Wiener Estimates for a Class of Systems of Parabolic Variational Inequalities (*) (**).

M. Biroli - T. Karlison

Summary. - Wiener estimates at a point for parabolic diagonal systems of parabolic variational
inequalities with obstacle are proved by a Green function method.

0. - Introduction.

In the present papier we study the pointwise regularity of local bounded weak solutions of non linear diagonal systems of parabolic variational inequalities which are relative to the convex set

$$
K=\left\{u \in\left(L^{2}\left(0, T^{\prime} ; H^{1}(\boldsymbol{R})\right)^{N}, u \in K \text { for q.e. }(x, t) \in E\right\}\right.
$$

where $K \subset R^{N}$ is a closed convex set and $E \subset \bar{E} \subset Q=\Omega \times(0, T)$ is a Borel set.
The continuity of u at an arbitrarly given point $z_{0}=\left(x_{0}, t_{0}\right) \in \bar{E}$ is obtained by estimating the quantity

$$
\left.V(r)=\left(\operatorname{osc}_{Q\left(z_{0}, r\right.}\right)^{\prime} u\right)+\left(\int_{Q\left(z_{0}, r\right)}\left|D_{x} u\right|^{2} G^{z_{0}} d x d t\right)^{\frac{1}{x}}
$$

(where $G^{z_{0}}$ is the Green function of the linear part of the parabolic operator with singularity at z_{0}) and this also gives an estimate of the modulus of continuity of u at z_{0} in terms of the so called "Wiener integral».

We recall that the analogous elliptic problem was solved in [8].
In the parabolic case the continuity of weak solutions of scalar obstacle problems has been studied by M. Biroli and U. Mosco in [3]. Here we use a refinement of the methods in [2,3] and a suitable Poincare's inequality to solve our problem.

[^0]Finally we observe that the capacity used in the present paper, which is the same as the one used in [3], is weaker than the capacity used by W. P. Zievier [11], and M. Biroli, U. Mosco [2], studying a qualitative Wiener criterion and Wiener estimates at the boundary for weak solutions of parabolic equations.

The present capacity is also weaker than the one used by R. Gartepy and W. P. ZiEMER [7], to give a qualitative Wiener criterion for weak solutions of parabolic equations, but seems to be the adapted notion for problems of variational inequalities.

1. - Notations and preliminaries.

By Ω we denote a bounded open set in $R^{n}, n \geqslant 3$, and by $B(x, r), \infty \in \boldsymbol{R}^{n}$, we denote the open ball

$$
B(x, r)=\left\{y \in \boldsymbol{R}^{n} ;|x-y|<r\right\}
$$

For a given $T>0$ we put

$$
Q=\Omega \times(0, T)
$$

For every $z=(x, t) \in \boldsymbol{R}^{n+1}$ and $r>0$ we define

$$
\begin{aligned}
& Q(z, r)=B(x, r) x\left(t-r^{2}, t+r^{2}\right) \\
& Q^{-}(z, r)=B(x, r) x\left(t-r^{2}, t\right) \\
& Q_{\theta}^{-}(z, r)=B(x, r) \times\left(t-r^{2}, t-6 \theta r^{2}\right)
\end{aligned}
$$

where $\theta \in\left(0, \frac{1}{8}\right)$.
Let C be a compact subset of Q. We define the capacity of C relative to Q, by sefting.

$$
\operatorname{cap}_{Q}(O)=\inf \left\{\int_{Q}\left|D_{x} \varphi\right|^{2} d x d t ; \varphi \in C_{0}^{\infty}(Q), \varphi \geqslant 1 \text { on a neighbourhood of } C\right\}
$$

We have so defined a Choquet capacity [4], and we observe that every Borel set is capacitable [4.5].

We recall that if $B \subset \bar{B} \subset Q$ is a Borel set then

$$
\operatorname{cap}_{Q}(B)=\int_{0}^{T} N-\operatorname{cap}_{Q}\left(B_{t}^{3}\right) d t
$$

where B_{t} denotes the section of B at the instant t and the N-cap p_{Ω} is the Newtonian elliptic capacity relative to Ω, [3]. By $H^{1, p}(\Omega), 1 \leqslant p<+\infty$, we denote as usual the Sobolev space of all functions $w \in L^{p}(\Omega)$ with distributional derivatives $D_{x_{i}} w \in$
$\in L^{p}(\Omega)$, normed by

$$
\|w\|_{\mathcal{L}^{1, p}}=\left(\|w\|_{L^{p}}^{p}+\sum_{i=1}^{n}\left\|D_{x_{i}} w\right\|_{L^{p}}^{p}\right)^{1 / p}
$$

and by $H_{0}^{1, p}(\Omega)$ the closure of $C_{0}^{\infty}(\Omega)$ in $H^{1, p}(\Omega)$.
We define also $H^{1}(\Omega)=H^{1,2}(\Omega), H_{0}^{1}(\Omega)=H_{0}^{1,2}(\Omega)$.
By $L^{2}\left(0, T ; H^{1}(\Omega)\right)\left(L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)\right)$ we denote the space of all functions $w(x, t)$ such that $w(\cdot, t) \in H^{1}(\Omega)\left(H_{0}^{1}(\Omega)\right)$ a.e. in $(0, T)$ and $t \rightarrow w(\cdot, t)$ is square-integrable in ($0, T$) with values in $H^{1}(\Omega)\left(H_{0}^{1}(\Omega)\right)$.

By $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ we denote the space of all functions $w(x, t)$ on Q such that $w(\cdot, t) \in L^{2}(\Omega)$ for a.e. $t \in(0, T)$ and $\|w(\cdot, t)\|_{L^{2}(\Omega)}$ is (essentially) bounded on ($0, T$).

