg,—.(s) for the P,’s. By definition Z has degree 6%%-- 4% and is the union of
6k — s disjoint bamboos. Let ¢ be a smooth quadric not containing any irreducible
component of Y. On @ we consider 4k 4 2 disjoint lines (I;) such that: if 1<i<4k,.

L, is linked to a final line of a connected component of Z. If i >4k: L,NZ =0
442

It follows that Z':= Z U ( UL,) has degree 6k*-- 8% 4+ 2 and is the union of
6k + 2 — s disjoint bamboos. Take f€ HJy.(6k --1)) where Y'= Z'U {Py, ..., P,}
Then f':= f|Q vanishes on the 4k 4 2 lines L, and on the 12k2 | 4k = (6% -~ 2)(2k)

4k +2
points of § =2Z N (Q\( ULi))

Claim: every form of type (2k — 1, 6% — 1) vanishing on § is identically zero.

Assuming the claim we get f'= 0. Thus f=gg with ge H°(Jz(6k—1)). By
Bg,—.(s), g = 0 hence f = 0 as wanted. Finally the claim above is just a little varia-
tion of [BE, 2] lemma 5.2. This proves (1) and (2) of Bg.(s).

Now it remaing to show condition (3) of Bg(s). Let T, 1<i<6k— s, be the
connected components of Z. If length (7,)>2, T, has two final lines, say: 7%, B/ .
If length (7;) = 1, T, intersects @ in two distinet points: ¢/, # . From the construc-
tion above we have, for example, that I, is linked to I7 if 1<i<4k. For 1<i<
<2k —s—1 let @, be a point of T}, ;N Q (if YTy, ,) =1, =1, ) and «; be a
point of T'NQ (v, =¢ if YT,)=1). Let A, (resp. Ax;) be the line on @
through «; (vesp. »;) and intersecting IL,. Define: y,= Az,N L, (resp. y; =
= Aw; N Lyy_y.3)y 1<i<2k—s—1. Put D, := [m,, 9], D;:= [, y:].

Note that (D,-,D;) connect I, U T;, Ly .r; and T4y, 1<i<2k— s— 1. They
will be the (2% — s— 1) 3-connecting secants.

Define 25—y Yor—sy w;k_s, y;k_s as @, ... for i<2k— s— 1. Furthermore for
0<j<2s—1 let a; be a point of T4 ..., NQ [og=1th_or; if ATy ss4;) = 11.

Let Awx; be the line through «; intersecting I, and put 2,1, = Ao; N Lygsetinay
0<j<2s— 1. Finally set:

. I
0;=[a;~, 2], 1<j<2s; Oet1= D53 Osete= Dy .

Now we deform the lines I; into lines L;, 1<i<4k + 2, such that: LZ is transversal



290 E. BAaurico - Pa. BELLIA: On the postulotion, ete.

to @ for
1<i<2k—s—1 yel; , ylf'EL;h—'s"‘i; zJ'EL;k-%-Hy 1<j<2s;
%k—s € L;k—s b y;k-‘s € Lik—z.; .
. 4k +2 ,
The resulting curve Z:= Z U ( UL,) satisfies (1) and (2) of Bgy(s). Now we claim
that Z also satisfies (3) of Bgiy(s). Indeed (D, D{-), 1<i<2k— 1~ s, are the

(2k — 1 — s) 3-connecting secants and (d;, ..., 0,45) I8 the (2s + 3)-connecting secant
to Z. Note also that we may assume that P belongs to 77 ; Hence

7'=Zu (UD)u (UD) U (Us;)

is the union of 2k — s + 2 disjoint bamboos and P is contained in a final line of Z'.
This finishes the proof of Bgi(s).

X.3.2. Bga(s) implies Bgpis(s), 0<s<2k— 1, k>1. Let (¥, Z,Q) be given by
Bgira(s) for the points Py, ...., P,. In @ we have the (2k — 1 — s) 3-connecting secants
to Z, (D, D;), and the (2s + 3)-connecting secant (d,). This all together yields 4k
lines and Z'=Z U (UD,u D;) U (Ud;) bhas 2k - 2 —s connected components.
Also, by construction, two of these components are lines transversal to @ (cf. the
lines L;,u.ﬂ, L. of the previous proof). In @ we consider four further lines B,

4
1<l<4, such that Z:= Z'U (UB,) has degree 6k*-- 12k 1 6 and is the union of
2k + 2 — s disjoint bamboos. Now if f € H(Jy(6k + 3)) where ¥ = Z U {P,, ..., P,}
then f:= f|@ vanishes on the 4% - 4 lines D,, D, d,, B, and on the

2(6k -+ 8% -+ 2) — (8% - 4) = (6k 1 4)2k

points of Z N (Q\( UD,u D;u j, U B,)). Ag before using [BE2] §6 we see that
"= 0, hence f = 0 as wanted.

