Wiener Estimates for a Class of Systems
of Parabolic Variatienal Inequalities (*) (*%).

M. Birorr - T. KARLSSON

Summary. — Wiener estimates at a point for parabolic diagonal systems of parabolic variational
inequalities with obstacle are proved by a Green funclion method.

0. — Introduction.

In the present papier we study the pointwise regularity of local bounded weak
solutions of non linear diagonal systems of parabolic variational inequalities which
are relative to the convex set

K= {ue (L*0, T; H(R)),ue K for q.e. (z,t) € B}

where K c R¥ is a closed convex set and Hc K c@Q = Qx (0, T) is a Borel set.
The continuity of % at an arbitrarly given point z, = (x,, %) € B is obtained by
estimating the quantity

V(r) = (08Cq(e,,” %)+ ( f ]DmulzG%dwdt)é

. Q(zg,1)

(where G* is the Green function of the linear part of the parabolic operator with
singularity at 2,) and this also gives an estimate of the modulus of continuity of
at z, in terms of the so called « Wiener integral ».

We recall that the analogous elliptic problem was solved in [8].

In the parabolic case the continuity of weak solutions of scalar obstacle problems
has been studied by M. BiroLt and U. Mosco in [3]. Here we use a refinement of
the methods in [2, 3] and a suitable Poincaré’s inequality to solve our problem.

(*) Entrata in Redazione il 6 marzo 1986.

(**) This paper was written while the first Author was visiting the Department of
Mathematics of Linképing University.

Indirizzo degli AA.: M. Biror1i: Dipartimento di Matematica del Politecnico di Milano,
Ttaly; T. KarrssoN: Department of Mathematics, Link6ping University, Sweden.
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Finally we observe that the capacity used in the present paper, which is the same
as the one used in [3], is weaker than the capacity used by W. P. ZigMER [11], and
M. Brrori, U. Mosco [2], studying a qualiftative Wiener criterion and Wiener egti-
mates at the boundary for weak solutions of parabolic equations.

The present capacity is also weaker than the one used by R. Gariery and W. P.
ZieMER [7], to give a qualitative Wiener criterion for weak solutions of parabolic
equations, but seems to be the adapted notion for problems of variational inequalities.

1. - Notations and preliminaries.

By {2 we denofe a bounded open set in B?, n>3, and by B(w, #), « € R*, we denote
the open ball

B(@,7) = {y e Rr; [v — y| <r}
For a given T >0 we put
Q@ = 2x(0, T)
For every z = (x, i) R*! and r > 0 we define
Q1) = Bla,ralt— 1%t + %)
Q=(z, ) = B(w, r)a(t— % 1)

Q5 (2, 1) = B(w, r) X {t — r% t — 60r?)

where 6 € (0, §).
Let € be a compact subset of . We define the capacity of C relative to @, by
setting.

cap, (0) = inf U[Dmcpjzdw dt; pe O3 (@), p>1 on a neighbourhood of O} .
q

We have so defined a Choquet capacity [4], and we observe that every Borel set is
capacitable [4.5].
We recall that if Bc Bc@ is a Borel set then

T
capg (B) =N — capg (B)) dt
0

where B, denotes the section of B at the instant ¢ and the N-cap, is the Newtonian
elliptic capacity relative to £, [3]. By H»?(2), 1<p < + oo, we denote as usual
the Sobolev space of all functions w e L#(2) with distributional derivatives D, w €
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e I7(Q), normed by

ol = (015 + 3 1D 0l5P

and by Hp?(£2) the closure of C5(2) in HY7(Q).

We define also HY(Q) = H"*(Q), H,(Q2) = H*(Q).

By L0, T'; Hl(Q))(LZ(O, T; H{,(Q))) we denote the space of all functions w(w, )
such that w(-, ) e H{Q)(HNQ)) a.e. in (0, T) and t —>w(-,?) is square-integrable
in (0, T) with values in HY(Q)(HLQ)).

