On the Genus of a Hyperplane Section
of a Geometrically Ruled Surface (*).

ALDO BIANCOFIORE - ELVIRA LAURA LIVORNI

Summary. — In this paper we estimate the minimal genus of hyperplane sections of a geome-
trically ruled surface.

Introduction.

Let D be a divisor on a geometrically ruled surface n: X —C. If 0, is a min-
imal section and f is fiber on X we can write D = aC,+ bf. For a fixed number a
we have studied two related problems:

I) What is the minimal b (call it b,) such that D = aC, | bf is very ample?
II) What is the minimal genus A, of a very ample divisor D?
For g = g(C) = 0 (see [Ha, Corollary, V.2.18]) we have b, = ae 4- 1 and 1, =
= (1/2)a{a — 1)e, where ¢ = — C,-C, is an invariant of X.

In this paper we obtain some answers for g>1. In particular if g = 1 our answer
(§ 6) is sharp i.e.

ae + 3 if e>0 and any ¢ or e=—1 and a<3
| 1—(@j2) +ea) if e=—1 and a>4
where
1 if a even
g(a) =
(1/2) if o odd
and

{ (1/2)a(e —1)e +8a— 2 if ¢>0 and any @ or e=—1 and a<3

(a—1)e(a) -+ a if e=—1 and a>4.

(*) Entrata in Redazione il 12 giugno 1985.
Indirizzo degli AA.: Istituto di Matematica, Via Roma, 33 - 67100 L’Aquila.
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For g>2 we found (§5) that if e>0

ae -~ 1<b,<ae + 29+ 1

(a{a —1)/2) e ++ ag<ia<(a(a—1)[2) e + (Ba— 2)g
and if e<< 0

(1/2)ae + clae)<b,<(1/2)ae + 29 + &(ae)
ag + (elae) — 1)(a — 1) <A< (80— 2)g + (e(ae) — 1)(a — 1) .

For the case g = 2 we can improve the above bounds (see § 7). In particular
for ¢>0, b,=ae+ 5 and 1. = (1/2)a(e — 1)¢ + 6a — 4.

Our results are very useful in the study of smooth, connecfed, projective, ruled
surfaces with the genus of a hyperplane section less than or equal to seven. See
[Li,], [Li,], [Bi-Lil.

We would like to express our gratitude to Andrew J. SOMMESE for the numerous
conservations that we had at the University of Notre Dame, from which this work
benefited.

0. — Background material.

The notation, throughout this paper, is essentially that used in [Ha].

(0.1) Let X be an analytic space. We let Oy denote its struc"nure sheaf and
let h0(X) = dim Hi(X, Of). If X is a complex manifold, we let 'Ky fdenote its
canonical bundle.

(0.2) Let X be a smooth connected projective surface. Let D be an effective
Qartier divisor on X. We denote by L(D), the holomorphic line bundle associated
to D. If L is a holomorphic line bundle on X, |L| denotes the linear system of
Cartier divisors associated to L. Of course if |L| is non-empty then I(D)= L for
De|L|. Let E be a second holomorphic line bundle on X, then L-E denotes the
evaluation of the cup produet, C(I)AC,(B) on X, where C,(L) and C,(E) are the
Chern classes of L and E respectively. If De |L| and C € |E|, it is convenient to
let D-C=D-FE=T1-0=LE We often let g = g(L) = (1/2)(L-L 4 Ex L+ 2),
which is called the adjunction formula. If there iz a smooth D e |L|, then

g = g{L) = h+(D) .

(0.3) Let L be a line bundle on a projective variety. We say L is spanned if
I'(L) is generated by its global sections. By [Ha, lemma 7.8] this is equivalent to
saying that I'(L) is base-point-free. We say L is very ample if L is spanned and
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the map ¢: X — PZ associated to I'(L) is an embedding. We say that L is ample
if some power of L is very ample.

(0.4) Let D be an effective divisor on a smooth connected, projective surface X,
D is k-connected if D-D > 0 and for every decomposition D = D, -} D, into effec-
tive divisors D, -D,>k.

