On the Genus of a Hyperplane Section of a Geometrically Ruled Surface (*).

ALDO BIANCOFIORE - ELVIRA LAURA LIVORNI

Summary. - In this paper we estimate the minimal genus of hyperplane sections of a geometrically ruled surface.

Introduction.

Let D be a divisor on a geometrically ruled surface $\pi: X \to C$. If C_0 is a minimal section and f is fiber on X we can write $D \equiv aC_0 + bf$. For a fixed number a we have studied two related problems:

- I) What is the minimal b (call it b_a) such that $D \equiv aC_0 + bf$ is very ample?
- II) What is the minimal genus λ_a of a very ample divisor D?

For g = g(C) = 0 (see [Ha, Corollary, V.2.18]) we have $b_a = ae + 1$ and $\lambda_a = (1/2)a(a-1)e$, where $e = -C_0 \cdot C_0$ is an invariant of X.

In this paper we obtain some answers for $g \ge 1$. In particular if g = 1 our answer (§ 6) is sharp i.e.

$$b_a = \left\{ \begin{array}{ll} ae + 3 & \text{if } e \geqslant 0 \text{ and any } a \text{ or } e = -1 \text{ and } a \leqslant 3 \\ 1 - (a/2) + \varepsilon(a) & \text{if } e = -1 \text{ and } a \geqslant 4 \end{array} \right.$$

where

$$\varepsilon(a) = \begin{cases}
1 & \text{if } a \text{ even} \\
(1/2) & \text{if } a \text{ odd}
\end{cases}$$

and

$$\lambda_a = \left\{ egin{array}{ll} (1/2) \, a (a-1) \, e + 3 a - 2 & \mbox{if } e \geqslant 0 \mbox{ and any } a \mbox{ or } e = -1 \mbox{ and } a \leqslant 3 \mbox{} \\ (a-1) \, arepsilon(a) + a & \mbox{if } e = -1 \mbox{ and } a \geqslant 4 \mbox{ .} \end{array}
ight.$$

^(*) Entrata in Redazione il 12 giugno 1985. Indirizzo degli AA.: Istituto di Matematica, Via Roma, 33 - 67100 L'Aquila.

For $g \geqslant 2$ we found (§ 5) that if $e \geqslant 0$

$$ae + 1 \leqslant b_a \leqslant ae + 2g + 1$$

$$(a(a-1)/2) e + ag \leqslant \lambda_a \leqslant (a(a-1)/2) e + (3a-2) g$$

and if e < 0

$$(1/2)ae + \varepsilon(ae) \leqslant b_a \leqslant (1/2)ae + 2g + \varepsilon(ae)$$

$$ag + (\varepsilon(ae) - 1)(a - 1) \leqslant \lambda_a \leqslant (3a - 2)g + (\varepsilon(ae) - 1)(a - 1).$$

For the case g=2 we can improve the above bounds (see § 7). In particular for $e \ge 0$, $b_a = ae + 5$ and $\lambda_a = (1/2)a(a-1)e + 6a - 4$.

Our results are very useful in the study of smooth, connected, projective, ruled surfaces with the genus of a hyperplane section less than or equal to seven. See $[Li_1]$, $[Li_2]$, [Bi-Li].

We would like to express our gratitude to Andrew J. Sommese for the numerous conservations that we had at the University of Notre Dame, from which this work benefited.

0. - Background material.

The notation, throughout this paper, is essentially that used in [Ha].

- (0.1) Let X be an analytic space. We let \mathcal{O}_X denote its structure sheaf and let $h^{i,0}(X) = \dim H^i(X, \mathcal{O}_X)$. If X is a complex manifold, we let K_X denote its canonical bundle.
- (0.2) Let X be a smooth connected projective surface. Let D be an effective Cartier divisor on X. We denote by L(D), the holomorphic line bundle associated to D. If L is a holomorphic line bundle on X, |L| denotes the linear system of Cartier divisors associated to L. Of course if |L| is non-empty then L(D) = L for $D \in |L|$. Let E be a second holomorphic line bundle on X, then $L \cdot E$ denotes the evaluation of the cup product, $C_1(L) \wedge C_1(E)$ on X, where $C_1(L)$ and $C_1(E)$ are the Chern classes of L and E respectively. If $D \in |L|$ and $C \in |E|$, it is convenient to let $D \cdot C = D \cdot E = L \cdot C = L \cdot E$. We often let $g = g(L) = (1/2)(L \cdot L + K_X \cdot L + 2)$, which is called the adjunction formula. If there is a smooth $D \in |L|$, then

$$g = g(L) = h^{1,0}(D)$$
.