Finally, given a space X, we denote $X^{N}=X \times \ldots \times X \quad N$-times. For some given functions $a_{i j} \in L^{\infty}(Q), i, j=1, \ldots, n$, satisfying the conditions

$$
\begin{align*}
& \left|a_{i j}(x, t)\right| \leqslant \Lambda \tag{1.1}\\
& \sum_{i, j=1}^{n} a_{i j}(x, t) \xi_{i} \xi_{j} \geqslant \lambda|\xi|^{2} \quad \text { for a.e. }(x, t) \in Q \tag{1.2}
\end{align*}
$$

where $\Lambda \geqslant \lambda>0$, we consider the (formal) operator

$$
P=D_{t}-\sum_{i, j=1}^{n} D_{x_{i}}\left(a_{i j}(x, t) D_{x_{j}}\right)
$$

Given $z=(x, t)$ we denote by $G^{z}=G(z, w)$ the Green function for the operator P in a large cylinder $Q_{0}=\Omega_{0} \times\left(-T_{0}, T_{0}\right)$ with homogeneous Cauchy-Dirichlet boundary conditions [1]. In [1] the following estimate on $G^{z}(w), w=(y, s)$, has been proved

$$
\gamma_{1} \frac{1}{|t-s|^{n / 2}} \exp \left(-\gamma_{1}^{\prime} \frac{|x-y|^{2}}{|t-s|}\right) \leqslant G^{z}(w) \leqslant \gamma_{2} \frac{1}{|t-s|^{n / 2}} \exp \left(-\gamma_{2}^{\prime} \frac{|x-y|^{2}}{|t-s|}\right)
$$

for arbitrary $y \in \Omega$ and $s<t, \mathcal{G}^{z}(w)=0$ for $s>t$ and $\gamma_{1}, \gamma_{1}^{\prime}, \gamma_{2}, \gamma_{2}^{\prime}$ are suitable positive constants which depend only on n, λ, Λ.

By $G_{\rho}^{z}, \varrho>0$, we denote the regularized Green function which is the (unique) solution in $\dot{L}^{2}\left(-T_{0}, T_{0} ; H_{0}^{1}(\Omega)\right)$ of the problem

$$
\int_{Q_{0}} G_{p}^{z} D_{t} \varphi d x d t+\sum_{i, j=1}^{n} \int_{Q_{0}} a_{i j} D_{x_{i}} G_{p}^{z} D_{x_{j}} \cdot \varphi d x d t=\int_{Q(z, Q)} \varphi d x d t
$$

for every $\varphi \in O_{0}^{\infty}\left(Q_{0}\right)$, with the «initial» condition $G_{\rho}^{z}\left(x, T_{0}\right)=0$ for a.e. $x \in \Omega_{0}$, where $f_{Q} v d x d t$ denotes the average of v on Q. By Nash-Moser theorem G_{e}^{z} is Hölder continuous in Q_{0} and as $\varrho \rightarrow 0+$ we have $G_{\rho}^{z}(w) \rightarrow G^{z}(w)$ for every $w \neq z$ and uniformly on every compact set of $Q_{0}-\{z\}$; moreover $G_{e}^{z} \rightarrow G^{z}$ weakly in $H^{1}\left(Q_{0}-\left\{z_{0}\right\}\right)$ and in $L^{1}\left(-T_{0}, T_{0} ; W^{1,1}\left(\Omega_{0}\right)\right)$.

2. - Results.

We state now the problem we are interested in.
Let $H(x, t, u, p): Q \times R^{N} \times R^{n N} \rightarrow R^{N}$ be a function such that H is measurable in (x, t) and continuous in (u, p) for a.e. $(x, t) \in Q$. We suppose that the function H satisfies the following condition

$$
\begin{equation*}
|H(x, t, u, p)| \leqslant a(M)|p|^{2}+b(M) \tag{2.1}
\end{equation*}
$$

for $(x, t) \in Q,|x| \leqslant M$ and $p \in \boldsymbol{R}^{N n}$.
We fix now a Borel set $E \subset \bar{E} \subset Q$ and a closed convex $K \subset \boldsymbol{R}^{N}$ and we define

$$
\mathcal{K}=\left\{u \in\left(L^{2}\left(0, T ; H^{1}(\Omega)\right)\right)^{N} \cap\left(L^{\infty}(Q)\right)^{N}, u(x, t) \in K \text { q.e. in } E\right\}
$$

We look at a function u in π satisfying

$$
\begin{align*}
& \begin{array}{l}
\int_{0}^{T} \int_{\Omega}\left\{D_{i} v \varphi(v-u)+\sum_{i, j=1} a_{i_{j}} D_{x_{j}} u D_{x_{i}}(\varphi(v-u))+\right. \\
\\
\left.\quad \quad+\frac{1}{2} D_{i} \varphi|v-u|^{2}+H\left(\cdot, \cdot, u, D_{x} u\right) \varphi(v-u)\right\} d x d t \geqslant 0
\end{array} \tag{2.2}\\
& \forall v \in \pi \cap\left(H^{1}\left(0, T ; L^{2}(\Omega)\right)\right)^{N} \\
& \forall \varphi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap L^{\infty}(Q), \quad \varphi \geqslant 0, \\
& \varphi(\cdot, 0)=0 .
\end{align*}
$$

We say that u is a bounded local weak solution of our variational inequality.
Let $\theta \in\left(a, \frac{1}{6}\right)$ be given and $r>0$; we denote $E^{\theta}(r)=E(r)=E \cap Q_{\theta}^{-}\left(z_{0}, r\right)$ and

$$
\delta_{\theta}(r)=\operatorname{cap}_{Q\left(z_{0}, 2 r\right)}\left(E \cap Q_{\theta}^{-}\left(z_{0}, r\right)\right)\left(\operatorname{cap}_{Q\left(z_{0}, 2 r\right)} Q\left(z_{0}, r\right)\right)^{-1}
$$