X.3.3. Bgials) implies Bgis(s), 0<s<2k -+ 1, k0. Let (Y, Z) be given by
Bg1,(s) for the P;s. Let @ be a smooth quadric not containing any irreducible
component of ¥. In ¢ we consider 4% -+ 4 disjoint lines, L;, such that: L,N Z = @,
1<i<4k -+ 4. So Z'= Z v (UL,) has degree 6%*-- 16% - 10 and is the union of
6k - 6 — s disjoint bamboos. Arguing as in the previous cases we may assume
that ¥'= Z' U {Py, ..., P,} satisfies h®(Jy. (6% -} 5)) = 0.

X.4. B,(s) for n even.

Bg.1a(s), 0<s<2k 4+ 1. Yor every s | 1 points Py, Py,..., P, in lLg.p. there
exist (Y, Z) where:

(1) ¥ is the disjoint union of Py, .., P, and of a curve Z and satisfies
B(P3, 35(6k + 2)) = 0
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(2) Z has degree 6k*>-- 10k + 4 and is the wunion of 3k + 2 — s disjoint
bamboos; P, iz contained in a final line of Z.

Bg+a(8), 0<<8<3k + 2. For every s + 1 points P, ..., P, in lg.p. there exist
(Y, Z) where:

(1) Y is the disjoint union of P,..., P, and of a curve Z and satisfies
R P3, 3y(6k + 4)) = 0

(2) Z has degree 6k*-- 14k | 8 and is the union of 3% 4 3 — s disjoint
bamboos; P, is contained in a final line of Z.

Bate(s), 0<s<<4k + 4. For every s -+ 1 points P,,..., P, in Lg.p. there exist
(Y, Z, Q) where:

(1) Y is the disjoint union of Py,.., P, and of a curve Z and satisfies
R(Jp(6% + 6)) = 0

(2) Z has degree 6k®-1- 18k 4 13 and is the union of 5k + 6 — s disjoint
bamboos; P, is contained in a final line of Z

(3) @ is a smooth quadric intersecting Y trangversally. Furthermore @ con-
tains 2k -4 1 disjoint 2-connecting secants, D;, 1<i<2k + 1, to Z.

X.5. INDUCTION FOR THE EVEN CASES. — The proofs are similar as in the odd
case 30 we will just sketch them.

X.5.1. Bga(s) tmplies Bgia(s), O0<s<k—1, k>1. Let (Y, Z) be given by
Bg,1,(s) for the P’;s. Let @ be a smooth quadric surface containing no irreducible
component of Y. Let T, 1<i<3k + 2— s, be the connected components of Z.
On @ we take 4% - 4 disjoint lines, L;, in the following way: for 1<i<k 1+ s 4 2,
L; and Ljigie4; intersect T, so that L; U Lyyoe0; U T, is a2 bamboo. For 2k -+ 2s -
+ 5<i<4k + 3, L, is linked to a final line of T';;—,—s; Ly+a N Z == O. It follows that

4k +4
Z'=Z U (UL,) has degree 6k2+- 14k -- 8 and is the union of 3k 4 3 — s disjoint
bamboos. As in the previous cases we may show that h°(JY‘L(6k + 4)) = 0 where
Y'=Z'U{P, .., Pl