(0.3) Let L be a line bundle on a projective variety. We say L is spanned if $\Gamma(L)$ is generated by its global sections. By [Ha, lemma 7.8] this is equivalent to saying that $\Gamma(L)$ is base-point-free. We say L is very ample if L is spanned and

the map $\varphi: X \to \mathbf{P}_C^N$ associated to $\Gamma(L)$ is an embedding. We say that L is ample if some power of L is very ample.

- (0.4) Let D be an effective divisor on a smooth connected, projective surface X, D is k-connected if $D \cdot D > 0$ and for every decomposition $D = D_1 + D_2$ into effective divisors $D_1 \cdot D_2 \geqslant k$.
- (0.5) (Ruled surfaces). Let C be a smooth curve of genus g and $\pi: X \to C$ a (geometrically) ruled surface. A section of X is a map $\sigma: C \to X$ such that $\pi \circ \sigma = \mathrm{id}_{\sigma}$. The image of σ is a divisor C_0 which we will also call a section. Let $C_0 \subseteq X$ be a section, and let f be a fiber, then Pic $X \simeq \mathbf{Z} \oplus \pi^*$ Pic C, where \mathbf{Z} is generated by C_0 . Also Num $X \simeq \mathbf{Z} \oplus \mathbf{Z}$ is generated by C_0 , f with $C_0 \cdot f = 1$ and $f \cdot f = 0$. For any ruled surface there exist a rank 2 vector bundle on $C, p: E \to C$ such that $P(E) \simeq X$ and viceversa. We have $P(E) \simeq P(E')$ if and only if there is a line bundle L such that $E' = E \otimes L$. Moreover it is always possible to write X = P(E) with $H^0(C, E) \neq 0$ and $H^0(C, E \otimes L) = 0$, for every line bundle with deg L < 0. Such an E is said to be normalized. It is not necessarily unique but deg E is uniquely determined and is an invariant of X. Let e be the divisor on C corresponding to A^2E . Set $e = -\deg e = -\deg \Lambda^2 E$. We fix a section C_0 of X with $\mathfrak{L}(C_0) = \mathfrak{O}_{P(E)}(1)$. We have $C_0^2 = \deg e = -e$ and $C_0 \cdot f = 1$. If \mathfrak{b} is any divisor on C, then we denote the divisor $\pi^*\mathfrak{b}$ by $\mathfrak{b}f$. Thus any element of Pic X can be written $aC_0 + bf$ with $a \in \mathbb{Z}$ and $\mathfrak{b} \in \text{Pic } C$. Any element of Num X can be written $aC_0 + bf$ with $a, b \in \mathbb{Z}$. If $D_h \equiv a_h C_0 + b_h f$, h = 1, 2 we get

$$\left\{ \begin{array}{l} D_1 \cdot D_2 = a_1 b_2 + a_2 b_1 - a_1 a_2 e \\ \\ D_1^2 = 2 a_1 b_1 - a_1^2 e \end{array} \right.$$

Moreover since

$$K_x = -2C_0 + (2g - 2 - e)f$$

we get

$$K_r^2 = 8(1-g)$$
.

If $D \equiv aC_0 + bf$ and setting $h^i(D) = \dim H^i(X, L(D))$, $i \geqslant 0$ then by the Riemann-Roch Theorem we have

$$(0.8) h^0(D) - h^1(D) = (a+1)(b-(ae/2)-g+1).$$

Let $D \equiv aC_0 + bf$ be a divisor on X. Then D is ample if and only if

$$(0.9) a>0 \text{and} b> \begin{cases} ae & \text{if } e\geqslant 0\\ (1/2)ae & \text{if } e<0 \end{cases}.$$

1. - Vanishing theorems.

Let $\pi\colon X\to C$ be a ruled surface. Let $X\simeq P(E)$, where E is a normalized rank 2 vector bundle. Set $L(\mathfrak{e})=\Lambda^2E$. If deg $\mathfrak{e}=-\mathfrak{e}$ then we write (numerically) $L(\mathfrak{e})=L(-\mathfrak{e})$. We have

$$E = E^* \otimes \Lambda^2 E = E^* \otimes L(e)$$

where E^* is dual to E. Let S^aE be the a-symmetric product of E. Then we have

$$(1.1) Hi(X, aC0 + bf) \simeq Hi(C, SaE* \otimes L(b)), i \geqslant 0$$

$$(1.2) S^a E \simeq S^a E^* \otimes (\Lambda^2 E)^{\otimes a} = S^a E^* \otimes L(ae).$$

