Existence of Symmetric Solutions for the Skyrme’s Problem (*).

MARIA J. ESTEBAN

Summary. - We consider Skyrme’s problem, a direct variational approach to the :’study of the
structure of stabic configurations of mesons in a field of weak energy. In this paper we
restrict ourselves to the consideration of two particular symmetry-conditions and prove the
ewistence of minima for the corresponding energy among all the functions which satisfy those
symmetry-conditions and have a fized degree.

1. - Introduction.

Let 8% be the unit sphere of R% Then for any function ¢: R*— §* we define
the functional:

& 8(p) = 4 (E*Vgl* + [A(@)]¥) do
RS

where 4 and K? are positive physical constants and
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(We denote by aAb the alternating exterior product of any a, be R4)
If we define the set

Y = {pe CY(R?®, §%): Vg, A(p) € L¥(R3, R%)}

then the funetional & is indeed well defined and finite on the following set:

X:{¢:R3—>Ss

Vo, A(p) e L} (R% R*) and 3{p,} cY s.t.
Vo, — Ve, A(p,) — A(p) in L2(R2, R#)

We are interested in the existence of critical points of & in X. In view of Skyrme’s
work (see [S1, 2, 3]), it appears clearly that the elements of X which minimize the

(*) Entrata in Redazione il 15 dicembre 1985.
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energy & (in some sense to be defined below) are closely related to the stable con-

figurations of a field of mesons. On the other hand, we observe that the quantity

1/2n? [ det (¢, V) dx is relevant in the study of those stable configurations of a field
R

of mesons. In faet we notice that this quantity has also a geometrical meaning,
since, for all ¢ in X, the quantity

1
(2) d(p) = s det (¢, Vo) da
RS
is the degree of @ok, where E is a stereographic projection from 8% to R2 Hence,
d(p) is an integer number for all ¢ in X.
For all ke Z, we define the sef

(3) Xo={peX:dlp) =1} .

Then we wish to solve the following family of minimization problems:
(I5 I, = inf {§(p): ¢ X,} .

This problem will be studied in [E2]. There we will restrict ourselves to a class
of simpler problems which appear when making some symmetry assumption on the
elements of the set where we minimize: In [S3] Skyrme introduced the class of func-
tions ¢ € C(R?, §?) such that:

o

g

2 sinofjo]), cosaa)),

{4) @) = pu(z) = (

where ¢ is a real funetion from RT to R such that w(0), w(- oo) = ka for some
ke Z.
Furthermore he considered the set

Z,= {p of the form (4): w e O(R, R) and o(0) = 7, w(+- oo) = 0},

and solved the problem:
(If If == Min {&(po): o€ Z,} .

We will see later that minimizing § on Z, is equivalent to minimizing it on the
set of ¢’s of the form (4) with degree equal to 1.

In [K-L] we find a clearer proof of the above result and also of the fact that any
minimum of § in the set Z, (resp. Z,) is indeed a critical point of & in X or X,
(resp. X,).
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Here we will show that problem (I¥) has a solution for all ke Z (and not only
for the particular case treated in [Sk 3] and [K-L]). -

Moreover we will consider a class of intermediate problems between (I,) and
(IF)y as follows:

We consider the fonetions g e C'(R3, §°%) such that there exists w: R*->R with

(5) P(@) = go(z) = (I%I sin w(x), cos w(x)) .

Here we will not ask o to be radially symmetric. Then we define the sets:
Y, = {peX: ¢ is of the form (5) and d(p) =k} .

Then we show that the problem:
(Tk) ~Ic = Min {8(9”): @E Yk}

has a solution for all ke Z.

We note that the type of symmetry we assume on the functions ¢ is very impor-
tant, since from the physical point of view it means that we fix a priori the shape of
the mesons. This is why the less symmetry we assume, the more general result we
obtain about the existence and shape of the stable configurations of mesons in a
field of weak energy. . '

Let us also remark that from a mathematical point of view, problem (I,) is very
close to the problem of finding large solutions for harmonic maps in & bounded domain
of R? (see [B-C]). Furthermore, similar technical problems appear when trying to
find solutions for the Yang-Mills equations (see [T1, 2], [U1, 2]). For more details
about the relationship between all these problems, see [E2].

Finally we note that in [E1] we prove some inequalities of isoperimetric type
in R® which are crucial to prove the results about (I,) that we give in [E2].

Notation

For any three vectors of R? a,b, ¢, we will denote by aAb (resp. aA\bAc) the
alternating exterior produet of a, b (resp. a, b and ¢), which is an element of A2(R4)
(resp. A3(R*) ~ RY).

On the other hand, we will use the following notations for sets of R¥:

By(y) = {we R [y — 2| < R},
8ly) = {wER3: ly — a| = R} ’

and when y = 0, we will just write B,, S,. Moreover we denote by B¥, §¥-! the
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following:
BY= {ye R¥: [x] <1}
8¥-1= {we RY: |w| = 1}

and for any A c R¥, we will write indistinetly, meas (4) and [4].
Finally we will denote by C various positive constants.