X.5.2. By(s) implies Bgie(s), O<s<k -+ 1, k>0. Let (Y,Z) be given by
Byy14(s) for the P.’s. Let @ be a smooth quadric containing ;no irreducible component
of ¥. Oun @ we consider 4%k 4 5 disjoint lines, L;, as follows ‘ if 1<i<2k -3, L; is
linked to a final line of a connected component of Z. If ¢ » 2k -+ 3, I,N Z = 6.
We may assume that Z'= Z U (UL;} satisfies, with {Py,..., P}, (1) and (2) of
Bi1e(s). For condition (3) let x; be a point of L;, 1<i<2k + 1, and let Ax; be the
line on @ through o, and intersecting IL,. Set y,= Ax; N Lia,. We deform the
lines L;, 1<i<4k + 5, into lines I; such that: L; is transversal to Q; for 1<i<
< 2k -1, I; (vesp. Lus) passes through o; (resp. #,); ¥:= ZuU (UL) U
U {Py, ..., P} satisfies Bgiq(s).
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X.5.3. Bgie(s) implies Bgg(s), 0<s<k—1, k>1. Let (¥, Z,Q) be given by
Bgts(s) for Py, Py, ..., P,. On @ we have also the 2k -+ 1 disjoint 2-connecting se-
cants, D;, to z. Let (T,);<;<s1.6_, Pe the connected components of Z. If I(T,)>2
let 77, T% be the two final lines of T,. If (T;) =1 then let 7,N Q = {#],#/}. We
may assume that T7, T7,y.1, intersect D; (or ] (resp. #/;5:+,) belongs to D,, it YT,) =1
(resp. Y Tirarss) = 1) 1<i<2k + 1. Then we take 2k 4 1 further disjoint lines
on Q, D;, such that: D; N D,= @, T7,,,., intersects D; (or £3,,., € D). Finally we
take, always in the same system of lines, five other lines, D;, such that D, is linked

2k+1 5
to a final line of Ty, 1<i<B. Then Z'= Z U (UD,U D) U (UD;) has degree
642 + 22F 4~ 20 and is the union of 2k - 5 — s disjoint bamboos. Arguing as before
Y,=2'U {Py,.., P} may be taken to satisfy Bg.is(s).
Now we turn to the special case s = 0 and prove the missing initial cases:

X.6. ProposiTiON. — For #>1, B,(0) is true.

Proor. — As two skew lines are never contained in a plane B,(0) is clear. For
B,(0) we take the disjoint union of a line and of a bamboo of length three. Then,
using a plane instead of a quadric, we prove B,(0) implies B,(0). In this way the
general union of two disjoint bamboos of length 3 satisfies B,(0). Now for odd cases
the induction can start.

Using again a plane we show B,(0) implies B,(0). The curve satisfying B,(0)
is the disjoint union of 7, 7, two bamboos of length 3 and of T,, a degenerate conic.
‘We show B,(0) implies B,(0) adding 5 skew lines L, in a quadric @ such that 7', U L;,
1<i<?2, are disjoint bamboos and L,N (T, U T, U T,) = 6, i > 2. With the usual
procedure this yields a curve satisfying By(0) and having three 2-connecting secants.
With a slight modification of the general proof we can show By(0) implies B4(0) and
the induction starts also in the even case.

Now we introduce the second inductive statement of this section.

X7 O, k),6<s<n + k—1,n>1,k>0.~For every s 4 1 points P,, Py, ..., P,
in Lp.g. there exists a triple (Z, D, 8) where:

(1) Z is the disjoint union of # 4+ k— s bamboos, deg (Z) = a(n, 3, k) (see
below) and P, is confained in a final line of Z

(2) D is a line with Z U D disjoint union of n + k— s bamboos and P, is
contained in a final line of Z U D

(3) 8Sc D is a set of b(n, 3, k) — n points
(4) B3, (n)) = 0 where Z'= Z U {Py, ..., P.}.

Recall that a{n, 3, k), b(n, 3, k) are defined by:

n—+ 3

nea(n, 3, k) + & + b(n, 3, k) = ( 5

), n<b(n,3, k)<2n—1,
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In this section we are interested in the case s =k, 0<k <3, n>3. If 0<k<3, n>3
then a(n, 3, k)>b(n, 3, k)>n except if » =3, k= 3. In this case: &(3,3,3) = 4,
b(3,3,3) =35.

X.8., LEMMA. - For 0<k<3 and n>3, B,-,(0) implies C,(k, k).

Proor. — Let (Y, Z) be given by B,—,(0) for the point P,: Let @ be a smooth
quadrie containing P,,..., P, (k> 0) but not P,. Let (u,v) be respectively the
degree and number of connected components of Z. In @ consider # := a{n, 3, k) —

k

disjoint lines (L, ..., L,) in such a way that 7' = Z U ( |J L,) is the union of » disjoint
bamboos. According to X.8.1 below, this is possible. Now let D be a line on @ not
intersecting 7' and take 8 c D with # (8) = b(n, 3, k) — n. We have to show that
every form of type (n, %) vanishing on (' N Q)U S U {P,,..., P;} is identically zero
(then the lemma will follow because the residual scheme to @ satisfies B,—,(0)).
Again this follows from [BE, 2] § 6, especially lemma 6.2. Note that the points
Py, ..., P, cause no trouble since k<3 and we may assume that @ does not contain
any line [P;, P,].