By L°(0, T'; L*(£2)) we denote the space of all functions w(z, ¢) on @ such that
w(-,t) e L¥Q) for a.e. te (0, T) and |w(:,?)]q is (essentially) bounded on (0, 7).

Finally, given a space X, we denote X¥= X X...x X N-times. For some given
functions e, € L*(Q), i,j =1, ..., n, satisfying the conditions

(1.1) lasi(w, B)| <A

n . y
(1.2) z a(w, 1) £, &> A& r a.e. (@,t)€Q

$i9=1
where A> 1> 0, we consider the (formal) operator

P=D,— Y D,(ay1)D,).

dyi=1

Given 2 = (»,{) we denote by G¢= G(z, w) the Green funetion for the operator P
in a large cylinder Q= Qy X (— Ty, T,) with homogeneous Cauchy-Dirichlet bound-
ary conditions [1]. In [1] the following estimate on G*(w), w = (¥, s), has been proved

1 At I 1 o —y
Vlmexp(—%m) <G (w) <y, |t-—s]nl2eXP( Y2 |t—s|

for arbitrary y € Q and s < ¢, Gw) = 0 for s > t and y,, 1, ¥, ; are suitable positive
constants which depend only on =, 4, A.

By G5, 0> 0, we denote the regularized Green function which is the (unique)
solution in L*(— Ty, Ty; Hy(2)) of the problem

ijthadwdt + > | ayD., 6D, pdvdt = ch:dwdt
Q, M=1Qo Q(z,0)
for every ¢e C7(Q,), with the «initial » condition Gi(x, T) = 0 for a.e. we £,
where {vdxdt denotes the average of v on . By Nash-Moser theorem G: is Holder
q

continuous in @, and as ¢ —0 -+ we have Gi(w)— G*(w) for every w=z and uni-
formly on every compact set of @, — {z}; moreover G — G* weakly in H(Q,— {2,})
and in LY(— T,, T,; WH1(£,)).



200 M. Birorr - T. KARLSSON: Wiener estimates, etc.

2. - Results.

We state now the problem we are interested in.
Let H(w, t, #, p): Q X R¥ X R*¥ — E¥ be a function such that H is measurable

in (#,1) and continuous in (%, p) for a.e. (v, {) € §. We suppose that the function H
satisfles the following condition

(2.1) {H (w, t, u, p)| <a(M)[p{*+ b(M)

for (v, 1)@, [u|<M and p e R¥,
We fix now a Borel set #cE cQ and a closed convex K c R¥ and we define

X% = {u e (2(0, T5 HYQ)))¥ N (L7(Q))", w(z, ) € K gq.e. in E}
We look at a function % in I satisfying

T
2.2) { f {Dogto — ) + 3 a, Do uDufglo — w) +
9 2 BI=
+ iD.plo — ul2 4+ H(-, -+, 4y Dyu)p(v — u)} dodi=>0
Yo % N (HY0, T; L(Q)))
Yo e 130, T; HXQ)) N HY0, T; L*(Q) N L°Q), ¢>0,
p(,0)=0.

We say that w is @ bounded local weak solution of our variational inequality.
Let 0 € (0, %) be given and > 0; we denote E°(r) = E(r) = E N @, (2,7) and

(1) == Ga'pQ(zo,zr)(E N Q7 (2, 7)) (C&Pa(zn,zf)Q(z«) y 7))
THEOREM 1. — Lei u be a bounded local weak solution of (2.2) satisfying
(2.3) 2a{M)M < A

where M == Sup |u].
Let 2, € E be fived; there exists a constant 6, (dependent on 1, 4, M, a = a(M),
b = b(M)) such that for 0 € (0,0,) we have

R

V(r)< C exp (—ﬁ f 50(@>@Q§)(v<m + O,R) + Cur

T
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where

V(r) :( f ]DquG‘Zodwdt)x T 08CQ(a,,1) U

Q(z0,7)

and C is an absolute constant, f3, Oy, C, are constanis dependent on A, A, M, a, b, 6.