(0.5) (Ruled surfaces). Let C be a smooth curve of genus ¢ and n: X — C a
(geometrically) ruled surface. A section of X is a map o: ¢ — X such that moo =1id,.
The image of ¢ is a divisor (, which we will also call a section. Let C,C X be a
section, and let f be a fiber, then Pic X ~ Z @ a* Pic 0, where Z is generated by C,.
Also Num X ~ ZD Z is generated by C;, f with Cy-f =1 and f-f = 0. For any
ruled surface there exist a rank 2 vector bundle on C, p: E — C such that P(F)~ X
and viceversa. We have P(¥) ~ P(E') if and only if there is a line bundle L such
that E'= E& L. Moreover it is always possible to write X = P(H) with H*(C, E)#0
and HY(C, EQ L) = 0, for every line bundle with deg L < 0. Such an & is said
to be normalized. It is not necessarily unique but deg ¥ is uniquely determined
and is an invariant of X. Let e be the divisor on O corresponding to A%H. Set
¢ =—dege = — deg A?H. We fix a section C, of X with £(C)) = Op(1). We
have (2 = dege =—¢ and C,-f=1. If b is any divisor on €, then we denote
the divisor #*b by bf. Thus any element of Pic X can be written a0, + bf with
aeZ and b e Pic 0. Any element of Num X can be written aC, + bf with «, bc Z.
If D,=a,C+ byf, h=1,2 we get

D, D, = a,b, + a,b, — a,aze
(0.6)
D} = 2a,b, — dle.

Moreover since
(0.7) Ky=—2C4+ (29—2—¢)f

we get

K:=8(1—yg).

It D=al,+ bf and setting k(D) = dim H(X, L(D)), i>0 then by the Rie-
mann-Roch Theorem we have

(0.8) (D) — k(D) = (@ + 1) (b — (ae/2) — g+ 1) .
Let D = a0l 4 bf be a divisor on X. Then D is ample if and only if

ae if e>0

(1/2)ae if e<O.

(0.9) a>0 and b>
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1. - Vanishing theorems.

Let z: X — C be a ruled surface. Let X ~ P(E), where ¥ i3 a normalized rank 2
vector bundle. Set L(e) = A*E. If dege == — ¢ then we write (numerically) L(e) =
= L(— ¢). We have

E = E*QAE = E*) L(e)
where E* is dual to H. Let S°E be the a-symmetric product of E. Then we have

(1.1) Hi{(X, a0y + bf) = Hi(C, 8*B*Q L(b)) , >0
(1.2) 8°H =~ 8"E*® (A*E)®* = §8"E*® L(ae) .

Since ¥ is normalized we have
{(1.3) H“(O, E@L(b)) ~ AYX, 0+ bf) =0

for any b < 0. As before we set k(D)= dim H{X, L(D)). Let D = aC,+ bf be
% divisor on X. Then by the Kodaira Vanishing Theorem we have hi(D) =0 if
D — K, is ample. Therefore using (0.7) and (0.9) we get h}(D) =0 if

(@a-+1)et+29—2 i ex0
(1.4) a>—1 and b>
(1/2)ae + 29 — 2 if e<<0.

By Serre duality, (1.1) and (1.2) we get

{ HY(X, a0y 4 bf) = H{X, a0+ (ae — b + 2¢ — 2)f)
(1.3)

HY(X, aCy -+ bf) =~ H(X, aC, + (ae — b + 29 — 2)f) .

THEOREM 1.1. — Let D =aC, -~ bf be a divisor on X, with a>1. We have
YD) = 0 if
ae - 29— 2 if a=1 and any e or ¢>>2 and ¢>0

{1.6) b >
(1/2)ae +29—2 if a>2 and e<0

and YD) >0 if
(1.7) bh<<(1/2)ae +g—1.