X.8.1. SuB-LEMMA. — With the notations of the proof of X.8 we have: (i) # > 0,
(ii) v<m, () n>a>n— 0.

Proor. — (i) By definition we have:

(n ; 3) = n-a(n,3,k) + & +b(n, 3, k), n<bn,3, k)<2n—1
("’;Fl)z (n—2)u+ 0.

Hence
(m+12=mnw -+ 204+ &+ bn,3k—v(*.

If <0 then (n ,—{— 12<2u + 2n 4 2. Since u<r(n — 2) we get (n -+ 1)2< 27(n — 2) +
- 2n 4~ 2 which is impossible if n>3 (use X.1).

(ii) This follows from the definition of B,_,(0).

-3

(ili) If » <o then ( ;. >> n(n - u) -+ k + b(n, 3, k) this latter being greater
than »®+ n 4 nu. SBinee u>r(n— 2)— 1, using the definition of r(n — 2) we get

3 n+1
(” ;L )>( ;f )+ n— 2 4 2r(n— 2), ie. 3n— 1> 2r(n— 2). If n>7 this
is impossible. For n<6 the lemma is checked by direct computations.

If #<n— v, using (*) we get: (n+ 12 <n(n—wv) -+ 2u + k- b(n,3, k) — o,
Ler vn 1)+ (n+1)2<n2+ 2u -+ k -+ b(n, 3, k) <n®+ 2u + 20 + 2. Finally:
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v(n + 1) < 2r(n — 2) - 1, which is impossible if n>3, except if » =5 (mod 6) and
k = 3. In this latter case a direct computation shows » = n — v (this is due to the
fact that b(n,3,3) = 2n— 2 if n =5 (mod 6).

X.9. PROPOSITION. — For #n>2, C,(3,3) is true.

Proor. — Aeccording to X.6, X.8 it remains to show that (,(3,3) holds. But
this meansg that for every P,, P, P,, P; spanning P?* we can find two lines D, R,
with Pye D such that DU RU {Py, P,, P;} is contained in exactly one quadric.
Just take a smooth quadric containing all the P;’s and two skew lines on it.

X.10. ProrosITION. — For n>2, C,(0,0) is true.

Proor. — According to X.6, X.8 it remains to show that C,(0, 0) holds. For this
take the disjoint union, X, of a line and of a bamboo of degree 3. It is easy to check
that X is not contained in a quadric surface.

X.11. THE STATEMENT A, ,(s), n>4. — The statement is similar to 4, ,(s). The
only difference is that instead of condition (¢) in Zm(s) (see VII) we require:

(¢") ¢’ >min (r,n) 4 n— 3 for n>4.
X.12. LEMMA. — For 0<g<3 and n>4: C,—(3, 3) implies 4, ,(g + 3).

PROOF. — Let Py, ..., P,+s be the points considered. By C,—4(3, 3) for Py, ..., P; we
are given (Z, D, 8). Note that Z has » — 2 connected components. Let @ be a smooth
quadric containing P,, ..., P,4; but not P, for i<3. First assume r>a(n— 2, 3, 3),
hence 7>n. In this case we add in @ the union 7' of » — a{n — 2, 3, 3) disjoint lines
in such a way that Z U T is the union of » disjoint bamboos. This is possible since:
2(n— 2)>r— a(n — 2,3, 3) — 2 (see below). Outside ¢ we have the b(n— 2, 3, 3) —
— n -2 points of § and in @ we add the ¢" collinear points and further ¢’ —
— b(n— 2,3,3)— 2 points in general position (note that ¢’ — b(n — 2,3,3)— 2>0
because of the new assumption on ¢'). We claim that the union, X, of Z, T, §,
{P1, ..., Pyys}, the ¢' collinear points and the ¢’ — b(n — 2, 3, 3) — 2 points satisfies
A,’Lﬁ(g—i— 3). Indeed Res,(X) satisfies 0,-»(3,3) and we may assume (by [BE, 2]
§ 6) that any form of type (n,n) vanishing on X N @ is identically zero. Finally
we can always reduce to the case r>a(n — 2, 3, 3) + 2 since nfa(n — 2, 3, 3) -+ 2] -+

n4 (n—3) 461 (n-1)<(” ‘; 3). Indeed if not then
(+) na+5q+2>(”;f3)