From Th. 1 corollaries 1.2 follow easily:

COROLLARY 1. — Let the conditions in Theoem 1 hold and suppose
1
f&e(@)%g++ o ag 7 ->0

for a fized 0 € (0, 0,).
Then w is continuous at 2,

COROLLARY 2. — Let the conditions in Theorem 1 hold and suppose

1
. 1 do
liminf ——— | do{0) — = ¢, >0
st [t G =
for a fized 0 < (0, 6,).

Then w is Holder continuous at z,.

In Sec. 3 we prove a Caccioppoli-De Giorgi inequality for bounded leeal weak
solutions satisfying (2.3); this inequality is a preliminary to the proof of Th. 1.

In Sec. 4 we prove a Poincaré inequality for bounded local weak solutions relative
to the capacity introduced in Sec. 0 and involving only the spatial derivatives.

In Sec. 5, using the Poincaré inequality and the integration lemma of [6], we
finish the proof of Th. 1.

In Sec. 6 we give the easy proofs of Corollaries 1, 2.

We remark that the method used to prove Th. 1 is a refinement of the method
used in [3] to study the continuity of local solutions of parabolic obstacle problems
and that the elliptic case of our problem has been studied in [8].

3. — Estimates of Caccioppoli-De Giorgi type.

In this section we consider arbitrary bounded local solutions of our problem
satisfying (2.2).

We prove the following

LeMMmA 1. — Let be a constant vector in K with |d|<M. Then for Z e Q(z, B/4),
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R< Ry, q.e. the following estimate holds

£
f f D@7 dndt + ju— dPXE) <
-30R* B, B/8) ¢
< OR? f f fu— dj2- (6% 4 gR-/2-(G7) 4 o1 Rr2(G7)E L oR") do dt --
I—50R® B(%,R/8)—B(5,R/16) {—86R?

& OB f Jf lu— d*GFded + O6)R?

T—56R? B(%,R/4)

where ¢ > o is suitable, 0 € (0, 1/16) and the constant C depends only on (n, A, A, a, b, M).

Let 5 = n{») and v = 7({) be such that

n=1 xe B R/8)

n=0 x¢cB(E R/4)
0yl v e B(Z, RB/4)
ne 07 (R")  [Doy|< OB
T=1 i>i— 30R2

1=0 t<i— BOR?

re O7(R) |D,7|<CO'R2.

By choosing v = d and & = nzrng with o < 6R? in the variational inequality,
we have

. [ LU T Gl dw —d*ntdwdt
(3.1) J [De u;n’er:rdt-{—{Q\“)’f]u | @ dit <

a(7,R) Q(z,0)
ot T+o?
<0 mingwdt—i— fu——d‘zm'? [DmHDngldwdt—{—
t—39R® B(%,R/4) T—50R? B(Z,R-4)
T+t t+g?
4 20 f f PG dndt f ]u—d{leﬁlG;dmdt}
I—50R® B(z, B/4) t—5082 B(%,R/4)

where by ¢ we denote constants which depend only on n, A, 4, a, b, M (actually
n (3.1) € does not depend on b).
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Passing to the limit as ¢ — 0 and taking into account the estimates on &%, see [1],
we have for q.e. 2

(3.2) f [D.ulrp2e2Ge + lu— 4|2z <0{R‘ f f v — d2G* dxdt 4
56R® B

QG R) t— B(%, B/4)— B(Z, R/S)
t—36R® ¢
+ R B0 | [ w—dpFaa+ [ [ w—ap mww[zwﬁ?{dwdt} .
t—56R® B3, R/4) i~ B, EB/1)

Let us consider the last term on the right hand side of (3.2); we obtain easily
&