Since E is normalized we have

$$(1.3) H0(C, E \otimes L(b)) \simeq H0(X, C0 + bf) = 0$$

for any b < 0. As before we set $h^i(D) = \dim H^i(X, L(D))$. Let $D \equiv aC_0 + bf$ be a divisor on X. Then by the Kodaira Vanishing Theorem we have $h^1(D) = 0$ if $D - K_X$ is ample. Therefore using (0.7) and (0.9) we get $h^1(D) = 0$ if

(1.4)
$$a \geqslant -1 \quad \text{ and } \quad b > \begin{cases} (a+1)e + 2g - 2 & \text{if } e \geqslant 0 \\ (1/2)ae + 2g - 2 & \text{if } e < 0 \end{cases}.$$

By Serre duality, (1.1) and (1.2) we get

(1.5)
$$\begin{cases} H^{0}(X, aC_{0} + bf) \simeq H^{1}(X, aC_{0} + (ae - b + 2g - 2)f) \\ H^{1}(X, aC_{0} + bf) \simeq H^{0}(X, aC_{0} + (ae - b + 2g - 2)f) \end{cases}.$$

THEOREM 1.1. – Let $D \equiv aC_0 + bf$ be a divisor on X, with $a \geqslant 1$. We have $h^1(D) = 0$ if

(1.6)
$$b > \begin{cases} ae + 2g - 2 & \text{if } a = 1 \text{ and any } e \text{ or } a \ge 2 \text{ and } e \ge 0 \\ (1/2)ae + 2g - 2 & \text{if } a \ge 2 \text{ and } e < 0 \end{cases}$$

and $h^1(D) > 0$ if

$$(1.7) b < (1/2)ae + g - 1.$$

PROOF. - (1.7) follows from (0.8). Consider now (1.6). The case e < 0 was already done in (1.4). We prove the case e > 0 by induction. By (1.3) and (1.5) we get $h^1(D) = 0$ if a = 1, b > e + 2g - 2 and any e.

Suppose (1.6) true for a-1. We have the short exact sequence

$$0 \rightarrow L(D - C_0) \rightarrow L(D) \rightarrow L(-ae + b) \rightarrow 0$$

since $L(D)|_{C_a} \cong L(-ae+b)$. Then

$$H^1(X, L(D-C_0)) \rightarrow H^1(X, L(D)) \rightarrow H^1(C, L(-ae+b)) \rightarrow 0$$
.

We have $b>ae+2g-2\geqslant (a-1)e+2g-2$ since $e\geqslant 0$. Thus by induction $H^1(X,L(D-C_0))=0$. Moreover -ae+b>2g-2 implies $H^1(C,L(-ae+b))=0$. Hence $h^1(D)=0$. \square

THEOREM 1.2. - Let $D \equiv aC_0 + bf$ be a divisor on X, with $a \geqslant 1$. Then $h^0(D) = 0$ if

(1.8)
$$b < \begin{cases} 0 & \text{if } a = 1 \text{ and any } e \text{ or } a \geqslant 2 \text{ and } e \geqslant 0 \\ (1/2)ae & \text{if } a \geqslant 2 \text{ and } e < 0 \end{cases}$$

and $h^0(D) > 0$ if

$$(1.8) b > (1/2)ae + g - 1.$$

PROOF. – (1.9) follows from (0.8). Consider now (1.8). The case a=1 is just (1.3). By (1.5) and (1.6) we get (1.8) in the case $a \ge 2$. \square

2. - Very ample line bundles on ruled surfaces.

Let $D \equiv aC_0 + bf$ be a divisor on a ruled surface $\pi: X \to C$, with $a \ge 1$. We set $f_x = \pi^{-1}(x)$ for $x \in C$.

LEMMA 2.1. - If $h^1(D - f_x) = 0$ then $L(D)|_{f_x} = \mathcal{O}_{P_x}(a)$.

Proof. - Since $h^1(D - f_x) = 0$ we have

$$(2.1) \hspace{1cm} 0 \rightarrow H^0\big(X,\, L(D-f_x)\big) \rightarrow H^0\big(X,\, L(D)\big) \stackrel{\beta}{\rightarrow} H^0\big(X,\, L(D)\big)|_{f_x} \rightarrow 0 \,\, .$$

If $D'|_{f_x}\not\equiv 0$ for some $D'\in |L(D)|$ we would have $L(D)|_{f_x}\cong \mathcal{O}_{P_1}(a)$. But $D'|_{f_x}\equiv 0$ for every $D'\in |L(D)|$ implies $\beta=0$, hence $h^0(D-f_x)=h^0(D)$. On the other hand from (0.8) we get $h^0(D)=h^0(D-f_x)+(a+1)+h^1(D)$ which implies $h^0(D)>h^0(D-f_x)$ since $a\geqslant 1$ and $h^1(D)\geqslant 0$. Therefore $L(D)|_{f_x}=\mathcal{O}_{P_1}(a)$. \square

Proposition 2.2. - If $h^1(D-f_x)=0$ then L(D) is spanned.

