
Existence of Symmetric Solutions for the Skyrme's Problem (*). 

IV[ARIA J. ESTEBAN 

Summary. - We consider SkyrmFs problem, a direct variational approach to the [study o/ the 
structure o] static configurations of mesons in a ]ield o] weak energy. In  this paper we 
restrict ourselves to the consideration o] two particular symmetry-conditions and prove the 
existence o] minima ]or the corresponding energy among all the ]unctions which satis]y those 
symmetry-conditions and have a ]ixed degree. 

l .  - I n t r o d u c t i o n .  

Let  S 3 be the unit  sphere of R ~. Then for any function ~: R3-+ S 3 we define 
the functional:  

(1) ~(~) = ~f(K~lV~p § IA(~)I~ ) dx 
Rs 

where Z and K s are positive physical constants and 

Vxx. = ~,~=~ a~ A a~ ~" 

(We denote by  a A b  the  al ternat ing exterior  product  of any a, b e r a . )  
I f  we define the  set 

then  the functional  3 is indeed well defined and finite on the  following set:  

V~, A(q~) e L~(R  3, R 4) and 3{~o~} c Y s.t.} 

X---- c f :R3-->S~ V ~ - - > V ~ ,  A(q;n)-->A(cf) in L2(R3, R 4) " 

We are interested in the existence of critical points of ~ in X. In  view of Skyrme's  

work (see [$1, 2, 3]), i t  appears clearly tha t  the  elements of X which minimize the 
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energy 8 (in some sense to be defined below) are closely related to the  stable con- 
figurations of a field of mesons. On the other  hand, we observe tha t  the quan t i ty  
1/2~:.! det (q, VH)dx is re levant  in the  s tudy of those stable configurations of a field 

of mesons. In  fact  we notice tha t  this quant i ty  has also a geometrical  meaning, 
since, for all ~ in X, the  quan t i ty  

1 f d e t  (% V~)dx (2) d(~) -- 2 ~  
. 2  

R~ 

is the degree of ~oE,  where E is a stereographie project ion from S 3 to R a. 
d(H ) is an integer number  for all H in X. 

For  all k ~ Z, we define the  set 

Hence,  

(3) x ~ =  { H e x :  a (H)= k}o 

Then we wish to solve the following family of minimization problems:  

(ID 

This problem will be studied in [E2]. There we will restrict  ourselves to a class 
of simpler problems which appear  when making some symmet ry  assumption on the 
elements of the  set where we minimize: In  [$3] Skyrme int roduced the class of func- 

tions ~ e C(R ~, S ~) such tha t :  

(4) ~(x) ~ ~ ( x ) ~  ( ~  sin~o(,xl) , cos m(,x[)) ,  

where co is a real funct ion f rom R + to R such tha t  co(0), co(-~- c~) = kz for some 

k~Z .  
Fur the rmore  he considered the set 

Z~ = {? of the form (4): co e C(R, R) and co(O) = x, co(§ ~ )  = O} , 

and solved the problem: 

(~*) g = Min {~(H~): ~ e z1} 

We will see later  t ha t  minimizing g on Z1 is equivalent  to minimizing it on the 

set of H's of the form (4) with degree equal to 1. 
In  [K-L] we find a clearer proof of the above result  and also of the fact  tha t  any 

min imum of g in the  set Z1 (resp. Z~) is indeed a critical point  of g in X or X~ 

(resp. X~). 
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I $ Here  we will show that  problem ( k )  has ~ solution for all k ~ Z (and not  only 
for the part icular  case t rea ted  in [Sk 3] and [K-L]). 

Moreover we will consider a class of intermediate  problems between (Ik) and 
(I*) as follows : 

We consider the fonetions ~ C~(R 3, S 8) such tha t  there  exists co: R3-+R with 

(5) ~(x) ~ F~(x)=-(~xl sin~o(x), cos ~o(x)). 

Here  we will not  ask (o to be radially symmetric.  Then we define the sets: 

Iz k-= {~oe X:  ~ is of the  form (5) and d(qo) -~ k} . 