Theorem 1. - Let u be a bounded local weak solution of (2.2) satisfying

$$
\begin{equation*}
2 a(M) M<\lambda \tag{2.3}
\end{equation*}
$$

where $M=\operatorname{Sup}_{\boldsymbol{Q}}|u|$.
Let $z_{0} \in \bar{E} \frac{Q}{\text { b }}$ e fixed; there exists a constant θ_{0} (dependent on $\lambda, A, M, a=a(M)$, $b=b(M))$ such that for $\theta \in\left(0, \theta_{0}\right)$ we have

$$
V(r) \leqslant C \exp \left(-\beta \int_{r}^{R} \delta_{\theta}(\varrho) \frac{d \varrho}{\varrho}\right)\left(V(R)+C_{1} R\right)+C_{2} r
$$

where

$$
V(r)=\left(\int_{Q\left(z_{0}, r\right)}\left|D_{x} u\right|^{2} G^{z_{0}} d x d t\right)^{\frac{1}{2}}+\operatorname{osc}_{Q\left(z_{0}, r\right)} u
$$

and C is an absolute constant, β, C_{1}, C_{2} are constants dependent on $\lambda, A, M, a, b, \theta$.
From Th. 1 corollaries 1.2 follow easily:
Corollary 1. - Let the conditions in Theoem 1 hold and suppose

$$
\int_{r}^{1} \delta_{\theta}(\varrho) \frac{d \varrho}{\varrho} \rightarrow+\infty \quad \text { as } r \rightarrow 0
$$

for a fixed $\theta \in\left(0, \theta_{0}\right)$.
Then u is continuous at z_{0}
Corollary 2. - Let the conditions in Theorem 1 hold and suppose

$$
\liminf _{r \rightarrow 0} \frac{1}{|\lg r|} \int_{r}^{1} \delta_{\theta}(\varrho) \frac{d \varrho}{\varrho}=c_{0}>0
$$

for a fixed $\theta \in\left(0, \theta_{0}\right)$.
Then u is Hölder continuous at z_{0}.
In Sec. 3 we prove a Caccioppoli-De Giorgi inequality for bounded local weak solutions satisfying (2.3); this inequality is a preliminary to the proof of Th. 1.

In Sec. 4 we prove a Poincaré inequality for bounded local weak solutions relative to the capacity introduced in Sec. 0 and involving only the spatial derivatives.

In Sec. 5, using the Poincaré inequality and the integration lemma of [6], we finish the proof of Th. 1.

In Sec. 6 we give the easy proofs of Corollaries 1, 2.
We remark that the method used to prove Th. 1 is a refinement of the method used in [3] to study the continuity of local solutions of parabolic obstacle problems and that the elliptic case of our problem has been studied in [8].

3. - Estimates of Caccioppoli-De Giorgi type.

In this section we consider arbitrary bounded local solutions of our problem satisfying (2.2).

We prove the following
Lemma 1. - Let be a constant vector in K with $|\lambda| \leqslant M$. Then for $\bar{z} \in Q\left(z_{0}, R / 4\right)$;
$R \leqslant R_{0}$, q.e. the following estimate holds

$$
\begin{aligned}
& \int_{\bar{t}-3 \theta R^{2}}^{\bar{t}} \int_{B(\bar{x}, R / 8)}\left|D_{x} u\right|^{2} G^{\bar{z}} d x d t+|u-d|^{2}(\bar{z}) \leqslant \\
& \leqslant O R^{-2} \int_{\bar{t}-5 \theta R^{2}} \int_{B(\bar{x}, R / 3)-B(\bar{x}, R / 16)}|u-d|^{2} \cdot\left(G^{\bar{z}}+\sigma R^{-n / 2} \cdot\left(G^{\bar{z}}\right)^{\frac{1}{2}}+\sigma^{-1} R^{n / 2}\left(G^{\bar{z}}\right)^{\frac{3}{2}}+\sigma R^{-n}\right) d x d t+ \\
&+C R^{-2} \theta^{-1} \int_{\bar{t}-5 \theta R^{2}}^{t-3 \theta R^{2}} \\
& \int_{B(\bar{x}, R / 4)}|u-d|^{2} G^{\bar{z}} d x d+C(\theta) R^{2}
\end{aligned}
$$

where $\sigma>0$ is suitable, $\theta \in(0,1 / 16)$ and the constant C depends only on (n, λ, A, a, b, M).
Let $\eta=\eta(x)$ and $\tau=\tau(t)$ be such that

$$
\begin{aligned}
& n=1 \quad x \in B(\bar{x}, R / 8) \\
& \eta=0 \quad x \in B(\bar{x}, R / 4) \\
& 0 \leqslant \eta \leqslant 1 \quad x \in B(\bar{x}, R / 4) \\
& \eta \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right) \quad\left|D_{x} \eta\right| \leqslant C R^{-1} \\
& \tau=1 \quad t \geqslant \bar{t}-3 \theta R^{2} \\
& \tau=0 \quad t \leqslant \bar{t}-5 \theta R^{2} \\
& \tau \in C_{0}^{\infty}(\boldsymbol{R}) \quad\left|D_{t} \tau\right| \leqslant C \theta^{-1} R^{-2} .
\end{aligned}
$$

By choosing $v=d$ and $\Phi=\eta^{2} \tau^{2} G_{e}^{\bar{z}}$ with $\varrho<\theta R^{2}$ in the variational inequality, we have

$$
\begin{align*}
& \int_{Q(\bar{z}, R)}\left|D_{x t} u\right|^{2} \eta^{2} \tau^{2} G_{\varrho}^{\bar{z}} d x d t+\frac{1}{|Q(\bar{z}, \varrho)|} \int_{Q(\bar{z}, \varrho)}|u-d|^{2} \eta^{2} d x d t \leqslant \tag{3.1}\\
& \leqslant C \int_{\bar{t}-\overline{5} O R^{2}}^{\bar{t}+\varrho^{2}} \int_{B(\bar{x}, R / 4)}|u-d|^{2}\left|D_{x} \eta\right| G_{\varrho}^{\bar{z}} d x d t+\int_{\bar{t}-5 \cdot R^{2}} \int_{B\left(\bar{x}, R_{r} 4\right)} u-\left.\bar{d}\right|^{2} \eta \tau^{2}\left|D_{x} \eta\right|\left|D_{x} G_{\varrho}^{\bar{z}}\right| d x d t+ \\
& \left.\quad+2 b M \int_{\bar{t}-\overline{5} \theta R^{2}}^{\bar{t}+\varrho^{2}} \int_{B(\bar{x}, R / 4)} \eta^{2} \tau^{2} G_{Q}^{\bar{z}} d x d t+\int_{t-5 \theta R^{2}}^{Q^{2}} \int_{B(\bar{x}, R / 4)}|u-d|^{2}\left|D_{t} \tau\right| G_{\varrho}^{\bar{s}} d x d t\right\}
\end{align*}
$$

where by C we denote constants which depend only on n, λ, A, a, b, M (actually in (3.1) O does not depend on b).