PROOF. - Since $h^1(D-f_x)=0$ for every x, by lemma 2.1 we have

$$0 \to L(D - f_x) \to L(D) \to \mathcal{O}_{P_x}(a) \to 0$$

since $\mathcal{O}_{P_1}(a)$ is very ample for $a \ge 1$ we get that L(D) is spanned. \square

Proposition 2.3. – If $h^1(D-f_x)=0$ and $h^1(D-2f_x)=0$ then L(D) is very ample.

Proof. - We have to prove that |L(D)| separates points and tangent vectors.

Case 1. – P and Q (or P and t) not in the same fiber. Let f_P and f_Q be the fibers which P and Q are on respectively. Since $h^1(D - f_P - f_Q) = 0$ and $L(D - f_P)|_{f_Q} = \mathcal{O}_{P_1}(a)$ we have

$$0 \to H^0(X,L(D-f_P-f_Q)) \to H^0(X,L(D-f_P)) \to H^0(\textbf{\textit{P}}_1,\mathfrak{O}_{\textbf{\textit{P}}_2}(a)) \to 0 \ .$$

So we can find $D' \simeq D - f_P$ such that $Q \notin D'|_{f_Q}$ i.e. $Q \notin D'$. Hence $Q \notin D' + f_P \simeq D$ but $P \in D' + f_P$. In the case (P and t) we do the same considering $P \equiv Q$. Then we get $P \in D' + f_P$ but $2P \notin D' + f_P$ so t is not a tangent vector to $D' + f_P$ at P.

Case 2. – P and Q (or P and t) are both in the same fiber f_x for some $x \in C$. From (2.1) we can find $D' \simeq D$ such that $P \in D'|_{f_x}$ but $Q \notin D'|_{f_x}^{\S}$ ($P \in D'|_{f_x}$ but $2P \notin D'|_{f_x}$). Hence $P \in D'$ and $Q \notin D'$ (or $P \in D'$ but t is not tangent to D' at P).

Corollary 2.4. – D is spanned if

$$b>\left\{egin{array}{ll} ae+2g-1 & ext{if } a=1 ext{ and any } e ext{ or } a\geqslant 2 ext{ and } e\geqslant 0 \ \\ (1/2)ae+2g-1 & ext{if } a\geqslant 2 ext{ and } e< 0 \end{array}
ight.$$

and D is very ample if

$$b > \left\{ \begin{array}{ll} ae + 2g & \text{if } a = 1 \text{ and any } e \text{ or } a \geqslant 2 \text{ and } e \geqslant 0 \\ (1/2)ae + 2g & \text{if } a \geqslant 2 \text{ and } e < 0 \end{array} \right..$$

3. - On the 3-connectedness of a divisor on a ruled surface.

Let $D \equiv aC_0 + bf$ be a divisor on a ruled surface. If $D = D_1 + D_2$ we have $D_1 \equiv xC_0 + yf = (a - \tilde{x}) C_0 + (b - \tilde{y}) f$ and $D_2 \equiv (a - x) C_0 + (b - y) f = \tilde{x} C_0 + \tilde{y} f$. Assume $D^2 = a(2b - ae) > 0$, i.e. a > 0 and b > (1/2) ae. In order to prove that D is 3-connected we have to prove that for any decomposition $D = D_1 + D_2$ with $D_i \not\simeq 0$ and $h^0(D_i) \geqslant 1$ we get that $D_1 \cdot D_2 \geqslant 3$.

LEMMA 3.1. - Assume that $h^0(xC_0 + yf) > 1$, then a) x > 0

b)
$$y \ge \begin{cases} (1/2)xe & \text{if } x \ge 2 \text{ and } e < 0 \\ 0 & \text{if } x = 0, 1 \text{ and } e < 0 \text{ or } e \ge 0 \text{ and any } x. \end{cases}$$

PROOF. - a) If x < 0 then $h^0(D_1) = 0$. It is enough to prove it for x = -1, since $h^0(D_1 + C_0) = 0$ implies $h^0(D_1) = 0$ for $x \le -2$. We have

$$0 \to L(D_1) \to L(yf) \to L(yf)|_{C_0} \simeq L(y) \to 0$$
.