Then we show tha t  the  problem: 

(ik) L = ~ i n  {g(~): ~ e Yk} 

has a solution for all k ~ Z. 

We note  tha t  the type  of sy m m et ry  we assume on the functions ~ is very  impor- 
tant ,  since f rom the physical point  of view it means tha t  we fix a priori t h e  shape of 

the  mesons. This is why the less symmet ry  we assume, the more general result  we 
obtain about  the existence and shape of the stable configurations of mesons in a 
field of weak energy. 

Le t  us also remark  tha t  f rom a mathemat ica l  point  of view, problem (Ik) is ve ry  
close to t h e  problem of finding large solutions for harmonic maps in a bounded domain 
of R 2 (see [B-C]). Fur thermore ,  similar technical problems appear  when t ry ing  to 
find solutions for the Yang-Mills equations (see [T1, 2], [U1, 2]). For  more details 
about  the relationship between all these problems, see [E2]. 

Final ly we note  tha t  in [El]  we prove some inequalities of isoperimetric type  
in R 3 which are crucial to prove the  results ~bout (I~) t ha t  we give in [E2]. 

Notation 

For  any three vectors of R 4, a, b, e, we will denote by  aAb (resp. aAbAc) the 
al ternat ing exterior  product  of a, b (resp. a, b and c), which is an element  of A~(R ~) 
(resp. A3(R 4) ~ R~). 

On the  other  hand, we will use the  following notat ions for sets of R~: 

B . ( y )  = {x e R3:  fy _ xr < R } ,  

S (y) = e R3:  lY - -  xl = R } ,  

and when y ~-- 0, we will just  write B~, Sa. Moreover we denote  by  B ~, S N-1 the 
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fo l lowing:  

B~ = (x + R~: Ixl < a} 

~ - ~  = {x + 2~: I< = ~} 

and  for  a n y  A c R ~, we will wr i te  indis t inc t ly ,  meas  (A) and  [A[. 

F inMly  we will deno te  b y  C var ious  posi t ive  cons tan ts .  

2 .  - M a i n  r e s u l t s .  

TItEOIr 1. -- For any k ~ Z, problem (I;~) has a solution, i .e ,  there is oo~ ~ Y ,  
such that g(%,~) = 1~. 

COROLLARY 2. - -  F o r  any k ~ Z, there is a co* ~ Z~ such that g(%4) = I'~. 

t~E~A~K. -- I f  we consider  the  case k = 0, we f ind t h a t  Io = I*  = _1 o = 0, and  

these  inf ima are  a t t a i n e d  b y  all the  c o n s t a n t  func t ions  f r o m  R a to  S 8. 

PnOOF OF Tm~O~E~ 1. - F i r s t  we wri te  t he  ene rgy  g(~) for  t he  ~0o, of the  f o r m  (5) 

and  we ob t a i n :  

(6) 
R3 

8 sin ~ ~ 4 sin 2 co cos" co't 

jxt'- + 171 ~ )ax  + 

(~ s i ~ (  2 ) 

R~ 

+ z f  4 sin~ co (sin2a)lxAVool 2 + (cos2 co)(x-V(o) ~) d x .  
[xl" 

R~ 

I n  the  n e x t  sect ion we will p rove  t h a t  min imiz ing  g over  Yk is equ iva len t  t o  

min imiz ing  g over  t he  class of co such t h a t  g(~o) < + ~ and  co(0) = kx, ~o(+ ~ )  = 0. 

Le t  us no te  t h a t  here  these  values  of (o a t  0 and  a t  + ~ are  to  be  u n d e r s t o o d  in a 

w e a k  sense, as fol lows:  

i) co(+ c~) = 0 if co ~L~(R  3) for  some p e (1, + ~ ) .  

it) c o ( O ) = ~  if iimT~l~ I t c o - - ~ z [ ~ d x = O .  
r=+O [-~rl d 

L e t  us t h e n  consider  a sequence  {o~,}~ in Yk such t h a t :  

(7) ~(co~) + i ~ ,  ~+,(o) = ~=,  % ( +  ~ )  = o .  
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Then there exists a positive constant  C such that  g(co.)g C. 
Moreover we may  assume tha t  flco,]I~| kz. Indeed, if this were not  the cuse 

we would define continuous functions e5, as follows: 

[ rain (co,, k~) when a~, ~ 0 

w,~----/ 0 when c o . ~ 0 .  