Passing to the limit as $\varrho \rightarrow 0$ and taking into account the estimates on $G^{\bar{z}}$, see [1], we have for q.e. \bar{z}

$$
\begin{align*}
& \text { (3.2) } \int_{Q(\overline{\bar{s}}, R)}\left|D_{x} u\right|^{2} \eta^{2} \tau^{2} G^{\bar{z}}+|u-d|^{2}(\bar{z}) \leqslant O\left\{R^{-2} \int_{\bar{t}-5 \theta R^{2}}^{\vec{i}} \int_{B(\bar{x}, R / 4)-B(\bar{x}, R / 8)}|u-d|^{2} G^{\bar{z}} d x d t+\right. \tag{3.2}\\
& \left.+R^{3}+R^{-2} \theta^{-1} \int_{\bar{t}-5 \theta R^{2}}^{i} \int_{B(\bar{x}, B / 4)}|u-d|^{2} G^{\vec{z}} d x d t+\int_{\vec{t}-R}^{i} \int_{B(\bar{x}, R / 4)}|u-d|^{2} \eta \tau\left|D_{x} \eta\right|^{2}\left|D_{x} G^{\bar{z}}\right| d x d t\right\} .
\end{align*}
$$

Let us consider the last term on the right hand side of (3.2); we obtain easily

$$
\begin{align*}
& \int_{\bar{t}-R^{2}}^{\bar{t}_{1}} \int_{B(\bar{x}, R / 4)}|u-d|^{2} \eta \tau_{\overline{2}}\left|D_{x} \eta\right|\left|D_{x} G^{\bar{z}}\right| d x d t \leqslant \tag{3.3}\\
& \leqslant \sigma R^{-n / 2} \int_{\bar{t}-R^{2}}^{\bar{t}} \int_{B(x, R / 4)-B(x, R / 8)} \eta^{2} \tau|u-d|\left(\left|D_{x} G^{\bar{z}}\right|^{2}\left(G^{\bar{z}}\right)^{-\frac{3}{2}} d x d t+\right. \\
& +C \sigma^{-1} R^{n / 2-2} \int_{\bar{t}-5 \theta R^{2}}^{\bar{t}} \int_{B(\bar{x}, R / 4)-B(\bar{x}, \mathbb{B} R \mathrm{j} 8)} 4 \sigma^{-1} R^{n / 2-2} \int_{\bar{t}-5 \theta R^{2}}^{\bar{t}} \int_{B(\bar{x}, R / 4)-B(\bar{x}, R 88)}|u-d|^{2}\left(G^{\bar{z}}\right)^{\frac{\pi}{z}} d x d t
\end{align*}
$$

where $\sigma>0$ is to be choosen.
The first term can be estimated by the lemma 2 below and we obtain

$$
\begin{align*}
& \int_{\bar{t}-R^{2}}^{\bar{t}} \int_{B(\bar{x}, R / 4)-B(\bar{x}, R / 8)} \eta^{2} \tau^{2}|u-d|^{2}\left|D_{x} G^{\bar{z}}\right|\left(G^{\bar{z}}\right)^{-\frac{3}{2}} d x d t \leqslant \tag{3.4}\\
& \leqslant C\left[R^{-2} \int_{\bar{t}-5 \theta R^{2}}^{\bar{t}} \int_{B(\bar{x}, R / 3)-B(\bar{x}, R / 16)}|u-d|^{2}\left(G^{\bar{z}}\right)^{\frac{1}{2}} d x d t+R^{n / 2} \int_{\bar{t}-R^{2}}^{\bar{t}} \int_{B(\bar{x}, R)}\left|D_{x} u\right|^{2} \eta^{2} \tau^{2} G^{\bar{z}} d x d t+\right. \\
& \left.+R^{-(n / 2+2)} \int_{\bar{t}-50 R^{2}}^{\bar{t}} \int_{B(x, R / 3)-B(x, R / 16)}|u-d|^{2} d x d t+R^{n / 2+2}\right]
\end{align*}
$$

from (3.2) (3.3) and (3.4) choosing $\sigma>0$ suitable we have

$$
\begin{align*}
\int_{\bar{\epsilon}-R^{2}}^{\bar{i}} & \int_{B(\bar{x}, R)}\left|D_{x} u\right|^{2} \eta^{2} \tau^{2} G^{\bar{z}} d x d t+|u-d|^{2}(\bar{z}) \leqslant \tag{3.5}\\
& \leqslant C\left[R ^ { - 2 } \int _ { \overline { t } } \int _ { - 5 \theta R ^ { 2 } } | u - d | ^ { 2 } \left(G^{\bar{z}}+\sigma(\bar{x}, R / 3)-B(\bar{x}, R / 16)\right.\right. \\
& \left.\left.+\sigma^{-1} R^{n / 2}\left(G^{\bar{x}}\right)^{\frac{3}{2}}+\sigma R^{-n}\right) d x d t+G^{-2}\right)^{\frac{1}{2}}+ \\
& \left.\int_{\bar{t}-5 \theta R^{2}}^{\bar{t}-3 \theta R^{2}} \int_{B(\bar{x}, R / 4)}|u-d|^{2} G^{\bar{z}} d x d t+R^{2}\right]
\end{align*}
$$

which is the result of lemma 1.