(3.3) f f[u-_dl 77| Dy || D, 67 | dw dt <

ti—R® B(F,R/4) N
<R f f nrriu — d)(|D, 67 |G dadi -
t—R® B(x,R/4)— B(x,R/S)
- —
+00~1Rn/2-2 J‘ f46—1Rnlz—2f f[u—d{Z(G?)%dwdt

t—56R® B(7, R/4)~B(T, ERIS) i—50R* B(Z,R/4)—B(Z, Ri8)

where ¢ > 0 is to be choosen.
The first term can be estimated by the lemma 2 below and we obtain

3

(3.4) f f nrrle — d)2|D,67)(67)t do di <
t—R* Bz, R/4)—B(%,R/8)
t
<O’[R—2 [ f [ — d[3(G7) dedt J- R f f D w2 w2 G dwdt +-
t—58R* B(%,R/3)— B(z,R/16) - t—R? B(x,R)
t
4 R-inl2tn f f [u— d*dwdi + Rnl2+2]
0. B(x, R/8)— B(x, R/16)

from (3.2) (3.8) and (3.4) choosing ¢ > 0 suitable we have

i
(3.5) f f | D,uftn2 w2 67 dwdt 4-Ju — dJ*() <
t—R* B(@,R) [
<o[r | | 1= ap(67 + oB-xg +
1~50R? B(%,R/3)—B(,R/16) _
t—306R?

F T BINGEN - B dwdt + B0 [ [ ju— dls6Fdnat + Rz]
‘t—56B* B(Z, R/4)

which is the result of lemma 1.
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Let now w be such that

where & e 07 ((B(#, R))
@ = o in B(Z, R/16) and for » ¢ B(Z, (5/16)R)
& =1 in B, Rj4)— B@&, E/8)

<1.

&

0

We now complete the proof of the lemma 1 by proving:

LeMMA 2. — Let u be a bounded weak solution of our problem satisfying (2.2). Then
the following estimate holds

¢

| f wr vt — dP|D,67 | de dt< C[R—2 f f tlu— A7) dwdt -
_

i—R* B(z,R) — B(%,5R/16)— B(z, R/16)

- Rz } | IDup@nrednat + R | t = vavat + Brere] .

t—R* B@,R) t—-R* (Bw,(5/16)R)—B(z, R/16)

From the definition of the regmlarized Green function we have

b=y
- N - _ - _
DG+ 3 Dyla, D, 05), 02 r2(0G u — d>dt =0 (Gf= G5+ 6, §>0).
- R? n=t
Then since # is & loeal solution of our variational inequality we obtain, after some
computations.

Ty
(3.6) ( f(gGg)%Dtrrwzju—d]zdmdt—
?—Eé?- B(3, B) Ty v
n - - —_
—% 2—1 f f ;5 Dy, G5 (60g) Do, Gy0® e |u — d|* dw di -
YRR BGLR)
. -y
+ . z f Qa”D’”i G_ZD%(“ T? |u— dIZ(Gz)ﬁgdx dt —
z,a=1__R2 35, 1)
=y
i .
— 2 f 20,,(sG)* Do, 0Dy (4 — d) 0(u —d) 12 dw di +
YN sEw)
iz
+b lu— djw2r? (;G2) dedt = 0.

i—R® B(z,R)
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From (3.6) by the same methods as in Appendix of [2] and taking into account
the estimates on G given in [1] we obtain the result.

From the result of lemma 1 taking the supremum for ze@ (z,0*R) and using
again the estimates on G* we have by a suitable choice of ¢:

LEMMA 3. — Let the conditions of lemma 1 hold, there exists o constants 6, > 0 such
that for 0 (0, 0,) we have

fy
f | D, w|? G= da dt -+ SuDqg,,etr) | — d|2<

"%—6R* Blw,,0%R)
<0 exp (— 0f1) f-3n/s R-tt2) f lu — d2dxdt +

Q(2,,R)
t,—20R?
+ 0f—tnlz+1) B—nt2) j lu . d’z dx dt + 0(0)R2 .
to—60R? B(w,.(3/8)R)
We have
(3.7) Sup [u— d]*>F (08Cq(s,,01m) %)? -

Q(z,,64R)

We now choose d such that

(3.8) Sup |u — d]2<C(oseqq,,r ).
Q(2, B)

From (3.7) (3.8) and the lemma 3 we obtain.