Since $h^0(yf) = h^0(y)$ and $H^0(X, L(yf)) \to H^0(C, L(y))$ is surjective, we have $h^0(D_1) = 0$.

b) If x = 0, then $h^0(D_1) = 0$ if y < 0. Therefore if $x_j^{5} = 0$ and $h^0(D_1) > 0$ it follows that $y \ge 0$. If $x \ge 1$ then by (1.8) we get part b). \square

Proposition 3.2. - Assume that e < 0 and $a \ge 3$. Then D is 3-connected if

$$b > \left\{ egin{array}{ll} 0 & ext{if } e = -1 ext{ and } a = 3 \ \\ (1/2) \, ae + 1 & ext{otherwise} \, . \end{array}
ight.$$

Proof. – By lemma 3.1 x and \tilde{x} are non-negative.

Case 1. - Assume x = 0 (or $\tilde{x} = 0$) from

$$(3.1) D_1 \cdot D_2 = \begin{cases} y(a-2x) + x(-(a-x)e+b) \\ \tilde{y}(a-2\tilde{x}) + \tilde{x}(-(a-\tilde{x})e+b) \end{cases}$$

we get $D_1 \cdot D_2 = ya$ (or $= \tilde{y}a$). Since a > 2 and y > 0 ($\tilde{y} > 0$) we obtain $D_1 \cdot D_2 > 2$.

Case 2. Assume x = 1 (or $\tilde{x} = 1$). From a - 2x > 0 and $y \ge 0$ and (3.1) we have $D_1 \cdot D_2 \ge b - (a - 1)e$. If (a, e) = (3, -1) then b > 0 so -(a - 1)e + b > 2, hence $D_1 \cdot D_2 > 2$. If $(a, e) \ne (3, -1)$ then b > (1/2)ae + 1 so

$$D_1 \cdot D_2 \geqslant b - (a-1)e > 1 + (1/2)ae - (a-1)e = 1 - (a-2)(e/2) \geqslant 2$$

then $D_1 \cdot D_2 > 2$.

Case 3. $-2 \leqslant x \leqslant a-2$ and $a-2x \geqslant 0$ (or $2 \leqslant \tilde{x} \leqslant a-2$ and $-(a-2x) = a-2\tilde{x} \geqslant 0$) we treat only the part $a-2x \geqslant 0$. The other part is similar. In this case $y \geqslant xe/2$ so $D_1 \cdot D_2 \geqslant (xe/2)(a-2x) + x(-(a-x)e+b) = x(b-(1/2)ae)$. If (a,e) = (3,-1) then b>0 and we have $D_1 \cdot D_2 \geqslant 3$. If $(a,e) \neq (3,-1)$ then $D_1 \cdot D_2 \geqslant x(b-(ae/2)) \geqslant 2(b-(ae/2)) > 2$. So $D_1 \cdot D_3 > 2$. \square

4. - Very ampleness by Bombieri's method.

We would like to find new conditions for L to be very ample. In order to do this we shall use the following theorem.

THEOREM 4.1. – Let L be a line bundle over a surface X. We put $L_0 = L \otimes K_x^{-1}$. If i) $h^0(L_0) \geqslant 7$; ii) $L_0 \cdot L_0 \geqslant 10$; iii) L_0 is 3-connected, then L is very ample.

PROOF. - See [VdV].

Theorem 4.1 has been proved using a method of Bombieri. See also [Be], [Bo], $[So_1]$ and $[So_2]$.

We will apply Theorem 4.1 for L=L(D) where $D\equiv aC_0+bf$ is a divisor over a ruled surface X. Then $L_0=L(D_0)$ where

$$D_0 = D - K_X \equiv a_0 C_0 + b_0 f = (a+2) C_0 + (b-2g+2+e) f.$$

We are interested in the case e < 0 and $a \ge 2$. By (0.8) we have

$$h^0(D_0) - h^1(D_0) = (a_0 + 1)(b_0 + 1 - g - (a_0 e/2))$$
.