Let now ω be such that

$$
\omega=\tilde{\omega} \eta
$$

where $\tilde{\omega} \in C_{0}^{\infty}((B(\bar{x}, R))$

$$
\begin{aligned}
& \tilde{\omega}=o \text { in } B(\bar{x}, R / 16) \text { and for } x \notin B(\bar{x},(5 / 16) R) \\
& \tilde{\omega}=1 \text { in } B(\bar{x}, R / 4)-B(\bar{x}, R / 8) \\
& 0 \leqslant \tilde{\omega} \leqslant 1 .
\end{aligned}
$$

We now complete the proof of the lemma 1 by proving:
Lemma 2. - Let u be a bounded weak solution of our problem satisfying (2.2). Then the following estimate holds

$$
\begin{aligned}
& \int_{\bar{t}-R^{2}}^{\bar{t}} \int_{B(\bar{x}, R)} \omega^{2} \tau^{2}|u-d|^{2}\left|D_{x} G^{\bar{z}}\right|^{-\frac{9}{2}} d x d t \leqslant C\left[R^{-2} \int_{\bar{t}-R^{2}}^{\bar{t}} \int_{B(\bar{x}, 5 R / 16)-B(\bar{x}, R / 16)} \tau|u-d|^{2}\left(G^{\bar{z}}\right)^{\frac{1}{2}} d x d t+\right. \\
& \left.\quad+R^{n / 2} \int_{\bar{t}-R^{2}}^{\bar{t}} \int_{B(\bar{x}, R)}\left|D_{x} u\right|^{2} G^{\vec{x}} \eta^{2} \tau^{2} d x d t+R^{-n / 2-2} \int_{\bar{t}-R^{2}} \int_{(B x,(5 / 16) R)-B(\bar{x}, R / 16)}|u-d|^{2} \tau^{2} d x d t+R^{n 2+2}\right] .
\end{aligned}
$$

From the definition of the regularized Green function we have

$$
\left.\int_{i-R^{2}}^{t-x}\left\langle D_{t} G_{e}^{\bar{z}}+\sum_{i, j=1}^{N} D_{x_{j}}\left(a_{i \bar{j}} D_{x_{i}} G_{\varrho}^{\bar{z}}\right), \omega^{2} \tau^{2}\left(\delta G_{Q}^{\bar{z}}\right)^{\frac{1}{\mid}}\right| u-\left.d\right|^{2}\right\rangle d t=0 \quad\left(\delta G_{e}^{\bar{z}}=G_{e}^{\bar{z}}+\delta, \delta>0\right)
$$

Then since u is a local solution of our variational inequality we obtain, after some computations.

$$
\begin{align*}
& \int_{\bar{b}-R^{2}}^{\bar{t}-x} \int_{B(\bar{x}, R)}{ }_{\delta}\left(G_{Q}^{\bar{z}}\right)^{\frac{1}{2}} D_{t} \tau \tau \omega^{2}|u-\bar{d}|^{2} d x d t- \tag{3.6}\\
& -\frac{1}{2} \sum_{i, j=1}^{n} \int_{\bar{b}-R^{2}}^{\bar{t}-x} \int_{B(z, R)} a_{i j} D_{x_{i}} G_{\varrho}^{\bar{z}}\left(\delta_{\delta} G_{\varrho}^{\bar{z}}\right) D_{x_{j}} G_{\varrho}^{\bar{z}} \omega^{2} \tau^{2}|u-d|^{2} d x d t+ \\
& +\sum_{i, j=1}^{n} \int_{\bar{t}-R^{2}}^{\bar{t}-z} \int_{B(\bar{x}, R)} 2 a_{i j} D_{x_{i}} G_{Q}^{\bar{z}} D_{x_{j}} \omega \omega \tau^{2}|u-\bar{d}|^{2}\left(G_{Q}^{\bar{z}}\right)-1 d x d t- \\
& -\sum_{i, j=1}^{n} \int_{\bar{t}-R^{2}}^{\bar{t}-\chi} \int_{B(\bar{x}, R)} 2 a_{i j}\left({ }_{\delta \delta} G_{Q}^{\bar{z}}\right)^{\frac{1}{2}} D_{x_{i}} \omega D_{x_{j}}(u-d) \omega(u-d) \tau^{2} d x d t+ \\
& \left.+b \int_{\bar{i}-R^{2}}^{\bar{t}-x} \int_{B(x, R)}|u-d| \omega^{2} \tau^{2}{ }_{\delta} g_{Q}^{\bar{q}}\right)^{\frac{1}{2}} d x d t \geq 0 .
\end{align*}
$$

From (3.6) by the same methods as in Appendix of [2] and taking into account the estimates on $G^{\bar{x}}$ given in [1] we obtain the result.

From the result of lemma 1 taking the supremum for $\bar{z} \in Q\left(z_{0}, \theta^{\frac{1}{2}} R\right)$ and using again the estimates on $G^{\bar{z}}$ we have by a suitable choice of σ :

Lemma 3. - Let the conditions of lemma 1 hold, there exists a constants $\theta_{0}>0$ such that for $\theta \in\left(0, \theta_{0}\right)$ we have
$\int_{0}^{t_{0}} \int_{-\theta R^{2}}\left|D_{x} u\right|^{2} G^{z_{0}} d x d t+\operatorname{Sup}_{Q\left(x_{0}, \theta \neq \frac{1}{2} R\right)}|u-d|^{2} \leqslant$

$$
\begin{aligned}
& \leqslant O \exp \left(-C \theta^{-1}\right) \theta^{-3 n / 4} R^{-(n+2)} \int_{Q\left(z_{0}, R\right)}|u-d|^{2} d x d t+ \\
& +C \theta^{-(n / 2+1)} R^{-(n+2)} \int_{t_{0}-6 \theta R^{2}}^{t_{\theta}-2 \theta R^{2}} \int_{B\left(x_{0},(3 / 8) R\right)}|u-d|^{2} d x d t+C(\theta) R^{2}
\end{aligned}
$$

We have

$$
\begin{equation*}
\operatorname{Sup}_{Q\left(z_{0}, \theta \varepsilon_{R}\right)}|u-d|^{2} \geqslant \frac{1}{4}\left(\operatorname{osc}_{Q\left(z_{0} 0\right.} \theta \frac{1}{R)},\right. \tag{3.7}
\end{equation*}
$$

We now choose d such that

$$
\begin{equation*}
\operatorname{Sup}_{Q\left(z_{0}, R\right)}|u-d|^{2} \leqslant C\left(\operatorname{osc}_{Q\left(z_{0}, R\right)} u\right)^{2} \tag{3.8}
\end{equation*}
$$