LEMMA 4. ~ Let the conditions of lemma 1 hold and let d be such that (3.8) holds.
Then for 0, as in lemma 3 and 6 € (0, 6,) we have

to

[ D, w|? G dawdi - (08Cq(, piry%)2 < ¢ exp (— 06-1) G-+ (oseq,,, 7y *)*? -
to—OR* B(x,,0}R) ty—20R*?

+ 00—(n/2+1)R—(n+2) f ]u — dlz da dit “l‘ C(g)Rz .

to— 80K B(wo,(3/8)R)

4. — A Poincaré inequality.

Let 2, be such that cap (HB(R)) 0 and #e R¥ be defined by the minimization
problem
ty—OR?

(4.1) 1m?{f f]u—o]zdwdt;ceK, |c[<M}.

ty~60R* B(zy,R/2)

REMARK. — Since cap (E(R)+#0 there is a constant vector ¢e K

lel<M  such that [u—¢|<w = 08Co(,,r) ¥ -
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Due to the definition of %.

inf |4 —ul<w
Q(%, R)

and this implies

Sup |4 — u|<3w .
Q(z, R)

We denote in the following by E,(R) the section of F(R) at the instant ¢.
From the variational inequality we obtain

2)  3(ue) - )zny(me j D2 dn <31 (0 = TO) o

- ZAff(Dwu (w — @t )Cdxdn +ff[a|p wl2(w— () C2- b|(u(t)— w(e)) [c2]dw iy

Here u(t) = f w(w, t) du(r) where g is a unit measure on ¥,(R) such that

Ei(R)
(4.2) (w(, 1) — (1) 2 dw < 9 D, ul? (w, 1) dw .
’ N — cap (B«(R)) ¢ !
B, R) B(xo, R)

The existence of such a measure x has been proved in [9] (see also [8]).
The funetion [ is such that

(e CF (B, R) 0<i<1
=1 in B(x, B/2).

From (4.2) we have for te [t,— R? t,— 60R?].

(4.4) Sup  [u(s) — W) | Er(pees, mi2)) <

s&{t, to—OR?Y) to—OR?

<0 [”“(t) — ()| (w0 1) f f | D, w|*dowdy + Rm].

t B(z,,R)

Now we apply the elliptic Poincaré inequality (4.3) to the first term on the right
side of (4.4) and we obtain

(+5) Sup - [u(s) — B aeq,mim) <
se(to—-ﬁﬂR“ ~0R?)
to— OR?
<C[N———ea§ 7) f | D, u|? (ex, t) dw + f f fDmu)zdmdn+R"+2].

Bz, R) ~R* B(z,R)
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In (4.5) and in the following of the section we denote
N — cap (B(R)) = N — capg, op)(B(RB)) ,  cap (B(R)) = capqg, on(H(R)) -

We observe that #(t) e K, {u(t)|< M, then

tp—6R? to—0R?
(4.6) f f u— a[Zddef f b — T(t)[2dwdy + CwRw2 .
to—60R?* Blwxy,R/2) to—60R* B(x,,R/2)

From (4.5) and (4.6) we have

{,—OR?

Rn-l—z
7 — — 2
(4.7) f f % u|2da:d77<0[N_cap @5 f | D, u|?(x, t)de +
to—60R® B(w,, R/2) Bz, R)
to— OR?
+ R? f [D.ul?dedy + Rrte + O(’;?wR"“] .
to—R* B(wy,R) i

We integrate for e (f, — R? t,— 60R?); then
ty—OR?
(4.8) f [ — w)>dwdny <
of—OR?

to—B0R® B(z,,R/2) Rtz D Ret 06w R+
2dm n-t4 a2,
= [eap (B(R) f (Deultdivdy - Tt Cho ]

to—R* B(wo,R)

We have so proved the following

PrOPOSITION 1. — Let cap (E(R)) 0 and @ defined as in (4.1).
Then we have

to—OR? to—OR®
Rz
]u——ﬁ[zdwdn<0[3~(—R) f f [D,ul?drdy + Rete - CGcoR"“].
to—66R? B(w,,R/2) ’ to— B B(wy,R)

5. — Proof of Theorem 1.