]
But from the definition: (n — 2)a< (n ;’*

> pt— 24. Using again the definition of @ = a(n — 2, 3, 3) we get: 0 > 2n%(n — 6) +
-+ 19n - 6 which is false if n>3,

)—— n—1. Combining with (4) 2a¢>
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X.12.1. With notations of the proof of X.12; we have:
(*) 2(n— 2)=r—a(n—2,3,3)— 2

First for n>4 we have r<a(n,3,0) (because ¢"+ ¢+ g+ 3>2n—1). On the
other hand, from the definitions, we get: a(n—2,3,3)>a(n—2,3,0)— 1 for
n>4. Moreover:

(**) a(n, 3,0) —a(n—2,3,0) +1<(n+1), n>4

and (*) follows. To prove (**) note that the definition of a(n,3,3) = a, a(n — 2,
3,3) = a yields (# +1)2= n{ea— a') + 24’4+ b— b’ and

a>[(” ;’1)— on + 5]/(n- 2)

from which (**) follows.
In a similar way we have:

X.13. LEMMA. ~ For n>4, C,4(0,0) implies A,,0). Hence A4,,(0) is true
for n>4.

X.14. LEMMA. — 4, ;(0) holds.

Proor. - One easily computes the possible values of 7,¢’,¢". For example
b>r>1. If r>3 take a smooth quadric ¢. Let L, L’ be two disjoint lines intersect-
ing @ transversally. Then in @ consider a bamboo, 7, with deg (T) = r — 2; a set,
8, of ¢" collinear points and a set, P, of ¢’ — 3 general points. Then X = LU L' U
UTUBUP satisfies h(Jx(3)) = 0. Indeed if fe H(Jx(3)) then f|@ =0 and
moreover L U L' is not contained in a plane. If 1<#<2, do as above but with one
line, L, outside @ and deg (7) = r— 1.

Almost the same proof shows:

X.15. LEMMA, — If g = 0 or g = 2 then A4,,(g -+ 3) is true.
The following lemma concludes the proof of theorem 1.

X.16. LeMMA. — For ¢ = 1 or g = 3, H,,(g) is true.

Proor. — Let C be an elliptic quintic in P* and H be a general hyperplane. Set
HnNC={P,...,P;}. Let L, be a general line in H through P,, 1<i<5. Also
let D be a general line (not contained in H) but intersecting L,. Finally let 8 =
= {®, y} be a set of two distinet points such that [, 4] meets D. We may assume
fi:=1IL,U..UL; to be in general position in H ~ Po,
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Hence 7&“(32(3)) = 0 (see [HH1]). Hence a cubic containing X = CuU LU DU §
has to split into the union of H and of an hyperquadrie containing D U 8. But we
may assume that 2%(P%, J,,4(2)) = 0 (for instance let H' be an hyperplane contain-
ing DU 8, then DU S U (C N H') is not contained in a quadriec of H' and C is non
degenerated). If g = 3, € is a curve of degree 7 and we modify a little bit the above
construction: in H we take four lines Ly, ..., I, through Py, ..., P, and one further
point P.

Outside H we take D intersecting I;. As the union in P2 of four general lines and
four general points is not contained in a cubic surface, we conclude as above.

A) The second theorem.

These last sections are devoted to the proof of:

THEOREM 2. - Fix N, g with N >4, g>0. There exists an integer d(g, N) such that
for every d>d(g, N), for every smooth curve X of genus g and every L in Pic? (X),
the general projection of ¢, (X) into P¥ has maximal rank.

From the proof we could obtain inductively an explicit upper bound for d(g, N),
N>4. But the construction is highly inefficient and therefore the bound is useless.
Nevertheless theorem 2 seems interesting because it shows that asymptotically in
a fixed P¥ the postulation of a general embedding of every curve does not depend
on the geometry of the curve. The proof is, as usual, by induction on N but we write
with details only the «starting» case N = 4. Then the induction from N — 1
to N, N>5, is similar and even simpler.

B) Structure of the proof for N=4.