From (3.7) (3.8) and the lemma 3 we obtain.
Lemma 4. - Let the conditions of lemma 1 hold and let d be such that (3.8) holds.
Then for θ_{0} as in lemma 3 and $\theta \in\left(0, \theta_{0}\right)$ we have

$$
\begin{array}{r}
\int_{t_{0}-\theta R^{2}}^{t_{0}} \int_{B\left(x_{0}, \theta\right\}}\left|D_{x} u\right|^{2} G^{z_{0}} d x d t+\left(\operatorname{Osc}_{Q\left(z_{0}, \theta^{2} R\right)} u\right)^{2} \leqslant \dot{C} \exp \left(-C \theta^{-1}\right) \theta^{-3 n / 4}\left(\operatorname{osc}_{Q\left(z_{0}, R\right)} u\right)^{2}+ \\
+C \theta^{-(n / 2+1)} R^{-(n+2)} \int_{t_{0}-6 \theta R^{2}}^{t_{0}-2 \theta R^{2}} \int_{B\left(x_{0},(3 / 8) R\right)}|u-d|^{2} d x d t+C(\theta) R^{2}
\end{array}
$$

4. - A Poincaré inequality.

Let z_{0} be such that $\operatorname{cap}(E(R)) \neq 0$ and $\bar{u} \in R^{N}$ be defined by the minimization problem

$$
\begin{equation*}
\inf \left\{\int_{t_{0}-66 R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(z_{0}, R / 2\right)}|u-c|^{2} d x d t ; c \in K,|c| \leqslant M\right\} \tag{4.1}
\end{equation*}
$$

Remark. - Since $\operatorname{cap}(E(R) \neq 0$ there is a constant vector $c \in K$

$$
|c| \leqslant M \quad \text { such that } \quad|u-c| \leqslant \omega=\operatorname{osc}_{Q\left(z_{0}, R\right)} u
$$

Due to the definition of \bar{u}.

$$
\inf _{Q\left(z_{0}, R\right)}|u-\bar{u}| \leqslant \omega
$$

and this implies

$$
\sup _{Q\left(z_{0}, R\right)}|u-\bar{u}| \leqslant 3 \omega
$$

We denote in the following by $E_{t}(R)$ the section of $E(R)$ at the instant t.
From the variational inequality we obtain
$\frac{1}{2}\|(u(s)-\bar{u}(t)) \zeta\|_{L^{2}(\Omega)}^{2}+\lambda \int_{i} \int_{\Omega}^{s}\left|D_{x} u\right|^{2} \zeta^{2} d x d \eta \leqslant \frac{1}{2}\|(u(t)-\bar{u}(t)) \zeta\|_{L^{2}(\Omega)}^{2}-$
$-2 \Lambda \int_{i \Omega}^{s} \int_{\Omega}\left(D_{x} u\right)\left(D_{x}\right) \zeta(u-\bar{u}(t)) \zeta d x d \eta+\int_{i \Omega}^{1} \int_{\Omega}\left[a\left|D_{x} u\right|^{2}(u-\bar{u}(t)) \zeta^{2}+b|(u(t)-\bar{u}(t))| \zeta^{2}\right] d x d \eta$
Here $\bar{u}(t)=\int_{E_{t}(R)} u(x, t) d \mu(x)$ where μ is a unit measure on $E_{t}(R)$ such that

$$
\begin{equation*}
\int_{B\left(x_{0}, R\right)}|u(x, t)-\bar{u}(t)|^{2} d x \leqslant \frac{C}{N-\operatorname{cap}\left(E_{t}(R)\right)} \int_{B\left(x_{0}, R\right)}\left|D_{x} u\right|^{2}(x, t) d x \tag{4.2}
\end{equation*}
$$

The existence of such a measure μ has been proved in [9] (see also [8]).
The function ζ is such that

$$
\begin{gathered}
\zeta \in C_{0}^{\infty}\left(B\left(x_{0}, R\right)\right) \quad 0 \leqslant \zeta \leqslant 1 \\
\zeta=1 \quad \text { in } B\left(x_{0}, R / 2\right)
\end{gathered}
$$

From (4.2) we have for $t \in\left[t_{0}-R^{2}, t_{0}-60 R^{2}\right]$.

$$
\begin{align*}
\operatorname{Sup}_{s \in\left(t, t_{0}-\theta R^{2}\right)}\|u(s)-\bar{u}(t)\|_{L^{2}\left(B\left(x_{0}, R / 2\right)\right)}^{2} \leqslant & \tag{4.4}\\
& \leqslant C\left[\|u(t)-\bar{u}(t)\|_{L^{2}\left(B\left(x_{0}, R\right)\right)}^{2}+\int_{i}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R\right)}\left|D_{x} u\right|^{2} d x d \eta+R^{n+2}\right] .
\end{align*}
$$

Now we apply the elliptic Poincaré inequality (4.3) to the first term on the right side of (4.4) and we obtain

$$
\begin{align*}
& \operatorname{Sup}_{s \in\left(t_{0}-6 \theta R^{2}, t_{0}-\theta R^{2}\right)}\|u(s)-\bar{u}(t)\|_{L^{2}\left(B\left(x_{0}, R / 2\right)\right) \leqslant}^{2} \leqslant \tag{4.5}\\
& \leqslant C\left[\frac{R^{n}}{N-\operatorname{cap}} \overline{\left(E_{t}(R)\right)} \int_{B\left(x_{0}, R\right)}\left|D_{w} u\right|^{2}(c x, t) d x+\int_{t_{0}-R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R\right)}\left|D_{x} u\right|^{2} d x d \eta+R^{n+2}\right] .
\end{align*}
$$

In (4.5) and in the following of the section we denote

$$
N-\operatorname{cap}\left(E_{i}(R)\right)=N-\operatorname{cap}_{B\left(x_{0}, 2 R\right)}\left(E_{t}(R)\right), \quad \operatorname{cap}(E(R))=\operatorname{cap}_{Q\left(z_{0}, 2 R\right)}(E(R))
$$