From the lemma 4 and the Poincarf inequality we obtain choosing d = (this
is possible by the Remark of Sec. 4)

to

(5.1) [Dew|? G2 dax dt 4 (08Cq(, oir) #)2 <
to—OR® Blao, 01R) < C(exp (— C6~) 0-37/%) (08Cq(s,,z) %)% -+
ty—OR?
1
10 i e 2 di VR2.
+ 00 Fod) D ul*dzdt + C(B)R

to—R® B(zo,R)
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By the estimates on the Green function [1], we obtain
g
{(5.2) ] D u|2 G dodt + (08, stm) %)2<
ty—BR? Blx,,0%R) t,— 6R?

1
< 2 ] 2 dodt -
- OK,(6)(08Cq(,, ) %) + SR f f [D,u|? G dxdt -+ C(0)R?

to—~R? B(xy,RB)
where

K,(0) = exp (— 00-)f—3/
K,(0) = exp(— CO-1)0 .
Lumua 5. There exisis 0, > 0, depending only on n, A, A, a, b, M, such that for
0e(0,0,) if
{5.3) Ve R)>20(0)R?,

then we have

V20 R) <

14 K (0) o(R) R
1

where V(R) is defined as in Sec. 0 and K,(0) = 00 exp (— CO-Y).
Let

D(r) = (08Cg(,, n%)?

Y(r) :f[Dwulsz"dmdt .
Q(zo,7)

Let (5.3) hold. From (5.2} we dotain

(1 - CKo(8) 0,(R))(BOLR) + PO R)) < (1 + CE(6) Ky(0) 05(R)) D(R) + P(R) .

Then
. L O, K (0) K,(0)de(R) 1
T % R) + V(R
POE) + ¥R < s m) L T I G0
We observe that
14 COoz 1 D<w<l

1+ 0r S1+ 02

for 0 < ¢ <1 and 0 < o < %, then if we choose 8, such that 0 < C,K,(0,) <1 and
0 < (C,/C,) K.(f,) < % we have the result. From lemma 5 we have

1

VAE) < T 5760 )

Vi(R) + 20(0) R?
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then for 6 € (0, 8,), 0, > 0 suitable, there exists a constant C,(f) such that, if we
define
Wr) = Vr) + Cy(6)r*,

we have
1

< 1T B (0)50(B) W(R) (#<6iR).

(5.4) Wi(r)
Form (5.4) and the integration lemma given in [6, 10] (where the continuity of the
solution of an elliptic variational inequality with wiener obstacles is studied) we
obtain

B
(5.5) W(r)< O exp (_~ 2/3f60(9)%) W(R)
where t
— K4(0) . l& .
p=~— igh]’ K(0) =i (thenf—>0as6-0).

From (5.5) we obtain easily.

B
. d
7)< Coxp(— 4 a0 ) (V@) + 02 + 0ur
where C, and C; depends on 0.
The result of Th. 1 is so proved.

6. — Corollaries 1 and 2.

The result of corollary 1 follows from the estimate in Th. 1 for B — Ry, R, suitable
and fixed, and » — 0.
We now give a proof of corollary 2; for r < B, R suitable, we have
1

216y <lgr| f Sole)

T

IS

_Q. <}’
0
then

Ry d

faeg@) -éQ <36, [igr|—|lg By .

T

For B = R, suitable and fixed, we obtain (from the estimate of Th. 1)

(6.1) V) <O7f RyA(V(R,) 4 O, R,) + Cyr .

From (6.1) the Hoélder continuity of « at x, can be easily deduced.
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