We define statements Dt,H;A(g) (see C). We show that if » is big enough
then D, holds and that there is a chain of implications:

(D, E) Dy =Dy = .= Dy :>H;,4(g)

Thus H;,4(g) holds for ¢>1%,. This implies theorem 2 (see F). Thus the proof is es-
sentially reduced to the proof of D,, t>>n. The starting point, D,, is proved using
3 curve in P? and a specific construction (D). Then to prove D,, t>n, we use:
D, A;gs(g -+ 3) = D,. To prove A;,a(s) with £>> s, we use the chain of implica-
tions: B,—y(s) = C,(s, 8) = A;1o(s) (these statements are defined in section X).
Finally it remains to prove B;(s), 1> s. For this we use (E.1) the constructions of
X.2,...,X.6 and the fact (see X.6) that B,(0), n>1, is true.
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0) The statements D;, H, (g).
From now on we fix a smooth curve, X, of genus g.

C.l1. D.:
There exist (Y, W, ¥,, k) such that:
(1) h: W — X is an isomorphism

(2) Y=Wu ( in)1 Pu(Y) =g, deg (Y) = r(}, 4, g) and Y has ¢(t,4,9) + 1
connected components.

(3) The Y,’s are disjoint bamboos; every Y, intersects W at most at one point
and quasi-transversally. At least ¢ of the Y,’s intersect W.

(4) BO(P*, 3,(8)) = 0.

C.2. H,,:
There exist (¥, W, D, 8, ) with:
(1) 2: W — X is an isomorphism
(2) D is a line, Sc D, #(8) =q(t 4,9
(3) ¥ and YU D are connected and union of W and ¢ disjoint bamboos

(4) deg (Y) = r(t, 4, g) and r(P%, 3, (1)) = 0.

D) Proof of D, for some »n large enough.

First of all let C be the image of X through an embedding of degree ¢ + 3 in P8
with O,(1) not special. In the lemma below we consider P? as an hyperplane,

H, in P
We define integers #(#), g() by the relations:
<:t+1>r<t)+q(t>=(t§3), 0<qlt)<t.
We have
r(t) = (¢ 2)(¢ 4 3)/6, qt)= Ok if t=0,1 (mod 3)
and »

() = (t-+1)(t+4)/6, qt)=(+1)/3 ift=2 (mod3) (see [HHL]).

Finally let m be the least integer >2¢ - 6 with m = 0 (mod 6).
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D.1. Lemma. — For every n>m with n— m even there exist (¥, Z, D, U, §)
where:

WVY=CUZUTUUS
(2) % is the union of r(n)-r{m) digjoint lines

(3) D is a line, Sc D, # (8) =g¢n), U is a set of

3
(n—?t‘ )_ (0 -+ 1)(r(n) — 1(m) — nlg + 3) — 1 + g — q(n) —

- (m ;— 3)_— m(g + 3) — 1 + g 4 (r(m) — g — 3{(n — m) points

(4) h(P3, 3, ,(n)}) = 0.

Proor. - By Castelnuovo theorem hl(Jo,H(m)) = 0. Thus there exists the union,
i 3
V, of w:= (m ;_ ) —m({g +3)—1-+g points with 7r-,,,,(m) Dbijective. Con-

sider a general quadric @. In @ add r(m - 2) — r(m) disjoint lines and 2(r(m) — g — 3)
points in such a way that the union ¥ bas r, ,(m + 2) bijective. Repeating this pro-
cess we get the lemma.

The condition m>2g - 6 ensures us that ¢ M § iz in general position for forms
of type (z,y) on @, y>m 4 2, since we may assume that ¢ does not contain any
secant line to C [BE2].

Now we can construet curves in P* isomorphic to X and with maximal rank.

D.2. LeMMma. — For some »n large enough (n depending only on g) D, is frue.

Proor. — Since asymptotically on » we have a(n, 4, 0) ~r(n, 4, g) ~ n3/24, we
can find a large integer n, n>m, n =m (mod 2) (n depending only on g¢) such
that: r(n,4,9) > an—1,4,0) + ¢ + 3 + 3n and such that r(n— 1,4, g) > 10n 4
4+ (n— m)(2x + 1) say. By P, 1,(0) (see VII) there exists in P* a reduced curve T
union of ¢(n— 1, 4, 0) disjoint bamboos, with r(P%, J(n— 1)) = 0. We may as-
sume that 7 intersects C only at one point. We can find in H the union B of
r(n, 4,g9)— a(n—1,4,0) — g— 3 disjoint lines, say B = B, U B,, such that deg (B;) =
= q(n, 4, g), CU T U B, is connected, of arithmetic genus ¢, with only ordinary
double points and has at least » lines intersecting only another irreducible component.
Also we agsume B,N (CUTUB)=9. Let Y=CUTUB. Thepoints of T N H
not on € are general points in H. Thus by lemma D.1, CU B U (I N B) is not
contained in any degree n surface of H and r,(n) is bijective. By the choice of 7, Y
has maximal rank. We can deform CU 7 U B; to Z U A where Z is isomorphie
to X, 4 is the union of n disjoint lines each intersecting Z only at one point.
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E) Proof of D,, t>n.