We observe that $\bar{u}(t) \in K,|\bar{u}(t)| \leqslant M$, then

$$
\begin{equation*}
\int_{t_{0}-\theta \theta R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R / 2\right)}|u-\bar{u}|^{2} d x d \eta \leqslant \int_{t_{0}-6 \theta R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R / 2\right)}|u-\bar{u}(t)|^{2} d x d \eta+c \theta \omega R^{n+2} . \tag{4.6}
\end{equation*}
$$

From (4.5) and (4.6) we have

$$
\begin{align*}
\int_{t_{0}-\theta \theta R^{2}}^{i_{0}-\theta R^{2}} \int_{B\left(x_{0}, R / 2\right)}|u-\bar{u}|^{2} d x d \eta \leqslant C & {\left[\frac{R^{n+2}}{N-\operatorname{cap}\left(E_{t}(R)\right)} \int_{B\left(x_{0}, R\right)}\left|D_{x} u\right|^{2}(x, t) d x+\right.} \tag{4.7}\\
& \left.+R^{2} \int_{t_{0}-R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R\right)}\left|D_{x} u\right|^{2} d x d \eta+R^{n+4}+C \theta \omega R^{n+2}\right] .
\end{align*}
$$

We integrate for $t \in\left(t_{0}-R^{2}, t_{0}-6 \theta R^{2}\right)$; then

$$
\begin{align*}
& \int_{t_{0}-\theta \theta R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R / 2\right)}|u-\bar{u}|^{2} d x d \eta \leqslant \tag{4.8}\\
& \leqslant C\left[\frac{R^{n+2}}{\operatorname{cap}(E(R))} \int_{t_{0}-R^{2}}^{{ }^{t}} \int_{B\left(x_{0}, R\right)}\left|D_{x} u\right|^{2} d x d \eta+R^{n+4}+C \theta \omega R^{n+2}\right]
\end{align*}
$$

We have so proved the following
Proposition 1. - Let cap $(E(R)) \neq 0$ and \bar{u} defined as in (4.1).
Then we have

$$
\int_{t_{0}-6 \theta R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R / 2\right)}|u-\bar{u}|^{2} d x d \eta \leqslant C\left[\frac{R^{2}}{\delta_{\theta}(R)} \int_{t_{0}-R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R\right)}\left|D_{x} u\right|^{2} d x d \eta+R^{n+4}+C \theta \omega R^{n+2}\right] .
$$

5. - Proof of Theorem 1.

From the lemma 4 and the Poincar日 inequality we obtain choosing $d=\bar{u}$ (this is possible by the Remark of Sec. 4)

$$
\begin{align*}
& \begin{aligned}
& \int_{t_{0}-\theta R^{2}}^{t_{0}} \int_{B\left(x_{0}, \theta \neq R\right)}\left.\left|D_{x} u\right|^{2} G^{x_{0}} d x d t+\left(\operatorname{osc}_{Q\left(z z_{0} \theta\right.} \theta_{2} R\right) u\right)^{2} \leqslant \\
& \leqslant C\left(\exp \left(-C \theta^{-1}\right) \theta^{-3 \pi / 4}\right)\left(\operatorname{ose}_{Q\left(z_{0}, R\right)} u\right)^{2}+
\end{aligned} \tag{5.1}\\
& +C \theta^{-(n / z+1)} \frac{1}{R^{n} \delta_{\theta}(R)} \int_{t_{0}-R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R\right)}\left|D_{z} u\right|^{2} d x d t+C(\theta) R^{2} .
\end{align*}
$$

By the estimates on the Green function [1], we obtain

$$
\begin{align*}
& \int_{t_{0}-\theta R^{2}}^{t_{0}} \int_{B\left(x_{0}, \theta^{\frac{1}{2}} R\right)}\left|D_{x} u\right|^{2} G^{z_{0}} d x d t+\left(\operatorname{osc}_{Q\left(z_{0}, \theta \frac{\theta}{z} R\right)} u\right)^{2} \leqslant \tag{5.2}\\
&
\end{align*} \quad \leqslant O K_{1}(\theta)\left(\operatorname{osc}_{Q\left(z_{0}, P\right)} u\right)^{2}+\frac{1}{O K_{2}(\theta) \delta_{\theta}(R)} \int_{t_{0}-R^{2}}^{t_{0}-\theta R^{2}} \int_{B\left(x_{0}, R\right)}\left|D_{x} u\right|^{2} G^{z}{ }_{0} d x d t+C(\theta) R^{2} .
$$

where

$$
\begin{aligned}
& K_{1}(\theta)=\exp \left(-C \theta^{-1}\right) \theta^{-3 n / 4} \\
& K_{2}(\theta)=\exp \left(-C \theta^{-1}\right) \theta
\end{aligned}
$$

Lemma 5. There exists $0,>0$, depending only on n, λ, A, a, b, M, such that for $\theta \in\left(0, \theta_{\mathrm{I}}\right)$ if

$$
\begin{equation*}
V^{2}\left(\theta^{\frac{1}{2}} R\right) \geqslant 2 C(\theta) R^{2} \tag{5.3}
\end{equation*}
$$

then we have

$$
V^{2}\left(\theta^{\frac{1}{2}} R\right) \leqslant \frac{1+K_{3}(\theta) \delta_{\theta}(R)}{1} V^{2}(R)
$$

where $V(R)$ is defined as in Sec. 0 and $K_{3}(\theta)=C \theta \exp \left(-C \theta^{-1}\right)$.
Let

$$
\begin{aligned}
& \Phi(r)=\left(\operatorname{osc}_{Q\left(z_{0}, r\right)} u\right)^{2} \\
& \Psi(r)=\int_{Q\left(z_{0}, r\right)}\left|D_{x} u\right|^{2} G^{z_{0}} d x d t
\end{aligned}
$$

Let (5.3) hold. From (5.2) we dotain

$$
\left(1+C_{1} K_{2}(\theta) \delta_{0}(R)\right)\left(\Phi\left(\theta^{\frac{1}{2}} R\right)+\Psi\left(\theta^{\frac{1}{2}} R\right)\right) \leqslant\left(1+C_{2} K_{1}(\theta) K_{2}(\theta) \delta_{\theta}(R)\right) \Phi(R)+\Psi(R)
$$