PROOT. — (1.7) follows from (0.8). Consider now (1.6). The case ¢ << 0 was already
done in (1.4). We prove the case ¢>0 by induction. By (1.3) and (1.5) we get
WD)=01i a=1, b>e+ 29— 2 and any e.



A1DO0 BIANCOFIORE - ELVIRA LAURA LIVORNI: On the genus, ete. 177

Suppose (1.6) true for a — 1. We have the short exact sequence
00— LD— C) - L{D)—~> L(— ae +b) -0
since L(D)|¢, ¢ L(— ae 4- b). Then
H\X,L(D — C,)) - HY(X, L(D)) — H(C, L(— ae + b)) -0 .
We have b>ae+ 29—~ 2>(ea—1)e-+ 29— 2 since e>0. Thus by induction
HYX, L(D— Cy)) = 0. Moreover — ae + b >2¢g— 2 implies H*(C, L(— ae + b)) = 0.
Hence A'(D)=0. @O

THEOREM 1.2. ~ Let D=aC,+ bf be a divisor on X, with a>1. Then
(D) =0 if

0 if a=1 and any ¢ or a>>2 and e>0
(1.8) b <
(1/2)ae if a>2 and ¢<< 0

and k(D) > 0 if
(1.8) b> (1/2)ae - g—1.

Proor. - (1.9) follows from (0.8). Consider now (1.8). The case ¢ = 1 is just (1.3).
By (1.5) and (1.6) we get (1.8) in the case a>2. O

2. — Very ample line bundles on ruled surfaces.

Let D =aC, 4} bf be a divisor on a ruled surface 7: X — C, with a>1. We
set f, = aYx) for v C.

LEMMA 2.1. - Tf BY(D— f,) = 0 then L(D)|, = Op (a).

Proor. — Since k(D — f,) = 0 we have
(2.1) 0 —HX, (D — f,)) — H'(X, L(D)) -5 H*(X, L(D)) l,—0.

I£D'|; 0 for some D'e|L(D)| we would have L(D)|;, = Op (a). But D'|; = 0 for
every D'e|L(D)| implies 8 = 0, henece h(D — f,) = k(D). On the other hand from
(0.8) we get h%(D) = k(D — f,) + (a + 1) + #*(D) which implies k(D) > k(D — f,)
since a>1 and A'(D)>0. Therefore L(D)|;,= Op(a). O

PROPOSITION 2.2. — If YD — f)=0 then L(D) is spanned.
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Proor. - Since #Y(D — f,) = 0 for every », by lemma 2.1 we have

0 — L(D — f,) > L(D) - Op (a) - 0

since Op (a) is very ample for a>1 we get that L(D) is spanned. O
ProposiTIoN 2.3. — If (D — f) = 0 and AY(D — 2f ) = 0 then L(D)is very ample.
Proor. — We have to prove that |L(D)| separates points and tangent vectors.

Case 1. ~ P and @ (or P and 1) not in the same fiber. Let f; and f, be the fibers
which P and ¢ are on respectively. Sinee YD — fo— fo) = 0 and L(D — fp){fez
== 0p (a) we have

0 — HY(X, (D — fr— fo)) = HYX, I(D — f5)) - H"Py, Opl(a)) 0.

So we can find D'~ D — fp such that @ ¢ D', ie. Q¢ D'. Hence @ ¢ D'+ fp= D
but Pe D'+ fp. In the case (P and ) we do the same congidering P=¢. Then
we get PeD'+4 f, but 2P ¢ D' f» so t is net a tangent vector to D'+ f» at P.

Case 2. — P and @ (or P and ?) are both in the same fiber f, for some e C. From
(2.1) we can find D'~ D such that P e D'|, but @ ¢ D’{E (P e D', but 2P ¢ D'|, ).
Hence Pe D’ and Q ¢ D’ (or P D’ but ¢ is not tangent to D’ at P).

COROLLARY 2.4. — D is spanned if

{ ae+ 29— 1 if a=1 and any e or a>2 and ¢>90
b>

1/2)ae+2¢g—1 if a>2 and e<<0
g

and D is very ample if

{ ae 4 2g if =1 and any ¢ or a>2 and ¢>0
b >

(1/2)ae +2g9 i a>2 and e<0.