We have just proved D,. From now on # is fixed. We will prove below that
D, and Ai,s(g -+ 3) imply D;, t>% -+ 1. But first we have to prove Ay 5(8) when ¢
is much bigger than s. This is a consequence of the following lemmas:

E.1. LevvA. - We have:

By 1(8) = By, 5(8) = By (8 +1) = By o(s + 1)  if s<k

By .o(8) = By (8) = By 6(s +1) =By, (s +1)  if s<k.

Proor. ~ Most of the lemma has been proved in section X. Slight modifications
of the constructions of X.2, ..., X.6 prove the implications above when s increases
to s + 1.

With the same type constructions as in section X we have:

B.2. LEMMA. — B,,(s) implies Oy(s, s) if 6s <t— 2 and C\,_(s, s) implies A;4(s)
when ? is big and s small with respect to ¢.

Using X.6 and the lemmas above we have proved A;ﬁ(g + 3) for t > K(g), K(g)
a constant depending on g. We may assume n > K(g) (n is defined in D.2).

E.3. LemmA. — For t>n -+ 1, D,y and A,,(g -+ 3) imply D,. Also D, implies
Hi(g).

Proor. — The proof is similar to the one of IV.4. However we have to be a little
careful. Let (Y, W, Y,) be given by D,_,. Let Pc W be a point not confained in
any Y,. Suppose that to prove D, we add to Y some bamboo intersecting W only
at P. For this we have to control the postulation of H N W, H a general hyperplane
through P. By theorem 0 we can degenerate W in Pr, (0,(1), P*) to W' = MU N
where

(a) M% W, deg (M) =g+ 4 and L = 0,(1) is non special

(b) N is the union of d — g — 4 disjoint lines E;, each R, intersecting M only
at one point, P,, quasi-transversally;

FFOR(1) = L(P,+ ... + Py_,_,) .

We may even assume that p’ = f~(p) is a smooth point of W'. Thus we can apply
Aig(g -+ 3) to W’ taking a general hyperplane H through p'.
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F) End of the proof.

Take L in Pic? (X) and suppose #(i, 4, g) < d<r(f + 1,4, g). If d is large enough
then D,., holds. We have proved D, 4, ..., Dy, H;A for some W, in g steps. At
each steps we have linked one more bamboo to W through a peint we can fix before.
Then we add d— r(f, 4, g) lines, one of them being the line D in the definition of
H;A(g), to the curve given by H;A(g). The lines are added in such a way that we
obtain a connected curve 7T, union of W and of ¢ disjoint bamboos, Y, each intersect-
ing W at one point, P,. Set a,= deg(Y,) and let L;c ¥, be the line intersect-
ing W. By construction ¢ — g of the L, were added in the construction of a curve
satisfying D,,; say L, for 1<i¢<t— g. On the other hand L,, ¢ > ¢ — g, where added
during the chain of implications:

{*) Dy = Dypig = .. = Dy :>H;,4(g) .

i
Set M = O,(1). Unfortunately M (EaiPi) in general need not to be isomorphic
i=1

to L. But by Abel’s theorem there exist g points, P, ..., P, such that:

s aPi) = L.

i—g
M3 aPit

=1 f=i—g+1
If in the chain of implications (*) we can take P,= P, i>t— g, we are done,
if we are sure that P;#P,.

This can be achieved moving the points and using semi-continuity. Now by
theorem 0 and semi-continuity a general element of Pr, (L, P*) has r(f) injective.
In the same way, using H £+1,4(g) we can prove that a general element X of Pr, (L, P?)
has rx(t + 1) surjective (and hence ry(k) surjective for k>t -1, see [M] p. 99).
Since Pr, (L, P*) is irreducible, this proves theorem 2 for ¥ = 4.

The full proof of theorem 2 now follows by induction from N — 1 to N, N >3,
in a similar way.
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