2. — Main resuits.

THEOREM 1. — For any ke Z, problem (I,) has a solution, t.e., there is w, €Y,
such that &(¢,,) == I..

COROLLARY 2. — For any k€ Z, there is a of € Z, such that &(p,.) = IF.

REMARK. — If we consider the case k = 0, we find that I,= If = I, = 0, and
these infima are attained by all the constant functions from R? to S&.

Proor oF THEOREM 1. — First we write the energy &(¢) for the ¢, of the form (5)
and we obtain:

~ iIn4 4: in2 2
() 6(60):1]'!%0]2(1{2 +Ssm a)+ 8in? @ ¢os w)dm—{—

ik |[®

AJ‘Q sin® w( %sinzw)dw—k

]2 el

T A f4 S[m|4w (sin? |z Vo ? 4 (cos? w)(- Vw)?) do .

In the next section we will prove that minimizing § over Y, is equivalent to
minimizing & over the class of w such that §(w) < + oo and w(0) = kx, w(4 oo) = 0.
Let us note that here these values of w at 0 and at + oo are to be understood in a
weak sense, as follows:

i) w(+ o) =0 if wel?(R?) for some p e (1, 4 o).

ii (0) = 1 2 =
il) o0)=axa if }.Ingrlf‘w 7ltde = 0.

Let us then consider a sequence {w,}, in Y'k such that:

(7 Bwe) > Ts, @,00)=Fka, o+ o0)=0.
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Then there exists a positive constant C such that ?‘}(wn) =dC.
Moreover we may assume that |w,[;org:) = kz. Indeed, if this were not the case
we would define continuous functions &, as follows:

; min (w,, k) when w, =0
Y=o when w, < 0.

For this new sequence we have:
Bu(0) =k, Ba(+ ) =0, |B,] emy=kr and §(@d,) < &(w,),

and therefore & (d,) converges also towards I,.
From (7) we infer the existence of w in LS(R?) such that:

) { Vé,— Vo in L2(R?)-weak

b, — @ in L%(Rs3)-weak .

Moreover, since |&, ;- =< kz, we have also:

@, —~w in L] (RY
(9)

@, —>w a.e. in R,

From (9) we obtain easily that:

(10) 8w) < lim §(d,) =T,

n—>+®

Indeed, from (9) we know that sin &, (resp. cos d,) converges a.e. to sin w (resp.
co8 w) as » goes to -}- co. Moreover, from (9) and (10) we infer also that:

v, (Kz +

8sintd, 4 s8in?d, costd,
EE EE
converges weakly to

Vo (K2 +

8sintw 4 8in%w cos? w)

eF T P

in L*R?) as » goes to - oo,

Therefore, by Fatou’s lemma we obtain (10).

We have now to prove that w is in ¥,. First we note that w € Ls(R3) and so,
o(+ o0) = 0. Then it remains only to prove that w(0) = ks in the weak sense
defined above. Assume that this were not the case. Then there would exist a set
A c R* of positive measure with:

1) |o—kz|rewan = o«>0, for all » >0, small,
i) [An8, |=6l8, |, where 6 >0 and lim 7, = 0.

m—> + oo
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But then we observe that (5), together with (i)-(ii), implies the existence of a set
B c R* such that [BN 8% >0 and Bc go (B, ) for # and m large. And we show
next that this is impossible. Indeed, by using Cauchy-Schwarz’s inequality and the
fact that for any three vectors of R, a, b, ¢, we have: [apAbAc| < laAbHlapclbAclt,

we obtain for all p € X, for all K c R3:

N
Oy 0wy’ Dy

(11) area (p(K)) :f

K

to= 14 [ Lel) = st
K

and so, area (‘P‘%(Brm)) < Or, for all n, m which is contradictory with the existence
of the set B.

ProoF oF COROLLARY 2. - If {w,} is a sequence of radially symmetric fonctions
in Z, such that §(pe ) = E(wn)——>l;“, we have in particular that:

fa—>+o0

{12) g(wn) =C and w,cY, for all n.

Proceeding as in the proof of Theorem 1, from (12) we infer the existence of w*
such that g(w*) < I and w*(0) = kxm, w*(-+ oo) = 0. Therefore we know that w,
and w* are continuous for all # and Wy © everywhere in R3. Therefore o*¢c Z,
and the proof is complete.

3. — Complementary results.

In this seetion we will prove some results about the degree of the fonctions ¢

which are of the form (4) or (5). We will also make some comments about the

relationship between I, [, and I;.

ProPOSITION 3. — Lét ¢ be a function of X of the form (4). Then d(p) = k if and
only if w(0)— w(+4 oo) = kn.