3. — On the 3~conmectedness of a divisor om a ruled surface.

Let D= a0, + bf be a divisor on a ruled surface. If D = D, 4+ D, we have
Dy=2C+yf=(a—8)0+ b—7f and Dy=(a—a)C+ (b—y)f= 20+ Ff.
Assume D2 = a(2b — a¢) > 0, i.e. 4> 0 and b > (1/2)ae. In order to prove that D
is 3-connected we have to prove that for any decomposition D = D; - D, with
D4 0 and B(D,)>1 we get that D, D,>3.
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LEMMA 3.1. — Assume that h*(xC, + yf)>1, then a) >0

(1/2)we if >2 and e<0

b) y>
0 if #=0,1 and e<<0 or e>0 and any x.

PROOF. — a) If < 0 then A%D,) = 0. It is enough to prove it for » = —1,
since k(D + ) = 0 implies m(D,) =0 for x<— 2. We have

0 - L(D,) — L(yf) = L(yf)|o, = L(y) =0 .

Sinee r(yf) = (y) and HY(X, L(yf)) —H(0, L(y)) is surjective, we have h%(D,) = 0.

b) If =0, then »(D,) =0 if y < 0. Therefore if wj: 0 and A(D;)>0 it
follows that y>0. If #>1 then by (1.8) we get part 5). O

PROPOSITION 3.2. — Assume that ¢e< 0 and ¢>3. Then D is 3-connected if

0 ife=—1and ¢ =3
b
(1/2)ae+ 1  otherwise .

Proor. — By lemma 3.1 # and & are non-negative.

Case 1. — Agsume 2 = 0 (or & = 0) from

y(a— 20) + o(— (e — z)e -+ b)

(3.1) Dl-Dzz{
gl — 28) + #(— (a — &)e + b)

we get I -D, = ya (or = a). Since a > 2 and y > 0 (§ > 0) we obtain D, D, > 2.

Case 2. — Assume z =1 (or £ =1). From o — 22> 0 and y>0 and (3.1) we
have D,*Dy>b— (@ —1)e. If (a,6) = (3, — 1) then b>0 s0o — (a— 1)e +b> 2,
hence D, D, > 2. If (a,e)== (3,—1) then b > (1/2)ae 4+ 1 8o

D Dy=b— (a—1)e>1+ (1/2)ae— (6 — 1)e =1— (a — 2)(¢/2)>2,

then D,-D, > 2.

Case 3. - 2<w<a—2anda—22>0 (or 2<f<a— 2 and — (4 — 20) = a— 2&>0)
we treat only the part @ — 2#>0. The other part is similar. In this case y>we/2
80 Dy Dy> (wef2)(a — 20) + a(— (@ — x)e + b) = z(b — (1/2)ae). If (a,¢) = (3, —1)
then b > 0 and we have D, D, > 3. If (4, ¢) 5 (3, — 1) then D;-D;>u(b — (ae/2)) >

>2(b— (ae/2)) >2. 8o D;*D,>2. 0O
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4. — Very ampleness by Bombieri’s method.

We would like to find new conditions for L to be very ample. In order to do
this we shall use the following theorem.

THEOREM 4.1. — Let L be a line bundle over a surface X. We put Ly = LR K;'.
If i) BO(Lo)>7; ii) Ly Ly>10; iii) L, i8 3-conneeted, then I is very ample.

Proor. - Bee [VAV].

Theorem 4.1 has been proved using a method of Bombieri. See also [Be], [Bo],
[So,] and [So,]. '

We will apply Theorem 4.1 for L = L(D) where D = a(, -+ bf is a divisor over
a ruled surface X. Then L, = L(D,) where

Dy=D—Ky=0,C,F byf=1(a4+2)Co+ (b— 292+ 6)f.
We are interested in the case ¢<< 0 and a>2. By (0.8) we have
B(Do) — h(Dy) = (@ -+ 1){(by + 1 — g — (a5¢(2)) .
Since A1{D,)>0 we have h(D,)>T if
4.1) b>T/(a+ 3) 4+ (ae/2) + 39— 3.