For this new sequence we have:  

.1 = ~ A 

.4 
and therefore g (co~) converges also towards 7~. 

From (7) we infer the existence of co in L6(R 3) such tha t :  

{ V ~ . - ~  Vco in L2(Ra)-weak 

(8) co~ ~ co in L"(Ra)-weak. 

(9) 

~oreover ,  since ][(5~[1L~ ~ kz, we have also: 

{ 05~-+~ in L~oo(R ~) 
eS~ --> co a.e. in R a . 

From (9) we obtain easily tha t :  

(10) g(w) =< lim g~co,J----/Tk 
~-->-1-r 

Indeed, ~rom (9) we know tha t  sin ~5~ (resp. cos e5~) converges a.e. to sin co (resp. 
cos co) as n goes to ~- co. Moreover, ~rom (9) and (10) we infer also tha t :  

converges weakly to 

t " 4 ~ " 2 A ) VaS,~ K 2 q- 8 sin co~ 4 sm co. cos 2 ash 

Vco (ag2 § 8 sin~ co[xI~ -k 4 sin~ cofxl2 cos~ a{) 

in L2(R ~) as n goes to q- co. 

Therefore, by  Fatou 's  lcmma we obtain (10). 
We have now $o prove that co is in :Y~. First  we note tha t  co e L6(R ~) and so, 

co(q- co) = 0. Then it remains only to prove tha t  co(0) = ka in the weak sense 
defined above. Assume tha t  this were not  the case. Then there would exist a set 
A c R 4 of positive measure with: 

i) ]]co--kallr~U~B)~ ~ > 0 ,  for all r > 0 ,  small. 

ii) IAN&,.I~(~IS~.,], where (~>0 and l i m r ~ = 0 .  
m---> J- ~ 



192 )/[. J .  ESTEBA~: Existence o] symmetric solutions, etc. 

Bu~ then  we observe t h a t  (5), together  with (i)-(ii), implies the  existence of a set 

B c R  ~ such t h a t  [ B ( ~ S 3 t > 0  and B c ~ % ( B ~ )  for n and  m large. And  we show 
nex t  t h a t  this is impossible.  Indeed,  b y  using Cauehy-Sehwarz ' s  inequal i ty  and  the  

fact  t h a t  for a n y  three  vectors  of R ~, a, b, c, we have :  laAbAcl ~= laAb]~laAcl~]bAe[ ~, 
we obtain  for all q~ ~ X, for all K r R~: 

(ii) (f )~ ~rea, (?~(K)) = 8~ A ~ A  8% dx =< IKI ~ ix(v)l ~ 
K K 

and so, area (~%(B~)) ___ Cr~ for all n, m which is cont radic tory  with the  existence 
of the  set B. 

Pgoo~  oF COROLLARY 2. - I f  (w.} is a sequence of radial ly symmet r i c  fonctions 
in Z~ such t h a t  g ( ~ 0 % ) - - - - ~ ( ~ . ) ~ I * ,  we have  in par t icular  t h a t :  

(12) ~(co.) =< C and w~s  YT~ for all n .  

Proceeding as in the  proof of Theorem 1, f rom (12) we infer the  existence of o~* 

such t h a t  ~(o)*) ~ I*  and  co*(0) ---- kz, (0*(45 c~) = 0. Therefore  we know t h a t  w~ 

and  ~o* ~re continuous for all n and  co. ~ w everywhere  in R a. Therefore co* e Z~ n-->+r 

and the  proof is complete.  

3 .  - C o m p l e m e n t a r y  r e s u l t s .  