Since $h^1(D_0) \geqslant 0$ we have $h^0(D_0) \geqslant 7$ if

$$(4.1) b > 7/(a+3) + (ae/2) + 3g - 3.$$

By (0.6) we have $L_0 \cdot L_0 = 2a_0(b_0 - (1/2)a_0e) = 2(a+2)(b-2g+2-(ae/2))$. Therefore $L_0 \cdot L_0 \ge 10$ when

$$(4.2) b > 5/(a+2) + (ae/2) + 2g - 2.$$

Moreover by Proposition 3.2 we have L_0 is 3-connected if

$$(4.3) b > (ae/2) + 2g - 1.$$

We set

$$K_1 = 7/(a+3) + (ae/2) + 3g - 3$$
, $K_2 = 5/(a+2) + (ae/2) + 2g - 2$, $K_3 = (ae/2) + 2g - 1 + \varepsilon(ae)$, $K_4 = K_3 + 1$,

where

$$\varepsilon(n) = \begin{cases}
1 & \text{if } n \text{ even} \\
1/2 & \text{if } n \text{ odd}.
\end{cases}$$

Using Theorem 4.1 we have D is very ample if $b \geqslant K_0 = \text{Max}\{K_1, K_2, K_3\}$. We have $K_1 \geqslant K_2$. For g = 1 we have $K_0 = K_3$. For g = 2

$$K_0 = \left\{ egin{array}{ll} K_1 & ext{if } \left\{ egin{array}{ll} a = 2, 3, 5, 7, 9 ext{ and } e = -1 \ a = 2, 3 & ext{and } e = -2 \ K_3 & ext{otherwise} \end{array}
ight.$$

For $g \geqslant 3$ then $K_0 = K_1$. Therefore by Theorem 4.1 and Corollary 2.4, in the case e < 0 and $a \geqslant 2$, D is very ample when

$$b \geqslant \min \{K_0, K_4\} = K$$

and

$$(4.4) K = K_0 = K_3 if g = 1$$

(4.5)
$$K = \begin{cases} K_1 = K_4 & \text{if } \begin{cases} a = 2, 3, 5, 7, 9 \text{ and } e = -1 \\ a = 2, 3 & \text{and } e = -2 \end{cases} & \text{if } g = 2 \\ K_3 & \text{otherwise} . \end{cases}$$

For $g \geqslant 3$ we have $K = K_4$.

5. - The genus of a very ample divisor on a ruled surface.

Let $D = aC_0 + bf$ be a very ample divisor on a ruled surface X. Let $\mathfrak{b} = \deg \mathfrak{b}$ and $\gamma = g(D)$. Then by the Adjunction formula we have $2\gamma - 2 = D \cdot (D + K_X)$ where $K_X = -2C_0 + (K_C + e)f$. Therefore

$$(D+K_x)D=2(a-1)(b-1-(1/2)ae)+2ag-2$$

and hence

$$\gamma = (a-1)(b-1-(1/2)ae) + aq$$
.

We set $\lambda_a = \lambda_a(C, X)$ and $b_a = b_a(C, X)$ which are respectively the minimum genus and the minimum b of a very ample divisor $D \equiv aC_0 + bf$ on a ruled surface X over the curve C. We have

(5.1)
$$\lambda_a = (a-1)(b_a - 1 - (1/2)ae) + aq.$$

So finding λ_a is equivalent to finding b_a . The next step is finding an estimate for b_a (or λ_a). We are interested in the case $a \ge 2$. Since if yD is very ample it is

ample. Hence

$$b_a> \left\{ egin{array}{ll} ae & ext{if } e\geqslant 0 \ \\ (1/2)ae & ext{if } e< 0 \end{array}
ight.$$

and by corollary 2.4 we have

$$b_a \leqslant \left\{egin{array}{ll} ae+2g+1 & ext{if } e \geqslant 0 \ (1/2)ae+2g+arepsilon(ae) & ext{if } e < 0 \ . \end{array}
ight.$$

Therefore if $e \geqslant 0$

$$(5.2) ae + 1 \leqslant b_a \leqslant ae + 2g + 1$$

and

(5.3)
$$(a(a-1)/2) e + ag \leqslant \lambda_a \leqslant a(a-1)/2 + (3a-2)g$$

if e < 0

$$(5.4) (1/2)ae + \varepsilon(ae) \leqslant b_a \leqslant (1/2)ae + 2g + \varepsilon(ae)$$

and

$$(5.5) ag + (\varepsilon(ae) - 1)(a - 1) \leqslant \lambda_a \leqslant (3a - 2)g + (\varepsilon(ae) - 1)(a - 1).$$

If g = 0 then $e \geqslant 0$ and $b_a = ae + 1$ hence

(5.6)
$$\lambda_a = (1/2) a(a-1) e$$

In the case g=1 or 2 we can improve the lower bound. By the short exact sequence

$$0 \to L(D - C_0) \to L(D) \to L(D)|_{C_0} \simeq L(ae + b) \to 0$$

we get that L(D) very ample implies L(ae + b) very ample.