By (0.6) we have Ly Ly = 2a,(by — (1/2)a,¢) = 2(a + 2)(b — 2¢ + 2 — (ae/2)). There-
fore L, L,>10 when

(4.2) b>5/(a-+2)+ (ae/2) 4+ 29— 2.
Moreover by Proposition 3.2 we have L, is 3-connected if
(4.3) b> (ae/2) + 29— 1.

We set

Ky = Tf(a+ 3) + (ae/2) +- 39— 3, K,=5/(a+ 2)+ (ae/2) + 29— 2,
K, = (ae2) +- 2¢g — 1+ &(ae), K,=K,+1,
where
1 if #n even

e(n) =
1/2  if » odd.
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Using Theorem 4.1 we have D is very ample if b>K, = Max {K,, K,, K;}. We
have K,;>K,. For ¢ =1 we have K, = K;. For g = 2

60=2,8,5"79and e=—1
K, if
K, = a=2,3 and ¢ = —2

K, otherwise.

For g>3 then K, = K,. Therefore by Theorem 4.1 and Corollary 2.4, in the case
¢e<<0 and a>2, D is very ample when

b>Min{K,, K,} = K

and
(4.4) K=K,=K, ifg=1
a=2,3,5,7,9and e=—1
K=K i
(4.5) K= o =2,3 and ¢ =—2 if g=2
K, otherwise .

For g>3 we have K = K,.

5. — The‘genus of a very ample divisor on a ruled surface.

Let D = aC, 4 bf be a very ample divisor on a ruled surface X. Let b = deg b
and y == ¢(D). Then by the Adjunction formula we have 2y — 2 = D+ (D -+ Ky)
where Ky = — 20, + (K, -+ ¢)f. Therefore

(D + Ex)D = 2(a— 1)(b — 1— (1/2)ae) + 2ag — 2
and hence

y=(a—1)(b—1— (1/2)ae) + ag .

We set 4, = 4,(C, X) and b, = b,(C, X) which are respectively the minimum
genus and the minimum b of a very ample divisor D = a(, -+ bf on a ruled su-
face X over the curve C. We have

(5.1) Jo= (@ —1)(b,— 1— (1/2)ae) + ag .

So finding 1, is equivalent to finding 4,. The next step is finding an estimate
for b, (or ,). We are interested in the case a>2. Since if yD is very ample it is
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ample. Hence

ae ifex>0
by >
(1/2)ae if e<0

and by corollary 2.4 we have

) ae + 29 +1 ifex=0
I
(1/2)ae 4 29 + e(ae) if e<O.

Therefore if >0

(6.2) ae +1<b,<ae-+2g-1

and

(5.3) (ala—1)j2) ¢ + ag< A< ala—1)/2 + (30— 2)g

it e<0

(5.4) (1/2)ae + s(ae) <bo< (1/2)ae + 2g + e(ae)

and

(5.5) ag -+ (e(ae) — 1)(a — 1)< A< (Ba — 2)g + (e(ae) — 1) (@ — 1) .

If g =0 then ¢>0 and b, = ae |+ 1 hence
(5.6) Ao = {1/2)a(a — 1)e

In the case ¢ = 1 or 2 we can improve the lower bound. By the short exact
sequence

0 - L(D — G,) — L(D) — L(D)|¢,= L{ae -+ b) — 0

we get that L(D) very ample implies L(ae + b) very ample.

In the case g = 1 or 2, L(ae 4 b) is very ample if and only if b > ae 4 2¢. If
e>0 we have ae + 29 4-1>a¢+1 and
(5.7) b,=o0e+ 2941,
(5.8) de = (1/2)a{a — 1)e 4 (Ba — 2)g .