Proor. — First we observe thab it is enough to prove the result for ¢ in ¥. Then,
as we proved in [El], if ¢ is in ¥, then there exists an e¢e 8 such that

J‘[(p(x) — et de <+ oo.
R3

Hence, by (4), there must exist I, m € Z s.t. w(0) = ln, w(-+ oo) = mz. Let us then
prove that I — m = k.
Let E be the following stereographic projection:

E. 8 > Rs

Y1 Y Ys )

{
(Y1, 7y4)"‘>(1__y4?1__y471__y4
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Then we see that for any ¢ in Y,
§() = (goL)(y) E(”; sin o(r), cosw(r))

where

3 2
. i 8:,\/1__ 2 and P2 —= = .
' = (Y1, Y2, ¥s) » Ya A=y 1= Ys

We know that d(p) = degree of ¢. Let us compute the jacobian matrix of ¢ at
any point y of 8% We obtain:

\
1 0 0 0 0 0 0 %(COS ©) 7o'+ (sin o) ylsz;u
Y .y ] Ya s
i 0 1 0 0 0 0 0 =(cosw)r o - (sinw)?2t
~ sin ew(r) :
Dely) = s -+ s s
0 0 1 0 1] 0 0 ‘ _y_s_:.i (COS (D) ,'Mwl + (Sin CO) ?/38??{4
6 0 0 0 0 0 0 — (sin w)w'r’
where
w'= 4 and ¢'= ar _ 1
S ar Ty =gt

So, the jacobian defterminant of ¢ at y is:

- ) o'r’ w'(sin% @)
p—t t ] 4 _ —
J(y) = det D@(y) (sin w) pr I — o)
and since sign J(y) = — sign (w’(r)), the proposition follows easily.

REMARK 4. — Let w be a continuous function from R+ to R such that w(0) = In
and w(+4 oo) = mz, I, me Z. Then, if we define d(r) = w(r) -+ hn, he Z, we ob-
serve that this transformation in the image of w conserves the degree and the
energy & as well. Thus, translations of kz (h € Z) in the image of w leave the minimiz-
ing problem (I}) invariant. From Proposition 3 it follows then immediatly that
minimizing & over the functions ¢ € X of the form (4) that have degree equal to %
is equivalent to minimizing § over the functions o which satisfy ©(0) = ks,

Let us now prove a result which corresponds to Proposition 3 when ¢ is only of
the form (5).

PROPOSITION 5. — Lét w be a function from R? into R. Then if p € X is of the
form (b), d(p) =k if and only if w(0)— w(+ o0) = k.
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Proor. — As already said, this is enough to prove the result for w e OY(R3, R).
Moereover one may still prove the existence of I, m € Z 8.6, w(0) = Iz and w(+ o) =
= ma. Then the proposition will be proved as soon as we show fhat d(p) =% if
and only if it —m = 1.

As in the proof of Proposition 3 we have only to check the jacobian determinant
of ¢ == pol]. In this case we obtain:

_sintofy(1—y)
(I—y)(d—pd)?

Jyy) =

3 (y'Vo), where y'= (y1, %, ¥s).

Thus the sign of det (D(goE)(y)) coincides with the sign of — (y'-Vw). Therefore,
when @(0) = lr and w(+4- o) = mm, we see that the number of inverse images of all
the points of 83 is (I — m), this of course when one takes into account the orientation
of ¢ at those inverse images. ®

Let us finish this paper with some remarks about the differences between the
different minimization problems we have considered.
We begin with a proposition which tells us how behaves I} with respect to k.

PROPOSITION 6. — For any k,le Z — {0}, k+1, we have:

(13) Li>IF+ 17,
Proor. — Take for simplicity the case k>1=1. Then let ¢, € Z, be such that
8(w) = IT. As we already know, we can take w such that w(0) = kn, w(+ o0) = 0.
Let 7 be the minimum. of the » > 0 such that w(r) = lz. Then we define two new
functions, w, and w,, as follows:

w{r), r< 7
""“’1(”:{ o), r=F

wF), r=F
@olr) = { wr), r=F.

It is immediate that these two functions satbisfy:

Sw)=IF,, &w)=I] and dge)=k—1, dlpgo)=1.

Then, if IF < I¥ , 4 IF, (w,— ln) would be a minimum of I, with compact
support. And this is impossible, since the corresponding FEuler equation for w is
an O.D.E., with regular coefficients in any interval (J, + oo), 6 > 0, and therefore
no compactly supported solution may exist. H

REMARK 7. — The above result shows that the different problems considered in
this paper are not just the same. Indeed, asweprove in [E2], for all k,lc Z,
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I.= I+ Iy I < [k|1,. But the opposite happens with the symmetric problems I}.

Hence at least for all k40, +1, IFs41I,, and in fact, I, < I} for k> 1.
Let us finally remark that the fact that the subadditivity condition:

) =f0) +fk—1), leZ—{k 0}

is valid for (k) = I, but not for I is not surprising at all. Indeed, as P.L.L. shows
in [11, 2] the subadditivity inequality takes place in a large class of minimization
problems in RY which are invariant under the group of translations of R¥. Moreover
as soon as this invariance is broken, the subadditivity inequality does not hold any
more. And this is the case for the problem I7.
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