In the case g=1 or 2, L(ae+b) is very ample if and only if b>ae+2g. If $e\geqslant 0$ we have $ae+2g+1\geqslant ae+1$ and

$$(5.7) b_a = ae + 2g + 1,$$

(5.8)
$$\lambda_a = (1/2) a(a-1) e + (3a-2) g.$$

If e < 0 we have

$$(1/2)ae \left\{ egin{array}{ll} \geqslant ae + 2g & ext{ if } a \geqslant -4g/e \ < ae + 2g & ext{ if } a < -4g/e \ . \end{array}
ight.$$

So

$$b_a \geqslant \left\{ \begin{array}{ll} ae + 2g + 1 & \text{if } a < -4g/e \\ \\ (1/2)ae + \varepsilon(ae) & \text{if } a \geqslant -4g/e \end{array} \right. .$$

6. – The case g = 1.

If e > 0 we have (5.7) and (5.8). It only remains to study the case e = -1. By (5.4), (5.9) and (4.4) we have for a > 2

(6.1)
$$1-(a/2)+\varepsilon(a)\geqslant b^3\geqslant \begin{cases} -a+3 & \text{if } a\leqslant 3\\ -(a/2)+\varepsilon(a) & \text{if } a\geqslant 4. \end{cases}$$

We already know $b_1 = 2$. From (6.1) we have $b_2 = 1$ and $b_3 = 0$. If $a \ge 4$ then b_a is either $-(a/2) + \varepsilon(a)$ or $1 - (a/2) + \varepsilon(a)$. We set $D_a \equiv aC_0 + (-(a/2) + \varepsilon(a)) f$.

Theorem 6.1. – D_a is not very ample.

In order to prove Theorem 6.1 we need the following.

LEMMA 6.2. – Let X be a ruled surface over C. Assume e = -1. Then there is $P \in C$ such that $h^0(2C_0 - Pf) \ge 1$.

PROOF. – We put $D \equiv 2C_0 - f$. By (0.8) we have $h^0(D) = h^1(D)$ and $h^0(2C_0) = -h^1(2C_0) = 3$. By (1.6) $h^1(2C_0) = 0$, so $h^0(2C_0) = 3$. Now $h^0(2C_0) = h^0(S^2E)$ so there is a section σ in S^2E which has some zero, otherwise S^2E would be trivial which implies $A^2S^2E = L(3e)$ is trivial which is a contradiction. Then by (1.8) we have $D[\sigma] = (P)$, i.e. only one point, and $h^0(2C_0 - Pf) \geqslant 1$. \square

PROOF OF THEOREM 6.1. – Suppose D_a very ample. We set $D_0 = 2C_0 - Pf$. We have $D_a \cdot D_0 = 2\varepsilon(a)$, i.e. $D_a \cdot D_0 = 1$ if a is odd and $D_a \cdot D_0 = 2$ if a is even. In both cases D_a is a smooth rational curve (since D_0 is irriducible) with respect to the embedding provided by $|D_a|$. But $\pi|_{D_0} \colon D_0 \to C$ is a 2.1 map over an elliptic curve, which is a contradiction. \square

THEOREM 6.3. – Let $D \equiv aC_0 + bf$ be divisor on a ruled surface X over an elliptic curve C. Assume that $a \ge 1$. Then D is very ample if and only if

(6.2)
$$b > \begin{cases} ae + 2 & \text{if } e \geqslant 0 \text{ and any } a \text{ or } e = -1 \text{ and } a \leqslant 3 \\ 1 - (a/2) & \text{if } e = -1 \text{ and } a \geqslant 4. \end{cases}$$

Corollary 6.4. – Let D be as above. Then

(6.3)
$$b_a = \begin{cases} ae + 3 & \text{if } e \geqslant 0 \text{ and any } a \text{ or } e = -1 \text{ and } a \leqslant 3 \\ 1 - (a/2) + \varepsilon(a) & \text{if } e = -1 \text{ and } a \geqslant 4 \end{cases}$$

$$(6.3) \qquad b_a = \left\{ \begin{array}{ll} ae + 3 & \text{if } e \geqslant 0 \text{ and any } a \text{ or } e = -1 \text{ and } a \leqslant 3 \\ 1 - (a/2) + \varepsilon(a) & \text{if } e = -1 \text{ and } a \geqslant 4 \end{array} \right.$$

$$(6.4) \qquad \lambda_a = \left\{ \begin{array}{ll} (1/2)a(a-1)e + 3a - 2 & \text{if } e \geqslant 0 \text{ and any } a \text{ or } e = -1 \text{ and } a \leqslant 3 \\ (a-1)\varepsilon(a) + a & \text{if } e = -1 \text{ and } a \geqslant 4 \end{array} \right.$$

7. – The case q = 2.