Then

$$
\left.\Phi\left(\theta^{\frac{1}{2}} R\right)+\Psi^{(} \theta^{\frac{1}{2}} R\right) \leqslant \frac{1+C_{2} K_{1}(\theta) K_{2}(\theta) \delta_{\theta}(R)}{1+C_{1} K_{2}(\theta) \delta_{\theta}(R)} \Phi(R)+\frac{1}{1+C_{1} K_{2}(\theta) \delta_{\theta}(R)} \Psi(R)
$$

We observe that

$$
\frac{1+C \sigma x}{1+C x} \leqslant \frac{1}{1+C / 2^{u}} \quad 0 \leqslant x \leqslant 1
$$

for $0<0<1$ and $0<\sigma<\frac{1}{3}$, then if we choose θ_{1} such that $0<C_{1} K_{2}\left(\theta_{1}\right)<1$ and $0<\left(C_{2} / O_{1}\right) \Pi_{1}\left(\theta_{1}\right)<\frac{1}{3}$ we have the result. From lemma 5 we have

$$
V^{2}\left(\theta^{\frac{1}{2}} R\right) \leqslant \frac{1}{1+\bar{K}_{3}(\theta) \delta_{\theta}(R)} V^{2}(R)+2 O(\theta) R^{2}
$$

then for $\theta \in\left(0, \theta_{2}\right), \theta_{2}>0$ suitable, there exists a constant $C_{3}(\theta)$ such that, if we define

$$
W(r)=V^{2}(r)+O_{3}(\theta) r^{2},
$$

we have

$$
\begin{equation*}
W(r) \leqslant \frac{1}{1+K_{3}(\theta) \delta_{\theta}(R)} W(R) \quad\left(r \leqslant \theta^{\frac{1}{2}} R\right) . \tag{5.4}
\end{equation*}
$$

Form (5.4) and the integration lemma given in $[6,10]$ (where the continuity of the solution of an elliptic variational inequality with wiener obstacles is studied) we obtain

$$
\begin{equation*}
W(r) \leqslant C \exp \left(-2 \beta \int_{r}^{R} \delta_{\theta}(\varrho) \frac{d \varrho}{\varrho}\right) W(R) \tag{5.5}
\end{equation*}
$$

where

$$
\beta=-\frac{K_{4}(\theta)}{|\lg \theta|}, \quad K_{4}(\theta)=\frac{K_{3}(\theta)}{1+\bar{K}_{3}(\theta)} \quad(\text { then } \beta \rightarrow 0 \text { as } \theta \rightarrow 0)
$$

From (5.5) we obtain easily.

$$
V(r) \leqslant C \exp \left(-\beta \int_{r}^{R} \delta_{\theta}(\varrho) \frac{d \varrho}{\varrho}\right)\left(V(R)+C_{4} R\right)+C_{5} r
$$

where C_{4} and C_{5} depends on θ.
The result of Th .1 is so proved.

6. - Corollaries 1 and 2.

The result of corollary 1 follows from the estimate in Th. 1 for $R=R_{0}, R_{0}$ suitable and fixed, and $r \rightarrow 0$.

We now give a proof of corollary 2 ; for $r \leq \bar{R}, \bar{R}$ suitable, we have

$$
2^{-1} e_{0} \leqslant|\lg r| \int_{r}^{1} \delta_{\theta}(\varrho) \frac{d \varrho}{\varrho} \leqslant 1
$$

then

$$
\int_{r}^{R_{0}} \delta_{\theta}(\varrho) \frac{d \varrho}{\varrho} \leqslant 2^{-1} c_{0}|\lg r|-\left|\lg R_{0}\right|
$$

For $R=R_{0}$ suitable and fixed, we obtain (from the estimate of Th. 1)

$$
\begin{equation*}
V(r) \leq C r^{2-1} c_{0} \beta \quad R_{0}^{-\beta}\left(V\left(R_{0}\right)+C_{1} R_{0}\right)+C_{2} r \tag{6.1}
\end{equation*}
$$

From (6.1) the Hölder continuity of u at x_{0} can be easily deduced.

REFERENCES

[1] D. G. Aronson, Nonnegative solutions of linear parabolic equations, Anm. Sc. Norm. Sup. Pisa, 22 (1968), pp. 607-694.
[2] M. Brront - U. Mosco, Wiener estimates at boundary points for parabolic equations, Ann. Mat. Pura e Appl., (IV), 141 (1986), pp. 353-367.
[3] M. Brroli - U. Mosco, Wiener estimates for parabolic obstacle problems, IMA preprint series 158 (1985).
[4] G. Choquet, Lectures on Analysis, vol. 1, Benjamin (1969).
[5] G. Choquet, Theory of capacities, Ann. Inst. Fourier, 5 (1955), pp. 131-295.
[6] J. Frehse - U. Mosco, Wiener obstacles, Collège de France «Seminar on nonlinear partial differential equations \#, vol. 6, Pitman (1984).
[7] R.F. Gariepy - W. P. Ziemer, Thermal capacity and boundary regularity, J. Diff. Eq., 45 (1982), рр. 347-388.
[8] T. Karlsson, Wiener's criterion and obstacle problems for vector valued functions, Ark. för Mat., 23 (1985), pp. 315-325.
[9] N. G. Meyers, Integral inequalities of Poincaré and Wirtinger type, Arch. Rat. Mech. An., 68 (2) (1978), pp. 113-121.
[10] U. Mosco, Wiener criterion and potential estimates for the obstacle prablem, IMA preprint series 135 (1985).
[11] W. P. Ziemer, Behowiour at the boundary of solutions of quasilineas parabolic equations, J. Diff. Eq., 35 (1980), pp. 291-305.

[^0]: (*) Entrata in Redazione il 6 marzo 1986.
 (**) This paper was written while the first Author was visiting the Department of Mathematics of Linköping University.

 Indirizzo degli AA.: M. Brroli: Dipartimento di Matematica del Politecnico di Milano, Italy; T. Karlsson: Department of Mathematics, Linköping University, Sweden.