If ¢ <0 we have

>ae+ 29 if a>— 4gfe
(1/2)ae
<ae-2g9 if a<<— 4gje.
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So

ae -+ 2¢g +1 if @<— 4g/e
(6.9)

a®

(1/2)ae 4 e(ae) if a>-— 4g/e.

6. — The case g =1.

If ¢e>0 we have (5.7) and (5.8). It only remains to study the case e = — 1.
By (5.4), (5.9) and (4.4) we have for a>2

—a+3 if a<3
(6.1) 1— (a/2) + e(a) > >
— {(af2) + ela) if ax4.

We already know b, = 2. From (6.1) we have b, = 1 and b, = 0. If a>4 then
b, is either — (a/2) + &(a) or 1— (a/2) 4 e(a). We set D, = aC, -+ (— (a/2) + &(a)) f.

THEOREM 6.1. — D, is not very ample.
In order to prove Theorem 6.1 we need the following.

LeMMA 6.2, — Let X be a ruled surface over €. Assume ¢ = — 1. Then there
is Pe C such that a(2C,— Pf)>1.

Proor. — We put D=20,— f. By (0.8) we have k(D) = hY(D) and h*2C,) —
— hY20,) = 3. By (1.6) bY(20,) =0, so h(20;) = 3. Now h(20,) = k(S2E) so
there is a section ¢ in 8*F which has some zero, otherwise S2E would be trivial
which implies A38%F = L(3e) is trivial which is a contradiction. Then by (1.8) we
have D[¢] = (P), i.e. only one point, and k20, — Pfi>1. 0O

ProorF oF THEOREM 6.1. — Suppose D, very ample. We set D, = 2C,— Pf.
We have D,-D, = 2¢(a), i.e. D,-Dy,=1 if o is odd and D, D, = 2 if a is even.
In both cases Dy is a smooth rational curve (since D, is irriducible) with respect to
the embedding provided by |D,|. But z|,: D, — C is a 2{1 map over an elliptic
curve, which is a contradiction. 0O

THEOREM 6.3. — Let D =aC, 4 bf be divisor on s ruled surface X over an
elliptic curve (. Assume that a>1. Then D is very ample if and only if

ae + 2 if 60 and any ¢ or e = —1 and a<3
(6.2) b>
1—(af2) ife=—1and a>4.
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COROLLARY 6.4. — Let D be as above. Then

[ ae+3 if >0 and any a or e = —1 and a<3
1—(a/2)4-¢ela) i e=—1and ax4
(1/2)a(a —1)e+3a— 2 if ¢>0 and any ¢ or e=—1 and a<3
(6.4) A

(o —1)e(a) + a if e=—1 and a>4.

7. — The case g= 2.

Let X be a ruled surface over a curve ¢ with g = ¢(C) = 2. Let D = aC, + bf
be a divisor over X with a>2. As for the case g = 1, if ¢>0 we have

(7.1) b,=ae -+ 5 (actually it holds also for a =1 and ¢<0).
When ¢ << 0 we have two cases e = — 1 and ¢ = — 2. At first we consider the
cages ¢ = — 1. From (5.4), (5.9) and (4.5) we have
—a-+5> if a7
b, <
— (a[2) + e(a) if 6>8
(7.2)
— (@2) +4+e@ ifa=233109
bo>
— (a/2) + 3 + e(a) otherwise
Therefore
6a — 4 — (1/2)a{a — 1) if a7
o>
(@ — 1){e(a) — 1) + 2a it 428
(7.3)
60— 4 4 (a—1)(e(a)—1) ifa=23579
Ae<
5¢ — 3 + (a — 1)(e(a) —1)  otherwise.
Now we consider the case ¢ = — 2. From (5.4), (5.9) and (4.5) we have
—2a4+5 if a<3
by >
— a1 if a>4
(7.4)

—a-+4 if a>4.

{—a+5 if a<3
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Therefore
(@a— )4 —a)+2¢ if a<3
A=
2a if a4
(7.5)
6a — 4 if a<3
A<
50— 3 if a>4.
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