Let X be a ruled surface over a curve C with g = g(C) = 2. Let $D \equiv aC_0 + bf$ be a divisor over X with $a \ge 2$. As for the case g = 1, if $e \ge 0$ we have

(7.1)
$$b_a = ae + 5$$
 (actually it holds also for $a = 1$ and $e < 0$).

When e < 0 we have two cases e = -1 and e = -2. At first we consider the cases e = -1. From (5.4), (5.9) and (4.5) we have

$$\begin{cases} b_a\leqslant \begin{cases} -a+5 & \text{if } a\leqslant 7\\ -(a/2)+\varepsilon(a) & \text{if } a\geqslant 8 \end{cases} \\ b_a\geqslant \begin{cases} -(a/2)+4+\varepsilon(a) & \text{if } a=2,3,5,7,9\\ -(a/2)+3+\varepsilon(a) & \text{otherwise} \end{cases} \end{cases}$$

Therefore

(7.3)
$$\begin{cases} \lambda_{a} \geqslant \begin{cases} 6a - 4 - (1/2)a(a - 1) & \text{if } a \leqslant 7 \\ (a - 1)(\varepsilon(a) - 1) + 2a & \text{if } a \geqslant 8 \end{cases} \\ \lambda_{a} \leqslant \begin{cases} 6a - 4 + (a - 1)(\varepsilon(a) - 1) & \text{if } a = 2, 3, 5, 7, 9 \\ 5a - 3 + (a - 1)(\varepsilon(a) - 1) & \text{otherwise} . \end{cases}$$

Now we consider the case e = -2. From (5.4), (5.9) and (4.5) we have

(7.4)
$$\begin{cases} b_a \geqslant \begin{cases} -2a+5 & \text{if } a \leqslant 3 \\ -a+1 & \text{if } a \geqslant 4 \end{cases} \\ b_a \leqslant \begin{cases} -a+5 & \text{if } a \leqslant 3 \\ -a+4 & \text{if } a \geqslant 4 \end{cases}. \end{cases}$$

Therefore

$$\begin{cases} \lambda_a \geqslant \left\{ \begin{array}{ll} (a-1)(4-a) + 2a & \text{if } a \leqslant 3 \\ 2a & \text{if } a \geqslant 4 \end{array} \right. \\ \\ \lambda_a \leqslant \left\{ \begin{array}{ll} 6a - 4 & \text{if } a \leqslant 3 \\ 5a - 3 & \text{if } a \geqslant 4 \end{array} \right. \end{cases}$$

REFERENCES

- Be] E. Bese, On the spannedness and very ampleness of certain line bundles on the blow-up of P_C^2 and F_r , Math. Ann., **262** (1983), pp. 225-238.
- [Bi-Li] A. Biancofiore E. L. Livorni, Algebraic rules surfaces with low sectional genus, Preprint.
- [Bo] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. I.H.E.S., 42 (1973), pp. 447-495.
- [Gr-Ha] P. A. Griffiths J. Harris, *Principles of Algebraic Geometry*, A. Wiley, Interscience Publication, 1978.
- [Ha] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
- [Li₁] E. L. LIVORNI, Classification of algebraic surfaces with sectional genus less than or equal to six. II: Ruled surfaces with dim $\Phi_{K_X \otimes L}(X) = 1$, Can. J. of Math., 37, No. 4 (1986)
- [Li₂] E. L. LIVORNI, Classification of algebraic ruled surfaces with sectional genus less than or equal to six and dim $\Phi_{K_x \otimes L}(X) = 2$, Math. Scand., **58** (1986).
- [Na] M. NAGATA, On self-intersection number of a section on a ruled surface, Nagoya Math. J., 37 (1970), pp. 191-196.
- [Sh] I. R. ŠHAFAREVIČ, Algebraic surfaces, Proc. Steklov Inst. Math., 75 (1965) (translation by Amer. Math. Soc., 1967).
- [So₁] A. J. Sommese, Hyperplane sections of projective surfaces. I: The adjunction mapping, Duke Math. J., **46** (1979), pp. 377-401.
- [So₂] A. J. Sommese, The birational theory of hyperplane sections of projective therefolds, Unpublished (1981) manuscript.
- [VdV] A. Van de Ven, On the 2-connectness of very ample divisors on a surface, Duke. Math. J., 46 (1979), pp. 403-407.