I n  this section we will p rove  some results abou t  the  degree of the  fonctions 9 

which are of the  fo rm (4) or (5). We  will also make  some comments  abou t  the  
relat ionship be tween I~, Ik and  I*  k "  

PBOP0SITION 3.  - Let q~ be a ]unction o] X o] the ]orm (4). Then d(q~) = k i / a n d  

only i] (9(0) -  0)(45 c~) = lcz~. 

PROOF. -- F i rs t  we observe t h a t  i t  is enough to p rove  the  result  for ~ in Y. Then, 

as we p roved  in [El i ,  if cf is in Y, t hen  there  exists an e ~ S  ~ such t h a t  

[ [ ~ ( x )  - el 6 dx < + oo.  
R3 

Hence,  b y  (4), there  mus t  exist  l, m ~ Z s.t. co(0) : 17~, 0)(45 c~) ---- mz. Le t  us then  

p rove  t h a t  Z -  m ~ k. 
Le t  E be the  following s tereographic  project ion:  

E: S 3 --~ R 3 

(y l , . . . ,yd) . .>(  Yl Y~ Y~ :) 
1 - - y d ' l - - y d ' l ~ y  " 
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Then we see that for any ~ in Y, 

@(y) ~- (~oE)(y) ~ sin co(r), cos ~o(r) 

where 

y ' =  (Yl, Y~, Ys) , s = V1 ~-  y~ and r ~ = ~ y~ _ 1 ~- y~ 
~=1 ( 1 - -  y~)2 1 - -  y~ 

We know tha t  d(~) = degree of @. Let  us compute  the  jacobian ma t r ix  of @ at  

any  point  y of S 3. We obtain:  

sin co(r) 
D e ( y )  = - -  

8 

where 

(1 0 0 O1 /0 0 0 Y~(cosco)r'~o'~-(sin )Y~Y~\ 8 O) ~ -  

0 1 0 0 

0 0 1 0 

0 0 0 0 

+ 
0 0 0 Y~ (cos ~o) r'co' ~- (sin co) y~y~ 

Y a  Y 4  0 0 0 Y--3 (c~ co) r'co' -~- s (sin co) 7 

t0 0 0 - -  (sin co) co'r' 

d dr 1 
co t  = ~ a n d  r r = - -  ----- 

d r  dy4 r ( 1 - -  YaP " 

So, the jacobian de terminant  of @ at  y is: 

o~'r' co'(sin* co) 
J(y) = det/)@(y) ---- - -  (sin c o p  ---- 

s 3 s3r(1 - -  y~)~ 

and since sign J(y) = -- sign (oJ(r)), the  proposit ion follows easily. 

REMARK 4. - Let  w be a continuous function from R + to R such tha t  co(0) = lz 
and co(~ c ~ ) = m ~ ,  1, m e Z .  Then, if we define eS(r ) - -=co(r )+h~,  h e Z ,  we ob- 
serve tha t  this t ransformat ion in the image of co conserves the  degree and the  
energy ~ as well. Thus, translat ions of hz (h ~ Z) in the image of co leave the  minimiz- 

I* ing problem ( , )  invariant .  F ro m  Proposit ion 3 i t  follows then  immediat ly  tha t  
minimizing 8 over the  functions ~0 e X of the form (4) tha t  have degree equal to k 
is equivalent  to minimizing ~ over the  functions co which satisfy co(0)=  kz, 
co(+ ~ )  = o. 

Let  us now prove a result  which corresponds to Proposit ion 3 when ~ is only of 
the form (5). 

PROPOSITIO~ 5. - Let co be a ]unction ]rom R 3 into R.  Then i /  qJ ~ X is el the 
]orm (5), d(q~)= k i] and only i] co(O)- co(-~ c ~ ) =  kz.  
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PRoo~.  - As a l r eady  said, this  is enough  to  p r o v e  the  resul t  for  o)~ C~(R ~, R).  
Moreover  one m a y  still p rove  the  exis tence of l, m ~ Z s.t. ~o(0) = lz  and  m(-}- oo) = 

= m m  T h e n  the  p ropos i t i on  will be p r o v e d  as soon as we show t h a t  d(~) = k if 

and  only  if ~ -  m = / ~ .  

As in the  proof  of P ropos i t i on  3 we h a v e  only  to  check the  j acob ian  d e t e r m i n a n t  

of ~ - -  ~0oE. I n  ~his case we o b t a i n :  

sin~ ~ o ( y ' / ( 1 -  y~) 
J'5(Y) = - -  ((1 - -  y4)(1 - -  yi~) ~ (y'" V(~), where  y ' =  (y~, Y2, Y3) �9 

Thus  t he  sign of de t  (D(q)oE)(y)) coincides wi th  t he  sign of - -  (y'.Vo)). Therefore ,  

w h e n  co(0) = lz  a n d  o)(-t- oo) = mz,  we see t h a t  t he  n u m b e r  of inverse  images  of all 

the  po in t s  of ~3 is (l - -  m), this  of course  when  one t akes  in to  accoun t  the  o r i en ta t ion  

of ~5 a t  those  inverse  images.  Ii 

L e t  us finish this pape r  wi th  some r emarks  a b o u t  the  differences be tween  the  

different  m in imiza t i on  p rob lems  we h a v e  considered.  

W e  begin  wi th  a p ropos i t ion  which  tells us h o w  behaves  I*  wi th  respec t  to  k. 

Pl~oPos:[~rlON 6. - For any k, 1 e Z - -  {0}, k :/= l, we have: 

T* * 

PROOF. -- Take  for  s impl ic i ty  t he  case /~ > 1 ~ 1. T h e n  let F~ ~ Z~ be such t h a t  

g(co) ---= I*  As we a l r eady  know,  we can  t a k e  co such t h a t  co(0) = k~, eo(-t- oo) = 0. 
k "  

L e t  P be the  m i n i m u m  of the  r > 0 such t h a t  ~o(r) = ln. T h e n  we define two new 

funct ions ,  (o~ a n d  w2, as fol lows:  

{ oJ(~), r =  
o~(r) = o~(r), r >= ~. 

It is immediate that these two functions satisfy: 

= k-~, %) > I ~  and g(~o%)=k ~, 

Then,  if I~ ~ =< I*_~ 7-I~*, ( w l - - l s )  wou ld  be  a m i n i m u m  of I*~_~ wi th  c o m p a c t  

suppor t .  A n d  this  is impossible,  since t he  co r respond ing  Eu le r  equa t ion  for  co is 

an  O.D.E. ,  wi th  regula r  coefficients in a n y  in te rva l  (8, -k co), 8 > 0, and  therefore  

no c o m p a c t l y  s u p p o r t e d  solut ion m a y  exist. [] 

I~EI~IAI~K 7. - -  The  above  resul t  shows t h a t  the  different  p rob lems  cons idered  in 

this pape r  are  no t  jus t  t he  same.  Indeed ,  as w e p r o v e  in [E2], for  all k, t ~ Z ,  
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I~ <~ I ,  § I~-z,  Ik =< IklI~. But  the  opposite huppens with the  symmet r ic  problems I* .  

Hence  a t  least  for all k=/=O, •  I * r  and in f~ct, L~<I*k for I k [ > l .  
Le t  us finally r em ark  t ha t  the  f~ct thut  the  subuddi t iv i ty  condition: 

1(~) --< l(z) + t ( k -  l) ,  t e z -  {k, 0} 

is val id for ](k) = I~ but  not  for I*~ is not  surprising a t  all. Indeed,  as P .L.L.  shows 

in ILl ,  2] the  subaddi t iv i ty  inequal i ty  t~kes place in a largo class of minimizat ion 

problems in R N which are invar iunt  under  the group of trunslutions of R N. Moreover 

as soon us this invari~nce is broken,  the  subaddi t iv i ty  inequuli ty does not  hold any  
more.  And  t h i s  is the  c~se for the  prob lem I * .  
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